Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods

Publication Classification

- Int. Cl. H04B 10/2575 (2006.01)
- H04J 14/02 (2006.01)

- U.S. Cl. CPC H04B 10/25752 (2013.01); H04J 14/02 (2013.01)

Abstract

Optical fiber-based distributed communications systems that provide and support both RF communication services and digital data services are disclosed herein. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. In certain embodiments, digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. In other embodiments, digital data services can be distributed over common optical fiber with RF communication services. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM). Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.

Related U.S. Application Data

- Continuation of application No. 13/785,603, filed on Mar. 5, 2013, now Pat. No. 9,042,732, which is a continuation of application No. 12/892,424, filed on Sep. 28, 2010, now abandoned.

- Provisional application No. 61/330,386, filed on May 2, 2010.
PROVIDING DIGITAL DATA SERVICES IN OPTICAL FIBER-BASED DISTRIBUTED RADIO FREQUENCY (RF) COMMUNICATIONS SYSTEMS, AND RELATED COMPONENTS AND METHODS

PRIORITY APPLICATION

[0001] This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/785,605 filed on Mar. 5, 2013, which is a continuation of and claims priority to U.S. patent application Ser. No. 12/892,424 filed on Sep. 28, 2010, which claims priority to U.S. Provisional Patent Application Ser. No. 61/330,386 filed on May 2, 2010, the contents of which are relied upon and incorporated herein by reference in their entirety.

RELATED APPLICATIONS

BACKGROUND

[0004] 1. Field of the Disclosure

[0005] The technology of the disclosure relates to optical fiber-based distributed communications systems for distributing radio frequency (RF) signals over optical fiber.

[0006] 2. Technical Background

[0007] Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed communications systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device.

[0008] One approach to deploying a distributed communications system involves the use of radio frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” Antenna coverage areas can have a radius in the range from a few meters up to twenty meters as an example. Combining a number of access point devices creates an array of antenna coverage areas. Because the antenna coverage areas each cover small areas, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide distributed communications system access to clients within the building or facility. However, it may be desirable to employ optical fiber to distribute communication signals. Benefits of optical fiber include increased bandwidth.

[0009] One type of distributed communications system for creating antenna coverage areas, called “Radio-over-Fiber” or “RoF,” utilizes RF signals sent over optical fibers. Such systems can include a head-end station optically coupled to a plurality of remote antenna units that each provides antenna coverage areas. The remote antenna units can each include RF transceivers coupled to an antenna to transmit RF signals wirelessly, wherein the remote antenna units are coupled to the head-end station via optical fiber links. The RF transceivers in the remote antenna units are transparent to the RF signals. The remote antenna units convert incoming optical RF signals from an optical fiber downlink to electrical RF signals via optical-to-electrical (O/E) converters, which are then passed to the RF transceiver. The RF transceiver converts the electrical RF signals to electromagnetic signals via antennas coupled to the RF transceiver provided in the remote antenna units. The antennas also receive electromagnetic signals (i.e., electromagnetic radiation) from clients in the antenna coverage area and convert them to electrical RF signals (i.e., electrical RF signals in wire). The remote antenna units then convert the electrical RF signals to optical RF signals via electrical-to-optical (E/O) converters. The optical RF signals are then sent over an optical fiber uplink to the head-end station.

SUMMARY OF THE DETAILED DESCRIPTION

[0010] Embodiments disclosed in the detailed description include optical fiber-based distributed communications systems that provide and support both radio frequency (RF) communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. Alternatively, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM). Power distributed in the optical fiber distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.

[0011] In one embodiment, a distributed antenna system for distributing RF communications and digital data services (DDS) to at least one remote antenna unit (RAU) is provided. The distributed antenna system includes a head-end unit (HEU). The HEU is configured to receive at least one downlink electrical RF communications signal. The HEU is also configured to convert the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU. The HEU is also configured to receive at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU. The HEU is also configured to convert the at least one optical RF communications signal into at least one uplink electrical RF communications signal. The distributed antenna system also includes a DDS controller. The DDS controller is configured to receive at least one downlink optical digital signal containing at least one
DDS, and provide the at least one downlink optical digital signal over at least one second communications downlink to the at least one RAU.

[0012] In another embodiment, a method of distributing RF communications and DDS to at least one RAU in a distributed antenna system is provided. The method includes receiving at an HEU at least one downlink electrical RF communications signal. The method also includes converting the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU. The method also includes receiving at the HEU at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU. The method also includes converting the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal. The method also includes receiving at a DDS controller at least one downlink optical digital signal containing at least one DDS, and providing the at least one downlink optical digital signal over at least one communications downlink to the at least one RAU.

[0013] In another embodiment, a RAU for use in a distributed antenna system is provided. The RAU includes an optical-to-electrical (O-E) converter configured to convert received downlink optical RF communications signals to downlink electrical RF communications signals and provide the downlink electrical RF communications signals at least one first port. The RAU also includes a electrical-to-optical (E-O) converter configured to convert uplink electrical RF communications signals received from the at least one first port into uplink optical RF communications signals. The RAU also includes a DDS interface coupled to at least one second port. The DDS interface is configured to convert downlink optical digital signals into downlink electrical digital signals to provide to the at least one second port, and convert uplink electrical digital signals received from the at least one second port into uplink optical digital signals.

[0014] Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.

[0015] It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.

