The invention relates to a hand-held device (1) for transferring a film (F) of for example adhesive, covering or coloured material from a backing tape (2) onto a substrate (S), comprising a housing (6) in which a supply reel (4) and a take-up reel (5) for the backing tape (2) are rotatably mounted, and comprising an application member (7) arranged on the housing (6) around which the backing tape (2) loops, wherein the application member (7) is mounted so as to be moveable between a retracted non-use position and a pushed forward use position in which it is biased towards the non-use position by elastic pull-back force, and wherein the hand-held device (1) has an actuating member (29) which is disposed such that it is accessible from outside and, when actuated with manual actuating force (38), enables the application member (7) to move into its use position in which it is pressed against the substrate (S) to transfer the film (F). With a view to facilitating and improving handling, the application member (7) automatically moves into its non-use position of its own accord when the pressure of the device against the substrate (S) or the actuating force (38) is reduced to a respective certain value.
Title: HAND-HELD DEVICE COMPRISING A MOVABLY MOUNTED APPLICATION MEMBER FOR TRANSFERRING A FILM FROM A BACKING TAPE ONTO A SUBSTRATE

Abstract: The invention relates to a hand-held device (1) for transferring a film (F) of for example adhesive, covering or coloured material from a backing tape (2) onto a substrate (S), comprising a housing (6) in which a supply reel (4) and a take-up reel (5) for the backing tape (2) are rotatably mounted, and comprising an application member (7) arranged on the housing (6) around which the backing tape (2) loops, wherein the application member (7) is mounted so as to be moveable between a retracted non-use position and a pushed forward use position in which it is biased towards the non-use position by elastic pull-back force, and wherein the hand-held device (1) has an actuating member (29) which is disposed such that it is accessible from outside and, when actuated with manual actuating force (38), enables the application member (7) to move into its use position in which it is pressed against the substrate (S) to transfer the film (F). With a view to facilitating and improving handling, the application member (7) automatically moves into its non-use position of its own accord when the pressure of the device against the substrate (S) or the actuating force (38) is reduced to a respective certain value.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Hand-held device comprising a movably mounted application member for transferring a film from a backing tape onto a substrate

The invention relates to a hand-held device according to the preamble of claim 1.

A hand-held device of this known type is described in EP 0 575 790 B1. In this known hand-held device, a supply reel and a take-up reel for the backing tape and a spatula-shaped application member are mounted on a cassette which can be pushed into a housing through an opening from the rear. A use position and a non-use position for the cassette unit are provided. In the use position, the application member projects out of the housing so that it can be pressed against a substrate to transfer a film onto a substrate. In the non-use position, the application member is arranged in a recessed position in the housing. In this position, both the application member and the backing tape plus film running around the application member are protected against damage caused by other equipment which is almost impossible to prevent during handling at a workplace. In this known configuration, the cassette unit is secured in the use position of the application member against displacement in either displacement direction. In the non-use position, the cassette unit is prevented from being displaced backwards. This arresting action is performed by a spring arm arranged on the cassette unit which comprises a push button with two push button stages arranged offset from one another in the longitudinal direction, the first push button stage of which projects through a through hole in the housing in the use position and the second push button stage of which projects through the through hole in the non-use position. The push button stages can be accessed from the outside by a finger of the user's hand through the through hole. To displace the application member from its use position into its non-use position, the first push button stage has to be pressed inwards out of its latched position in the through hole with manual pressure from outside, causing the cassette unit to be moved automatically into its non-use position by a pull-back spring where the second push button stage automatically locks it into place as a result of the spring force of the spring arm. The application member is moved from its non-use position into its use position by means of manual pressure on the rear end of the cassette unit which projects
rearwards out of the housing and is therefore manually accessible. In the case of such a
displacement into the use position, the first push button stage automatically engages in
the through hole.

5 This known hand-held device is detrimental for several reasons. For one thing, it
requires manual activation of a push-button to initiate displacement of the application
member into its non-use position. If one considers that it is easy for impact damage to
be caused to the film in the projecting portion of the application member during
handling in the workplace, it becomes clear that the application member has to be
manually displaced into its non-use position relatively often, constituting considerable
handling effort and demanding the person using the device pays close attention.

