Office de la Proprieté Canadian
Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2316003 C 2009/02/03

(11)(21) 2 316 003

(12 BREVET CANADIEN
CANADIAN PATENT
13) C

(22) Date de depot/Filing Date: 2000/08/14
(41) Mise a la disp. pub./Open to Public Insp.: 2002/02/14
(45) Date de délivrance/lssue Date: 2009/02/03

(51) Cl.Int./Int.Cl. GO6F 9/44(2006.01),
GO6F 9/445 (2006.01), HO4L 12776 (2006.01),
HO4L 29/06 (2006.01), HO4M 171/06 (2006.01)

(72) Inventeur/Inventor:
GUNGABEESOON, SATISH, CA

(73) Proprietaire/Owner:

IBM CANADA LIMITED-IBM CANADA LIMITEE, CA
(74) Agent: WANG, PETER
(54) Titre : ACCES A DES APPLICATIONS HERITEES A PARTIR DINTERNET
(54) Title: ACCESSING LEGACY APPLICATIONS FROM THE INTERNET
= APPLICATION =
\pLEGACY oo 4t COMPILER | . . APPLICATION [soneen |
= | RUNTIME E I/ODATA é = o
. RUNTIME(OS) 1 DEFINITIONS |
: - =
DATA 10
REDIRECTION { | £32 o 510
ACTIVATED DATA PRE-RUNTIME
CONVERSION
- TOWEB Ul
540
RAW —
APPLICATION 2
/0 DATA 590 =
NETWORK [
UI PAGES [
570 5 WWW __ 0 l&# 530 e
NETWORK [NETWORK | puglisHTowes [o DYNAMICALLY HTML OR
USER % SERVER RUNTIME = UPDATES WEB XML BASED,
- PAGES WITH E.G. JSP
AGENT COMPONENT
: . APPLICATION DATA
%ﬁ%ﬁ’?ﬁf '_ ;i:?::iwt— ST DT %uf;—:
/ USER DATA —®
200 \
300 100

(57) Abréegée/Abstract:

A method and apparatus that has the ability to run interactive legacy applications from a network, such as the Internet, without
requiring any code changes in the application. Thus, the application Is unaware of the new network environment and continues to
run, as-Is, In its native environment. The legacy application may be accessed from any of several client devices using a network

server that can be connected to or integral with the computer on

which the application Is executing. Typically, these legacy

applications are critical to a business, are self-contained on the computer, have mixed business and user Interface logic, and were
written before software engineering principles of distributed computing emerged. Separating business logic from user interface
logic as required by web application architectures Iis not practicable in the case of legacy applications. A client, such as a thin client,

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

PO 191

OPIC - C]

:-:if{?;{if;
SN F T 7 T
/777
sevmy (C PO

RN o - P
IR M N Al

ey
uuuuu
ooooo

CA 2316003 C 2009/02/03

anen 2 316 003
13) C

(57) Abrege(suite)/Abstract(continued):

has a network user agent, such as a web browser, which can access a network server connected to the computer. The method of
this Invention provides an environment such that when an application is invoked from the network user agent, a runtime data
redirector intercepts the application's raw data and sends the data to the network server which then serves the data across the
network to the network user agent after dynamically updating the associated application's network pages, such as
JavaServerPages, which were generated by converting the proprietary display screens of the legacy application. Input data from
the user entered through the network user agent are sent back to the application via the same runtime intercept. In this fashion, the
client and network environment are transparent to the application while the application is now able to take advantage of many
Internet and other network capabillities.

10

15

20

CA 02316003 2006-12-04

ABSTRACT OF THE DISCLOSURE

ACCESSING LEGACY APPLICATIONS
FROM THE INTERNET

A method and apparatus that has the ability to run interactive legacy applications
from a network, such as the Internet, without requiring any code changes in the application.
Thus, the application is unaware of the new network environment and continues to run, as-
IS, in its native environment. The legacy application may be accessed from any of several
client devices using a network server that can be connected to or integral with the
computer on which the application is executing. Typically, these legacy applications are
critical to a business, are self-contained on the computer, have mixed business and user
interface logic, and were written before software engineering principles of distributed
computing emerged. Separating business logic from user interface logic as required by
web application architectures is not practicable in the case of legacy applications. A client,
such as a thin client, has a network user agent, such as a web browser, which can access
a network server connected to the computer. The method of this invention provides an
environment such that when an application is invoked from the network user agent, a
runtime data redirector intercepts the application’s raw data and sends the data to the
network server which then serves the data across the network to the network user agent
after dynamically updating the associated application’s network pages, such as
JavaServerPages, which were generated by converting the proprietary display screens of
the legacy application. Input data from the user entered through the network user agent
are sent back to the application via the same runtime intercept. In this fashion, the client
and network environment are transparent to the application while the application is now

able to take advantage of many Internet and other network capabilities.

CA9-2000-0020

10

15

20

25

CA 02316003 2000-08-14

ACCESSING LEGACY APPLICATIONS
FROM THE INTERNET

TECHNICAL FIELD

This application relates generally to the field of computer software applications and
more particularly relates to accessing legacy application programs over a computer
network, such as the Internet.

BACKGROUND OF THE INVENTION

Like everything else, computer use has changed over the years. In the early days,
large mainframe computers dominated the industry until the advent of the personal stand-
alone computer. Now many businesses and homes have at least one personal stand-
alone computer, a PC. A new paradigm of computing, however, has emerged: network-
centric computing or distributed computing in which at least two. but more likely many more
computers, called clients and servers, are interconnected through a network wherein the
software applications used by a client resides on a server. Thus, a server may provide the
application or client program or databases used by an end user or by a number of other

servers and clients over a network.

In many instances and Increasingly more so, the network connecting clients and
servers Is the Internet. The Internet refers to a collection of interconnected computer
networks that use the Internet protocol, e.g., ICP/IP, UDP, etc. Software applications are
written in a programming language independent of the operating system of either the
server or the client to access and use 3 myriad of applications on the Internet. Languages
that describe data over the Internet, moreover, include variations of extensible mark-up
languages (XML), such as hypertext mark-up language (HTML), wireless mark-up
language (WML), etc. The world wide web refers to a software management scheme

which accesses the Internet with various user agents using hypertext links.