BRIEF DESCRIPTION OF THE FIGURES

[0016] FIG. 1 is a schematic diagram of an exemplary optical fiber-based distributed communications system;

[0017] FIG. 2 is a more detailed schematic diagram of an exemplary head-end unit (HEU) and a remote antenna unit (RAU) that can be deployed in the optical fiber-based distributed communications system of FIG. 1;

[0018] FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the optical fiber-based distributed communications system in FIG. 1 can be employed;

[0019] FIG. 4 is a schematic diagram of an exemplary embodiment of providing digital data services over downlink and uplink optical fibers separate from optical fibers providing radio frequency (RF) communication services to RAUs in an optical fiber-based distributed communications system;

[0020] FIG. 5 is a diagram of an exemplary head-end media converter (HMC) employed in the optical fiber-based distributed communications system of FIG. 4 containing digital media converters (DMCs) configured to convert electrical digital signals to optical digital signals and vice versa;

[0021] FIG. 6 is a diagram of exemplary DMCs employed in the HMC of FIG. 5;

[0022] FIG. 7 is a schematic diagram of an exemplary building infrastructure in which digital data services and RF communication services are provided in an optical fiber-based distributed communications system;

[0023] FIG. 8 is a schematic diagram of an exemplary RAU that can be employed in an optical fiber-based distributed communications system providing exemplary digital data services and RF communication services;

[0024] FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from RF communication services to RAUs in an optical fiber-based distributed communications system;

[0025] FIG. 10A is a schematic diagram of an exemplary embodiment of employing wavelength-division multiplexing (WDM) to multiplex digital data services and RF communication services at different wavelengths over downlink and uplink optical fibers in an optical fiber-based distributed communications system;

[0026] FIG. 10B is a schematic diagram of an exemplary embodiment of employing WDM to multiplex uplink and downlink communications for each channel over a common optical fiber;

[0027] FIG. 11 is a schematic diagram of another exemplary embodiment of employing WDM in a co-located HEU and HMC to multiplex digital data services and RF communication services at different wavelengths over common downlink optical fibers and common uplink optical fibers in an optical fiber-based distributed communications system;

[0028] FIG. 12 is a schematic diagram of another exemplary embodiment of employing WDM in a common housing HEU and MC to multiplex digital data services and RF communication services at different wavelengths over a common downlink optical fiber and a common uplink optical fiber in an optical fiber-based distributed communications system;

[0029] FIG. 13 is a schematic diagram of another exemplary embodiment of employing frequency-division multiplexing (FDM) to multiplex digital data services and RF communication services at different frequencies over downlink optical fibers and uplink optical fibers in an optical fiber-based distributed communications system; and

[0030] FIG. 14 is a schematic diagram of another exemplary embodiment of employing FDM and WDM to multiplex digital data services and RF communication services at different frequencies and at different wavelengths over downlink optical fibers and uplink optical fibers in an optical fiber-based distributed communications system.
Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.

Embodiments disclosed in the detailed description include optical fiber-based distributed communications systems that provide and support both radio frequency (RF) communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. For example, non-limiting examples of digital data services include Ethernet, WLAN, Worldwide Interoperability for Microwave Access (WiMax), Wireless Fidelity (WiFi), Digital Subscriber Line (DSL), and Long Term Evolution (LTE), etc. Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. Alternatively, digital data services can be distributed over common optical fiber with RF communication services. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM). Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.

In this regard, an exemplary optical fiber-based distributed communications system that provides RF communication services without providing digital data services is described with regard to FIGS. 1-3. Various embodiments of additionally providing digital data services in conjunction with RF communication services in optical fiber-based distributed communications systems starts at FIG. 4.

In this regard, FIG. 1 is a schematic diagram of an embodiment of an optical fiber-based distributed communications system. In this embodiment, the system is an optical fiber-based distributed communications system 10 that is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the radio frequency (RF) range of the antenna coverage areas. The optical fiber-based distributed communications system 10 provides RF communications service (e.g., cellular services). In this embodiment, the optical fiber-based distributed communications system 10 includes a head-end unit (HEU) 12, one or more remote antenna units (RAUs) 14, and an optical fiber 16 that optically couples the HEU 12 to the RAU 14. The HEU 12 is configured to receive communications over downlink electrical RF signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14. The HEU 12 is also configured to return communications received from the RAU 14, via uplink electrical RF signals 18U, back to the source or sources. In this regard in this embodiment, the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12.

The optical fiber-based distributed communications system 10 has an antenna coverage area 20 that can be substantially centered about the RAU 14. The antenna coverage area 20 of the RAU 14 forms an RF coverage area 21. The HEU 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as radio frequency (RF) identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communication signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.

With continuing reference to FIG. 1, to communicate the electrical RF signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20 formed by the RAU 14, the HEU 12 includes an electrical-to-optical (E/O) converter 28. The E-O converter 28 converts the downlink electrical RF signals 18D to downlink optical RF signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF signals 22D back to electrical RF signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.

Similarly, the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF signals representing the wireless RF communications to an O/E converter 34 in the RAU 14. The E-O converter 34 converts the electrical RF signals into uplink optical RF signals 22U to be communicated over the uplink optical fiber 16U. An O/E converter 36 provided in the HEU 12 converts the uplink optical RF signals 22U into uplink electrical RF signals, which can then be communicated as uplink electrical RF signals 18U back to a network or other source. The HEU 12 in this embodiment is not able to distinguish the location of the client devices 24 in this embodiment. The client device 24 could be in the range of any antenna coverage area 20 formed by an RAU 14.

FIG. 2 is a more detailed schematic diagram of the exemplary optical fiber-based distributed communications system of FIG. 1 that provides electrical RF service signals for a particular RF service or application. In an exemplary embodiment, the HEU 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39. In a particular example embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 Gigahertz (GHz) and from 5.0 to 6.0 GHz. Any other electrical RF signal frequencies are possible. In another exemplary embodiment, the service unit 37 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20.
With continuing reference to FIG. 2, the service unit 37 is electrically coupled to the E-O converter 28 that receives the downlink electrical RF signals 18D from the service unit 37 and converts them to corresponding downlink optical RF signals 22D. In an exemplary embodiment, the E-O converter 28 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E-O converter 28 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).