Another disadvantage of this known design lies in the fact that the application member
extends axially relative to the longitudinal middle axis of the elongated or pen-shaped
housing and can also be moved axially. This makes for an inopportune position of the
hand-held device during handling.

A further drawback of the known hand-held device is that the known construction is
only suitable for a hand-held device which has the reels and the application member
arranged on an insert cassette. This known construction can not be used in a hand-held
device which has the application member and the reels mounted directly on the housing.

The fact that axial transverse force has to be exerted at the rear end of the hand-held
device to move the application member into its use position is also to be regarded as a
drawback of the known hand-held device. To do so, the hand-held device has to be
gripped in a particular manner by both operating hands and subjected to a transverse
force.

The invention is based on the object of facilitating and improving the handling of a
hand-held device of the type described in the introductory portion in its operating mode.
This functioning should be at least partially automated or mechanised and it should be
possible to perform or initiate the respective functions with user-friendly handling and
operations. Furthermore, the hand-held device should be formed such that it is also possible to shift the application member between a retracted or submerged non-use position and a protruding use position even if there is no insertion cassette available, that is when the application member and the reels are mounted on the housing.

This object is achieved by the features of claim 1. Advantageous developments of the invention are described in the affiliated subclaims.

In the hand-held device according to claim 1, the backwards movement of the application member from its use position into its non-use position is effected automatically when the application member is removed from the substrate or when the force with which the application member is pressed against the substrate or with which the actuating member is actuated falls below a certain value, e.g. is no longer maintained, or when the manual operation of an actuating member for moving the application member into its use position is ended. The invention is based on the realisation that the force with which the application member is pressed against the substrate during transfer of a film or the actuating force can be exploited to keep the application member in its use position, and to activate a preferably available positioning device for the application member which loses its function when the above-described features of the invention are realised. During handling of the hand-held device, the housing is to be held in a certain working position relative to the substrate and the actuating member is to be actuated which, when manually grasping the hand-held device, can however occur at the same time and can therefore happen in a user-friendly manner with just one operating hand.

It is advantageous to provide the application member with a stopping face in the use position which restricts its movement into the non-use position during pressing onto the substrate or during the exertion of actuating force. This makes handling even simpler and relieves the user's hand to actuate the actuating member because the stopping surface introduces the majority of the pressing force into the housing without the user's hand having to counteract the thrust resulting from the pressing force by actuating or moving the actuating member.
It is also advantageous to bear the application member such that it is movable or swivellable transversely to its main direction of movement stretching between the use position and the non-use position. As already mentioned, the pressing force can be used to move the application member transversely into a positioning position, e.g. against the stopping surface in which position it is positioned relative to a backwards movement. When the pressing-exerting force and/or actuating force is reduced or stopped or the device is lifted from the substrate, the backwards movement of the application member and its movement into the non-use position can then also be effected automatically. In doing so, it is advantageous to generate each of these movements with elastic force or a common elastic force which is well suited for the automatic or self-acting backwards movement of the application member into its non-use position. The stopping surface can be formed by a guiding surface pointing laterally towards the front end of the application member and the application member can comprise a shoulder surface pointing away from its front end with which it is moveable, in particular swivellable, in the backing tape deflecting plane into a position interacting with the guiding surface. In this configuration, the application member can, in its use position, be subjected to a transverse movement to bring it into a stopping position with the guiding surface which forms a stop against pull-back movement of the application member. This makes handling considerably simpler because the operating hand can transfer the pressure onto the application member indirectly over the housing rather than directly.

In the hand-held device according to claim 5 and/or 6, the handling of the device is also simplified for ergonomic reasons. This is conditioned by the fact that the application member is positioned favourably relative to the substrate in a normal workplace when the hand-held device is held comfortably in the operating hand. In this position, the necessary pressure required for transferring the film can be applied in a user-friendly manner. A further advantage of this embodiment is that an actuation member for moving the application member into its use position can be arranged in a simple and ergonomically favourable way in the front portion of the top side of the hand-held device. In such an arrangement, the pushing out movement of the application member and the actuation member can be exploited to exert the pressure directly, the actuation
member being used as abutment on which for example a finger of the operating hand can dispose the pressing force in a user-friendly manner.

