
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0222038A1

US 20120222038A1

KATRAGADDA et al. (43) Pub. Date: Aug. 30, 2012

(54) TASK DEFINITION FOR SPECIFYING Publication Classification
RESOURCE REQUIREMENTS (51) Int. Cl.

G06F 9/50 (2006.01)
(75) Inventors: Ramana KATRAGADDA, (52) U.S. Cl. .. 71.8/104

Carlsbad, CA (US); Paul 57 ABSTRACT
SPOLTORE, Fremont, CA (US); (57)
Ric HOWARD, San Jose, CA (US) Task definitions are used by a task scheduler and prioritizer to

allocate task operations to a plurality of processing units. The
task definition is an electronic record that specifies resources

(73) Assignee: QST HOLDINGS, LLC, Palo needed by, and other characteristics of a task to be executed.
Alto, CA (US) Resources include types of processing nodes desired to

execute the task, needed amount or rate of processing cycles,
21) Appl. No.: 13A336,953 amount of memory capacity, number of registers, input/out
(21) Appl. No 9 put ports, buffer sizes, etc. Characteristics of a task in clued

maximum latency time, frequency of execution of a task,
(22) Filed: Dec. 23, 2011 communication ports, and other characteristics. An exam

plary task definition language and syntax is described that
Related U.S. Application Data uses constructs including order of attempted Scheduling

operations, percentage or amount of resources desired by
(63) Continuation of application No. 10/233,175, filed on different operations, handling of multiple executable images

Aug. 29, 2002, now Pat. No. 8,108,656.

1OO y

Definition Definition

or modules, overlays, portaliases and other features.

Definition Definition

SCHEDULER

Patent Application Publication Aug. 30, 2012 Sheet 1 of 3 US 2012/0222038A1

100
115a 11.5b. 115C 115d

120a 12Ob 120C 120d

Task A Task FB Task C Task D
Definition Definition Definition Definition

11 O

SCHEDULER

A, D B, C

105a 105b 105C 105C

(o)

FIG. 1

US 2012/0222038A1 Aug. 30, 2012 Sheet 2 of 3 Patent Application Publication

US 2012/0222038A1 Aug. 30, 2012 Sheet 3 of 3 Patent Application Publication

(Z3|duJeSpou

Z3|dueSpou

US 2012/0222038 A1

TASK DEFINITION FOR SPECIFYING
RESOURCE REQUIREMENTS

CROSS-REFERENCES TO RELATED
APPLICATION

0001. This application is a continuation of U.S. patent
application Ser. No. 10/233,175 filed on Aug. 29, 2002, of
which the entire disclosure is incorporated herein by refer
CCC.

BACKGROUND OF THE INVENTION

0002 This application is generally related to digital pro
cessing systems, and more specifically to digital processing
systems having multiple processing nodes.
0003. In configurable systems, it is typically desirable to
be able to execute multiple tasks concurrently. If some or all
of these tasks have timing constraints (for example, if “real
time' operation is desired), the configurability of the system
may be limited. This can be explained with reference to
typical methodologies used to implement real-time systems.
0004 Early real-time systems were often “hand crafted
in order to meet Stringent timing constraints. In particular,
real-time tasks that were to be executed concurrently were
analyzed to determine their detailed timing requirements.
Then, a real-time operating system was “built around these
tasks such that their timing, requirements were satisfied.
Because such real-time systems are tied so closely with the
underlying tasks, they are not easily modifiable or extendible.
For example, attempting to modify a task or add an additional
task to the system could require a complete re-design of the
system.
0005. In order to make such systems “configurable the
possible configurations are typically first determined and
fixed, and then the system is designed to accommodate the
timing constraints of the various possible configurations. If it
is desired to add a new configuration or feature, detailed
knowledge of the entire system, including knowledge of tasks
that might be executed at any particular time, is typically
required in order to ensure that the system can execute tasks
in “real-time' under the various configurations. Alternatively,
the entire system might need to be re-designed. Thus, the
design of the system, and that of individual tasks that are to be
executed, is typically tightly controlled. This can make it
difficult to add new configurations to a device, and/or to
permit third-parties to develop configurations for the device.
0006. A more flexible approach to real-time systems is
often referred to as the 'scheduled reservation model.” Under
the scheduled reservation model, the processor is viewed as a
quantifiable resource that can be reserved like physical
memory or disk blocks. But if two tasks require processor
resources simultaneously, then one of the tasks will have to
wait until the other is finished. If this task must wait too long,
then it may not be able to execute in “real-time.” Thus, the
scheduled reservation model cannot guarantee real-time
execution of all tasks.
0007. The scheduled reservation model provides a more
flexible approach to design of real-time systems. In particular,
design of a task or tasks does not require detailed knowledge
of the entire system and/or other tasks. Thus, unlike “hand
crafted real-time systems, task design need not be tightly
controlled, and new configurations and/or features can be
developed by those (e.g., third parties, etc.) without detailed
knowledge of the system or of other tasks that may run on the