With continuing reference to FIG. 2, the HEU 12 also includes the O-E converter 36, which is electrically coupled to the service unit 37. The O-E converter 36 receives the uplink optical RF signals 22U and converts them to corresponding uplink electrical RF signals 18U. In an example embodiment, the O-E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E-O converter 28 and the O-E converter 36 constitute a "converter pair" 35, as illustrated in FIG. 2.

In accordance with an exemplary embodiment, the service unit 37 in the HEU 12 can include an RF signal modulator/demodulator unit 40 for modulating/demodulating the downlink electrical RF signals 18D and the uplink electrical RF signals 18U, respectively. The service unit 37 can include a digital signal processing unit ("digital signal processor") 42 for providing to the RF signal modulator/demodulator unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF signal 18D. The digital signal processor 42 is also configured to process a demodulation signal provided by the demodulation of the uplink electrical RF signal 18U by the RF signal modulator/demodulator unit 40. The HEU 12 can also include an optional central processing unit (CPU) 44 for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data, such as data to be transmitted over a WLAN or other network for example.

With continuing reference to FIG. 2, the RAU 14 also includes a converter pair 48 comprising the O-E converter 30 and the E-O converter 34. The O-E converter 30 converts the downlink optical RF signals 22D into electrical RF signals 50D. The E-O converter 34 converts the uplink electrical RF signals 50U into optical RF signals 22U to be communicated to the HEU 12. The O-E converter 30 and the E-O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52, such as a circulator for example. The RF signal-directing element 52 serves to direct the downlink electrical RF signals 50D and the uplink electrical RF signals 50U, as discussed below. In accordance with an exemplary embodiment, the antenna 32 can include one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006 entitled "Radio-over-Fiber Transponder With A Dual-Band Patch Antenna System," and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006 entitled "Centralized Optical Fiber-Based Wireless Picocellular Systems and Methods," both of which are incorporated herein by reference in their entirities.

With continuing reference to FIG. 2, the optical fiber-based distributed communications system 10 also includes a power supply 54 that generates an electrical power signal 56. The power supply 54 is electrically coupled to the HEU 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O-E converter 30 and the E-O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided. In an exemplary embodiment, the electrical power line 58 includes two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14. The DC power converter 64 is electrically coupled to the O-E converter 30 and the E-O converter 34 in the converter pair 48, and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the power-consuming components in the RAU 14. In an exemplary embodiment, the DC power converter 64 is either a DC/DC power converter or an AC/DC power converter, depending on the type of electrical power signal 56 carried by the electrical power line 58. In another example embodiment, the electrical power line 58 (dashed line) runs directly from the power supply 54 to the RAU 14 rather than from or through the HEU 12. In another example embodiment, the electrical power line 58 includes more than two wires and carries multiple voltages.

To provide further exemplary illustration of how an optical fiber-based distributed communications system can be deployed indoors, FIG. 3 is provided. FIG. 3 is a partially schematic diagram of a building infrastructure 70 employing an optical fiber-based distributed communications system. The system may be the optical fiber-based distributed communications system 10 of FIGS. 1 and 2. The building infrastructure 70 generally represents any type of building in which the optical fiber-based distributed communications system 10 can be deployed. As previously discussed with regard to FIGS. 1 and 2, the optical fiber-based distributed communications system 10 incorporates the HEU 12 to provide various types of communication services to coverage areas within the building infrastructure 70, as an example. For example, as discussed in more detail below, the optical fiber-based distributed communications system 10 in this embodiment is configured to receive wireless RF signals and convert the RF signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14. The optical fiber-based distributed communications system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70. These wireless signals can include cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples.

With continuing reference to FIG. 3, the building infrastructure 70 in this embodiment includes a first (ground) floor 72, a second floor 74, and a third floor 76. The floors 72, 74, 76 are serviced by the HEU 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70. Only the ceilings of the floors 72, 74, 76 are shown in FIG. 3 for simplicity of illustration. In the example embodiment, a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70. Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80. The main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers.
The main cable 82 enables multiple optical fiber cables 86 to be distributed throughout the building infrastructure 70 (e.g., fixed to the ceilings or other support surfaces of each floor 72, 74, 76) to provide the antenna coverage areas 80 for the first, second and third floors 72, 74 and 76. In an example embodiment, the HEU 12 is located within the building infrastructure 70 (e.g., in a closet or control room), while in another example embodiment the HEU 12 may be located outside of the building infrastructure 70 at a remote location. A base transceiver station (BTS) 88, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12, and can be co-located or located remotely from the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile station enters the cell, the BTS communicates with the mobile station. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell.

The optical fiber-based distributed communications system 10 in FIGS. 1-3 and described above provides point-to-point communications between the HEU 12 and the RAU 14. Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications. Whenever an RAU 14 is installed in the optical fiber-based distributed communications system 10, the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 12. The downlink and uplink optical fibers may be provided in the optical fiber 16. Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable. For example, with reference to FIG. 3, RAUs 14 installed on a given floor 72, 74, or 76 may be serviced from the same optical fiber 16. In this regard, the optical fiber 16 may have multiple nodes where distinct downlink and uplink optical fiber pairs can be connected to a given RAU 14.

It may be desirable to provide both digital data services and RF communication services for client devices. For example, it may be desirable to provide digital data services and RF communication services in the building infrastructure 70 to client devices located therein. Wired and wireless devices may be located in the building infrastructure 70 that are configured to access digital data services. Examples of digital data services include, but are not limited to, wired and wireless servers, wired access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), baseband units (BBUs), and femtocells. A separate digital data services network can be provided to provide digital data services to digital data devices.
be configured to provide Gigabit (Gb) Ethernet digital data service as an example. The DMCs 97 are configured to convert
electrical digital signals to optical digital signals, and vice versa. The DMCs 97 may be configured for plug and play
installation (i.e., installation and operability without user configuration required) into the HMC 94. FIG. 6 illustrates an
exemplary DMC 97 that can be disposed in the housing 95 of the HMC 94. For example, the DMC 97 may include Ethernet
input connectors or adaptors (e.g., RJ-45) and optical fiber output connectors or adaptors (e.g., LC, SC, ST, MTP).