The invention is also based on the object of improving the backing tape guidance or the deflection around the application member in a hand-held device of the type described in the preamble of claim 11, especially during shifting of the application member between its non-use position and its use position.

This object is achieved by the features of claim 11. Advantageous developments of the invention are described in the affiliated subclaims.

In the embodiment according to claim 11, the backing tape is guided closely about the front end of the application member with contact thereto in both positions of the application member. In this embodiment, guidance of the backing tape in the moving section of the application member is guaranteed, thus preventing defects being caused by loops forming.

In an arrangement guiding the movement of the application member on the housing, this embodiment can also be realised without a cassette unit for the application member and the reels being provided. In this embodiment, it is beneficial for the backing tape to form a substantially closed loop in its course about the application member. This enables the loop to adapt to the positional changes of the application member when the movement of the application member changes. Furthermore, it is beneficial for the application member and its direction of movement to extend transversely to the middle axis of the loop. This has a favourable effect on the changes in the course of the backing tape during movements of the application member and difficulties regarding a loss of guidance for the backing tape and start-up problems during transfer of the film from the backing tape to the substrate can be avoided.

The further subclaims contain features which lead to small and functioning embodiments which can be beneficially integrated in the hand-held device and also allow production at reasonable costs.
The invention and advantages which can be gained therefrom will now be explained in more detail using preferred embodiments and simplified drawings.

Figure 1 shows a side view of a hand-held device according to the invention with an open housing.

Figure 2 shows the hand-held device as viewed from above;

Figure 3 shows the hand-held device as viewed from the front;

Figure 4 shows a perspective illustration of the side view as per Figure 1;

Figures 5 to 7 show the hand-held device in various functioning positions, each in the side view;

Figure 8 shows a magnified representation of a part of the hand-held device in the side view;

Figure 9 shows the part depicted in Figure 8 in a different functioning position.

The hand-held device generally denoted as 1 serves the purpose of transferring a film F located on a backing tape 2 onto a substrate S, the backing tape 2 being arranged on a supply reel 4 and a take-up reel 5 in a housing 6 of the hand-held device 1. The housing 6 has an elongated shape with an essentially rectangular cross-section and is positioned upright in its yet to be described functioning position. There is provided an application member 7 projecting from the housing 6 which is disposed in the lower section of the front end of the housing and about which the backing tape 2 runs. By manually pressing the preferably spatula-shaped application member 7 onto the substrate S whilst simultaneously pushing the hand-held device in its backwards direction of movement 3 (Fig. 7), the lower backing tape section 2a is peeled off the supply reel 4 and is automatically wound up onto the take-up reel 4 as the upper backing tape section 2b. In the exemplary embodiment at hand, the supply reel 4 and
the take-up reel 5 are rotatably mounted about two rotational axes 8, 9 which extend transversely to the deflection plane E of the backing tape 2 and have a gap between them in the longitudinal direction of the housing 6, the take-up reel 5 being arranged behind the supply reel 4.

5

The housing 6 consists of two housing parts 6a, 6b, the dividing joint 6c of which runs in or parallel to the deflection plane E of the backing tape 2, wherein the housing part 6b arranged at the top of Figure 2 can be formed to be shell-shaped with a peripheral wall 6d and the other housing part 6a can be formed to be essentially flat and to serve the purpose of a lid. The reels 4, 5 are rotatably mounted on pivot bearing parts (not illustrated in detail) which can project from the side walls of one of the housing parts 6a, 6b.

A drive connection 11 having an integrated sliding clutch 12 is arranged between the reels 4, 5. The drive connection 11 is formed such that it drives the take-up reel 5 at such a speed - bearing in mind the respective effective winding diameters of the full and empty reels 4, 5 - that the backing tape section 2b to be wound up is always slightly taut. The sliding clutch 12 prevents the backing tape 2 from being overstretched and breaking. Above a certain drive torque effective in the drive connection 11, the sliding clutch 12 then jumps into action with the result that although the drive connection 11 attempts to drive the take-up reel 5 at a quicker speed, at the take-up surface, it is only driven at a speed which matches the speed at which the backing tape 2 is moving.

20

To prevent reverse rotation of the reels 4, 5, caused for example by tensions in the backing tape 2, one of the two reels 4, 5 is allocated a return stop (not illustrated).