Aug. 30, 2012

system. For example, new features could be developed for a
configurable device without requiring any changes to the
underlying system or with other tasks previously designed for
the system. Further, such features could be developed by
third-parties with limited knowledge of the underlying sys
tem and/or of other features. As discussed above, however,
“real-time' operation might not be guaranteed.
0008 Another approach to real-time systems is often
referred to as the “fixed priority model.” Under the fixed
priority model, each task is assigned a priority level by devel
opers. During operation, tasks are executed strictly based on
their priority level. For example, a task with a higher priority
than that of an executing task can interrupt that task, whereas
a task with a lower priority than that of the executing task
must wait until the executing task finishes. As with the sched
uled reservation model, the fixed priority model cannot guar
antee real-time execution of tasks (except for the highest
priority task).
0009. As with the scheduled reservation model, the fixed
priority model provides a more flexible approach to design of
real-time systems. In particular, design of a task or tasks does
not require detailed knowledge of the entire system and/or
other tasks. It does, however, require some knowledge of its
priority vis-a-vis other tasks that may be executed by the
system. Thus, task design need not be tightly controlled, but
does usually require some degree of coordination. Thus, simi
lar to systems employing a scheduled reservation model, new
features for could be developed for a configurable device
without requiring significant changes to the underlying sys
tem or with other tasks previously designed for the system. It
may, however, require a reconfiguration of priorities of tasks
that can be implemented on the device. Additionally, such
features could be developed by third-parties with limited
knowledge of the underlying system and/or of other features.
But, “real-time' operation cannot be guaranteed.
0010 Configurable systems having multiple processing
nodes generally exacerbate the above-mentioned shortcom
ings and introduce others. It is desirable to provide techniques
for use in configurable systems having multiple processing
nodes that improve upon one or more of the above-mentioned
(or other) shortcomings in the prior art.

BRIEF SUMMARY OF THE INVENTION

0011 Task definitions are used by a task scheduler and
prioritizer to allocate task operations to a plurality of process
ing units. The task definition is an electronic record that
specifies resources needed by, and other characteristics of a
task to be executed. Resources include types of processing
nodes desired to execute the task, needed amount or rate of
processing cycles, amount of memory capacity, number of
registers, input/output ports, buffer sizes, etc. Characteristics
of a task include maximum latency time, frequency of execu
tion of a task, communication ports, and other characteristics.
0012. An examplary task definition language and syntax is
described that uses constructs including order of attempted
scheduling operations, percentage or amount of resources
desired by different operations, handling of multiple execut
able images or modules, overlays, portaliases and other fea
tures.

0013. In one embodiment the invention provides a com
puter program product comprising a computer readable Stor
age structure embodying computer readable code therein, the
computer readable code comprising a task definition code
that specifies requirements of a task adapted to be executed on

US 2012/0222038 A1

a configurable device having a plurality of processing nodes,
the task definition code including code that indicates process
ing node resources required by the task.
0014. In another embodiment the invention provides a
computer data signal embodied in a carrier wave, the com
puter data signal comprising a task definition code that speci
fies requirements of a task adapted to be executed on a con
figurable device having a plurality of processing nodes, the
task definition code including code that indicates processing
node resources required by the task.
0015. In another embodiment the invention provides a
configurable device comprising a plurality of processing
nodes; a scheduler, coupled to the plurality of processing
nodes, that assigns tasks to the processing nodes for execu
tion; and a memory, coupled to the scheduler, the memory
including a task definition code that specifies requirements of
at least one task adapted to be executed by the configurable
device, the task definition code having code that indicates
processing node resources required by the task.

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 is a simplified block diagram illustrating an
example of a system that can use embodiments of the present
invention;
0017 FIG. 2 is a simplified block diagram of an example
of a device that can implement tasks that have been defined
according to embodiments of the present invention; and
0.018 FIG. 3 is a simplified diagram illustrating a linking
of ports and modules as specified by a task definition.

DETAILED DESCRIPTION OF THE INVENTION

Overview

0019 Embodiments according to the present invention
provide techniques for defining tasks to be implemented on a
configurable device. In some specific embodiments, the target
device includes a plurality of processing nodes on which tasks
can be executed. In these embodiments, processing nodes can
include one or more of common types of processing resources
Such as general purpose processors, general purpose digital
signal processors, special purpose processors, finite-state
machines (FSMs), application-specific integrated circuits
(ASICs), etc.
0020 FIG. 1 is a simplified block diagram illustrating an
example of a system that uses embodiments of the present
invention. The system 100 includes a plurality of processing
nodes 105a, 105b, 105c, 105d. . . . , and a scheduler 110.
Scheduler 110 determines which of tasks 115a, 115b, 115c,
115d. . . . are to be carried out on which of the nodes 105a,
105b, 105c, 105d..... For example, as illustrated in FIG. 1,
scheduler 110 has assigned tasks A and D for execution on
node 1, and has assigned tasks B and C for execution on node
4