CA9-2000-0020 1

10

15

20

25

CA 02316003 2000-08-14

Distributed computing has fundamentally changed the methodology of software
developers in writing code for these applications. Rather than writing one massive self-
contained application having thousands or millions of lines of code, software developers
select and weave together smaller portions of code, called components, each associated
with a particular function that can be reused across multiple applications, all on the world
wide web. Components are standard software that can be pulled off a server and
incorporated into new applications by software developers. For example, a calendar
component may be used in several applications such as a scheduling application, a
presentation application, and/or a data base application to calculate employee’s vacation
and pay, etc. Current industry architectures for Internet and world wide web applications,
moreover, require that business logic be separated from presentation logic such that the
business logic is solely responsible for providing business data while the presentation logic

Is solely responsible for driving presentation or the user interface.

The massive self-contained applications having thousands or millions of lines of
code, however, may still be very important to businesses and organizations. Indeed, some
self-contained programs may contain a business’s entire iInventory/client list/database or
all of the above. The term “legacy applications” refers to old applications which remain in
operation with a business or organization but were developed before the advent of
distributed computing and structured programming and its techniques of modularity,
coupling, cohesion, etc. Legacy applications written as one large self-contained program
do not accommodate change easily. These legacy applications, moreover, are often so
critical to the business that these businesses face difficult decisions about the future of
such applications and the ability to exploit new network and Internet technologies for
remote and distributed access to these critical applications. Interactive legacy applications
that have mixed business and presentation logic must be restructured and/or reengineered
to be enabled as web applications. Separating the business logic from the user interface
logic, however, is not always practicable to deploy applications onto the web with minimal

intervention and testing.

CA9-2000-0020 2

10

15

20

25

b e L L N ¥ I L R R 1T L LR T I T

CA 02316003 2000-08-14

Other solutions to implement legacy applications on the Internet and world wide web
May use a screen-scraping technique which converts legacy display data streams at
runtime to a web-based language, such as HTML. or other language. The HTML
converted screens are then displayed on a browser. Converting legacy display data
stream at runtime, however, is slow, compromises performance of the application, and
does not give the user the capability of integrating or bridging legacy applications
seamlessly with new web or other network applications. Nor does mere conversion of
legacy data provide the capability to enhance the effectiveness of the user interface of the

application when the application runs on the Internet.

There is thus a need in the industry to access legacy applications from the Internet,
the world wide web, or other computer communication networks without having to

restructure the application or make code changes to the programs.

There is a further need in the industry to seamlessly interweave legacy applications
with other network applications.

SUMMARY OF THE INVENTION

These needs and others that will become apparent to one skilled in the art are
satisfied by a method to execute a computer application installed on a computer,
comprising the steps of creating a servlet instance in a server connected to the computer
on a first network; running the application on the computer to generate dynamic data;
Intercepting and redirecting the dynamic data to a network publishing component on the
computer; transmitting dynamic data from the network publishing component to the serviet
Instance; and creating data objects and populating the data objects with the dynamic data
In the server. The method may further comprise requesting the application from a client
connected to the server over a second network; updating at least one network page with

the dynamic data; and transmitting the updated network pages to the client.

The first network may be the Internet. The first network may also be selected from

CA9-2000-0020 3

10

15

20

25

. AR S T e Ry qpom, VR TR Gt 1 e s et il i e v v—ta L% % mw o wmE = = s .. =

CA 02316003 2000-08-14

the group consisting of: an internal network, an Intranet, a LAN, a WAN, an internal bus,
a wireless network. Similarly the second network may be the Internet; or may be selected

from the group consisting of: an internal network, an Intranet, a LAN, a WAN. an internal

bus, a wireless network. The computer may contain the network server.

The method may further comprise converting the display files of the application to
network pages capable of displaying dynamic data. The network pages may be based on
a XML language, such as HTML and/or WML. The network pages may be

JavaServerPages. The network pages, moreover, may be stored on the server.

The method of the invention may further comprise creating an /O buffer for the
dynamic data in the computer. The method may also comprise the steps of creating a first
endpoint connection between the servlet instance and the network publishing component;

the endpoint connection may be a socket, or a data queue object, or a message queue.

It is also envisioned that the invention comprises a program product for use in a
computer network for executing an application stored on a computer from a client. the
computer program product comprising a signal-bearing medium carrying thereon: an
application invoker to start and run an application in its native environment on the computer
from a client; a plurality of network user interface pages to display the application’s
Input/output data on the client; a data redirector to redirect the application’s input/output
data to network user-interface pages; a plurality of data objects corresponding to the
network user interface pages to receive the application’s Input/output data; a servlet
Instance to dynamically update the network user interface pages with the application’s
Input/output data; and a network user agent to display the updated network user-interface
pages on the client. The program product may further comprise a screen definition
converter to convert the input/output screen definitions of the application to the network

user-interface pages.

The invention may also be considered a computer system for executing an

CA9-2000-0020 4

10

15

20

25

CA 02316003 2000-08-14

application, comprising: a central processing unit; a main memory connected to the central
processing unit with a communication bus: a data storage unit connected to a data storage
interface which is connected to the communication bus; at least one input/output device
connected to the communication bus and connected to a network interface to an external
computer network, an application stored in the main memory and capable of executing on
the central processing unit; a network publishing component; a data redirector to redirect
the application’s dynamic data to the network publishing component; and an I/0 buffer to
store the redirected dynamic data.

Yet, in another embodiment, the invention may be considered a network server for
accessing an application stored and executing on a computer, comprising. a central
processing unit; a network interface to connect to at least one client over a network; a
servlet instance to receive a request from the at least one client to access the application
and transmit the request to the computer; a server endpoint connection for transmitting and
recelving real-time data to and from the computer on which the application is executing;
and a plurality of data objects to be populated with the real-time data wherein the serviet
receives the real-time data from the application and populates the data objects with the
real-time data. The network server may further comprise a plurality of network display
pages, each of the network display pages unique to each Input/output screen definition of
the application wherein the serviet updates the network display pages for transmission to

the client over the network.