25

In the front end portion of the housing 6, there is provided a displacing device 13 for displacing the application member 7 between a non-use position located in a recessed or protected position in the housing 6 (Fig. 1) and a use position (Fig. 6 and 7) in which the front, for example wedge-shaped end portion of the application member 7 projects out of the housing 6. The displacing device 13 comprises a push-out mechanism 14 for the application member 7 which has to be actuated manually and a push-in mechanism
15 for the application member 7 which starts working on its own and pushes the application member 7 back into its non-use position when the manual actuation of the push-out mechanism 14 is ended or the application member 7 is lifted from the substrate S or a pressing force pushing the application member 7 against the substrate S, see arrow 16, falls below a certain value or stops altogether. For this pushing movement, a guide 18 running lengthways along the direction of movement 17 is provided which, in the present embodiment, extends in a straight line. The application member 7 is elongated and has a guide shaft 7b extending from the application section 7a into the actual application element 7c or application tip (spatula-shaped in this embodiment) in the opposite direction. The guide axis 18a extends diagonally or crossways to the longitudinal axis 19 of the housing and can enclose an obtuse angle, for example of about 135°, between it and the longitudinal axis 19 which opens towards the pressure-exerting side or the bottom side 21 which faces the substrate S when the device is being used. So that the application member 7 can pass through, a channel opening 22 is located in the peripheral wall 6d, preferably in the lower front corner section of the housing 6. In the region of the channel opening 22, the housing 6 can have a recess 23 on its bottom side which forms a recess step of a few millimetres with the rest of the bottom side 21 of the housing 6.

20 The guide 18 can be formed by grooves 25 formed on one or both sides in at least one side wall 6e of the housing 6. The application member 7 engages in these grooves 25 with laterally projecting guide pegs 26a, 26b, at least the front guide pegs 26a of which are formed to have a round or cylindrical cross-section parallel to the deflection plane E. A transverse guide portion 18b extends transversely from the central portion of the guide 18 towards the bottom side 21, the guide surface 18c of which facing the free end of the application member 7 forms a stop for the application member 7 which restricts the pushing back movement of the application member 7 when it is in its use position. To gain guiding contact with this guiding surface 18c, the application member 7 has to be pivoted in its use position. This is possible because the front guide pegs 26a have a round cross-sectional shape and the rear guide pegs 26b can swivel into the transverse guide portion 18b. A reverse movement spring 28 acts upon the application member 7
and biases the application member 7 into its non-use position, therefore displacing it into its non-use position when the hand-held device is not being used.

The push-out mechanism 14 has an actuating member 29 which is mounted so as to be essentially moveable backwards and forwards along the guide 18 and projects through the peripheral wall 6b in the upper front region through a passage opening 32 with an actuating member 31 and thus is accessible and can be operated manually from outside, especially with a finger, preferably the index finger, of the hand using the device. For this purpose, an actuating cam - which forms the actuating element 31 - projecting from the housing 6 has a diagonal or concavely troughed pressure-exerting surface 31a on its rear side which points upwards and which the user's hand can securely act upon. In this exemplary embodiment, the actuating member 29 is a pivoted lever which is rotatably mounted with one or two side bearing limbs 33 to one pivot bearing 34 respectively which is preferably formed in the lower region of the housing 6 and on the side wall of the housing 6e and can, for example, be formed by an inward-springing bearing peg. The actuating element 31 is formed by a transverse web arranged at the top end of the bearing limb 33 which bridges over the application member 7. The bearing limb 33 forms a pressure-exerting surface 36 on its front side which moves the application member 7 into its use position when the actuating member 29 is moved forward and in doing so is in sliding contact with the application member 7, for example with at least one side or bothsided rear guide peg 26b. The pressure-exerting surface 36 is for example formed as a convex curved surface as in Fig. 1 such that it exerts a torque or force (see arrow 37 in Fig. 5) on the application member 7 when the application member 7 is in its use position; this torque attempts to swivel the application member clockwise as per Fig. 1. This is made possible by the particular - possibly curved - course of the pressure-exerting surface 36 which, in the region of this intermediate position of the application member 7 according to Fig. 5, encloses an obtuse angle W between it and the lengthways direction of the guide 18, this angle W opening towards the pressure-exerting side 21 and of such a size that the swivel movement component is transferred to the application member 7. The force of the reverse movement spring 28 is overpowered by the manual force 38 acting upon the actuating member 29. When the actuation of the actuating member 29 is completed,
the reverse movement spring 28 first swivels the application member 7 backwards and then pushes it back into its non-use position.

