
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 October 2011 (20.10.2011) PCT

IIN
(10) International Publication Number

WO 2011/130235 Al

(51) International Patent Classification:
G06F17/30 (2006.01)

(21) International Application Number:
PCT/US2011/032067

(22) International Filing Date:
12 April 2011 (12.04.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/323,242 12 April 2010 (12.04.2010) US

(71) Applicant (for all designated States except US):
GOOGLE INC. [US/US]; 1600 Amphitheatre Parkway,
Mountain View, California 94043 (US).

(72) Inventors; and
(75) Inventors/Applicants for US only): LEMONIK, Micah

[US/US]; 155 W. 68th Street, Apt. 304, New York, New
York 10023 (US). BELOMESTNYKH, Olga, S.
[US/US]; 347 W 16th Street, Apt. 4D, New York, New
York 10011 (US). RAVI, Janani, R. [IN/US]; 30 New
port Parkway, Apt. 2014, Jersey City, New Jersey 07310
(US). PEREIRA FILHO, Luiz, A., F. [BR/US]; 460 W.
20th Street, Apt. 2E, New York, New York 10011 (US).

(74) Agent: DRAGSETH, John, A.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(H))

[Continued on next page]

(54) Title: RICH BROWSER-BASED WORD PROCESSOR

Model

100

FIG. 1

W
O

 20
11

/1
30

23
5 A

l

(57) Abstract: A computer-implemented method for presenting a document for interaction with a user in a web browser includes
accessing an electronic model of the document; determining, with a computing device, positions for items in a visual rendering of
the electronic model based on relative sizes and positions of other items in the electronic model; and generating, with the comput
ing device, a document object model (DOM) that defines an editing surface, wherein the DOM (a) places placing the items at the
determined positions on the editing surface, (b) places a graphic element that represents a cursor at a determined location on the
editing surface, and (c) is arranged to receive user input on the editing surface and to correlate a location of the received user input
to a location in the electronic model.

wo 2011/130235 Al lllllllllllllllllllllllllllllllllll^
— as to the applicant's entitlement to claim the priority of

the earlier application (Rule 4.17(Hi))

Published:
— with international search report (Art. 21(3))

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

Rich Browser-Based Word Processor

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Application Serial

No. 61/323,242, filed on April 12, 2010, entitled “Rich Browser-Based Word

Processor,” the entire contents of which are hereby incorporated by reference.

TECHNICAL FIELD

[0002] This document relates to systems and techniques for managing a

browser-based word processor or other form of document manager.

BACKGROUND

[0003] Cloud-based, or hosted, computing generally involves executing

applications via a web browser or web app, and obtaining information for the

applications from a remote server system or service. Cloud computing provides real

advantages over traditional desktop software, such as the ability to access

documents from various different computers and locations. Office productivity

applications are one type of application currently be delivered by the cloud. For

example, users can employ their web browsers to edit word processing and

spreadsheet documents that are stored on hosted server systems, can access

enterprise resource planning (ERP) applications, can edit photos, and can perform

most other activities that they could previously perform only with desktop productivity

software.

[0004] Web browsers do, however, place a number of limits on programs that

run on them, such as JavaScript programs. For example, web browsers may offer

programmers HTML elements that are very simple to implement but can be rather

1

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

inflexible. For example, a browser text box can be a simple way for a programmer to

acquire textual input from a user of a browser, but the manner is which the text is

presented is relatively bland, and does not come close to providing a WYSIWYG

experience. Also, browsers do not provide access to native text rendering

capabilities, do not generally permit much flexibility in positioning images on a web

page, and cannot natively execute other functions that are expected from a full-

featured word processor application.

SUMMARY

[0005] This document describes systems and techniques that may be used to

provide a rich word processing application that runs through a web browser and

interacts with a server system that manages access to, and editing of, documents by

the application. The application may operate according to a model-view-controller

paradigm. The model of a document may be downloaded form a server to each

client on which the document is being viewed or edited. The model may take a

variety of forms, including a one-dimensional character string that is supplemented

by a parallel sparse map of styles. The character string can include the actual

alphanumeric characters in the document and certain control characters such as

paragraph breaks. The map of styles can include pointers to locations in the

character string, and may include tags that turn on and turn off styles in the

document so as to create runs of characters having particular styles (e.g., fonts, font

sizes, bold, underline, italics, etc.). The view may take part or all of the model as it is

represented on the client device, and render it into a document object model (DOM)

that is accessible to a web browser. The web browser may then display the

document, along with chrome (e.g., buttons and pull-down menus) around the

document so that the user may conveniently edit and otherwise interact with the
2

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

document. The controller may intercept keystrokes and mouse actions, among other

things, taken with respect to the displayed document, and may update the model and

upload such changes, or mutations, to the server system, among other things. To

provide near or actual WYSIWYG capability, the view may place new characters (or

other spacers) with their formatting each in an off-screen iFrame’d HTML span

element to determine the proper area to allot for each character and to determine a

position for a next character (and whether a line break will be needed). The view

may then treat the displayed area for the document as a canvas on which to place a

variety of synthetic items that represent the model with various formatting applied.

[0006] Such features may, in certain implementations, provide one or more

advantages. For example, a rich browser-based word processing application can be

provided to a user, so that she can receive the various benefits of cloud computing

(e.g., access from a common browser interface, access without needing to buy

and/or download special non-browser application, and ability to share documents

more easily across the internet) with the power and flexibility of traditional desktop

applications (e.g., WYSIWYG presentation of document) and other features, such as

real-time collaborative document editing among multiple users.

[0007] In one implementation, a computer-implemented method for

presenting a document for interaction with a user in a web browser is disclosed. The

method comprises accessing an electronic model of the document, and determining,

with a computing device, positions for items in a visual rendering of the electronic

model based on relative sizes and positions of other items in the electronic model.

The method also comprises generating, with the computing device, a document

object model (DOM) that defines an editing surface, wherein the DOM (a) places

placing the items at the determined positions on the editing surface, (b) places a

3

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

graphic element that represents a cursor at a determined location on the editing

surface, and (c) is arranged to receive user input on the editing surface and to

correlate a location of the received user input to a location in the electronic model.

The method may further comprise receiving an entry of a character to the editing

surface, determining a display style for the character, placing the character at a

determine size with the style in a browser display area that is not visible to the user,

and measuring the size of the browser display area to determine a location to display

a cursor on the editing surface. The browser display area can comprise an HTML

span element, and the cursor can be provided as an HTML image element. The

method can also include receiving a copy command from the user, and in response,

populating text that is selected in the browser display area to a hidden

contentEditable element, placing focus on the contentEditable element, and making

the populated text available to a copy function of the browser. The method can

further comprise receiving a paste command from the user, and in response, and

reading text from a contentEditable element into which the browser has placed

selected text, and transforming the text in the contentEditable element into the

electronic model of the document.

[0008] In certain aspects, the method further comprises uploading, from the

computing device to a central server system that is remote form the computing

device, information about changes to the document model so that the central server

system may maintain a document model that matches the document model on the

computing device. Also, the uploading can be performed separately for substantially

each and every character submitted to the document by a user. Moreover, the

method can include receiving, from the central server system, information about

changes made to the document by users remote from the computing device, revising

4

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

the electronic document model to reflect the changes, and automatically rendering at

least the revised portion of the document model to update the DOM so that the

changes made by the users remote to the computing device are reflected in the

DOM.

[0009] In another implementations, a computer-implemented web browser

based document editing system is disclosed that comprises a first rich text model on

a client computing device for storing a format for a rich document having text and

formatting definitions for the text, and a view programmed to render the model for

display to an editing surface that displays the rich document. The system can also

comprise a controller to intercept and interpret inputs made by a user with respect to

the document in the view and to cause the rich text model to be revised in

accordance with the user inputs. Moreover, the system can include a second rich

text model at a server system remote from the client computing device, and wherein

the controller is programmed to provide data that reflects the inputs to both the first

and second rich text models. In addition, the system can include a timer that gathers

user inputs over a defined time period before providing data that reflects the inputs to

the server system.

[0010] In certain aspects, the method also comprises a browser display area

that is not visible to a user of the browser, and wherein the view is programmed to

render characters entered by a user to the browser display area to determine

dimensions for displaying the characters with the view. The browser display area

can comprise an HTML span element, and the view can be programmed to render

the model to a document object model (DOM) for the web browser.

[0011] In yet another implementation, a computer-implemented web browser

based document editing system is disclosed that includes a first rich text model on a

5

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

client computing device for storing a format for a rich document having text and

formatting definitions for the text; a view of the model that is a visual representation

of a portion of the model with formatting applied to the model; and means for

generating the view from the model and for updating the view in response to

receiving keystrokes by a user of the client computing device. In other

implementations, tangible recordable storage media are disclosed that can store

instructions that, when executed, performed any of the operations discussed above

in this section.