The invention may also be viewed as a method for executing a computer application
Installed on a computer, comprising the steps of: converting a plurality of display files of
the application to a plurality of XML-based network pages capable of displaying the
application’s dynamic data; creating a servlet instance in a server connected to the
computer on a network; requesting the application from a client connected to a server over
the Internet; running the application on the computer in its native environment; creating an
/O buffer in the computer for the application’s dynamic data; creating an endpoint
connection between the serviet instance and a network publishing component on the

CA9-2000-0020 5

10

15

20

A= L AT AT A FA Mt B R M eyt s et e W

CA 02316003 2000-08-14

computer; transmitting the dynamic data back and forth from the client to the application
through the servlet instance; creating data objects and populating the data objects with the
dynamic data; updating at least one network page using the data objects; transmitting the
updated network pages to the client over the Internet; and transmitting network pages

having responsive data from the client to server for transmission as input data to the
application.

Yet, another aspect of the invention is a method of interacting with a computer
application, comprising: executing a legacy computer application in its native environment:
redirecting 1/0O requests from and responses to the legacy computer application from a
client over the Internet without introducing changes to the code of the legacy computer

application.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 is a high-level block diagram of a computer system capable of

implementing the preferred embodiment of the invention.

Figure 2 is a simplified block diagram of a server system which may access legacy

applications stored on the computer system in accordance with principles of the invention.

Figure 3 is a simplified representation of a computer network of clients and servers

capable of taking advantage of the invention.

Figure 4 is a simplified process chart and block diagram of a prior art computer

legacy application environment showing the flow of data to be displayed.

Figure S is a simplified process diagram of how data is redirected to/from a network

and a legacy application in accordance with principles of the invention.

CA9-2000-0020 6

10

15

20

25

CA 02316003 2000-08-14

Figure 6 is a simplified process chart and block diagram of how data can be

redirected from a legacy application using world wide web technologies on the Internet.

DETAILED DESCRIPTION OF THE INVENTION

Referring to the Drawing, wherein like numbers denote like parts throughout the
several views, Figure 1 shows a high-level block diagram of a computer system 100,
consistent with an embodiment of the invention. Computer system 100 may comprise
central processing unit (CPU) 101, main memory 102, terminal interface 103, data storage
104, and a network, e.g., Internet, interface 105. The various devices communicate with
each other via internal communications bus 110. CPU 101 is a general-purpose
programmable processor, executing instructions stored in memory 102; while a single CPU
Is shown in Figure 1, it should be understood that computer systems having multiple CPUs
could be used. Memory 102 is a random-access semiconductor memory for storing data
and programs; memory is shown conceptually as a single monolithic entity but it is well
known that memory is often arranged in a hierarchy of caches and other memory devices.
Operating system 120 and applications 122 reside in memory 102. Operating system 120
provides, inter alia, functions such as device interfaces, management of memory pages,
management of multiple tasks, etc. as is known in the art. Applications 122 may include
legacy applications and if it includes a server software application, network interface 105
may interact with the server software application 122 to enable computer system 100 to
be a network server.

Terminal interface 103 may support the attachment of single or multiple terminals
and may be implemented as one or muitiple electronic circuit cards or other units. Data
storage 104 preferably comprises one or more rotating magnetic hard disk drive units,
although other types of data storage could be used. Network interface 105 provides a
physical connection for transmission of data to and from a network. In the preferred
embodiment the network is the Internet but the network could also be any smaller self-
contained network such as an Intranet, a WAN, a LAN. or other internal or external network

using, e.g., telephone transmissions lines, satellites, fiber optics, T1 lines, etc. and any

CA9-2000-0020 /

10

15

20

25

CA 02316003 2006-12-04

various available technologies. Communications bus 110 supports transfer of data,
commands and other information between different devices; while shown in simplified form

as a single bus, it is typically structured as multiple buses; and may be arranged in a

hierarchical form.

The computer system shown in Figure 1 is intended to be a simplified
representation, it being understood that many variations in system configuration are
possible In addition to those specifically mentioned here. While system 100 could
conceivably be a personal computer system, the computer 100 may also be a larger
computer system such as an IBM® Enterprise System or an IBM® AS/400® system.
While a particular hardware configuration is described herein along with various
alternatives, the methods described could in general be practiced using any hardware
configuration that allows access to legacy applications across a computer network from a
client. CPU 101 is suitably programmed to carry out the preferred embodiment by having
the legacy application and a network interface that can be used by other connected

computers to access that legacy application.

Computer system 100 and its components are shown and described in Figure 1 as
a more or less single, self-contained computer system. It is alternatively possible to use
multiple computer systems, particularly multiple systems which share a single large
database, each having a specialized task. For example, one or more computer systems
100 could be dedicated to one or more legacy applications accessing a database, while
one or more other computer systems 100 could be dedicated to servicing requests
received from clients or accessing the Internet. References herein to a computer should
be understood to include either a single computer or a collection of computer systems

which provides access to a legacy application and to a network by which to connect to a

client system.

Figure 2 is an example of a network server 200 which may access a legacy

application stored on the computer 100. Network server 200 may be a computer system