[0052] With reference to FIG. 4, the HMC 94 (via the
DMCs 97) in this embodiment is configured to convert down-
link electrical digital signals (or downlink electrical digital
data services signals) 98D over digital line cables 99 from
the digital data services switch 96 into downlink optical
digital signals (or downlink optical digital data services signals)
100D that can be communicated over downlink optical fiber
102D to RAUs 14. The HMC 94 (via the DMCs 97) is also
configured to receive uplink optical digital signals 100U from
the RAUs 14 via the uplink optical fiber 102U and convert
the uplink optical digital signals 100U into uplink electrical
digital signals 98U to be communicated to the digital data
services switch 96. In this manner, the digital data services can
be provided over optical fibers as part of the optical fiber-based
distributed communications system 90 to provide digital data
services in addition to RF communication services. Client
devices located at the RAUs 14 can access these digital data
services and/or RF communication services depending on
their configuration. For example, FIG. 7 illustrates the build-
ing infrastructure 70 of FIG. 3, but with illustrative examples
of digital data services and digital client devices that can be
provided to client devices in addition to RF communication
services in the optical fiber-based distributed communications
system 90. As illustrated in FIG. 7, exemplary digital
data services include WLAN 106, femtocells 108, gateways
110, baseband units (BBU) 112, remote radio heads (RRH)
114, and servers 116.

[0053] With reference back to FIG. 4, in this embodiment,
the downlink and uplink optical fibers 102D, 102U are
provided in a fiber optic cable 104 that is interfaced to the ICU 85.
The ICU 85 provides a common point in which the downlink
and uplink optical fibers 102D, 102U carrying digital optical
signals can be bundled with the downlink and uplink optical
fibers 16D, 16U carrying RF optical signals. One or more of
the fiber optic cables 104, also referenced herein as array

cables 104, can be provided containing the downlink
and uplink optical fibers 16D, 16U for RF communication
services and downlink and uplink optical fibers 102D, 102U for
digital data services to be routed and provided to the RAUs
14. Any combination of services or types of optical fibers can be
provided in the array cable 104. For example, the array
cable 104 may include single mode and/or multi-mode
optical fibers for RF communication services and/or digital data
services.

[0054] Examples of ICUs that may be provided in the opti-
cal fiber-based distributed communications system 90 to
distribute both downlink and uplink optical fibers 16D, 16U for
RF communication services and downlink and uplink optical
fibers 102D, 102U for digital data services are described in
U.S. patent application Ser. No. 12/466,514 filed on May 15,
2009 and entitled “Power Distribution Devices, Systems,
and Methods For Radio-Over-Fiber (RoF) Distributed
Communication,” incorporated herein by reference in its entirety,
and U.S. Provisional Patent Application Ser. No. 61/330,385,
filed on May 2, 2010 and entitled “Power Distribution in
Optical Fiber-based Distributed Communication Systems
Providing Digital Data and Radio-Frequency (RF) Commu-
nication Services, and Related Components and Methods,”
both of which are incorporated herein by reference in their
entireties.

[0055] With continuing reference to FIG. 4, some RAUs 14
can be connected to access points (APs) 118 or other devices
supporting digital data services. APs 118 are illustrated, but
the APs 118 could be any other device supporting digital data
services. In the example of APs, the APs 118 provide access
to the digital data services provided by the digital data
services switch 96. This is because the downlink and uplink
optical fibers 102D, 102U carrying downlink and uplink
optical digital signals 100D, 100U converted from downlink
and uplink electrical digital signals 98D, 98U from the digital
data services switch 96 are provided to the APs 118 via the array
cables 104 and RAUs 14. Digital data client devices can
access the APs 118 to access digital data services provided
through the digital data services switch 96.

[0056] Digital data service clients, such as APs, require
power to operate and to receive digital data services. By
providing digital data services as part of an optical fiber-based
distributed communications system, power distributed to the
RAUs in the optical fiber-based distributed communications
system can also be used to provide access to power for digital
data service clients. This may be a convenient method of
providing power to digital data service clients as opposed to
providing separate power sources for digital data service cli-
ents. For example, power distributed to the RAUs 14 in FIG.
4 by or through the ICU 85 can also be used to provide power
to the APs 118 located at RAUs 14 in the optical fiber-based
distributed communications system 90. In this regard, the
ICUs 85 may be configured to provide power for both RAUs
14 and the APs 118. A power supply may be located within
the ICU 85, but could also be located outside of the ICU 85 and
provided over an electrical power line 120, as illustrated in
FIG. 4. The ICU 85 may receive either alternating current
(AC) or direct current (DC) power. The ICU 85 may receive
110 Volts (V) to 240 Volts AC or DC power. The ICU 85 can
be configured to produce any voltage and power level desired.
The power level is based on the number of RAUs 14 and the
expected loads to be supported by the RAUs 14 and any
digital devices connected to the RAUs 14 in FIG. 4. It may
further be desired to provide additional power management
features in the ICU 85. For example, one or more voltage
protection circuits may be provided.

[0057] FIG. 8 is a schematic diagram of exemplary internal
components in the RAU 14 of FIG. 4 to further illustrate how
the downlink and uplink optical fibers 16D, 16U for RF
communications, the downlink and uplink optical fibers
102D, 102U for digital data services, and electrical power are
provided to the RAU 14 and can be distributed therein. As
illustrated in FIG. 8, the array cable 104 is illustrated that
contains the downlink and uplink optical fibers 16D, 16U for
RF communications, the downlink and uplink optical fibers
102D, 102U for digital data services, and the electrical power
line 58 (see also, FIG. 2) carrying power from the ICU 85.
As previously discussed in regard to FIG. 2, the electrical power
line 58 may comprise two wires 60, 62, which may be copper
lines for example.