[0012] The details of one or more embodiments are set forth in the accompa

nying drawings and the description below. Other features and advantages will be

apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a conceptual diagram of a browser-based word processing

system.

[0014] FIGs. 2A and 2B are block diagrams showing components of a model

view-controller implementation of a spreadsheet application.

[0015] FIG. 2C is a block diagram of a system for permitting collaborative

editing of a documented by multiple users through a hosted server system.

[0016] FIG. 3 is a flow chart of an example process for displaying an

electronic document and interacting with a user who is editing the document.

[0017] FIG. 4 shows an example of a computer device and a mobile

computer device that can be used to implement the techniques described here.

[0018] Like reference symbols in the various drawings indicate like elements.

6

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

DETAILED DESCRIPTION

[0019] This document describes systems and techniques for browser-based

word processing applications. As discussed in more detail below, a client-based

application that runs in a web browser, such as using HTML and JavaScript code,

may download a portion of a document model from a server system that hosts the

online word processing functionality. The application may create a user interface with

the browser, and may place an editing surface on the display of the browser where

the body of the document is to be displayed. The application may intercept

keystrokes and other inputs by the user and may determine how the imputs are to be

displayed by placing them in an off screen or a highly minimized HTML span

element, and measuring the size of such an element to determine the size the

characters will be when they are properly displayed. The application may also

display a synthetic cursor on the editing surface and use the measurements from the

span element to determine the location at which to index the cursor after a user has

typed a character or made other changes to the document. As the user makes such

changes, they may be added to the local model, and in turn added to the display in

the browser by rendering the model or the changes to the model into a document

object model (DOM) that is accessed by the browser in a familiar manner.

[0020] Such changes may also be uploaded to the hosted server system, so

that they may be reflected in a master model that is maintained there. To enable

collaborative editing of a document, the changes may be uploaded frequently, such

as with every keystroke or other identifiable input by the user, or every particular time

period, such as time periods for a fraction of a second, such as 100, 200, 300, or 400

ms.

7

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[0021] FIG. 1 is a conceptual diagram of a browser-based word processing

system 100. The system 100, in this example, may be implemented using a

standard web browser 104 that can download from a hosted server system program

code for generating a word processor application within the browser 104, and code

that represents a document model 102 of a document to be displayed by the browser

104. Thus, the system 100 includes both a client, and a server that is providing code

to the client and potentially receiving updated document models from a client, though

the server has been omitted in this figure for clarity. Additional details about an

example server system may be seen in FIG. 2C below.

[0022] As shown here conceptually, the application centers around a web

browser 104 that may take a variety of forms, including any one of the standard

publicly available web browsers. As is familiar, the web browser 104 includes a

toolbar 118, which displays browser buttons and a browser address bar in a typical

format. Below the toolbar 118 is a variety of chrome 120 that has been provided as

part of the word processing application loaded on the browser 104. The chrome 120

may take a variety of forms and may be laid out in a variety of ways, though a

simplified representation is shown here for clarity. The chrome 120 may include pull

down and pop-up menus in a familiar form with which the user may interact. The

chrome 120 may also include selectable controls, in the form of icon buttons that a

user may click with a mouse or other pointer to perform familiar operations, such as

saving or printing a document, undoing or redoing changes, and changing the format

and layout of a document, or selecting text within a document.

[0023] A content area 122 is displayed below the chrome 120 and shows the

text of a document that a user is currently editing in the browser 104. In this

example, the user has typed a single sentence, has then turned on underlining, and

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

has typed the first part of a second sentence. As shown by keyboard 108, the user

has just recently pressed the “S” key on the keyboard 108 to continue building the

sentence that the user is editing. A controller 106, which may be implemented in a

variety of familiar forms, may be listening to inputs provided to a computer that is

running browser 104, and may intercept and interpret such imputs. For example, the

controller 108 may recognize that focus was on the word processing application in

the browser 104 when the “S” key was pressed, and may thus interpret that input as

a user intent to add the letter at a location in the document where the cursor is

currently positioned.

[0024] The controller 106 may, when appropriate, report its observations back

to the model 102. For example, the controller 106 may track a location in a character

string of the model 102 that corresponds to a location of the cursor in a display of the

model. The controller 106 may then edit the model 102 in order to reflect the new

character that has been typed by the user. Similarly, the controller 106 may

recognize that a user has selected a certain span of text, may associate that span

with locations in string that mark the beginning and end of the span, and may then

recognize that the user has selected a button for making the highlighted text in the

span bold, underlined, or italicized. In such a situation, the controller 106 may cause

an entry to be added to a style map (which stores formatting information for the

document) that marks the index locations in the model 102 for the beginning and end

locations of the selection, so as to reflect such a change in the model 102.

[0025] In one example for a model, such as model 102 shown in the figure,

the text of a document may be shown in simple plain text one-dimensional character

string, and changes in the formatting of the document may be indicated by control

characters that are placed in line with the string of text. For example, control

9

WO 2011/130235 PCT/US20U/032067

Attorney Docket No.: 16113-2213WO1

characters may also be made up of plaintext, but may be preceded by a control

character or characters, such as a single or double backslash, among others, which

signal that their text is not to be displayed, but is to be used to affect the layout of a

display of the document. Although not shown here, the model 102 may be

supplemented by a style map in which more complex styles can be applied to ranges

of text in the model 102. Also, the model or the style map may point to one or more

external entities, such as digital images, tables, and other such entities, so as to

indicate that the entities should be inserted into a display of the document when the

model 102 is rendered for display.

[0026] Such rendering of a model into a displayable formatted document may

occur with the use of a layout engine 110. The layout engine 110 may implement a

view within a traditional model-view-controller arrangement. The layout engine 110

may parse a character string from the model 102 and may refer to a style map to

affect formatting and layout for the text in the string. The layout engine 110 may then

convert such formatting into a document object model (DOM) that it provides to

browser 104.

[0027] The layout engine 110 may be responsible for the positioning of

document content and a synthetic cursor in the content area 122. The cursor may be

synthetic in that it may simply be an HTML image element, span element with

distinctive background color, or similar structure that is placed in the content area

122 at a location in which the application has determined the user has positioned the

cursor, either directly by positioning and clicking with a pointer, or indirectly by typing

characters. As such, the element will look to a user like it is an actual cursor sitting

to the right of the most recently-typed character, except in the situation in which a

line break has occurred. The cursor may be set as a 2 px wide span with a set

io

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

background color inside the line DIV that corresponds to the current position in the

document.

[0028] To determine the position for the cursor, the layout engine 110 can

look in the paragraph’s line cache for the line in which the cursor is located, and

determine the top position of the line. The engine 110 may then loop through the

line’s word buffer and increment a width counter until the desired index word in the

line is reached, and then loop the spacers or characters in the word until the desired

index position is reached, which provides the left position of the character on which

the cursor is currently positioned.

[0029] If the cursor has a selection or a range of characters, it may be stored

as an offset of the active selection at a selected mark location. To draw such a

selection, an absolutely-positioned span may be added to each line DIV with a slight

opacity and a background color that contrasts with the main background, and the

span may be positioned and sized to match the selection (where the height of the

span will be the height of the selection). Such an approach may provide the

impression of highlighted text across a span.

[0030] The layout engine 110 may also handle items that are embedded into

a document, such as digital images. Embedded objects may be placed at an (x, y)

position and bound to a paragraph. When a line is being constructed and an

embedded object is located by the layout engine 110 within the bounds of the top of

the line and the top+height of the line, the line may be split in two by adding a span

with the width of the embedded object plus some padding, where appropriate. The

embedded object will thus be relatively positioned at an (x, y) coordinate inside the

paragraph div. When the paragraph's y-position changes, the embedded object’s

position will be recomputed so that it moves with the paragraph. Such an approach

11

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

may permit the user to better control the particular location of the embedded objects,

such as images and animations, in the document.

[0031] The cursor that is shown in browser 104 is a vertical line but it may

also be displayed in other forms, such as a box that has a contrasting color with a

background color of the document, or a horizontal line. As shown in FIG. 1, the

position of the cursor is set at a dimension 124 down from the top of the document

and an x-direction 126 from the left edge of the document. The base point for such

measurements may, however, be any appropriate positions, such as other corners of

the document or other such locations. The dimensions may also be measured in any

appropriate manner, such as a number of pixels, or another accepted rule of

measurement. The position of each character may then be recorded as the layout

engine 110 renders model 102 into a DOM.