CA9-2000-0020 8

10

15

20

25

30

CA 02316003 2000-08-14

Including a CPU 201, main memory 202, various device adapters and interfaces 203-208,
and communications bus 210. CPU 201 is a general-purpose programmable processor,
executing instructions stored in memory 202: while a single CPU is shown in Figure 2, it
should be understood that computer systems having multiple CPUs could be used.
Memory 202 is a random-access semiconductor memory for storing data and programs;
memory Is shown conceptually as a single monolithic entity, it being understood that
memory 202 is often arranged in a hierarchy of caches and other memory devices.
Communication bus 210 supports transfer of data, commands and other information
between different devices; while shown in simplified form as a single bus, it may be
structured as multiple buses, and may be arranged in a hierarchical form. Display adapter
203 supports video display 211, which may be a cathode-ray tube display, a flat panel
display, or a touch panel, although other display technologies may be used.
Keyboard/pointer adapter 204 supports keyboard 212 and pointing device 213, depicted
as a mouse, it being understood that other forms of input devices could be used. Storage
adapter 205 supports one or more data storage devices 214 which may be rotating
magnetic hard disk drives or CD-ROM drives, although other data storage devices could
be used. Printer adapter 206 supports printer 215. Adapter 207 may support any of a
variety of additional devices, such as audio devices, etc. Network interface 208 provides
a physical interface to a network, such as the Internet. This interface may comprise a
modem connected to a telephone line through which an Internet access provider or on-line
service provider is reached, but increasingly other higher bandwidth interfaces are
implemented. For example, network server 200 may be connected to another network
server via a local area network using an Ethernet, Token Ring, or other protocol, the
second network server in turn being connected to the Internet. Alternatively, network
Interface 208 may be provided through cable television, fiber optics, satellites, wireless, or
other connections. The representation of Figure 2 is intended as an exemplary simplified
representation of a high-end server, it being understood that in other network servers 200
many variations in system configuration are possible in addition to those mentioned here.
Network server 200 and computer 100 may be merged into the same system if computer
system 100 has as one of its applications 122 a server software application in which case

CA9-2000-0020 9

10

15

20

25

¥ i OO A ANy 4 A - vt Y] M d ikt = A e e e o e 58S AT Kenagae e e e e e L L . . sty ® emb 8 ey ades’ P

CA 02316003 2000-08-14

the network between the network server 200 and the computer 100 would be an internal
communications bus.

With reference to Figure 3, each client system 300 is a device separate from
computer 100 that can access legacy applications which reside and run on the computer
100. Client system may be a personal computer system or a larger computer system such
as a server, or a smaller computer system, such as notebook or laptop computer. Finally,
client system 300 need not be a computer at all, but preferably is a simpler appliance-like
client device with less memory such as a network terminal, a thin client, a terminal-like
devices, a voice response unit, etc. The convergence of computing, telecommunications
and consumer electronics is causing a tremendous growth in the number and variety of
pervasive mobile devices as clients 300. This mobile architecture enables the multitude
of clients 300 including laptops, sub-notebooks. handheld computers, such as personal
digital assistants and companion devices, and mobile appliances, such as smartphones,
pages, simple messaging devices and wearable devices. Thus when the client system 300
Is @ mobile device, a display adapter and network interface has a network user agent and
supports a variety of multi-modal interfaces including traditional keyboard and mouse
interfaces, small text screens, pen, touch screens, speech recognition, text-to-speech and
other emerging technologies like wearable devices. A network user agent enables the use
of the computer’s applications on its respective client 300. It is preferably intended that
client system 300 include any electronic device which may Interact with a network server
200 through the network user agent, such as a web browser, to access a legacy or other
applications residing on the computer system 100. Such special-purpose devices for
accessing the world wide web, such as an Internet access box for a television set, or a
portable wireless web accessing device, which can Implement a user agent for the purpose
of iInvoking and executing an application are also intended to be within the scope of a client
system 300. The network user agent could be implemented by control circuitry through the
use of logic gate, programmable logic devices, or other hardware components in lieu of a
processor-based system.

CA9-2000-0020 10

10

15

20

25

CA 02316003 2000-08-14

As will be described in detail below. aspects of the preferred embodiment pertain
to specific method steps implementable on a computer 100 or a network server 200. In
an alternative embodiment, the invention may be implemented as a computer program-
product for use with either or both a network server 200 and a client 300. The programs
defining the functions of the preferred embodiment can be delivered to the computer 100
and/or to the network server 200 via a variety of signal-bearing media, which iInclude, but
are not limited to: (a) information permanently stored on non-writable storage media, e.d.,
read only memory devices within either computer such as CD-ROM disks readable by CD-
ROM drive 214, (b) alterable information stored on writeable storage media, e.g., floppy
disks within diskette drive or hard-disk drive, such as shown as 214 in Figure 2; or (c)
Information conveyed to a computer by a telephone or a cable media network, including
wireless communications. Such signal-bearing media, when carrying computer-readable
instructions that direct the functions of the present invention, represent alternative

embodiments of the present invention.

Figure 3 is a simplified representation of a computer network. The computer
network is representative of the Internet, which can be described as a known computer
network based on the client-server model discussed herein. Conceptually, the Internet
includes a large network of network servers 200 that are accessible by client systems 300
through a private Internet access provider 303 or an on-line service provider 304. In the
preferred embodiment, each of the client systems 300 may run a respective network user
agent such as a browser to access network servers 200 via the access providers. Each
network server 200 may have legacy applications of their own or may be connected to
other computers 100 that have legacy applications to be accessed through the Internet or
other connections to the clients 300. Moreover, a legacy application need not be stored
on only one computer 100; rather various tasks of a single application may be stored on
more than one computer 100 to which a network server 200 is connected through the
network, such as the Internet. An Internet network path to servers 200 is identified by a
Universal Resource Locator (URL) having a known syntax for defining a network

connection. While various relatively direct paths are shown. it will be understood that

CA9-2000-0020 11

10

15

20

29

CA 02316003 2000-08-14

Figure 3 is a conceptual representation only, and that a computer network such as the
Internet may in fact have a far more complex structure. It is also to be understood that
computer network may also be an Intranet or other internal computer network, such as a
WAN, a LAN, etc. The invention is particularly useful on the Internet in its preferred
embodiment, although it is not intended to be so limited.