[0058] The downlink and uplink optical fibers 16D, 16U for
RF communications, the downlink and uplink optical fibers
102D, 102U for digital data services, and the electrical power
The downlink and uplink optical fibers 16D, 16U for RF communications are routed to the O-E converter 30 and E-O converter 34, respectively, and to the antenna 32, as also illustrated in FIG. 2 and previously discussed. The downlink and uplink optical fibers 102D, 102U for digital data services are routed to a digital data services interface 126 as part of the RAU 14 to provide access to digital data services via a port 128, which will be described in more detail below. The electrical power line 58 carries power that is configured to provide power to the O-E converter 30 and E-O converter 34 and to the digital data services interface 126. In this regard, the electrical power line 58 is coupled to a voltage controller 130 that regulates and provides the correct voltage to the O-E converter 30 and E-O converter 34 and to the digital data services interface 126 and other circuitry in the RAU 14.

[0059] In this embodiment, the digital data services interface 126 is configured to convert downlink optical digital signals 100D on the downlink optical fiber 102D into downlink electrical digital signals 132D that can be accessed via the port 128. The digital data services interface 126 is also configured to convert uplink electrical digital signals 132U received through the port 128 into uplink optical digital signals 100U to be provided back to the HMC 94 (see FIG. 4). In this regard, a media converter 134 is provided in the digital data services interface 126 to provide these conversions. The media converter 134 contains an O-E digital converter 136 to convert downlink optical digital signals 100D on the downlink optical fiber 102D into downlink electrical digital signals 132D. The media converter 134 also contains an E-O digital converter 138 to convert uplink electrical digital signals 132U received through the port 128 into uplink optical digital signals 100U to be provided back to the HMC 94. In this regard, power from the electrical power line 58 is provided to the digital data services interface 126 to provide power to the O-E digital converter 136 and E-O digital converter 138.

[0060] Because electrical power is provided to the RAU 14 and the digital data services interface 126, this also provides an opportunity to provide power for digital devices connected to the RAU 14 via the port 128. In this regard, a power interface 140 is also provided in the digital data services interface 126, as illustrated in FIG. 8. The power interface 140 is configured to receive power from the electrical power line 58 via the voltage controller 130 and to also make power accessible through the port 128. In this manner, if a client device contains a compatible connector to connect to the port 128, not only will digital data services be accessible, but power from the electrical power line 58 can also be accessed through the same port 128. Alternatively, the power interface 140 could be coupled to a separate port from the port 128 for digital data services.

[0061] For example, if the digital data services are provided over Ethernet, the power interface 140 could be provided as a Power-over-Ethernet (PoE) interface. The port 128 could be configured to receive a RJ-45 Ethernet connector compatible with PoE as an example. In this manner, an Ethernet connector connected into the port 128 would be able to access both Ethernet digital data services to and from the downlink and uplink optical fibers 102D, 102U to the HMC 94 as well as access power distributed by the I CU 85 over the array cable 104 provided by the electrical power line 58.

[0062] Further, the HEU 12 could include low level control and management of the media converter 134 using communication supported by the HEU 12. For example, the media converter 134 could report functionality data (e.g., power on, reception of optical digital data, etc.) to the HEU 12 over the uplink optical fiber 16U that carries communication services. The RAU 14 can include a microprocessor that communicates with the media converter 134 to receive this data and communicate this data over the uplink optical fiber 16U to the HEU 12.

[0063] Other configurations are possible to provide digital data services in an optical fiber-based distributed communications system. For example, FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system configured to provide RF communication services. In this regard, FIG. 9 provides an optical fiber-based distributed communications system 150. The optical fiber-based distributed communications system 150 may be similar in and include common components provided in the optical fiber-based distributed communications system 90 in FIG. 4. In this embodiment, instead of the HMC 94 being provided separate from the HEU 12, the HMC 94 is co-located with the HEU 12.

The downlink and uplink optical fibers 102D, 102U for providing digital data services from the digital data services switch 96 are also connected to the patch panel 92. The downlink and uplink optical fibers 16D, 16U for RF communications and the downlink and uplink optical fibers 102D, 102U for digital data services are then routed to the ICU 85, similar to FIG. 2.

[0064] The downlink and uplink optical fibers 16D, 16U for RF communications, and the downlink and uplink optical fibers 102D, 102U for digital data services, may be provided in a common fiber optic cable or provided in separate fiber optic cables. Further, as illustrated in FIG. 9, standalone media converters (MCs) 141 may be provided separately from the RAUs 14 in lieu of being integrated with RAUs 14, as illustrated in FIG. 4. The stand alone MCs 141 can be configured to contain the same components as provided in the digital data services interface 126 in FIG. 8, including the media converter 134. The APs 118 may also each include antennas 152 to provide wireless digital data services in lieu of or in addition to wired services through the port 128 through the RAUs 14.

[0065] FIG. 10A is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system. In this regard, FIG. 10A provides an optical fiber-based distributed communications system 160. The optical fiber-based distributed communications system 160 may be similar to and include common components provided in the optical fiber-based distributed communications systems 90, 150 in FIGS. 4 and 9.

[0066] In this embodiment, as illustrated in FIG. 10A, wavelength-division multiplexing (WDM) is employed to multiplex digital data services and RF communication services together at different wavelengths over downlink and uplink optical fibers 162D(1-N), 162U(1-N) in the optical fiber-based distributed communications system 160. “1-N” downlink and uplink optical fiber pairs are provided to the ICU 85 to be distributed to the RAUs 14 and stand alone MCs 141. Multiplexing could be used to further reduce the cost for the digital data services overlay. By using WDM, digital data signals are transmitted on the same optical fibers as the RF communication signals, but on different wavelengths. Separate media conversion and WDM filters at the transmit loca-
tions and at the receive locations (e.g., HMC 96 and RAUs 14) would be employed to receive signals at the desired wavelength.