[0032] As shown here, an example is provided in which a new character “S”

has been typed by a user at the position of the cursor. The controller 106 intercepts

the character, recognizing that the focus of the computer was on the content area

122 of the browser 104 at the time the key was pressed, and has added the

character at the appropriate location into model 102, at the end of the model 102. To

determine how the character is to be displayed in the content area 122, however, the

system 100 will need to determine the size of the character, which can depend on

the font size, whether the character is bolded, and other factors. In order to

determine the size of the character, an off-screen span element 112 is generated in

the browser 104 with the character in the element 112. The size of the element 112

may then be determined by standard mechanisms. For example, when the “S” key’s

selection is recorded on a onKeyDown event, the span may be set up as follows:

[0033] A

12

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[0034] The offsetHeight and offsetwidth of the span may be used to quickly

obtain a size for the character, and to set the new location for the cursor.

[0035] In order to locate various items such as lines and characters properly

in the content area 122, the DOM may include three layers or levels of DIVs: an

editor DIV level, a paragraph DIV level, and a line DIV level. Each paragraph will

have a corresponding div inside the main editor div, and the paragraph div’s may be

stacked on top of each other so that changes in the height of each paragraph div can

automatically be reflected in paragraphs below the affected paragraph. Each

paragraph’s div may also be cached in a rich text model for the document.

[0036] These various mechanisms may allow the application running in the

browser 104 to provide appropriate layout for the character in the future position of

the cursor. For example, if a character has increased in font size substantially from

the previous characters, the entire line may be shifted downward appropriately so

that the new character will not overlap with the line above. Also, the cursor may be

moved in the x-dimension 126 an appropriate distance to take into account the width

of the character, as determined in the span element 112. In this manner, the system

100 may support multi-sized fonts, proportionate spacing with characters, and other

similar advanced mechanisms for word processing.

[0037] With the entered character’s parameters determined, and the position

for the next character determined, then, the layout engine 110 places the character

“s” in the content area 122, and may regenerate an image for the cursor in a new

appropriate location, by updating a DOM for the document. This process may be

repeated for each character that is typed into the document model 102.

[0038] With the height and width of each character position, or spacer,

determined for a paragraph or larger portion of a document, the layout engine 110

13

WO 2011/130235 PCT/US20U/032067

Attorney Docket No.: 16113-2213WO1

may loop through all the spacers and build up lines by concatenating the character

spacers into a string and incrementing a width counter by the width of each character

until a full line-width is taken up, and the line div is filled. To permit wrapping to occur

at word breaks, each space or hyphen may commit the buffered spacers to the line

and increment the width counter to the width of the word that is committed. Any

remaining non-committed characters get passed to the next line div. Each line is

thus its own div, and a child of the corresponding paragraph div. Also, each of the

div’s may be relatively positioned, so that they can be easily stacked on top of one

another, so as to give a visual effect of normal line wrapping.

[0039] For example, given the text “Hi my name is Micah what is you name”,

and where the margin cuts off in the middle of the name Micah, the DOM will look

like:

[0040] <div> //Main editor DIV

[0041] <div style-’position: relative”> //paragraph DIV

[0042] <div style-’position: relative”>Hi my name is Micah</div>

[0043] <div style-’position: relative”>what is you name</div>

[0044] </div>

[0045] </div>

[0046] As the layout engine 110 constructs each line, it may cache the height,

width, top, and left of each line in a separate line cache inside a paragraph object, so

as to permit for a quick lookup of such parameters. The line cache may also store

the location in the character string for the start and end position for the line. The y-

position of each paragraph may thus be determined quickly by taking the offsetTop of

the paragraph div.

14

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[0047] Style formatting may be applied using span’s in each div. For

example, while a line is being constructed by the layout engine 110, each spacer will

check the formatting of the spacer behind it to determine how that spacer’s

formatting is different from its own formatting. If there is a difference, a new span will

be created in the DOM, and the next spacers will thus be inserted into that span until

a new formatting is encountered.

[0048] As one example, given the text “Hi my name is Micah what is your

name”, where the first “name” is bolded and the second is italicized, the DOM may

look as follows:

[0049] <div>

[0050] <div style-’position: relative”>

[0051] Hi myname is Micah

[0052] </div>

[0053] <div style-’position: relative”>

[0054] What is your name

[0055] </div>

[0056] </div>

[0057] Although not shown, the system 100 may, when it has updated the

model 102 and the content area 122 (or before or simultaneously with doing so),

transmit information reflecting the input character or other change to a central server

system, so that the new character added by the user may be passed to other client

devices that are currently accessing the document. Such information may also

include an identifier for the particular user, and a revision or mutation identification

number that will allow the server system to track the various updates it receives from

15

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

different clients, and to resolve collisions or inconsistencies among overlapping

revisions that it receives from multiple different users or clients.

[0058] As an example of another feature available in the system 100,

automatic line breaks may be enabled in certain implementations. For example, a

preset width may be established for each line in a document. When characters on a

line are determined to reach that value (such as by measuring by adding the widths

of each entered character since the previous automatic line break using the

techniques discussed above), the characters will begin to overflow onto the next line,

which may be indexed down an appropriate distance. That distance may be

selected using the largest character height of any character that is currently in the

line. Where an overflow occurs in the middle of a paragraph, the overflow may be

allowed to cascade onto the next line until every character fits tightly into the margins

of the page. Thus, for example, if a user is entering characters in the middle of a pre

existing line, the characters at the end of the line will be pushed off to the next

following line as it is determined that they will not fit on the current line. Characters at

the end of the new line and the next following line may in turn be pushed off the end

all the way to the end of the paragraph. Breaks between the lines may be limited

also so that they occur only at recognizable breaking characters, such as non-

alphabetic or nonnumerical characters, including space characters.

[0059] The system 100 may, in certain embodiments, include cut-and-paste

functionality. Pasting may occur in the system 100 by intercepting paste events

(e.g., CTRL-V) from the browser using the controller 106 and setting focus of the

computing device to a contentEditable browser element. With the focus set in this

manner, the browser 104 may then paste into that element, which may be off-screen,

invisible, or otherwise generated so as not to be readily seen or recognized by the

16

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

user. The system 100 may then read the contents of the contentEditable element

and transform the raw HTML from that element into a form that is compatible with

data model 102, using appropriate heuristics and other rules.

[0060] Copying may occur in a similar manner. For example, when a user

makes a selection in the content area 122, the selection contents may be populated

to a hidden contentEditable element. When a copy event is received for the

selection, the focus of the system 100 may then be applied to the contentEditable

element in the browser's native, and the browser’s native copy may take the text

from the element.

[0061] Similarly, interaction with an input method editor (IME) may occur in

similar manners. An IME is a mechanism by which CJK languages may have input

received using traditional Roman characters (A, B, C, ...), and a user, in cooperation

with an application, may convert those input characters to appropriate graphical

characters, such as Chinese or Japanese kanji characters. In implementing IME

input functionality, a transparent contentEditable element may be provided behind

the editing surface of the content area 122. When a compose event is received

indicating that a user would like to compose a character in the IME, the

contentEditable element is pulled to the surface, and the first paragraph indent of the

contentEditable is set so that it matches the cursor position of the main surface in the

content area 122. The margins of the contentEditable is also set to match the

margins of the main editing surface. As a result, the contentEditable element looks,

to the user, as if it is an ordinary part of the editing surface for the content area 122.

When the user then composes a character through the IME, the user will see his or

her regular IME interface pop up to aid in composing the character or characters.

When the system 100 receives an event indicating an end to the composition, such

17

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

as from the IME application or applet, the system 100 may read the content of the

IME and place that content into the data model 102, such as by execution of the

controller 106.

[0062] The system 100 may also resolve situations in which a document uses

a right-to-left language such as Arabic, Persian, and Hebrew, or left-to-right, such as

English, French, Spanish, Norwegian, and Italian, or a combination that shifts from

one to the other and back (e.g., when English proper nouns are included in Arabic

text). In such situations, the Unicode bidirectional algorithm (Bidi) may be applied to

determine the appropriate representation of the text to be stored in the model 102,

and rendered to the content area 122 byway of the layout engine 110. For example,

tags or markers indicating a style change in the direction in which text is to be

displayed may be included in a character string in the model 102, or in a style map

that points to the endpoints of any text that is to have its direction shifted from its

surrounding text. The Bidi algorithm may be implemented, for example, using

JavaScript that also implements other features of the layout engine 110.

[0063] Along with layout engine 110, there may be support for screen reader

functionality with system 100. In particular, a screen reader may access the DOM or

the model 102 in a manner similar to the access by layout engine 110, and may

provide a spoken representation of what is shown in the content area 122. When

edits are made, for example, the text around the location of the edits in model 102

may be identified, so as to provide a spoken indication of the context into which the

edits are occurring. Other spoken indications of what is displayed in content area

122 may also be provided in familiar manners.