This invention provides an environment that shields interactive legacy applications
from restructuring or reengineering the applications’ code by allowing such legacy
applications to continue running, as-is, in their native environment while simultaneously
allowing a variety of clients to access the legacy applications using a web browser or other
network technology. The invention also provides the interactive legacy applications with
the ability to generate the required business data and drive separate presentation artifacts
as required by industry standard world wide web application architectures. What is
Interesting about the invention is the interaction between the “stateful” legacy applications
and the “stateless” Internet transactions. Interactive legacy applications are stateful in that
the application continues to execute until it comes to an I/0 instruction wherein execution
Is suspended and the application’s state is preserved in its native environment until the 1/0
action is completed. Internet transactions, on the other hand. use stateless protocols of,
e.g., HTTP, wherein after a transaction on the Internet is completed, the connection to the
Internet is broken and the state of the transaction is lost unless additional processing
occurs to save that state on the network server. This invention provides a mechanism and
an environment whereby the state of the legacy application is automatically preserved in
its native environment while it converses with the stateless web environment. The
automatic preservation of the application’'s state is inherent in the architecture of the

invention which provides the necessary continuity required by interactive legacy
applications.

CA9-2000-0020 12

10

15

20

25

CA 02316003 2000-08-14

With reference to Figure 4, there is shown a simplified process chart and block
diagram of a prior art computer application environment. Each legacy application 122 has
data 422 to be input/output to/from the application runtime operating system 430 according
to the program 1/0 code 410 through the compiler runtime 420 Output data 422 may be
sent to the data manager code 432 which is part of the application runtime operating
system 430. A workstation manager 434 or an equivalent function within the application
runtime operating system 430 combines the output data 422 with corresponding display
records from the applications’ user interface definition files 440 to generate a data stream
442 to be displayed on a proprietary display device 211. When the data are built into the
data stream and sent for display to the display device, display-formatting of application

runtime, these user interface definition files 440 are compiled and built into one or more
display objects referenced during runtime. Input data follows the reverse path: the
application runtime 430 extracts the input data from the inbound data stream, formats the
data which is then submitted to the application as user Input data. On some systems, the
display device 211 builds only the dynamic portion, e.g., the input fields, of the screen into

the inbound data stream.

Figure 5 is a simplified process diagram of a method in accordance with principles
of the invention to enable legacy applications to be used over a network, preferably the
Internet using world wide web technology, although other networks and other technologies
are considered to be within the scope of the invention. It is presumed that the proprietary
user interface (Ul) definitions of the native application screens, referred to Figure 4 as
screen definitions 440, are stored separately in screen definition files. First and even prior
to runtime, the proprietary screen definitions 440 are parsed and converted at step 510 to
a format that can be rendered by any pervasive computer Internet user agent 570, for
example, a world wide web browser: this format preferably being based on XML, such as
HTML, WML, or *ML, depending on the Internet user agent targeted to generate what is

CA9-2000-0020 13

10

15

20

29

CA 02316003 2006-12-04

referred to as network pages. In the preferred embodiment, the user interface elements
are mechanically mapped to an XML-based language that supports user interface

elements.

Customization of the conversion process may be achieved in several ways and is
desirable if the end-user company has well-defined rules on application presentation. The
conversion process may identify any user interface design patterns used by the company
thereby allowing the user to customize templates to map to these design patterns. The
conversion algorithm then uses these patterns to identify the actual application screens
and convert accordingly. Post-conversion modifications by the user may be possible if the
styling of the conversions are kept in separate files. In an embodiment of the network
pages as JavaServer® Pages, these network pages are generated by converting the
display file records 440 to JavaServer® Pages 520 containing DHTML. DHTML is HTML
with Cascading Style Sheets and JavaScript used by the client to perform local validation
of input fields and facilitates modification after conversion to customize for a user's
presentation style. Otherwise, the company’s screen design rules may be discovered by
analysis of the legacy application’s screen definitions or of the display data streams as the
screens are viewed. The knowledge base obtained from these analyses can then be

modified as needed prior to the conversion process.

The converted user interface pages 520 are dynamically updated at step 530 using
existing web page serving technologies on the network server 200 prior to sending the
page to the network user agent 570 on the client 300. The application’s raw output data
are redirected by the data manager 432 of the application runtime operating system 430
at step 540 so that the outbound data for display are not converted to traditional proprietary
display data streams as described in Figure 4, but rather, are sent to a new network
publishing component 550, l[abeled “Publish-to-Web.” The network publishing component
550 reformats the application data for publishing to the network because, inter alia, the

application data are generated and coded by the legacy application in a format not suitable

for display on the network. User input data obtained from the network user agent 570 are

CA9-2000-0020 14

10

15

20

25

CA 02316003 2000-08-14

also processed by the Publish-to-Web runtime component 550 and reformatted as
application input data submitted to the application runtime operating system 430. The
network server 200 and a portion of the Publish-to-Web runtime component 550 may be
installed on a computer 100 other than the one in which the legacy application 122 and the
application runtime 430 are installed but may also be merged with and part of the computer
100 having the legacy application 122. Again, the Publish-to-Web runtime component 550
IS engineered so that the legacy application 122 is unaware of any changes in its native

environment, thus requiring no code changes to the application.

In a particular embodiment of the Internet and world wide web as the network. JAVA
allows JavaServer Pages as the network pages to dynamically insert application data into
HTML or XML pages before the network pages are served to a network user agent, a
process referred to as dynamically generated web content. The data to be read by the
JavaServer Pages are stored in data objects, i.e., JavaBeans, that are populated by a
servlet which has received data to publish. A very important feature of the invention is that
once the legacy application data has been stored in these data objects in the network
server, it becomes available for any purpose, including access from another computer
connected to the server, for manipulation, for transmission ... the uses for this legacy
dynamic data on the web server are limitless. The data field definitions of the JavaBeans
have a one-to-one mapping with the variable data fields of HTML or XML pages housed
by the JavaServer Pages and are generated during the conversion process as Java class
definitions because the definition of the proprietary application screens contain the I/O
fields of the screens. Such mapping is known in the art, and there are other products such
as Active Server Pages that are capable of providing dynamic content from a server to a
client. In any embodiment, the serviet instance instantiates and populates these data
objects with the redirected dynamic data, usually 1/0 data, of the legacy application.
Preferably, therefore, the data objects have the necessary methods to format the data for
display and for converting the data from the application’s proprietary code to the network

codepage of the appropriate language.