When the top end portion of the application member 7 is forced into the transverse guide section 18b during forwards movement of the actuating member 29, the application member 7 is swivelled about its guide peg 26a (Fig. 6) with the application member 7 abutting the guide surface 18c under the effect of the reverse movement spring 28.

The use position of the application member according to Fig. 5 and 6 as described thus far can be achieved just by moving the actuating member 29, wherein the hand-held device 1 gripped by the operating hand is in free space.

In this forwardly displaced position of the actuating member 29 and the application member 7, in which for example a finger of the operating hand presses against the actuating element 31 in the direction of the arrow 38, the application member is pushed against the substrate S, for instance in the position shown in Fig. 6 or 7. The pressure-exerting force 16 is generated by exerting pressure on the actuating member 29 and, where appropriate, on the housing as well as indicated by force arrows 16a, 16b. For the purpose of transferring the film F onto the substrate S, the application member 7 is moved backwards in the direction of arrow 39. As a result of this pressing on the substrate and/or this movement, a torque as indicated by arrow 41 is produced at the application member 7, particularly as a consequence of the inclined arrangement of the application member 7. This torque supports or completely takes over the pivoting movement of the rear end portion of the application member 7 into the transverse guide section 18b. This torque 41 is intensified even more when the hand-held device 1 is pivoted further towards the substrate S, see Fig. 7, in which the device and the substrate S enclose an angle of approximately 10°, in contrast to Fig. 6 where this angle W1 can be approximately 20°. As a result of the effectiveness of the torque 41, the actuation of the actuating member 29 can be left out or this operation can be ended and the actuating member 29 released, the application member 7 then remaining in its stopping position on the guide surface 18c and it being possible to maintain the
pressure-exerting force 16 by pressure on the housing 6 as indicated by force arrows 16b in Fig. 7. In this position, too, it is possible for the film F to be transferred by moving the hand-held device 1 in the direction of arrow 39.

Within the framework of the invention, it is also possible to form the push-in and push-out mechanism 14, 15 such that pressure 16a also has to be exerted on the actuating member 29 in the position illustrated in Fig. 6 or 7. In this case, the necessary pressure 16a is however reduced by the torque 41, thus making handling easier.

If the pressure-exerting force 16 or the actuating force 16a, 38 acting upon the actuating member 29 is less than a certain value, the application member 7 automatically moves into its non-use position as a result of the spring resistance, wherein it is first rotated or swivelled from its stopping position and is then moved laterally into its non-use position.

Within the boundaries of the invention, it is possible to provide two reverse movement springs, one for the rotational movement and one for the lateral movement of the application member 7. However, it is preferable for a common reverse movement spring 28 to be provided for both movements which produces a resulting reverse movement force such that both reverse movements can be performed by this reverse movement force. In this exemplary embodiment, a bending bar spring 28a is provided which extends transversely to the longitudinal direction of the guide 18 and extends beyond a forwards-pointing shoulder surface on the application member 7, e.g. a rear guide peg 26b and acts upon the application member 7 in the direction towards its non-use position. The bending bar spring 28a can be borne on the pivot bearing 34 by a helix and a second spring limb 28b can also be provided which undercuts a stop on the housing.

A special feature of the deflection (denoted as 45) of the backing tape 2 about the application member 7 will now be described with the aid of Fig. 8 and 9. Fig. 8 shows the application member 7 with the deflection 45 in the non-use position as per Fig. 1
and Fig. 9 shows the application member 7 with the associated deflection 45 in the use position as per Fig. 6 or 7.