[0064] In certain situations, particular treatments of cursor position may need

to be implemented. For example, where ligatures occur (i.e., multiple characters in

18

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

order that render as something totally different than those characters, or graphemes

are joined as a single glyph), the system may apply two steps. For non-Devanagari

unicode characters, the system builds ligature tables as part of the character sizing

process to allow the sizing process to recognize when two characters in a row will

form a smaller/larger glyph than the sum of the width of the two characters

individually. If the ligature is identified during processing, the cursor will be placed in

the middle of the width of the implicitly drawn glyph.

[0065] For Devanagari characters, the layout engine 110 treats a combined

glyph as if it were one character, so that the cursor does not go inside of a ligature.

For Devanagari unicode characters (U+0900 - U+097F), the system 100 can

generate a pre-caned ligature table that describes which sequences of characters

and character patterns will produce glyphs that will throw off cursor position

significantly inside of a word, where such data may be sent asynchronously from a

stateless server.

[0066] The system 100 may also support printing in similar manners. For

example, pagination can be determined easily using the knowledge about line height

and control over the flow of lines, discussed above. The word wrap locations that

are determined may then be sent to a rendering canvas such as a hidden HTML

frame from which the document can be directly printed using standard printing

functionality of the browser 104.

[0067] FIGs. 2A and 2B are block diagrams showing components of a model

view-controller (MVC) implementation of a word processing application. The word

processing application, for example, may be executed by a web browser, such as the

browser 104 shown in FIG. 1. In general, the MVC implementation provides for the

download of a model from a remote server to a client, and the rendering of the model

19

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

into a DOM to form a view of the model that may be managed directly by the web

browser. The controller may intercept actions, such as clicks on icons and

keystrokes on a keyboard, and may cause such actions to be implemented, such as

by adding typed characters both to the model on the client and on the remote server

(e.g., uploading changes or mutations back to the server, which may be programmed

with rules for integrating the mutations into a master model, so that the client-side

model matches the master model as the user works).

[0068] Referring to FIG. 2A, a computer application 200A may be configured

to display a word processing document 202. The application 200A includes,

controls, or accesses a model 204A, a view 206A, and a controller 208A. For

example, the model 204A can contain a representation of the state of the word

processing document 202, including such elements as character data, formats,

styles, paragraphs, sections, breaks, lists, tables, images, formulas, and the like.

The view 206A can represent a rendering of the current state of the model 204A.

For example, the view can provide a visual representation that combines the

substance of the document (e.g., its raw text) with formatting and layout information.

The view, when displayed by a browser, provides a form of, if not an exact,

WYSIWYG representation of the document that is defied by the model.

[0069] In addition to the rendering of the model, the view 206A can be used

for presenting to the user visual information that is associated with the word

processing document 202, such as visible user controls for the application (i.e.,

chrome) and other word processing data. The controller 208A can respond to

changes in the model 204A or the view 206A, and can update the state of the model

204A and the view 206A. As shown in FIG. 2A, solid lines between the model 204A,

the view 206A, and the controller 208A represent direct references between

20

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

components, and dashed lines represent listeners. For example, listening for user

interaction (e.g., provided by user controls) with the presentation of the view 206A,

the controller 208A can modify the model 204A, and can in turn modify the view

206A either directly or indirectly (by causing the view 206Ato obtain new model data

and render that new data).

[0070] As another example, listening for changes in the model 204A made by

another user in a collaborative environment or changes made through an automated

data update or another such process, the view 206A can request re-rendering of an

updated model or portion of the model. For example, if a user of a client device is

only one of multiple users concurrently editing a document, characters and other

edits by the other users may be passed to the client device from the server system

(and edits by the first user may be passed from the client device to the server

system), and the client code may add characters to the model in near real-time, and

those changes can be passed into the DOM (e.g., via rendering by the view 206A) -

so that each user can see the edits made by the other users very quickly.

[0071] Referring to FIG. 2B, the model-view-controller implementation as

presented in FIG. 2A is shown with additional detail. As shown, a computer

application 200B (corresponding with the application 200A) includes, controls, or

accesses a model 204B (corresponding with the model 204A), a view 206B

(corresponding with the view 206A), and a controller 208B (corresponding with the

controller 208A).

[0072] The model 204B can include one or more document models 210.

Each of the document models 210 can represent a separate document in a collection

of word processing documents, for example, and each of the models 210 can include

elements such as characters, styles, and entities. Other forms of documents such as

21

WO 2011/130235 PCT/US20U/032067

Attorney Docket No.: 16113-2213WO1

spreadsheet documents may also be represented. Model data and elements may be

provided by a master document model 238 that is stored on a remote server system

via a connection to a network 236 (e.g., the internet).

[0073] Generally, document text in the models 210 is associated with a series

of characters. For example, the characters may represent raw text for the word

processing document 202, and may also include certain reserved control characters

such as characters that indicate the occurrence of a break (e.g., a paragraph break,

a page break, or the like). In some implementations, each of the document models

210 can include a one-dimensional character string that includes document

characters in an order in which they appear in the document.

[0074] Styles may be used to store information related to the presentation of

document text (e.g., the series of characters). For example, text styles may include

character formatting attributes such as font, font size, bold, italics, underline,

foreground and background colors, alignment, and other such attributes. In some

implementations, styles included in each of the document models 210 can be stored

in a sparse map. For example, the sparse map can include markers that correspond

to changes in styles in the document and pointers to positions in the character string.

The pointers, for example, can define style runs between matched markers by

specifying locations along the character string at which style changes occur. In

some implementations, the markers in the matched set may be arranged to be

tethered to certain characters in the one-dimensional character string. For example,

if text is added between two paired markers, the pointer for one of the markers may

shift by an integer equal to a number or characters associated with the added text.

[0075] Entities in each of the models 210 may be used to store information

related to objects outside of the document models 210, and may be pointed to by

22

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

references in the model such as in the one-dimensional character string. For

example, entities may include objects such as lists, tables, images, and the like. In

some implementations, the references can include object identifiers and pointers to

the one-dimensional character string (e.g., from the sparse map) indicating where in

the character string the object should appear, or identifiers from within the character

string that point to the entities and mark the locations at which the particular entities

are to appear in the document when it is rendered and displayed. For example, an

image that should appear between two paragraphs may be associated with a special

character appearing in the character string after a paragraph marker for one

paragraph, and before the first character of the next paragraph.

[0076] The view 206B can generate one or more view items 220 that may

enable the user to interact with the application 200B, such as menu bars, tool bars,

context menus, chat panes, dialogs, other chrome, and the like. The view 206B can

also include a document menu 222 that presents information and control options

related to one or more of the document models 210, and one or more of a set of per

views 224. For example, one of the per views 224 may be associated with a

corresponding one of the sheet models 210. Each of the per views 224 may include

components or controls such as selectors (e.g., cursors, selection indicators, and the

like) navigation tools (e.g., scrollbars, document maps, outlines, and the like).

[0077] The controller 208B can include one or more controllers 230 that may

listen for and handle user interactions with one or more of the view items 220. In

some implementations, each of the controllers 230 may be associated with a

corresponding one of the view items 220. For example, menu bar controllers may

listen for and handle user interactions with menu bar view items (e.g., relating to

various actions that a user would typically take from a row of menu selections), tool

23

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

bar controllers may listen for and handle user interactions with tool bar view items,

context menu controllers may listen for and handle user interactions with context

menu view items, and so forth. The determination that a particular event has

occurred may cause a particular controller 230 to execute predetermined code or

otherwise carry out a predetermined process, such as by updating a local model

when a key press is received and uploading information about the key press to a

central server system.

[0078] The controller 208B can also include a document controller 232 that

may listen for and handle user interactions with the document menu 222. In

addition, the controller 208B can include a set of per view controllers 234, where

each of the controllers 234 is configured to listen for and handle user interactions

with a corresponding view in the set of per views 224. Each of the per view

controllers 234 may include various controller types, such as key controllers for

intercepting and interpreting keyboard input, mouse controllers for intercepting and

interpreting mouse input, and model change controllers for intercepting and

interpreting model change events.

[0079] Generally, the controllers included in the controller 208B can transform

user-generated events into model and view mutations. For example, based on a

user action, a relevant controller (e.g., a controller configured for handling the action)

may receive one or more events associated with the action and make transient

changes to the view 206B before the user action is committed. Then, based on the

event properties, the relevant controller can construct a command to mutate the

model 204B, execute it, and send the updated model or just data for the particular

mutations to the remote server system that hosts the document model 238 via the

network 236.

24

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[0080] The controllers may also use timers or other mechanisms to

aggregate inputs or mutations, so as to lower the number of updates that need to be

made to the local or server-based models. For example, the controllers may

implement changes to the local and/or server-based model in batches that occur

within predefined time windows, such as by waiting 200ms after an initial keystroke

is sensed before sending to the central server system data about all keystrokes

received in the time window.