CA9-2000-0020 15

10

15

20

29

CA 02316003 2006-12-04

By way of example only, Figure 6 illustrates an architecture of the Publish-to-Web
runtime component based on the use of JavaServer Pages. The entities of the Publish-to-
Web runtime component are: a servlet instance 610 which acts as a web gateway for
requests to 612 and replies from 660 a legacy application 122. Generally, a servlet is a
JAVA program that runs on a server in response to a client request. For outbound data
the servlet instance 610 accepts a data buffer from socket 626A, looks up the record
identifier of the data, instantiates, and populates the associated data object, e.g., the
JavaBean, and activate the associated JavaServer Page to serve the data to the network
user agent for display. For inbound data, the servlet instance 610 packages the data into
a data buffer and submits it to the application via the socket and Publish-to-Web runtime
component. The servlet instance 610 also sets up the application process and the
communication path between the application process and the network server process. The
communication path may include sockets 626 as a communication endpoint. It is to be
noted that sockets and other communication endpoints which suspend execution of the
application while waiting for input data will inherently preserve the state of the application
and will function in the context of the invention. The application invoker 660 saves the
socket descriptor to be used later by the Read Data and Write Data methods, activates
data redirection, and calls the legacy application. The operating system application
runtime 430 calls the Read Data and Write Data methods to redirect data flow between
the application and the Internet. The network user pages, here JavaServer pages, are
generated during the user interface conversion process. Data objects, e.q., inthis instance
JavaBeans, are associated with each of the JavaServer pages and contain application data

to publish to the web via the JavaServer pages.

The control flow of the process in accordance with principles of the invention
proceeds as follows: a user on a client 300 starts the legacy application 122 from the
network user agent 570, preferably a world wide web browser, by first requesting at step
612 an invocation page from the servlet instance 610 on a network server 200. In step
614, the client 300 which may be another computer or a person completes and submits a

set of entry fields for the name and parameters of the application to invoke. The servlet

CA9-2000-0020 16

10

15

20

25

CA 02316003 2000-08-14

Instance 610, upon receiving the XML or HTTP request for Invocation, at step 616 creates
a socket 626a and spawns a secondary thread 618 to the computer 100 launch the

application process that invokes the legacy application. The socket 626a then waits for a
connection as in step 642a.

The secondary thread 618 passes the socket port number and program information
to the application invoker 660 which creates a socket 626b and makes a connection to the
socket in the network server process as in step 620. After a connection is established in
step 622 between the two sockets 626a and 626b, the socket 626b in the network server
process waits for data from the legacy program. The application invoker 660 writes the
descriptor of the application-side socket 626b to an environment variable. activates data
redirection through an application programming interface and invokes the legacy
application 122, as shown in step 624. When the legacy application 122 reaches an I/O
Instruction, output data is sent as in step 632 to the application runtime component 430 of
the computer’s operating system which calls the Write Data method as in 640a to redirect
data to the application-side socket 626b. Data is read by the socket 626a in the network
server process as In step 642b and the servlet instance 610 creates a data object in step
650 to store the data. In step 652, the servlet instance 610 calls the network page, e.g.,
the JavaServer Page, associated with this output record. The network page is populated
with data from the data object as in step 652 and then served to the network user agent

570 as, e.g., an HTTP response, in step 660.

Subsequent interactions between the client interface on the network user agent 570
and the application 122 flows through the socket connections 626a and 626b. When the
client submits a page, the servietinstance 610 on the network server restores session data
from a previously saved session object which has a reference to a socket or a data queue
object or a message queue object. The input data is then forwarded to socket or queue
626a as in step 642c, to the other application socket or queue 626b and I/O buffers if any
and to the application runtime component 430, and eventually to the legacy program 122
that was waiting on a Read_Data method 640b. The legacy application 122 then continues

CA9-2000-0020 17

10

15

20

29

CA 02316003 2006-12-04

its execution in its native environment on the computer 100 until the next |/O exchange.

When the application ends, control returns to the application invoker 660 which closes the

endpoint connection as in step 620.

In Figure 6, a Report Program Generator (RPG) program is used as an example of
a legacy application although it is to be understood that the architecture but could also
support legacy applications written in COBOL and other programming languages. Sockets
are used as the communication mechanism between the distributed processes but any
communication endpoint mechanism available to the server, such as data queue objects
forenhanced performance if the server and the legacy application are within one computer
or the message queue for enhanced reliability and security, may also be used. An initial
program in the prestarted job may write the descriptor of the application-side socket to a
environment variable, activate the redirection, and invoke the legacy application. When
the program hits an /O instruction, such as a write instruction followed by a read
instruction, EXFMT in RPG, output data is sent to a data manager which calls a Publish-to-
Web runtime interface, Write Data, to write to the socket. Data may also be read by the

socket 626b using the Publish-to-Web runtime interface Read Data.

Thus, the invention allows the user to deploy entire business-critical legacy
applications to the Internet to take advantage of state-of-the art technology without having
to restructure or make code changes to the programs. The legacy application, moreover,
executes normally. Legacy application data becomes available across the network for any
purpose because it is stored in data objects on the network server. The invention,
moreover, allows the user to modify the network pages, such as JavaServer Pages, to
create links within the network serverto new web based applications. This capability allows
Interactions between legacy and other network based applications, including merging
legacy application data with data from other network applications in the network server.
Computer and client systems that allow remote invocation of programs are able to use the
architecture described above to run the web server and the legacy applications in separate

computer systems. The invention, moreover, allows the user to customize the JavaServer

CA9-2000-0020 18

CA 02316003 2000-08-14

Pages according to the company’s rules and guidelines for application presentation. The
solution presented herein further allows the 1/0 data to be converted to other formats that
would suit display types other than a browser. One powerful application is the conversion
of the I/O data and the display records to a generic XML based user interface. The XMI -
5 user interface can then be fed into different types of user interface renderers. These
renderers can be Java-Swing based, Voice-Based, PDA Based. etc. The iInvention,

therefore, opens access to existing legacy application from multiple types of future devices.

While various embodiments of the present invention have been described above,

it should be understood that they have been presented by way of example and not

10 imitation and that variations are possible. Thus, the breadth and scope of the present
Invention should not be limited by any of the above-described exemplary embodiments, but

should be defined only in accordance with the following claims and their equivalents.