0021 Associated with each of tasks 115a, 115b, 115c,
115d, is a corresponding task definition (120a, 120b, 120c,
120d. . . .). As is described subsequently, task definitions
120a, 120b, 120c, 120d. . . . provide information about their
associated tasks. Such information can include a type of
processing node required (or merely desired) to execute the
task, required (or desired) processing resources, other
required (or desired) resources (e.g., memory, buffers, ports,
etc.), information for communicating with the task, etc.

Aug. 30, 2012

0022 Scheduler 110 can use information provided by task
definitions 120a, 120b, 120c, 120d. ... in order to assign tasks
115a, 115b, 115c, 115d to processing nodes 105a, 105b,
105c, 105d. . . . for execution in an attempt to satisfy the
requirements of the tasks spelled out in the task definitions.
(0023 U.S. patent application Ser. No. 10/189,791 (Attor
ney Docket No. 021202-002400US), to Paul L. Spoltore, et
al., entitled “Method and System for Real-Time Multitask
ing, filed Jul. 3, 2002 (hereinafter “Spoltore et al.”), which is
herein incorporated by reference in its entirety for all pur
poses, describes techniques for assigning tasks to processing
nodes for execution. In a specific embodiment, scheduler 110
can use one or more of the techniques described in Spoltore et
al. to assign 115a, 115b, 115c. 115d to processing nodes
105a, 105b, 105c, 105d, ... for execution.
(0024. A Configurable Device
0025 FIG. 2 is a simplified block diagram of an example
of a device 150 that can implement tasks that have been
defined according to embodiments of the present invention. It
should be apparent, however, that aspects of the apparatus and
methods described herein can be applied to many different
types of computing architectures including, for example, gen
eral purpose processors, digital signal processors, custom
integrated circuits, discrete circuits, etc. Additionally, aspects
of the apparatus and methods described herein can be applied,
in general, to any type of processing approach including,
parallel processing, distributed processing, synchronous pro
cessing, asynchronous processing, etc.
0026 Device 150 can be, for example, a consumer elec
tronics device (or a component thereof) Such as a cellphone,
pager, personal digital assistant (PDA), global positioning
system (GPS) receiver, etc. It should be apparent, however,
that device 150 can be any type of device that can benefit from
a processing engine.
(0027 Device 150 includes input/output (I/O) system 152
for providing data exchange with the external environment
(illustrated at 170), connection to peripherals 174, and inter
action with a human user via user interface 172. Data
exchange includes exchanges with digital networks such as
an internet, the Internet, an intranet, an extranet, communi
cation infrastructures such as a telephone network, radio fre
quency exchanges as to wireless networks, etc. Any type of
physical communication or data transfer network can be
employed. Any type of protocol can be used to perform the
communication.

0028. User interface 172 allows a human user to operate
the device, and to perform other functions. Typically, a user
interface includes a display Screen and manual controls such
as buttons, a pointing device (e.g., a mouse, trackball, touch
pad, etc.), knobs, Switches, and other types of controls. Addi
tional output devices can include speakers, force feedback,
etc. Peripherals 174 include storage devices such as disk
drives, input/output devices such as keyboards, monitors, etc.
0029 I/O system 152 can be in communication with dif
ferent systems in device 150. For example, FIG. 2 shows I/O
system 152 communicating with task definition store 154 and
storage and processing resources 160. Other arrangements
are possible.
0030 Task definition store 154 is used to store programs,
adaptation or configuration information, or other information
used to control or manage the processing or functioning of
device 150. In one embodiment, adaptation information is
used to define tasks that are executed by systems within
device 150 to achieve functionality. For example, one or more