[0067] The HMC 94 and HEU 12 are co-located in the optical fiber-based distributed communications system 160 in FIG. 10A. A plurality of wavelength-division multiplexers 164(1)-164(N) are provided that each multiplex the downlink optical RF signal(s) 22D for RF communications and the downlink optical digital signal(s) 100D for digital data services together on a common downlink optical fiber(s) 174D (1-N). Similarly, a plurality of wavelength-division de-multiplexers 168(1)-168(N) (e.g., wavelength filters) are provided that each de-multiplex the uplink optical RF signal(s) 22U from the uplink optical digital signal(s) 100U from a common uplink optical fiber(s) 162U(1-N) to the uplink optical RF signals 22U to the HEU 12 and the uplink optical digital signal 100U to the HMC 94. Wavelength-division de-multiplexing (WDD) and WDM are also employed in the RAUs 14 to de-multiplex multiplexed downlink optical RF signals 22D and downlink optical digital signals 100D on the common downlink optical fibers 162D (1-N) and to multiplex uplink optical RF signals 22U and uplink optical digital signals 100U on the common uplink optical fibers 162U(1-N).

[0068] FIG. 10B is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system 160'. The optical fiber-based distributed communications system 160' in FIG. 10B is the same as the optical fiber-based distributed communications system 160 in FIG. 10A, except that WDM is employed to multiplex uplink and downlink communications services at different wavelengths over common optical fiber that includes both downlink and uplink optical fibers 162D(1-N), 162U(1-N).

[0069] FIG. 11 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system. As illustrated in FIG. 11, an optical fiber-based distributed communications system 170 is provided that can also deliver digital data services. Instead of wavelength-division multiplexing the downlink optical RF signal(s) 22D for RF communications with the downlink optical digital signal(s) 100D for digital data services together on a common downlink optical fiber(s) 162D(1-N) as provided in FIG. 10A, a wavelength-division multiplexer 172 is provided. The wavelength-division multiplexer 172 multiplexes all downlink optical RF signals 22D with all downlink optical digital signal 100D to a single downlink optical fiber 174D. Similarly, a wavelength-division de-multiplexer 176 is provided to de-multiplex all uplink optical RF signals 22U from all uplink optical digital signals 100U from the common uplink optical fiber 174U at the desired wavelength. A wavelength-division de-multiplexer 175 and a wavelength-division multiplexer 177 are also employed in the ICU 85 to de-multiplex wavelength-division multiplexed downlink optical RF signals 22D and uplink optical digital signals 100U on the common downlink optical fiber 174D, and to wavelength-division multiplex uplink optical RF signals 22U and uplink optical digital signals 100U on the common uplink optical fiber 174U, respectively.

[0070] Alternatively, WDD and WDM could also be employed in the RAUs 14 to de-multiplex wavelength-division multiplexed downlink optical RF signals 22D and downlink optical digital signals 100D on the common downlink optical fiber 174D, and to wavelength-division multiplex uplink optical RF signals 22U and uplink optical digital signals 100U on the common uplink optical fiber 174U. In this alternative embodiment, de-multiplexing at the RAUs 14 could be done where a common WDM signal would be distributed from RAU 14 to RAU 14 in a daisy-chain configuration. Alternatively, optical splitters could be employed at break-out points in the fiber optic cable 104.

[0071] FIG. 12 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system. As illustrated in FIG. 12, an optical fiber-based distributed communications system 180 is provided that can also deliver digital data services. The optical fiber-based distributed communications system 180 is the same as the optical fiber-based distributed communications system 170 in FIG. 11, except that the HEU 12 and HMC 94 are provided in a common housing 182 that also houses the wavelength-division multiplexer 172 and wavelength-division de-multiplexer 176. Alternatively, a plurality of wavelength-division multiplexers and plurality of wavelength-division de-multiplexers like provided in FIG. 10A (164(1-N) and 168(1-N)) can be provided in the common housing 182.

[0072] FIG. 13 is a schematic diagram of another exemplary embodiment of an optical fiber-based distributed communications system providing digital data services. As illustrated in FIG. 13, an optical fiber-based distributed communications system 190 is provided. In this embodiment, frequency-division multiplexing (FDM) is employed to multiplex digital data services and RF communications services at different frequencies over downlink optical fibers and uplink optical fibers. One advantage of employing FDM is that E-O converters would be used simultaneously for converting RF communication signals and digital data signals into respective optical signals. Therefore, additional media converters for converting electrical digital signals to optical digital signals can be avoided to reduce complexity and save costs. For example, first Ethernet (e.g., 100 Megabits/second (Mbs)) could be transmitted below the cellular spectrum (e.g., below 700 MHz). More than one (1) channel could be transmitted simultaneously in this frequency range.

[0073] In this regard, the HEU 12 and HEC 94 are both disposed in the common housing 182, as illustrated in FIG. 13. A plurality of frequency-division multiplexers 192(1-N) are provided in the common housing 182 and are each configured to multiplex the downlink electrical digital signal(s) 98D with the downlink electrical RF signal(s) 18D at different frequencies prior to optical conversion. In this manner, after optical conversion, a common optical fiber downlink 194D(1-N) can carry frequency-division multiplexed downlink optical RF signal 22D and downlink optical digital signal 102D on the same downlink optical fiber 194D(1-N). Similarly, a plurality of frequency-division de-multiplexers 196(1-N) are provided in the common housing 182 to de-multiplex an uplink optical RF signal 22U and an uplink optical digital signal 100U on an uplink optical fiber 194U(1-N). Frequency-division de-multiplexing (FDD) and FDM are also employed in the RAUs 14. FDD is employed in the RAU 14 to de-multiplex frequency multiplexed downlink electrical RF signals 18D and downlink electrical digital signals 98D after being converted from optical signals from the common downlink optical fiber 174D to electrical signals. FDM is also provided in the RAU 14 to frequency multiplex uplink electrical signals in the RAU 14 before being converted to uplink
optical RF signals 22U and uplink optical digital signals 100U provided on the common uplink optical fiber 174U.