CA9-2000-0020 19

06 Y [TV (hcxliyle Slher ity - v s . 4

10

15

20

25

30

CA 02316003 2007-12-28

CA9-2000-0020

CLAIMS

What 1s claimed 1s:

1. A method for executing a computer application installed on a computer, said method

comprising the steps of:

(a) creating a servlet instance in a server connected to the computer on a first

network; and
(b) running the application on the computer to generate application output data;
charactenized by:

(c) intercepting and redirecting said application output data to a network

publishing component on the computer;

(d) transmitting application output data from the network publishing component to

the servlet instance; and

(e) creating data objects and populating the data objects with the application

output data in the server.

2. The method of claim 1, further comprising the steps of:

(a) requesting the application from a client connected to a server over a second

network;

(b) updating at least one network page with the application output data; and

20

10

15

20

25

30

CA 02316003 2007-12-28

CA9-2000-0020

(¢) transmitting the updated network pages to the client.

3. The method of claim 2, further comprising:

(a) converting display files of the application to network pages capable of
displaying application output data.

4. The method of claim 2, wherein the network pages are stored on the server.
5. The method of any one of claims 1 to 4, further comprising:

(a) creating an I/O buffer for the application output data in the computer.
6. The method of any one of claims 1 to 5, further comprising:

creating a first endpoint connection between the servlet instance and the network

publishing component;

wherein said endpoint connection is one of:

a socket; a data queue object; or a message queue.
7. A computer program product for use in a computer network for executihg an
application stored on a computer from a client, said computer program product comprising

a signal-bearing medium carrying thereon:

(a) an application invoker to start and run an application in its native environment

on the computer from a client;

(a) a plurality of network user interface pages to display the application’s

21

10

15

20

25

30

CA 02316003 2007-12-28

CA9-2000-0020

input/output data on the client;
characterized by:

(c) adataredirector to redirect the application’s input/output data to network user-

interface pages;

(d) a plurality of data objects corresponding to the network user interface pages to

receive the application’s input/output data;

(e) a servlet instance to dynamically update the network user interface pages with

the application’s input/output data; and

(f) anetwork user agent to display the updated network user-interface pages on

the client.

8. The computer program product of claim 7, further comprising a screen definition
converter to convert the input/output screen definitions of the application to the network

user-interface pages.
9. A computer system for executing an application, comprising:
(a) a central processing unit;

(b) amain memory connected to the central processing unit with a communication

bus;

(c) a data storage unit connected to a data storage interface which is connected to

said communication bus;

22

10

15

20

25

30

CA 02316003 2007-12-28

CA9-2000-D020

(d) at least one input/output device connected to said communication bus and

connected to a network interface to an external computer network;

(e) an application stored in said main memory and capable of executing on said

central processing unit;

(f) anetwork publishing component;

characterized by:

(g) a data redirector to redirect the application’s output data to the network

publishing component; and
(h) an I/O bufter to store the redirected output data.

10. |A computer server for accessing an application stored and executing on a computer,

comprising;:
(a) a central processing unit;
(b) anetwork interface to connect to at least one client over a network;

(¢) aservlet instance to receive a request from the at least one client to access the

application and transmit the request to the computer;

(d) aserver endpoint connection for transmitting and receiving input/output data to

and from the computer on which the application is executing; and

(e) aplurality of data objects to be populated with the input/output data;

23

10

CA 02316003 2007-12-28

CA9-2000-0020

wherein the servlet receives the input/output data from the application and

populated the data objects with the input/output data.

11. - The computer server of claim 10, further comprising;

(a) a plurality of network display pages, each of the network display pages unique

to each input/output screen definition of the application

wherein the servlet updates the network display pages for transmission to the client

over the network.

24

CA 02316003 2000-08-14

Figure 1
100
| | 102
| 120
| 0S
l MEMORY |
101 | 1an]
122 |
| CPU I | APPLICATIONS |
L] '
|
. [.
||
I BROWSER
110 BUS
103 104 105
|
TERMINAL DATA | NETWORK

I/F | l STORAGE | I/F l
TERMINALS
WEB

el Ll FRITH L L d g e A Y A OO (- AL Sebin RTINS IR+ adnd orBEan e e aade A e ed e — e

CA 02316003 2007-12-28

Figure 2
200
MEMORY 202
|
0S
201 BROWSER
CPU | S
210 BUS
,]
203 | 205 207
DISPLAY STORAGE OTHER
ADAPTER ADAPTER ADAPTER
sl | e _
'y Yy
204 206 208
KEYBOARD PRINTER NETWORK
POINTER ADAPTER ADAPTER INTERFACE

CA 02316003 2007-12-28

J3IAHES
AHOMLAN

00c

ddAH3S
AHOMLIN

00c

d3dAddS
AHOMLN

00c¢

d3IAYTS
AHOMLAN

00cC

SHAAHAS
AHOML3N

d4dINOHd
JOIAAES INIT-NO

1401

J3dINOdd
SSJOOV LINHALNI

€0t

¢ ainbi4

AINGINO
NIHL
00¢€

d31NdNOD
AHOMLIN

00¢

d0IA3d
ONIDVSS3IN

00¢

LINN
NOILINDOD3H
JOI0OA

00¢

v(ad
00€

dOLldVv
00¢

30IA30 110N
3AISVAYd

00¢

SIN3IMO

02316003 2000-08-14

CA

SR A of G i
r POt oo - o=
T TR -
ok A L CITLRRIC N LT SN =
ee tie Semiiiatiil Ao =

~| SNOILINI43a
NIIHOS

B S

il

e e s P e o LT O H o G e dm G G B T S i
B e e e e_iﬂumwﬂx:_s_ .._ﬂmwau, hios Al o
I T i T MG : Eoameonin X LI AT - S e

i AT D it e+ e e o T o Yo
Tt T e e 5% e SETTIT MR e 3 o g se Sresass P T et RS-
TR T Tl i SR C RN DA Nl ot I i e g L MO o

e e T e e S R L e e e TEe

= YITIdNOD te—s O NOd AOVOT
NOILVOIddY =
ey

J2IA3a (SO) INILNNY
AV1dSIa NOILYDI1ddY
Omw.v

e

a,

1 o O zz1

MY 10Ld

de b i e wag i iy

gt St dasl wle

1P ars s v won -y

BT D

T e) S

a0 Ll "M 4N UL N L]