Apart from a small opening 45a of for example approximately 1 to 5 mm, the loop 45 takes on the shape of a closed triangle, one side of the triangle being determined by the forwards facing long side of the application member 7 at which a backing tape section 2c runs over the entire length of the application member 7 and is deflected to the backing tape section 2a at the front bottom somewhat rounded end of the application member 7 and, at the top rear rounded end of the application member 7 is deflected to a backing tape section 2d which extends transversely to the longitudinal middle axis 19 to a fixed deflection 46 which is preferably located near the pressure-exerting side 21 of the housing 6 and, as a continuing backing tape section 2e, forms a loop 2f of the backing tape section 2b travelling from the supply reel 4 to the take-up reel 5 which extends towards the pressure-exerting side 21. On the side of the deflection roller 46 facing the pressure-exerting side 21, the triangular shape is open thanks to a gap between the backing tape section 2a and the deflection roller 46, see opening 45a. The backing tape sections 2a, 2c and 2d form a loop 45 which has the shape of an essentially isosceles triangle, the backing tape sections 2a, 2d forming the equal sides of this triangle and the backing tape section 2c or the front long side of the application member 7 forming the opposing side of the triangle of an unchangeable length, this length matching the length of the application member. This form of an isosceles triangle D is particularly present in the middle position of the application member 7 (not illustrated) and is indicated in Fig. 8 with a dashed line. It has to be taken into account in this respect that the isosceles triangle shape is slightly deformed in the non-use position (Fig. 8) and in the use position (Fig. 9) because of the lateral and transverse movement of the application member 7. As the lateral movement only surmounts to approximately 5 mm to 7 mm and the transverse or swivel movement only amounts to approximately 3 mm, the distortion in shape in the positions after completed movement is small. Because there are deflections 45 at both ends of the application member 7, preferably in the shape of an isosceles triangle, the lengths of the approaching and returning backing tape sections 2a, 2d are balanced automatically during movement of the application member 7 by means of the tape sliding. This
prevents a loop lifting off the application member 7 being formed in the backing tape 2. This prevents operating problems and especially starting problems when placing the application member 7 on the substrate S.

5 The approaching and returning backing tape sections 2a, 2d can enclose an acute or an obtuse angle W2 between them, this angle being open towards the application member 2. When this angle W2 is obtuse, there is a small construction which is advantageous under consideration of the restricted room available in the housing 6.
Patent Claims

1. A hand-held device (1) for transferring a film (F) of for example adhesive, covering or coloured material from a backing tape (2) onto a substrate (S), comprising a housing (6) in which a supply reel (4) and a take-up reel (3) for the backing tape (2) are rotatably mounted on the housing (6) and comprising an application member (7) disposed on the housing (6) around which the backing tape (2) loops, wherein the application member (7) is mounted so as to be movable between a retracted non-use position and a pushed forward use position in which it is biased towards the non-use position by an elastic pull-back force, and wherein the hand-held device (1) has a displacing device (13) with an actuating member (29) which is disposed such that it is accessible from outside and which, when actuated with manual actuating force, enables the application member (7) to move into its use position in which it can be pressed against the substrate (S) to transfer the film (F), characterised in that

a) the displacing device (13) is disposed in the front end portion of the housing (6),

b) the application member (7) is a component separate from the actuating member (29) and movably mounted in the housing (6) in a guide (18) of its own,

c) the actuating member (29) is a pivoted lever accessible from above, which is mounted with one or two side bearing limbs (33) in a pivot bearing (34) mounted in the lower section of the housing (6) and which is pivotally mounted for moving the application member (7), in its use position, towards the end of the housing (6) comprising the application member (7),

d) the application member (7) automatically moves into its non-use position of its own accord when the actuating force (38) is reduced to a respective certain value.

2. A hand-held device according to claim 1,

characterised in that,

in its use position, the application member (7) is prevented from moving into its non-use position by a stopping surface (18c).
3. A hand-held device according to claim 1 or 2,
characterised in that,
the application member (7), especially in its use position, is pivotally mounted
around a side guide peg (26b) arranged in the front portion of the application
member (7) in the deflection plane of the backing tape (2) and is preferably
swivellable in front of the stopping surface (18c).

4. A hand-held device according to claim 3,
characterised in that
a transverse guide portion (18b) extends from the guide (18) towards the side of the
hand-held device (1) facing the substrate (S), into which the application member (7)
can be swivelled with a rear side guide peg (26b).