[0081] Many user interactions with the application 200B are possible,

including interactions that are included in single-user sessions and in multiple-user

sessions. For purposes of illustration, a series of example user interactions with the

application 200B are described here. For example, to enter text into the word

processing document 202, the user may proceed by using a computer mouse to

select a desired document location 212 for text insertion by clicking on the document

202. A mouse controller that is included in the per view controllers 234 (e.g., a per

view controller associated with the active document 202) can listen for an event that

is associated with the mouse positioning input and the mouse click input, and upon

intercepting it, can modify the view 206B (e.g., a per view associated with the active

document) to provide the user with a visual indicator for the selection (e.g., a cursor).

For example, the selected location 212 may be associated with a visible cursor

(where the cursor is a graphical HTML element such as an image, and is displayed

at an appropriate location on a canvas where the document is also being displayed

so as to create a synthetic presentation that makes the graphical element look like a

true cursor), may be highlighted, or may receive another such modification.

Additionally, the selected location 212 may also be associated with a location in the

25

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

model 204B. For example, a position in a one-dimensional character string included

in the document models 210 can be determined, based on the selected location 212.

[0082] Using a keyboard, the user may enter desired text at the document

location 212. A keyboard controller that is included in the per view controllers 234

can listen for events associated with the keyboard input, and upon intercepting them,

can modify the view 206B to provide the user with a visual indicator for the input.

For example, as the user types text at the location 212, the document 202 may be

visually updated to present the text to the user. Additionally, the keyboard controller

can modify the model 204B to include entered text by copying the user input to the

model. For example, a one-dimensional character string included in the document

models 210 can be updated to include the entered characters. Additionally, the

document model 238 may be updated to include the entered text, thus coordinating

the model 204B with the document model 238. For example, changes to the model

204B may be transmitted to the document model 238 via a connection to the network

236. In some implementations, changes may be sent periodically (e.g., once every

100 milliseconds, once every 200 milliseconds, once every 500 milliseconds, once

every second, once every 2 seconds, or another appropriate time interval). In some

implementations, changes may be sent based on user activity (e.g., entering a

paragraph break, applying a formatting change, navigating to another document

section, clicking a save button, or some other action).

[0083] As another example, the user may insert an entity (e.g., a list, a table,

a hyperlink, an image, or another such object) into the document 202. For example,

the user may proceed by using a computer mouse to select a desired document

location (e.g., the location 212) for entity insertion by clicking on the document 202.

Similar to interactions associated with text entry, for example, a mouse controller

26

WO 2011/130235 PCT/US20U/032067

Attorney Docket No.: 16113-2213WO1

included in the per view controllers 234 can listen for an event associated with the

mouse positioning input and the mouse click input, and upon intercepting it, can

modify view 206B to provide the user with a visual indicator for the selected location.

Next, for example, the user may specify the entity for insertion by interacting with

one of the view items 220 or with the document menu 222. For example, the user

may make a selection on a menu bar to indicate an intent to insert an image. A

dialog associated with image selection may be presented to the user, enabling the

user to select the desired image.

[0084] Model-view-controller interactions for adding the entity within the

application 200B may operate in a similar manner as when a user is entering text.

For example, as the user inserts the image at the location 212, the document 202, as

it is displayed on an editing surface, may be visually updated to present the image to

the user. Additionally, the model 204B may be modified to include a reference to the

inserted image by writing the reference to the model. For example, one of the

document models 210 (e.g., the model associated with the active document) can be

updated to include a reference to the inserted image. A one-dimensional character

string may be updated to include a special character indicating the position of the

image, and the reference to the image may be stored.

[0085] When the document 202 is rendered from the model associated with

the active document, for example, the image content may be integrated into the

document 202 that is displayed to the user. In some implementations, the one

dimensional character string may include multiple instances of an identifier for a

single entity. For example, the image may be positioned at multiple locations in the

document 202, specified by multiple positions for the identifier in the one

dimensional character string. Thus, a single external entity may be shared within a

27

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

document, or may be shared among multiple documents - both by common

references to the external entity. The document model 238 may be updated to

include the inserted image(s), thus coordinating the model 204B with the document

model 238. For example, changes to the model 204B may be transmitted to the

document model 238 via a connection to the network 236.

[0086] Additionally, for example, the user may modify the formatting of text

and entities presented in the document 202. By interacting with one of the view

items 220 or with the document menu 222, the user can indicate a desired formatting

change (e.g., a change such as changing a font of a selected text block to bold,

changing a group of words to be organized as a list, changing a paragraph

justification to be right-aligned, changing a document line spacing to be double

spaced, and the like). One of the controllers 230 or the document controller 232 can

listen for user interaction with the view 206B, and upon detecting the interaction, can

modify the model 204B to include the formatting change. For example, one of the

document models 210 (e.g., the model associated with the active document) can be

updated to include an element in a sparse map of styles defining the formatting

change, and defining the locations along the one-dimensional character string at

which the changes in style are to occur. A model change controller included in the

per view controllers 234 can listen for events associated with the model 204B and

can send a request to the view 206B to update accordingly (e.g., by rendering a

display of formatted text). In some implementations, the model change controller

may also handle model change events that result from collaborative model changes.

[0087] In some implementations, a document model that is one of the

document models 210 may include a subset of the document data from the

document model 238. For example, if the document model 238 is substantially

28

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

large, a subset of the data (e.g., a subset associated with a portion of the document

that is currently viewable by the user, plus perhaps a buffer area around the currently

viewable area, or viewport, so that small scrolling distances may be handled by

normal browser interactions without a need to render additional content form the

model) may be provided to each client that is currently displaying the word

processing document 202. As another example, the full document model 238 may

be provided to each client.

[0088] The user may elect to view a different portion of the word processing

document 202 than the user is currently viewing in the web browser. For example,

by interacting with a scrollbar 214 that is associated with the document 202, the user

may indicate an intent to view document data beyond the current viewport, or

displayed area. One of the per view controllers 234 (e.g., the per view controller

associated with the active document) can listen for user interaction with the view

206B or other appropriate component (e.g., the visual portion of the scrollbar 214),

and upon detecting the interaction (e.g., via a computer mouse), can request for the

view 206B to redraw itself.

[0089] If the user specifies a small amount of scrolling, the view 206A may

cause itself to be displayed by the browser. For example, a buffer area of document

data may be maintained in the model 204B (already rendered into a DOM) around

the data that is displayed in the visible area of the document 202. If the amount of

scrolling specified by the user is determined by the view 206B to be within the

bounds of the buffer area of data, the document display may be updated using such

pre-rendered data. If the user specifies a larger amount of scrolling, such that the

scrolling specified by the user is determined by the view 206B to be outside of the

bounds of the pre-rendered buffer data, for example, additional document data from

29

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

the document model 238 may be downloaded via the network 236. Thus, the model

204B may be updated with information that is related to additional document

sections, and the document may be rendered using the downloaded data.

[0090] FIG. 2C is a block diagram of a system 240 for permitting collaborative

editing of a document by multiple users through a hosted server system. In general,

the system 240 includes a hosted document system 242 executed by one or more

computer servers (e.g. a server farm). The hosted document system 242 can

provide document hosting services to any number of client users via connections to

a network 244 (e.g., the internet). Using the document system 242, client users may

create new documents, modify existing documents, share documents, and

collaboratively work on documents with other users.

[0091] For purposes of illustration, document hosting services may be

provided to browser applications 246, 248, and 250. Each of the applications may

be executed by a web browser (e.g., by the browser 104, as shown in FIG. 1), and

may include model, view, and controller components (e.g., similar to the application

200, shown in FIGs. 2Aand 2B). The applications 246, 248, and 250 may be

configured to execute computer code (e.g., JavaScript and other code running in a

web browser) to display a word processing interface and to perform word processing

functions associated with one or more documents served by the hosted document

system 242.

[0092] As shown in the present illustration, Chris can interact with a web

browser 252, Tina can interact with a web browser 254, and Spike can interact with a

web browser 256. Each of the browsers 252, 254, and 256 may access any

appropriate number of browser applications (e.g., embedded applications, widgets,

web services, and the like). For example, browser 252 can access application 246,

30

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

browser 254 can access application 248, and browser 256 can access application

250.

[0093] By interacting with controls presented by the web browsers, for

example, users of the system 240 (e.g., Chris, Spike, and Tina), can work with one or

more documents that are managed and provided by the hosted document system

242. For example, the users may access existing documents provided by the

system 242 or may create new documents. Each of the browser applications 246,

248, and 250 can communicate with an interface 260 of the document system 242

via the network 244. For example, communication between the browser applications

246, 248, and 250 and the interface 260 may include HTTP (HyperText Transfer

Protocol) requests, SOAP (Simple Object Access Protocol) messages, or some other

appropriate such protocol. In some implementations, client browsers may maintain

browser channel connections to the interface 260 for communicating session data

between clients and the document system 242.