02316003 2000-08-14

CA

00t 00t

/’ 002

Hbacth Al . A e T =l A v == Ot T e e

-a— VIVA ¥3ISN

i Fpe—xnll 'lll-' -l ey B Lol o ..." n.' - .] T)
= R EASE S e el B i i
St mlhdabliog i PP T T

= 0 ninT e (ot b — e e
e et T M b L ek o o S

IOVA EIM —p

dSr O3 HLIM S39Vd JNILNNY H3INY3S

'a3asvg TNX g3M S31vadn A
d0 TNLH ATIVOINYNAQ ekl o.wm_.m_w:m:n_ AHOMILAN

ey il demasts
T I IIIIT T T oM e e g e e TTIIr o pritte oo = temimint ey QLTI
Ry — — —rt P ._..r. e " uu:. okl ah.o LR RERTRT T
ey R B e FE Fiime
P e S - e e O e — DO PP HE R
o S T = H = P e bt rrrie ERIN . c30 5 H vl
B o L L e e i e

BIED 4 L
......
M

B la - 410
itz

LT

4 v1iva o/

NOILVOIlddY
MY

0] 4

N 93aIM OL
NOISH3ANOD

INILNNY-T4d VIVQ Q3LVALLOY
-‘
0LS SM NG NOLLOIYIa3y
O/l V.ivd

.....
- n R T T

HRTHIE 2

P o T

"
S me...r“

~| sNoILINI3a w .
o T NI3uns 2| (SO)amILNNY vivaon g FNINNY | NOILVYOI1ddVY
| NOILYOINddY 1 ¥37dNOD e oL AOVOIT

e

............
e L T

cey

S

P HH #5 o —

PN e srs s A VL SRLAN L A A K A s

~u

* baadt, o

e fdm w30 sl LA UM el ¢ e ol v A 3y AN D R . RN

02316003 2000-08-14

CA

LNANOdINOD
JNIINNA
NOILVYOIddY

0¥ VivQ avad
Viva LM
3OV4HILNI INLLNNY

daIM-O1-HSHgaNd

JNTLNN™
33 HdWOD
Ocy

i
it w :
500

.....
=aili.4

===

LNdNI 3LIMM OZv9 »

M et
- e——

=] N330S HLUM T d
| NOLLYONddY vivea €04 dv3

1 AovoTT NO LIvM 80v9 ¢

= i v.iva 1Nd1No
= FLIHM YOP9 S13IXO0S

= ¢ed ¢ Sy344ng O/ > . \

¢C9
q979 \14STAS

WYHO0Hd
ADVOITTIVD »
NOILO3HIa3Y

J1LVAILLDY »

F19VIIVA AN
NI 401dId0S30
134008 1Nd +

1D3NNODSIA 0c9 /

819

.....

............

NOILVYOIddY

099 SS300dd NOILLVYOIddY

\

00/

g 9.inbiJ

av3d NO 1LIVM 82y »

avidyd WOHS

AWVN dSI ANV v1vd
1Nd1NO NOILVYOIlddY
ONINIVLINOD

NV3d Viv{d

069

d1ivd

AOVOT
WOH4 VY1v(d 304

NOILO3INNQOD

(Y003

IN HOV3 HO4 dSr 3INO)

SNOILINIZ3A IN A2VD3IT 40
NOILVYSHIANOD WOYH SdSr 0.5

lllll

AT Sy

Qb.
INSHOV
4SSN
AHOMLAN

e . s
N

mOH— |—-_<§ <Nv® » -nwy oo B

13XMO0S F1vIHD »

919

avide
AATUNQOIS

1d30d 14MO0S *
SHJ1LINVIVd NOd »
TIWOOLNOd @

SS3004dd NOILLVYOIlddY 1HV1S

‘NOILVIOANI
P19

N
131AH3S
019

/ 1S3N03A
Z2l9 dllH

00¢

S5S300dd d3ING3S

\

00Z

Frae et wy e r—— A

- ——

-
w s 0 e e e
oy sfwand - e
Bimrs : A
- - - bgs Lo
ety TR A -
101 - v Theat
~ - Lo lnahd . --
- - ——— TTrmat
- R Ry -
siain

122 - - s 430
= APPLICATION :
LEGACY 10 ¢ COMPILER | s

APPLICATION = | RUNTIME

440 =
APP L s--jt::';-: = :F
ICATION | soneen L

/O DATA . RUNTIME (0S) |2

- DEFINITIONS [

—
e
T
o e
Cd o
-
- —
- “a-e * - -t o - s -\ -~ L
L S e - Ter MWTIC
Tge [e -_ﬂ_ rEiE
Eheva A% mARred
- o apnd
b - .-- -~ . -~ = o -r

DATA 437 /10
REDIRECTION | 5o oy 510
ACTIVATED DATA PRE-RUNTIME ™

CONVERSION
" TOWEB U

540
RAW
APPLICATION G
11O DATA 590 e

.....

NETWORK [E:
Ul PAGES

was

I i 5

e TWO 550 . DYNA5M3?CALLY T
NETWORK E NETWORK | PUBLISH-TO-WEB | \ppaTES WER HTML OR

USER SERVER RUNTIME = XML BASED,

. PAGES WITH E.G. JSP
COMPONENT E. APPLICATION DATA

.....

hhhhh

H-Cm =43
Q e
Ty Sl I e] AREMAL . S R Barsana.
Ty v g"___._, F -] IS Ty T T STOT e G amsant et
—— — ‘sm P Yy g v " TS S
Py, v dvd e o Pz s ra.rd o3
PYry LSl e o LIS LTH vl - oo
n = e =gl e o o A gl — i - e (T T == opac

/ S USER DATA —®

200 \

300 100

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - abstract drawing