US 2012/0222038 A1

tasks might allow device 150 to communicate using time
division multiplexed access (TDMA) with a cellular phone
network. One or more other tasks could provide a user with a
phone directory including an interface for creating, modify
ing, organizing, searching, etc., the directory. Yet other tasks
can implement a time-of-day clock, Internet web browsing,
GPS position indication, calculator, email interface, etc. In
general, any type of functionality can bc implemented by a
task. Combinations of functionality can bc provided by one or
more tasks. Further, a task may implement only a portion of a
feature, function, or other process or functionality.
0031 Scheduler 156 causes tasks, or portions of tasks,
from task definition store 154 to be executed. Scheduler 156
can, optionally, use information provided by prioritizer 158 in
determining how to specify the use of resources 160 to be
used to execute a task. For example, Scheduler 156 can assign
all resources to a task that has been given a high priority by
prioritizer 158. Conversely, scheduler 156 may reduce
resources allocated to a task, or Suspend execution of a task,
if the task has a low priority.
0032 Resources 160 include storage 162 and processing
resources 164. Storage 162 can be, for example, system
memory in the form of random-access memory (RAM), or
other forms of storage. Storage 162 can be distributed
throughout the processing elements, it can be centralized, or
it can be a combination of centralized and distributed storage.
Processing resources 164 can include one or more of common
types of processing resources Such as general purpose pro
cessors, FSMs, ASICs, etc. In one embodiment, processing
resources 164 include multiple processing nodes 168 accord
ing to the adaptive computing engine (ACE) architecture as
described in U.S. patent application Ser. No. 09/815, 122,
entitled "Adaptive Integrated Circuitry With Heterogeneous
And Reconfigurable Matrices Of Diverse And Adaptive
Computational Units Having Fixed, Application Specific
Computational Elements.” filed Mar. 22, 2001 (“Masters”).
In this embodiment, each node can be of a specific type. Such
as math, bit/logical, FSM, reduced-instruction set computing
(RISC), etc. In this embodiment, nodes are interconnected
and may have associated resources. Such as memory. A
detailed description of the ACE architecture is provided in
Masters, which is herein incorporated by reference in its
entirety for all purposes. In other embodiments, all of the
nodes may be general purpose or of one type.

Task Definition

0033 Embodiments of task definitions according to the
present invention will now be described. In these embodi
ments, a task is comprised of one or more modules, and the
requirements of each module can be specified in the task
definition. It is to be understood, however, that it is not a
requirement that tasks be defined in terms of modules. This is
merely an example of one implementation, and one skilled in
the art will recognize many modifications, equivalents, and
alternatives. For example, in other embodiments, a task may
not be specified in terms of modules that make up the task. In
still other embodiments, a task may comprise one or more
modules, where each module may in turn be comprised of one
or more Sub-modules. In these embodiments, a task may be
specified in terms of Sub-modules.
0034 Referring to FIG. 2, in embodiments to be used with
systems such as device 150, task definitions may be stored in
task definition store 154. In these embodiments, tasks and
task definitions can be, for example, downloaded by device

Aug. 30, 2012

150 from a remote location. For instance, with a device 150
that includes, or is coupled with, a modem, network interface,
etc., a task definition could be transmitted to device 150 via a
computer data signal embodied on a carrier wave, over a
network Such as the Internet, etc., and then loaded into task
definition store 54. Similarly, a task definition could be trans
mitted to a computer, and then downloaded from the com
puter to task definition store 154 via, for example, a serial
port, parallel port, etc. In other embodiments in which device
150 includes, or is coupled with, a floppy disk drive, memory
card reader, etc., task definitions could be loaded into task
definition store 154 via a computer readable medium such as
a disk, memory card, etc.
0035. As described above, task definitions are associated
with the tasks of which they provide information. In some
embodiments, task definition may include a link, pointer, etc.,
to the task to which it is associated, or a location of the task in
a memory, etc. In other embodiments, the task definition may
be included with the task itself. For example, a task definition
may be within a same file as the task itself, appended to the
file, etc.
0036. The type of information provided by task definitions
will now be described. Some of this information can be used,
for example, by scheduler 110 of FIG. 1, scheduler 156 of
FIG. 2, an operating system, etc., to determine to which
processing nodes tasks should be assigned or loaded, by
which processing nodes tasks should be executed, etc. Addi
tionally, Some of this information can be used by an operating
system, other tasks, etc., to communicate with, provide infor
mation to, etc., a task.
0037 A. Processing Node Resources
0038. In some embodiments, a task definition may specify
resources of a processing node that are required (or desired)
by the associated task. The resources could be specified, for
example, in terms of a percentage of the processing node's
processing power. Examples of source code for specifying
processing node resources is provided Subsequently.
0039. The time between when a task can begin to execute
(e.g., when data becomes available, a trigger occurs, etc.) and
when the task actually begins to execute will be referred to
herein as “latency.” For some tasks, it may be desired that the
latency not exceed (or only occasionally exceed) Some maxi
mum amount (herein referred to as the “maximum allowable
latency). Thus, in some embodiments, specifying resource
requirements of a task can include specifying a maximum
allowable latency. A maximum allowable latency could be
specified, for example, in units of time, clock cycles, etc.
0040. In some embodiments, specifying resource require
ments of a task can include specifying a minimum amount of
time required to execute the task. Time required could be
specified, for example, in units of time, clock cycles, etc.
0041. In some embodiments, specifying resource require
ments of a task can include specifying a minimum frequency
of execution of the task. The frequency of execution could be
specified, for example, in units of time (period), clock cycles
(period), hertz (frequency), etc.
0042 Spoltore et al. describes various types of resource
requirements that, in Some embodiments, can be included in
task definitions.
0043. B. Processing Node Type
0044. In some embodiments in which a device on which
the task can be executed includes processing nodes of differ
ent types, a task definition may specify the type of a process
ing node required (or desired) by the associated task. For