[0094] The hosted document system 242 can include sub-components for

storing and managing information related to system users, documents, and browser

applications. The various sub-components may be executed by the same computer

server, or may be distributed among multiple computer servers. The sub

components may communicate with each other directly (e.g., via messages,

transferred files, shared data, remote procedure calls, or some other protocol) or

indirectly (e.g., by communicating with an intermediary application). Generally, sub

components included in the document system 242 can communicate with client

applications (e.g., the browser applications 246, 248, and 250) via the interface 260.

[0095] The system 242 can also include one or more data stores for storing

user information 270. For example, the user information 270 can include information

31

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

associated with system users (e.g., Chris, Tina, and Spike). Such information may

include general user information and login information (e.g., user names, passwords,

e-mail addresses, and the like), information related to one or more devices employed

by the users to access the system (e.g., IP addresses, browser versions, connection

speeds, and the like), and system usage information (e.g., access times, amount of

data accessed, and the like), to name a few possibilities.

[0096] In some implementations, the system 242 can include one or more

data stores for storing documents 272 in the form, e.g., of document models like

those discussed above and below. For example, the documents 272 can include

word processing documents created, maintained, and accessed by system users.

As another example, the documents 272 may be generated by an automated

process, such as a news feed or another reporting process that is based on gathered

data. Information associated with the documents 272 can include document data

models, document text, document formatting information, entities (e.g., tables,

images, videos, sound clips, or other such objects), and the like.

[0097] The system 242 can also include one or more data stores for storing

access information 274. For example, the access information 274 can include

information that can be used for controlling access of system users (e.g., users

included in the user information 270) to system documents (e.g., documents included

in the documents 272). Generally, system users may set access privileges for

documents that they create or manage. For example, Chris may create a personal

letter document and specify the document as being private. Thus, other users of the

system (e.g., Tina and Spike) may be unable to locate or access the document,

which may have access control limitations applied to it in various familiar manners.

As another example, Tina may upload a schedule document and specify the

32

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

document as being shared and as being viewable by Chris. Thus, Spike may be

unable to locate or access the document, but Chris may be able to access the

document in view-only mode. In some implementations, Tina, as the document

creator, may retain full access to the document, having privileges such as the ability

to add, edit, and delete content, having the ability to change privileges, and having

the ability to remove the document from the system 242. As another example, Spike

may create a document related to a group project and specify Chris and Tina (and

himself) as having full access privileges. In some implementations, user groups may

be included in the access information 274. For example, a user may create a group

and may add one or more users to the group. Rather than select individual users

when assigning document permissions, in some instances, users may select a group

including the users. The access information 274 may also include such information

as the user ids of document users, document access times, and the like.

[0098] In some implementations, the system 242 can include one or more

data stores for storing HTML/JavaScript 276. For example, the HTML/JavaScript

276 can include application code for executing the browser applications 246, 248,

and 250. The application code may be provided to any of the browsers 252, 254,

and 256, for example, when browser users access a web site associated with the

hosted document system 242. Upon receiving a request for any of the documents

272, for example, the system 242 may provide the HTML/JavaScript 276 in addition

to one or more of the documents 272. Using the HTML/JavaScript 276, the browser

applications 246, 248, and 250 may render the document data and may provide an

interface that enables browser users to interact with the documents. In some

implementations, technologies other than HTML and JavaScript may be used for

33

WO 2011/130235 PCT/US20U/032067

Attorney Docket No.: 16113-2213WO1

providing application code. For example, for web browsers including an appropriate

plugin, another type of compiled or interpreted code may be provided.

[0099] Many possible user interactions with the system 240 are possible,

including interactions in single user sessions and in multiple user sessions. For

example, in a collaborative editing session, multiple users may simultaneously

interact with a document. Although the applications used for editing the document

may each behave independently, the applications may follow the same editing rules

for updating and rendering the document model. Thus, multiple users may have

similar experiences with the document, and may work together to produce a similar

document model.

[00100] In an example session, to initiate collaborative word processing

document editing, Chris accesses the hosted document system 242 by directing the

web browser 252 to a web site (e.g., a domain) that is associated with the system

242. Receiving login information from the browser 252, the system 242 can verify

Chris’s information against the user information 270. Upon verification, the system

242 can provide HTML/JavaScript 276 to the browser 252 for executing an online

word processor (though certain of the code may be passed before verification

occurs). The browser can include a portion of the HTML/JavaScript 276 as the

browser application 246, render chrome associated with the application, and display

the application to Chris.

[00101] Chris may interact with the browser application 246 via a set of

controls displayed in an application view within the browser 252. For example, Chris

may indicate an intent to create a new document by clicking a button or selecting a

menu option displayed in the application view. The application controller can

intercept the command and pass the command to the interface 260 via the network

34

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

244. Receiving the command, the system 242 can add a new document to the

documents 272, and add information associated with the new document to the set of

active models 262. For example, the active models 262 may include model

information associated with documents currently being edited by other users of the

system 242.

[00102] A corresponding version of a model in the set of active models 262

may be present at the browser application 246. For example, Chris may add content

and make changes to the word processing document provided by the view of the

browser application 246, and the corresponding content and changes can be applied

to a model that is accessed by the browser application 246 (and associated HTML

and JavaScript code running in the browser), and may be propagated to the active

models 262.

[00103] Chris may also share the document with one or more users. For

example, using controls associated with the application 246, Chris may select Tina

and Spike as users who may share the document, and he may assign both Tina and

Spike full document privileges. For example, Tina and Spike may be included in a

presented list of users commonly sharing documents with Chris, and Chris may

select Tina and Spike from the list. As another example, Chris may provide the e

mail addresses of Tina and Spike. The system 242 can store the sharing information

(e.g., user ids of other users having access to the document, permissions levels for

the users, and the like) in the access information 274. In some implementations, the

system 242 may send messages (e.g., e-mail, text messages, instant messages,

and the like) to users who have received document privileges. In some

implementations, users who have received document privileges may receive a link

(e.g., a hyperlink or URL) to the shared document.

35

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[00104] Upon receiving notification of the shared document, Tina and Spike

may access the document using their web browsers 254, 256. For example, upon

verification, the system 242 can provide HTML/JavaScript 276 to the browser 254,

256 for executing an online word processor. The browsers can include a portion of

the HTML/JavaScript 276 as the browser applications 248, 250, can render chrome

associated with the application, and can display the applications.

[00105] Additionally, an active model manager 264 included the hosted

document system 242 can identify which documents are currently open by users of

the system, and users who are active in the document (i.e., Chris), and can set up a

collaborative session. For example, the active model manager 264 can determine

that the document requested by Tina and by Spike is associated with one or more of

the active models 262. The system 242 can then forward the document request to a

computer hosting the document, and the computer can associate Tina and Spike

with the current session. Additionally, the browser applications 248, 250 can

download model data associated with the active model(s) 262, and render and

display the downloaded model data. In some implementations, the system 242 can

create model instances for Tina and for Spike and can add the instances to the

active models 262.

[00106] In the present example, users may be able to view their own cursors

as well as the cursors of other users in a collaborative session. For purposes of

illustration, each user’s cursor appears to himself/herself as a square. For example,

Chris may view his own cursor as a square, and the other users’ cursors as a circle

or as a triangle. Correspondingly, Tina and Spike may also view their own cursor as

a square, and the other users’ cursors as circles or triangles. In some

implementations, the cursors may appear as a different color (which could not be

36

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

shown here). For example, cursors may generally appear as underlines or vertical

bars, where the cursors are different colors for each user.

[00107] In the present example, changes made by each of the users can be

sent by the browser applications 246, 248, and 250 to the hosted document system

242, coordinated, and sent back to the other users. In some implementations, the

changes can be sent at time intervals (e.g., once every 100 milliseconds, once every

200 milliseconds, once every 500 milliseconds, once every second, once every 2

seconds, or another appropriate time interval). In some implementations, sending

can be based at least in part on user activity or inactivity. For example, during

periods of user inactivity, changes may be sent or received less frequently than

during periods of user activity. When a user is entering data or when a local user

hovers over a cursor for another user, a pop-up label that identifies the other user

may be displayed, so that the local user can identify who is making changes -

though the label may then disappear so that it does not continue to block the

document.

[00108] To coordinate multiple document changes made by multiple users, for

example, the hosted document system 242 can include collaboration logic 266. For

example, the collaboration logic 266 can be executed by one or more code modules

executed by one or more computer servers associated with the system 242. In

some implementations, portions of the collaboration logic can be executed by the

browser applications 246, 248, and 250. Generally, the logic 266 can resolve data

collisions (e.g., instances where multiple users edit the same document portion or

apply conflicting document formats) by applying a consistent set of rules to all user

changes. Although, in some instances, one or more users may be prompted to

disambiguate a change. For example, if Tina makes a document change and Spike

37

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

makes a conflicting document change before receiving Tina’s change, Spike may be

presented with a message from the browser application 250 including possible

conflict resolution scenarios. In some implementations, one user may be identified

as trumping other users in collision situations. Chris, as the document creator, for

example, may be able to apply his changes over changes made by either Tina or

Spike in cases of conflict. For example, if Spike edits a passage at the same time as

Chris deletes it, the passage (including Spike’s edits) may be deleted.