5. A hand-held device (1) for transferring a film (F) of for example adhesive, covering
or coloured material from a backing tape (2) onto a substrate (S), comprising a
housing (6) in which a supply reel (4) and a take-up reel (5) for the backing tape (2)
are rotatably mounted on the housing (6) and comprising an application member (7)
disposed on the housing (6) around which the backing tape (2) loops, wherein the
application member (7) is mounted so as to be movable between a retracted non-use
position and a pushed forward use position in which it is biased towards the non-use
position by an elastic pull-back force, and wherein the hand-held device (1) has a
displacing device (13) with an actuating member (29) which is disposed such that it
is accessible from outside and which, when actuated with manual actuating force,
ensures the application member (7) to move into its use position in which it can be
pressed/is pressable against the substrate (S) to transfer the film (F),
characterised in that
e) the displacing device (13) is disposed in the front end portion of the housing (6),
f) the application member (7) is a component separate from the actuating member
(29) and is movably mounted in the housing (6) in a guide (18) of its own,
g) the actuating member (29) is accessible from above and is mounted so as to be
movable towards the end of the housing (6) comprising the application member (7)
for moving the application member (7) into its use position,
h) a transverse guide portion (18b) extends to the side of the hand-held device (1) facing the substrate (S), into which the application member (7) can be swivelled with a rear side guide peg (26b),

i) the application member (7) automatically moves into its non-use position of its own accord when the pressure exerted against the substrate (S) or the actuating force (38) is reduced to a respective certain value.

6. A hand-held device according to anyone of the preceding claims, characterised in that

the application member (7) automatically moves into its non-use position of its own accord when it is lifted from the substrate (S) or when actuation of the actuating member (29) has been completed.

7. A hand-held device according to claims 5 or 6, characterised in that

the actuating member (29) is a pivoted lever pivotally mounted with one or with two opposing side bearing limbs (33) in a pivot bearing (34), which is preferably provided in the lower section of the housing.

8. A hand-held device according to anyone of the preceding claims, characterised in that

the housing (6) is oblong in shape and the movement of direction (17) of the application member (7) between its non-use position and its use position is directed transversely to the longitudinal middle axis (19) of the housing (6), preferably enclosing an obtuse angle with the longitudinal middle axis (19) which opens towards the free end (7c) of the application member (7).

9. A hand-held device according to anyone of the preceding claims, characterised in that

the application member (7) is movably guided by lateral guide elements (26a, 26b) in the guide (18).
10. A hand-held device according to anyone of preceding claims 4 to 7,
characterised in that
a common spring (28) is provided for swivelling and moving the application member
(7) backwards.

11. A hand-held device according to anyone of the preceding claims,
characterised in that
the actuating member (29) extends through an opening (32) in the top side of the
housing.

12. A hand-held device (1) for transferring a film (F) of for example adhesive,
covering or coloured material from a backing tape (2) onto a substrate (S),
comprising a housing (6) in which a supply reel (4) and a take-up reel (5) for the
backing tape (2) are rotatably mounted, and comprising an application member (7)
disposed on the housing (6) around which the backing tape (2) loops, wherein the
application member (7) is mounted so as to be movable between a retracted non-use
position and a pushed forward use position in which it is biased towards the non-
use position by an elastic pull-back force, and wherein the hand-held device (1) has
an actuating member (29) which is disposed such that it is accessible from outside
and which, when actuated with manual actuating force (38), enables the application
member (7) to move into its use position in which it is pressed against the substrate
(S) to transfer the film (F), or a hand-held device according to anyone of the
preceding claims,
characterised in that
the movement of the application member (7) between its non-use position and its
use position is relative to the reels (4, 5), the backing tape (2) being guided closely
about the application end (7c) of the application member (7) with contact thereto in
both positions of the application member (7).

13. A hand-held device according to claim 12,
characterised in that
the backing tape (2) loops around the application member (7) at both ends.
14. A hand-held device according to claim 13,
 characterised in that
 the backing tape (2) loops around the application member (7) on all sides in the
 shape of a triangle with an opening (45a).

15. A hand-held device according to claim 14,
 characterised in that
 the looping (45) essentially takes on the shape of an isosceles triangle, especially in
 the middle movement position of the application member (7).