US 2012/0222038 A1

example, as described with respect to FIG. 2, device 150 can
include one or more of common types of processing resources
Such as general purpose processors, FSMs, ASICs, etc. In one
specific embodiment, device 150 includes multiple process
ing nodes according to the ACE architecture as described in
Masters. In this embodiment, each node is of a specific type,
such as math, bit/logical, FSM, or reduced-instruction set
computing (RISC).
0045. In some embodiments, a preferred choice of pro
cessing node type can be specified, as well as one or more
back-up choices. In these embodiments, if the preferred type
of processing node is unavailable, the task can be assigned to
a processing node of one of the back up choice types.
0046 C. Other Resources
0047. In some embodiments, a task definition may specify
other types of required (or desired) resources. For example, a
task definition may specify memory requirements. Such as a
minimum amount of memory, a maximum amount of
memory, a type of memory, etc. Also for example, a task
definition may specify input/output (I/O) requirements such
as buffer requirements, I/O port requirements, etc. In some
embodiments, I/O requirements can be specified, for
example, in terms of a minimum buffer size, a maximum
buffer size, a minimum throughput, a maximum throughput,
a type of input, output, or I/O port, a specific input, output, or
I/O port, etc. Examples of source code for specifying require
ments of buffers will be described subsequently.
004.8 D. Port Aliases
0049. In some embodiments, a task definition can include
portaliases used for communicating between tasks, within a
task, between a task and the operating system, etc. Ports can
be, for example, I/O ports, registers, memories, sections of
memories, etc., used for providing information to, or receiv
ing information from, tasks. For instance, a task definition can
include global alias names of ports for communicating with
the task. Examples of source code for specifying portaliases
will be described subsequently.
0050 E. Task Loading
0051. In some embodiments, a task definition can include
requirements for loading the task. For example, a task defi
nition can specify whether the task should be loaded for
execution on a particular node, or within a particular group of
nodes. Additionally, in some embodiments, a task definition
can specify whether a task should be loaded for execution on
a node on which another particular task or tasks is loaded for
execution, or near a node or nodes on which another particular
task or tasks is loaded for execution.
0.052 As described above, in some embodiments a task
may comprise one or more modules. In these embodiments, a
task definition can specify requirements relating to the node
or nodes on which the modules should be loaded for execu
tion. For instance, a task definition can specify that a particu
lar module be loaded on a particular node or within a group of
nodes. Also, a task definition can specify that two or more
particular modules be loaded on a same node, or within one
group of nodes. Similarly, a task definition can specify that
two or more particular modules be loaded on different nodes,
or on different groups of nodes. In some embodiments, a task
definition can specify loading requirements for some mod
ules while not specifying such requirements for other mod
ules.

Examples
0053 Examples of source code for implementing task
definitions will now be described. It is to be understood that
these examples are merely illustrative and are not limiting.

Aug. 30, 2012

0054 A. Module Definition
0055. In some embodiments in which a task can comprise
one or more modules, a task definition includes a module
definition section. An example of source code included within
a module definition section is provided below. In this
example, a module definition section begins with a name
indicating the module to be defined, followed by parentheses
and brackets:

modSample(“modSample Entry Point',
“m node files/modSample.mlf) {

0056. In the above example, a filename of an executable
image of the module and an entry point within the file are
specified within the parentheses. In particular, the filename of
an executable images is “modSample.mlf located in the
directory “m node files.” Additionally, the entry point is
“modSample Entry Point.” Within the brackets, other
requirements of the module can be specified.required, as will
be described subsequently.
0057. In some embodiments, multiple file names can be
specified, corresponding to alternative executable images of
the module. For example, if different types of nodes require
different formats, different code, etc., then one or more alter
native executable images can be specified in case a particular
node type is unavailable, for example, because the device on
which the module is to be executed does not include it,
because all nodes of this type have already been reserved by
other modules, etc. In the following example, it is assumed
that a device on which the module could be loaded might
include two types of processing nodes: m-type nodes and
a-type nodes. A required (or desired) type of node for a
particular node can be specified by the filename extension of
the executable image of the module. In this particular
example, a “.mlf extension indicates, for example, to an
operating system, to a scheduler, etc., that the module should
be loaded to an m-type node, whereas a “...alf extension
indicates that the module should be loaded to an a-type node:

modSample(“modSample Entry Point, “m node files/modSample.mlf,
“a node files/modSample.alf) {

0058. In the above example, the task definition specifies
that the operating system, scheduler, etc., should first attempt
to load the file named “modSample.mlf to an m-type node
(or, alternatively, to a node that Supports an m-type format). If
there is no such processing node available, then it should be
attempted to load the file named “modSample.alf to an
appropriate processing node.
0059. In some embodiments, multiple instances of a mod
ule can be loaded and executed.