[00109] Thus, the system shown in FIG. 2C may handle collaborative editing of

a hosted document by multiple users at one time. The management of such editing

can involve a low amount of data passing between the various sub-systems in the

system.

[00110] FIG. 3 is a flow chart of an example process for displaying an

electronic document and interacting with a user who is editing the document. In

general, the process tracks the steps that may be taken by a browser-based

application when a user enters one or more characters into a document that is being

displayed by the application. The process may result in the displayed document

(and a corresponding document model) being updated so that the user immediately

sees the effect of his or her actions.

[00111] The process begins at box 302, were a cursor location on a canvas is

established by the application. For example, a user of the application may click in an

area of a paragraph of text in order to start editing the middle of that paragraph of

text. To determine the location of the cursor, its X, Y coordinates on an editing

surface may be compared to cached coordinates corresponding to characters that

are on the surface, to indicate the locations of each character that is being displayed

on the editing surface. Such a comparison may indicate a closest space between

38

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

characters, which is where the cursor may be drawn so that the user can see that his

or her input for placing the cursor has been recognized by the application.

[00112] At box 304, a keystroke is captured when the canvas is active. In

particular, the web browser may be only one of multiple applications that are

currently executing on a computer, and keystrokes captured by the computer may be

relevant to the web browser (and the word processing application running in he web

browser) only when the web browser is the focus of the computer. The keystroke

may be captured, for example, by a controller such as controller 106 in FIG. 1 above.

The controller may identify a location in a document model, such as document model

102 above, and may insert the character at that location (box 306).

[00113] The application may also be executing a layout engine such as layout

engine 110 in FIG 1 above. The layout engine may identify character parameters for

the character, at box 308. Those parameters may include, for example, a font height,

a bold, underlined, or italics for the character, or other appropriate parameters that

are relevant to the location in which the characters to be placed in a display area for

a word processing application.

[00114] At box 310, those parameters are used to generate the character in a

span element is located in a position off the content area or canvas where the portion

of the document is being displayed to a user. For example, a hidden span element

may be constructed in manners like those discussed above. At box 312, the width

and height of the character may be determined using the span element, such as

using the techniques described above that are discussed with respect to FIG. 1. At

box 314, the character is generated on the canvas or content area in the browser

with the appropriate formatting, and at the location determined by using the span

element. Also, at box 316, a new location for a cursor may be determined, because

39

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

the cursor has been indexed forward by the entry of the new character. Thus, the

new location of the cursor may be identified as a location that is to the right of the

previous location for the cursor, by the width of the new character, as determined

from the span element.

[00115] At box 318, the process determines whether this position is past the

edge of a line or margins for the line in which the character is to be added. If it is not,

the cursor stays in the line in which it was previously located, though with the

computed horizontal shift. If it is beyond the edge, a new vertical position for the

cursor is computed at box 320, such as by adding a vertical distance that

corresponds to the span element that was identified in box 312. The element that

generates the cursor may then be re-implemented at the new location. This process

may then repeat for each input or small group of inputs provided by the user (e.g.,

where the grouping of operations is selected to be small enough that lag in updating

the model is not a distraction to the user).

[00116] In the example just discussed, words are allowed to extend slightly

past a right margin of a line. However, in other implementations, word wrap may be

implemented using techniques discussed above with respect to FIG. 1. Also, the

particular process shown here omits relevant details discussed above with respect to

FIG. 1, for simplicity. For example, spacers other than alphanumeric characters may

be provided by a user, such as by a user attempting to insert an entity that is

referenced by a document model. The processing of such alternative types of entries

may occur by mechanisms that are discussed above, or that may be conveniently

determined by the discussions above.

[00117] FIG. 4 shows an example of a generic computer device 400 and a

generic mobile computer device 450, which may be used with the techniques

40

WO 2011/130235 PCT/US20U/032067

Attorney Docket No.: 16113-2213WO1

described here. Computing device 400 is intended to represent various forms of

digital computers, such as laptops, desktops, workstations, personal digital

assistants, servers, blade servers, mainframes, and other appropriate computers.

Computing device 450 is intended to represent various forms of mobile devices,

such as personal digital assistants, cellular telephones, smartphones, and other

similar computing devices. The components shown here, their connections and

relationships, and their functions, are meant to be exemplary only, and are not meant

to limit implementations of the inventions described and/or claimed in this document.

[00118] Computing device 400 includes a processor 402, memory 404, a

storage device 406, a high-speed interface 408 connecting to memory 404 and high

speed expansion ports 410, and a low speed interface 412 connecting to low speed

bus 414 and storage device 406. Each of the components 402, 404, 406, 408, 410,

and 412, are interconnected using various busses, and may be mounted on a

common motherboard or in other manners as appropriate. The processor 402 can

process instructions for execution within the computing device 400, including

instructions stored in the memory 404 or on the storage device 406 to display

graphical information for a GUI on an external input/output device, such as display

416 coupled to high speed interface 408. In other implementations, multiple

processors and/or multiple buses may be used, as appropriate, along with multiple

memories and types of memory. Also, multiple computing devices 400 may be

connected, with each device providing portions of the necessary operations (e.g., as

a server bank, a group of blade servers, or a multi-processor system).

[00119] The memory 404 stores information within the computing device 400.

In one implementation, the memory 404 is a volatile memory unit or units. In another

implementation, the memory 404 is a non-volatile memory unit or units. The memory

41

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

404 may also be another form of computer-readable medium, such as a magnetic or

optical disk.

[00120] The storage device 406 is capable of providing mass storage for the

computing device 400. In one implementation, the storage device 406 may be or

contain a computer-readable medium, such as a floppy disk device, a hard disk

device, an optical disk device, or a tape device, a flash memory or other similar solid

state memory device, or an array of devices, including devices in a storage area

network or other configurations. A computer program product can be tangibly

embodied in an information carrier. The computer program product may also contain

instructions that, when executed, perform one or more methods, such as those

described above. The information carrier is a computer- or machine-readable

medium, such as the memory 404, the storage device 406, memory on processor

402, or a propagated signal.

[00121] The high speed controller 408 manages bandwidth-intensive

operations for the computing device 400, while the low speed controller 412

manages lower bandwidth-intensive operations. Such allocation of functions is

exemplary only. In one implementation, the high-speed controller 408 is coupled to

memory 404, display 416 (e.g., through a graphics processor or accelerator), and to

high-speed expansion ports 410, which may accept various expansion cards (not

shown). In the implementation, low-speed controller 412 is coupled to storage

device 406 and low-speed expansion port 414. The low-speed expansion port,

which may include various communication ports (e.g., USB, Bluetooth, Ethernet,

wireless Ethernet) may be coupled to one or more input/output devices, such as a

keyboard, a pointing device, a scanner, or a networking device such as a switch or

router, e.g., through a network adapter.

42

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[00122] The computing device 400 may be implemented in a number of

different forms, as shown in the figure. For example, it may be implemented as a

standard server 420, or multiple times in a group of such servers. It may also be

implemented as part of a rack server system 424. In addition, it may be

implemented in a personal computer such as a laptop computer 422. Alternatively,

components from computing device 400 may be combined with other components in

a mobile device (not shown), such as device 450. Each of such devices may contain

one or more of computing device 400, 450, and an entire system may be made up of

multiple computing devices 400, 450 communicating with each other.

[00123] Computing device 450 includes a processor 452, memory 464, an

input/output device such as a display 454, a communication interface 466, and a

transceiver 468, among other components. The device 450 may also be provided

with a storage device, such as a microdrive or other device, to provide additional

storage. Each of the components 450, 452, 464, 454, 466, and 468, are

interconnected using various buses, and several of the components may be

mounted on a common motherboard or in other manners as appropriate.

[00124] The processor 452 can execute instructions within the computing

device 450, including instructions stored in the memory 464. The processor may be

implemented as a chipset of chips that include separate and multiple analog and

digital processors. The processor may provide, for example, for coordination of the

other components of the device 450, such as control of user interfaces, applications

run by device 450, and wireless communication by device 450.