(0074) FIG. 14 is a schematic diagram of another exemplary embodiment of an optical fiber-based distributed communications system that employs both WDM and FDM. In this regard, FIG. 14 illustrates an optical fiber-based distributed communications system 200. The optical fiber-based distributed communications system 200 employs the WDM and WDD of the optical fiber-based distributed communications system 180 of FIG. 12 combined with FDM and FDD of the optical fiber-based distributed communications system 190 of FIG. 13. The wavelength-division multiplexed and frequency-division multiplexed downlink signals are provided over downlink optical fiber 202D. The wavelength-division multiplexed and frequency-division multiplexed uplink signals are provided over uplink optical fiber 202U.

(0075) Options and alternatives can be provided for the above-described embodiments. A digital data services interface provided in an RAU or stand alone MC could include more than one digital data services port. For example, referring to FIG. 14 as an example, a switch 203, such as an Ethernet switch for example, may be disposed in the RAUs 14 to provide RAUs 14 that can support more than one digital data services port. An HMC could have an integrated Ethernet switch so that, for example, several AP's could be attached via cables (e.g., Cat 5/6/7 cables) in a star architecture. The Ethernet channel could be used for control, management, and/or communication purposes for an optical fiber-based distributed communications system as well as the Ethernet media conversion layer. The HMC could be either a single channel or multi-channel (e.g., twelve (12) channel) solutions. The multi-channel solution may be cheaper per channel than a single channel solution. Further, uplink and downlink electrical digital signals can be provided over mediums other than optical fiber, including electrical conducting wire and/or wireless communications, as examples.

(0076) Frequency up conversions or down conversions may be employed when providing FDM if RF communication signals have frequencies too close to the frequencies of the digital data signals to avoid interference. While digital baseband transmission of a baseband digital data signals below the spectrum of the RF communication signals can be considered, intermodulation distortion on the RF communication signals may be generated. Another approach is to up convert the digital data signals above the frequencies of the RF communication signals and also use, for example, a constant envelope modulation format for digital data signal modulation. Frequency Shift Keying (FSK) and Minimum Shift Keying (MSK) modulation are suitable examples for such modulation formats. Further, in the case of FDM for digital data services, higher-level modulation formats can be considered to transmit high data rates (e.g., one (1) Gb, or ten (10) Gb) over the same optical fiber as the RF communication signals. Multiple solutions using single-carrier (with e.g., 8-FSK or 16-QAM as examples) or multi-carrier (OFDM) are conceivable.

(0077) Further, as used herein, it is intended that terms "fiber optic cables" and/or "optical fibers" include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoured, colored, buffered, ribboned and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.

(0078) Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

We claim:

1. A distributed antenna system for distributing radio frequency (RF) communications and digital data services (DDS) to at least one remote antenna unit (RAU), comprising:
 a head-end unit (HEU) configured to:
 receive at least one downlink electrical RF communications signal;
 convert the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU;
 receive at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU; and
 convert the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal;
 a DDS controller configured to:
 receive at least one downlink electrical signal containing at least one DDS;
 convert the at least one downlink electrical signal containing at least one DDS to at least one downlink optical digital signal containing at least one DDS;
 provide the at least one downlink optical digital signal containing at least one DDS over at least one second communications downlink to the at least one RAU;
 receive at least one uplink optical digital signal over at least one second communications uplink from the at least one RAU; and
 convert the at least one uplink optical digital signal to at least one uplink electrical digital signal, wherein the at least one communications downlink and the at least one communications uplink include at least one optical fiber and wherein at least one of the at least one downlink optical RF communications signal and at least one of the at least one downlink optical digital signal containing at least one DDS are distributed over a common optical fiber.

2. The distributed antenna system of claim 1, further comprising at least one wave-division multiplexer (WDM) con-
figured to wave-division multiplex the at least one downlink optical RF communications signal and the at least one downlink optical digital signal at different wavelengths over at least one optical fiber communications downlink.

3. The distributed antenna system of claim 2, further comprising:
 at least one wave-division de-multiplexer (WDD) associated with the at least one RAU and configured to separate the at least one downlink optical RF communications signal from the at least one downlink optical digital signal received over the at least one communications downlink; and
 at least one wave-division multiplexer (WDM) associated with the at least one RAU and configured to wave-division multiplex the at least one uplink optical RF communications signal and the at least one uplink optical digital signal at different wavelengths over the at least one communications uplink.

4. The distributed antenna system of claim 3, further comprising at least one wave-division de-multiplexer (WDD) configured to separate the at least one uplink optical RF communications signal from the at least one uplink optical digital signal received over the at least one communications uplink.

5. The distributed antenna system of claim 2, further comprising at least one frequency-division multiplexer (FDM) configured to frequency-division multiplex the at least one downlink electrical RF communications signal and the at least one downlink electrical signal at different frequencies over the at least one communications downlink.

6. The distributed antenna system of claim 5, further comprising at least one frequency-division de-multiplexer (FDD) associated with the at least one RAU and configured to separate the at least one downlink electrical RF communications signal from the at least one downlink electrical signal from the at least one communications downlink.

7. The distributed antenna system of claim 5, further comprising at least one frequency-division multiplexer (FDM) associated with the at least one RAU and configured to frequency-division multiplex the at least one uplink electrical RF communications signal and the at least one uplink electrical digital signal at different frequencies from the at least one communications uplink.