US 2012/0222038 A1

0060 An example of source code included within a mod
ule definition section that defines multiple images of a mod
ule is provided below. In this example, two instances are
defined which reference the same executable image “mod
Sample.mlf:

modSample1(“modSample Entry Point,
“m node files/modSample.mlf) {

modSample2(“modSample Entry Point,
“m node files/modSample.mlf) {

0061 B. Module Resources Definition
0062. The source code examples below illustrate one spe

cific embodiment of a task definition that specifies node
resources for a module. A keyword “cpu' followed by a
number between 0 and 100 (inclusive) is used to specify a
percentage of required processing resources of a node. In the
following example, required processing node resources for
the module whose executable image is included in the file
“modSample.mlf are specified. In particular, this module
requires 25% of the processing node's processing power:

modSample(“modSample Entry Point,
“m node files/modSample.mlf) {

cpu25

0063. The granularity of the number specifying process
ing power can vary with different implementations, different
devices on which the module is to be executed, different types
of processing nodes, etc. For example, the granularity can be
in units of 1, 5, 10, 25, etc. If desired, a smaller granularity can
also be used.

0064. If multiple executable images of a module are
defined, required processing resources can be specified as the
same for both images, or specified individually. In the follow
ing example, required processing resources for two execut
able images of a module (“m node files/modSample.mlf
and “a node files/modSample.alf) are specified as having
the same resource requirement:

Aug. 30, 2012

modSample(“modSample Entry Point, “m node files/modSample.mlf,
“a node files/modSample.alf) {

resource() {

cpu25

0065. In the following example, required processing
resources for two executable images of a module ('m node
files/modSample.mlf and “anode files/modSample.alf)
are specified as having the different resource requirement:

modSample(“modSample Entry Point, “m node files/modSample.mlf,
“a node files/modSample.alf) {

resource(“m node files/modSample.mlf) {

cpu 75

resource(“a node files/modSample.alf) {

cpu25

0066. C. Module Overlay Definition
0067. In some embodiments, use of overlays is permitted.
A source code example of a task definition that specifies
overlay requirements is provided below. In this example, the
keyword “overlays” is used followed by parentheses and
brackets. The parentheses can be used to specify a particular
executable image of a module. If only one executable image
has been defined, or if the overlays are the same for the
different executable images, the parentheses can be left
empty. Within the brackets, the entry points and files of one or
more overlays can be specified:

US 2012/0222038 A1

modSample(“modSample Entry Point,
“m node files/modSample.mlf) {

overlays() {
“Overlay Entry Point”, “m node files/modOverlay1.mlf
“Overlay Entry Point”, “m node files/modOverlay2.mlf
“Overlay Entry Point”, “m node files/modOverlay3.mlf

0068. In the above example, three overlays are defined.
This information can be used, for example, to ensure that
enough memory is reserved for the module when it is loaded.
For instance, in the above example, an operating system could
reserve an amount of memory greater than or equal to the size
of the executable image “modSample.mlf plus the size of the
largest of the three overlay files.
0069 D. Port Aliases
0070. In some embodiments, a task definition includes a
portalias section. An example of Source code that illustrates
portaliases is provided below. In this example, a alias section
is followed by a module definition section:

in Buf public O
outBuf public O

modSample(“modSample Entry Point,
“m node files/modSample.mlf) {

inBuf private in Buf public
outBuf private outBuf public

0071. In the above example, two global aliases are defined:
“in Buf public' and “outBu fpublic.” These aliases identify
ports that can be used to communicate with the module “mod
Sample.” The “0” following each of these portaliases specify
that the ports requirements are default values. Source code
examples of specifying requirments of ports will be described
Subsequently.
0072. Within the module definition section, the global
alias names are linked to internal port names of the module:
“in Buf private” and “outBuf private.” This can be useful, for
example, when multiple instances of the same module are to
be loaded. And example of using portaliases with multiple
module instances is provided below:

in Buf public O
XfrBuf public O
outBuf public O

modSample1(“modSample Entry Point,
“m node files/modSample.mlf) {

Aug. 30, 2012

-continued

in Buf private in Buf public
outBuf private XfrBuf public

modSample2(“modSample Entry Point,
“m node files/modSample.mlf) {

in Buf private XfrBuf public
outBuf private outBuf public

0073. In the above example, two instances of the same
module are to be loaded, and three global aliases are defined.
The private aliases of the two module instances are linked
with the public aliases such that the ports will be interfaced as
shown in FIG. 3.
0074 E. Port Resource Definition
0075. As described above, in some embodiments, a task
definition may specify input/output (I/O) requirements such
as buffer requirements, I/O port requirements, etc. Examples
of Source code for specifying requirements of buffers are
provided below. In the following example, requirements of
two ports are specified:

in Buf public 512
outBuf public 256, 64, 4, 2046

modSample(“modSample Entry Point',
“m node files/modSample.mlf) {

inBuf private in Buf public
outBuf private outBuf public

(0076. In the above example, the port “in Buf public' is
specified to include 512 words of memory. The port “outBuf
public' is specified to include 256 words of memory, com
prised of 4 separate buffers, each having 64 words. Addition
ally, the port “outBuf public' is specified to be capable of
handling a sustained data rate of at least 2046 kilobits of data
per second. Any appropriate word size can be used depending
upon the particular implementation (e.g., 8-bits, 16-bits,
32-bits, etc.). Additionally, port requirements need not be
specified in terms of words. For example, port requirements
could be specified in terms of bits, fixed-size blocks of words,
etc. Similarly, a particular representation of a specified data
rate is not required. In the following example, three ports are
defined, each specifying an equivalent minimum data rate
using different representations:

oneBuf public 256, 64, 4, 2097152
twoBuf public 256, 64, 4, 2048K
threeBuf public 256, 64, 4, 2M

US 2012/0222038 A1

0077 F. Module Loading
0078. As described above, in some embodiments, a task
definition can specify requirements for loading the task. A
Source code example is provided below that specifies loading
requirements for a plurality of modules that comprise a task.
In a specific embodiment, the tasks are to be loaded on a
device that includes agroup of processing nodes referred to as
ACM. Additionally, within the ACM processing nodes
are organized into groups of four nodes, referred to as
“quads. In the example below, loading requirements of 5
different modules (“modSample 1. “modSample2.” “mod
Sample3 “modSample4.” “modSample5') are specified:

ACM() {
modSample1
Quad() {

modSample2
Node() {

modSample3
modSample4

Node() {
modSample5

0079. In the above example, because modules “mod
Sample 1. “modSample2.” “modSample3.” “modSample4.
and “modSample5” are included within the 'ACM'brackets,
these modules should be loaded onto the ACM group of
processing nodes. Additionally, because module 'mod
Sample1 is not included within “Quad' or "Node' keyword
brackets, then this module can be loaded on any "Quad' or
“Node' in the ACM group, and without regard to any of the
other modules.
0080 Modules “modSample2,” “modSample3,” “mod
Sample4 and “modSample5” are included within brackets
of a “Quad' keyword. This specifies that “modSample2.
“modSample3.” “modSample4 and “modSample5” should
be loaded on the same “Ouad. Module “modSample2 is not
included within “Node' keyword brackets. This specifies that
this module can be loaded on any "Node' in the "Quad, and
without regard to any of the other modules. Modules “mod
Sample3 and “modSample4 are included within one set of
“Node' keyword brackets, and module “modSample5” is
included within another set of “Node' keywordbrackets. This
specifies that modules “modSample3 and “modSample4”
should be loaded on the same processing node, and that
module “modSample5” should be loaded on a different pro
cessing node than that of modules “modSample3 and 'mod
Sample4.
I0081. G. Example of a Task Definition
0082 An example of a task definition is provided below.
This example includes three sections: a “Port Aliases’ sec
tion, a “Module Definition' section, and a “Module Loading
section:

ff-----
if Section 1 - Port Aliases
inHostFifo 0x040
ScatterBuf) 0x100
ScatterBuf1 0x100
ScatterBuf2 0x100
gatherBuff) 0x100
gatherBufl Ox100
gatherBuf2 OX100

Aug. 30, 2012

-continued

OutEHostFifo 0x400
tagO O
tag1 O
tag2 O
ctBuf O
ff---
if Section 2 - Module Definitions
modInput(“modInput Entry Point”, “modCenData/modGenData.alf) {

inBuf inHostFifo
outEuf genData
ctBuf SelectWhich
resource(“modGenData modGenData.alf) {

cpu 25

modScatter(“modScatter Entry Point”, “modScatter/modScatterialf,
, “modScatter/modScatter.mlf) {

inBuf outEuf
outEuf) scatterBuf)
outEuf1 scatterBufl.
outEuf2 scatterBuf2
resource(“modScatter/modScatter.alf) {

cpu 25

resource(“modScatter/modScattermlf) {
cpu 1OO

modDecompress 1(“modDecompress Entry Point',
“modDecompress/modDecompress.mlf,
“modDecompress/modDecompress.alf) {

inBuf scatterBuf)
outEuf gatherBuf)
tag tago
resource(“modDecompress/modDecompress.mlf) {

cpu 25

resource(“modDecompress/modDecompress.alf) {
cpu 1OO

modDecompress2(“modDecompress Entry Point',
“modDecompress/modDecompress.mlf) {

inBuf scatterBufl.
outEuf gatherBuf1
tag tagl
resource() {

cpu 25

modDecompress3(“modDecompress Entry Point',
“modDecompress/modDecompress.mlf) {

inBuf scatterBuf2
outBu gatherBuf2
tag tag2
resource() {

Cl 25

modCather(“modGather Entry Point”, “modCather/modScatteralf) {
inBuf) gatherBuf)
inBu gatherBuf1
inBuf2 gatherBuf2
outBu outostFifo
resource() {