8. The distributed antenna system of claim 7, further comprising at least one frequency-division de-multiplexer (FDD) configured to separate the at least one uplink electrical RF communications signal from the at least one uplink electrical digital signal from the at least one communications uplink.

9. The distributed antenna system of claim 2 wherein the at least one communications downlink and the at least one communications uplink include at least one optical fiber, and wherein at least one of the at least one downlink optical RF communications signal and at least one of the at least one downlink optical digital signal are distributed over a common optical fiber at different wavelengths.

10. The distributed antenna system of claim 8 wherein the at least one communications downlink and the at least one communications uplink include at least one optical fiber, and wherein at least one of the at least one downlink optical RF communications signal and at least one of the at least one downlink optical digital signal are distributed over a common optical fiber at different frequencies.

11. The distributed antenna system of claim 2 wherein the DDS controller is further configured to:
 receive at least one second uplink optical digital signal over the at least one second communications uplink from at least one media controller (MC); and
 convert the at least one second uplink optical digital signal to at least one second uplink electrical digital signal.

12. The distributed antenna system of claim 2 wherein the at least one DDS is comprised from the group consisting of Ethernet, Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMax), Digital Subscriber Line (DSL), and Long Term Evolution (LTE).

13. The distributed antenna system of claim 1 wherein the DDS controller is configured to receive the at least one downlink electrical signal containing at least one DDS from a digital data services switch.

14. A distributed antenna system for distributing radio frequency (RF) communications and digital data services (DDS) to at least one remote antenna unit (RAU), comprising: a head-end unit (HEU) configured to:
 receive at least one downlink electrical RF communications signal;
 convert the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU;
 receive at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU; and
 convert the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal; and
 a DDS controller configured to:
 receive at least one downlink electrical signal containing at least one DDS;
 convert the at least one downlink electrical signal containing at least one DDS to at least one downlink optical digital signal containing at least one DDS; and
 provide the at least one downlink optical digital signal containing at least one DDS over at least one second communications downlink to the at least one RAU;
 receive at least one uplink optical digital signal over at least one second communications uplink from the at least one RAU; and
 convert the at least one uplink optical digital signal to at least one uplink electrical digital signal; and
 at least one frequency-division multiplexer (FDM) configured to frequency-division multiplex the at least one downlink optical RF communications signal and the at least one downlink optical digital signal at different frequencies over a common optical fiber in at least one optical fiber communications downlink.

15. The distributed antenna system of claim 14, further comprising at least one frequency-division de-multiplexer (FDD) associated with the at least one RAU and configured to separate the at least one downlink electrical RF communications signal from the at least one downlink electrical signal from the at least one communications downlink.

16. The distributed antenna system of claim 15, further comprising:
 at least one frequency-division multiplexer (FDM) associated with the at least one RAU and configured to frequency-division multiplex the at least one uplink electrical RF communications signal and the at least one
uplink electrical digital signal at different frequencies from the at least one communications uplink; and
at least one frequency-division de-multiplexer (FDD) configured to separate the at least one uplink electrical RF
communications signal from the at least one uplink electrical digital signal from the at least one communications
uplink.

17. A distributed antenna system for distributing radio frequency (RF) communications and digital data services
(DDS) to at least one remote antenna unit (RAU), comprising:
a head-end unit (HEU) configured to:
receive at least one downlink electrical RF communications
signal;
convert the at least one downlink electrical RF communications signal into at least one downlink optical RF
communications signal to be communicated over at least one communications downlink to the at least one
RAU;
receive at least one uplink optical RF communications signal over at least one communications uplink from
the at least one RAU; and
convert the at least one uplink optical RF communications signal into at least one uplink electrical RF communica-
tions signal;
a DDS controller configured to:
receive at least one downlink electrical signal containing
at least one DDS;
convert the at least one downlink electrical signal containing at least one DDS to at least one downlink optical digital signal containing at least one DDS;
provide the at least one downlink optical digital signal containing at least one DDS to at least one second communications downlink to the at least one RAU;
receive at least one uplink optical digital signal over at least one second communications uplink from the at least one RAU;
convert the at least one uplink optical digital signal to at least one uplink electrical digital signal; and
at least one RAU, wherein each RAU of the at least one
RAU comprises:
an optical-to-electrical (O/E) converter configured to convert received downlink optical RF communica-
tions signals to downlink electrical RF communications signals and provide the downlink electrical RF
communications signals to at least one first port;
an electrical-to-optical (E/O) converter configured to convert uplink electrical RF communications signals received from the at least one first port to uplink optical RF communication signals; and
a DDS interface coupled to at least one second port and configured to:
convert downlink optical digital signals into downlink electrical digital signals to provide to the at least
one second port; and
convert uplink electrical digital signals received from
the at least one second port into uplink optical
digital signals.

18. The distributed antenna system of claim 17, wherein
the DDS interface further comprises a power interface configured to receive electrical power and provide the electrical power to the at least one second port, and wherein the at least one second port is configured to support Power-over-Ethernet (PoE).

19. The distributed antenna system of claim 18, wherein
the DDS interface is configured to receive the electrical power from an electrical power line provided in at least one array cable.

20. The distributed antenna system of claim 17, further
comprising at least one device supporting digital data services and connected to at least one RAU via the at least one second port, and wherein the DDS interface further comprises a power interface configured to receive electrical power and provide the electrical power to the at least one second port, the electrical power configured to power the at least one device supporting digital data services and connected to the at least one RAU.

21. The distributed antenna system of claim 17 further
comprising a media converter associated with at least one
RAU and configured to report functionality data to the HEU
over the at least one second communications uplink to the
HEU, and wherein the HEU is configured to provide control and management of the media converter based on the
functionality data.

* * * * *