Cl 25

overlays() {
“Entry Point, “modGather/overlay1.alf
“Entry Point, “modGather/overlay2.alf

ff---
// Section 3 - Module Loading
ACM() {

modInput

US 2012/0222038 A1

-continued

Quad() {
modCather
modDecompress3
Node() {

Node() {

Node() {

modScatter

modDecompress1

modDecompress2

I0083. While the above is a full description of the specific
embodiments, various modifications, alternative construc
tions, and equivalents may be used. Therefore, the above
description and illustrations should not be taken as limiting
the scope of the present invention which is defined by the
appended claims.
What is claimed is:
1. A computer program product comprising
a computer readable storage structure embodying com

puter readable code therein, the computer readable code
comprising:

a task definition code that specifies requirements of a task
adapted to be executed on a configurable device having
a plurality of processing nodes, the task definition code
including:
code that indicates processing node resources required
by the task.

2. The computer program product of claim 1, wherein the
code that indicates processing node resources required by the
taskincludes code that indicates processing power required of
at least one processing node.

3. The computer program product of claim 1, wherein the
code that indicates processing node resources required by the
task includes code that indicates a required execution time of
at least a portion of the task.

4. The computer program product of claim 1, wherein the
code that indicates processing node resources required by the
task includes code that indicates a maximum allowable
latency of at least a portion of the task.

5. The computer program product of claim 1, wherein the
code that indicates processing node resources required by the
task includes code that indicates a frequency of execution of
at least a portion of the task.

6. The computer program product of claim 1, wherein the
task comprises one or more modules, and wherein code that
indicates processing node resources required by the task
includes code that indicates processing node resources
required by at least one of the modules.

7. The computer program product of claim 1, wherein the
task definition code further includes code that indicates one or
more types of processing nodes required to execute at least a
portion of the task.

8. The computer program product of claim 1, wherein the
task definition code further includes code that indicates one or
more processing nodes required to execute at least a portion
of the task.

9. The computer program product of claim 1, wherein the
task definition code further includes code that indicates
memory requirements of at least a portion of the task.

Aug. 30, 2012

10. The computer program product of claim 1, wherein the
task definition code further includes code that indicates port
requirements of at least a portion of the task.

11. The computer program product of claim 1, wherein the
task definition code further includes code that indicates port
aliases.

12. The computer program product of claim 1, wherein the
task definition code further includes code that indicates
requirements for loading of at least a portion of the task onto
one or more processing nodes.

13. The computer program product of claim 12, wherein
the task comprises a plurality of modules, and wherein the
code that indicates requirements for loading of at least a
portion of the task includes code that specifies a group of
processing nodes on which to load one or more modules.

14. The computer program product of claim 12, wherein
the task comprises a plurality of modules, and wherein the
code that indicates requirements for loading of at least a
portion of the task includes code that specifies at least two
modules should be loaded on a single processing node.

15. The computer program product of claim 1, wherein the
task definition code further includes code that indicates the
task to which the task definition is associated.

16. A computer data signal embodied in a carrier wave, the
computer data signal comprising:

a task definition code that specifies requirements of a task
adapted to be executed on a configurable device having
a plurality of processing nodes, the task definition code
including:
code that indicates processing node resources required
by the task.

17. The computer data signal of claim 16, wherein the task
definition code further includes code that indicates one or
more types of processing nodes required to execute at least a
portion of the task.

18. The computer data signal of claim 16, wherein the task
definition code further includes code that indicates one or
more processing nodes required to execute at least a portion
of the task.

19. The computer data signal of claim 16, wherein the task
definition code further includes code that indicates memory
requirements of at least a portion of the task.

20. The computer data signal of claim 16, wherein the task
definition code further includes code that indicates port
requirements of at least a portion of the task.

21. The computer data signal of claim 16, wherein the task
definition code further includes code that indicates port
aliases.

22. The computer data signal claim 16, wherein the task
definition code further includes code that indicates require
ments for loading of at least a portion of the task onto one or
more processing nodes.

23. A configurable device comprising:
a plurality of processing nodes;
a scheduler, coupled to the plurality of processing nodes,

that assigns tasks to the processing nodes for execution;
and

a memory, coupled to the scheduler, the memory including
a task definition code that specifies requirements of at
least one task adapted to be executed by the configurable
device, the task definition code having code that indi
cates processing node resources required by the task.

c c c c c