[00125] Processor 452 may communicate with a user through control interface

458 and display interface 456 coupled to a display 454. The display 454 may be, for

example, a TFT LCD (Thin-Film-Transistor Liquid Crystal Display) or an OLED

43

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

(Organic Light Emitting Diode) display, or other appropriate display technology. The

display interface 456 may comprise appropriate circuitry for driving the display 454 to

present graphical and other information to a user. The control interface 458 may

receive commands from a user and convert them for submission to the processor

452. In addition, an external interface 462 may be provide in communication with

processor 452, so as to enable near area communication of device 450 with other

devices. External interface 462 may provide, for example, for wired communication

in some implementations, or for wireless communication in other implementations,

and multiple interfaces may also be used.

[00126] The memory 464 stores information within the computing device 450.

The memory 464 can be implemented as one or more of a computer-readable

medium or media, a volatile memory unit or units, or a non-volatile memory unit or

units. Expansion memory 474 may also be provided and connected to device 450

through expansion interface 472, which may include, for example, a SIMM (Single In

Line Memory Module) card interface. Such expansion memory 474 may provide

extra storage space for device 450, or may also store applications or other

information for device 450. Specifically, expansion memory 474 may include

instructions to carry out or supplement the processes described above, and may

include secure information also. Thus, for example, expansion memory 474 may be

provide as a security module for device 450, and may be programmed with

instructions that permit secure use of device 450. In addition, secure applications

may be provided via the SIMM cards, along with additional information, such as

placing identifying information on the SIMM card in a non-hackable manner.

[00127] The memory may include, for example, flash memory and/or NVRAM

memory, as discussed below. In one implementation, a computer program product is

44

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

tangibly embodied in an information carrier. The computer program product contains

instructions that, when executed, perform one or more methods, such as those

described above. The information carrier is a computer- or machine-readable

medium, such as the memory 464, expansion memory 474, memory on processor

452, or a propagated signal that may be received, for example, over transceiver 468

or external interface 462.

[00128] Device 450 may communicate wirelessly through communication

interface 466, which may include digital signal processing circuitry where necessary.

Communication interface 466 may provide for communications under various modes

or protocols, such as GSM voice calls, SMS, EMS, or MMS messaging, CDMA,

TDMA, PDC, WCDMA, CDMA2000, or GPRS, among others. Such communication

may occur, for example, through radio-frequency transceiver 468. In addition, short

range communication may occur, such as using a Bluetooth, WiFi, or other such

transceiver (not shown). In addition, GPS (Global Positioning System) receiver

module 470 may provide additional navigation- and location-related wireless data to

device 450, which may be used as appropriate by applications running on device

450.

[00129] Device 450 may also communicate audibly using audio codec 460,

which may receive spoken information from a user and convert it to usable digital

information. Audio codec 460 may likewise generate audible sound for a user, such

as through a speaker, e.g., in a handset of device 450. Such sound may include

sound from voice telephone calls, may include recorded sound (e.g., voice

messages, music files, etc.) and may also include sound generated by applications

operating on device 450.

45

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[00130] The computing device 450 may be implemented in a number of

different forms, as shown in the figure. For example, it may be implemented as a

cellular telephone 480. It may also be implemented as part of a smartphone 482,

personal digital assistant, or other similar mobile device.

[00131] Various implementations of the systems and techniques described

here can be realized in digital electronic circuitry, integrated circuitry, specially

designed ASICs (application specific integrated circuits), computer hardware,

firmware, software, and/or combinations thereof. These various implementations

can include implementation in one or more computer programs that are executable

and/or interpretable on a programmable system including at least one programmable

processor, which may be special or general purpose, coupled to receive data and

instructions from, and to transmit data and instructions to, a storage system, at least

one input device, and at least one output device.

[00132] These computer programs (also known as programs, software,

software applications or code) include machine instructions for a programmable

processor, and can be implemented in a high-level procedural and/or object-oriented

programming language, and/or in assembly/machine language. As used herein, the

terms “machine-readable medium” “computer-readable medium” refers to any

computer program product, apparatus and/or device (e.g., magnetic discs, optical

disks, memory, Programmable Logic Devices (PLDs)) used to provide machine

instructions and/or data to a programmable processor, including a machine-readable

medium that receives machine instructions as a machine-readable signal. The term

“machine-readable signal” refers to any signal used to provide machine instructions

and/or data to a programmable processor.

46

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[00133] To provide for interaction with a user, the systems and techniques

described here can be implemented on a computer having a display device (e.g., a

CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying

information to the user and a keyboard and a pointing device (e.g., a mouse or a

trackball) by which the user can provide input to the computer. Other kinds of

devices can be used to provide for interaction with a user as well; for example,

feedback provided to the user can be any form of sensory feedback (e.g., visual

feedback, auditory feedback, or tactile feedback); and input from the user can be

received in any form, including acoustic, speech, or tactile input.

[00134] The systems and techniques described here can be implemented in a

computing system that includes a back end component (e.g., as a data server), or

that includes a middleware component (e.g., an application server), or that includes

a front end component (e.g., a client computer having a graphical user interface or a

Web browser through which a user can interact with an implementation of the

systems and techniques described here), or any combination of such back end,

middleware, or front end components. The components of the system can be

interconnected by any form or medium of digital data communication (e.g., a

communication network). Examples of communication networks include a local area

network (“LAN”), a wide area network (“WAN”), and the Internet.

[00135] The computing system can include clients and servers. A client and

server are generally remote from each other and typically interact through a

communication network. The relationship of client and server arises by virtue of

computer programs running on the respective computers and having a client-server

relationship to each other.

47

WO 2011/130235 PCT/US2011/032067

Attorney Docket No.: 16113-2213WO1

[00136] A number of embodiments have been described. Nevertheless, it will

be understood that various modifications may be made without departing from the

spirit and scope of the invention. For example, much of this document has been

described with respect to television advertisements, but other forms of future,

viewership-based advertisements may also be addressed, such as radio

advertisements and on-line video advertisements.

[00137] In addition, the logic flows depicted in the figures do not require the

particular order shown, or sequential order, to achieve desirable results. In addition,

other steps may be provided, or steps may be eliminated, from the described flows,

and other components may be added to, or removed from, the described systems.

Accordingly, other embodiments are within the scope of the following claims.

48

WO 2011/130235 PCT/US2011/032067

WHAT IS CLAIMED IS:

1. A computer-implemented method for presenting a document for

interaction with a user in a web browser, the method comprising:

accessing an electronic model of the document;

determining, with a computing device, positions for items in a visual

rendering of the electronic model based on relative sizes and positions of

other items in the electronic model;

generating, with the computing device, a document object model

(DOM) that represents at least part of the electronic model and defines an

editing surface, wherein the DOM (a) places the items at the determined

positions on the editing surface, (b) places a graphic element that represents

a cursor at a determined location on the editing surface, and (c) is arranged to

receive user input on the editing surface and to correlate a location of the

received user input to a location in the electronic model.

2. The computer-implemented method of claim 1, further comprising

receiving an entry of a character to the editing surface, determining a display

style for the character, placing the character at a determined size with the

style in a browser display area that is not visible to the user, and measuring

the size of the browser display area to determine a location to display a cursor

on the editing surface.

3. The computer-implemented method of claim 2, wherein the browser

display area comprises an HTML span element.

49

WO 2011/130235 PCT/US2011/032067

4. The computer-implemented method of claim 2, wherein the cursor is

provided as an HTML image element.

5. The computer-implemented method of claim 1, further comprising

receiving a copy command from the user, and in response, populating text

that is selected in the browser display area to a hidden contentEditable

element, placing focus on the contentEditable element, and making the

populated text available to a copy function of the browser.

6. The computer-implemented method of claim 1, further comprising

receiving a paste command from the user, and in response, reading text from

a contentEditable element into which the browser has placed selected text,

and transforming the text in the contentEditable element into the electronic

model of the document.

7. The computer-implemented method of claim 1, further comprising

uploading, from the computing device to a central server system that is

remote form the computing device, information about changes to the

document model so that the central server system may maintain a document

model that matches the document model that is on the computing device.

8. The computer-implemented method of claim 1, wherein the uploading

is performed separately for substantially each and every character submitted

to the document by a user.

50

WO 2011/130235 PCT/US2011/032067

9. The computer-implemented method of claim 1, further comprising

receiving, from the central server system, information about changes made to

the document by users remote from the computing device, revising the

electronic document model to reflect the changes, and automatically

rendering at least the revised portion of the document model to update the

DOM so that the changes made by the users remote to the computing device

are reflected in the DOM.

10. A computer-implemented web browser-based document editing

system, comprising:

a first rich text model on a client computing device for storing a format

for a rich document having text and formatting definitions for the text;

a view programmed to render the model for display to an editing

surface that displays the rich document; and

a controller to intercept and interpret inputs made by a user with

respect to the document in the view and to cause the rich text model to be

revised in accordance with the user inputs.

11. The system of claim 10, further comprising a second rich text model at

a server system remote from the client computing device, and wherein the

controller is programmed to provide data that reflects the inputs to both the

first and second rich text models.

51

WO 2011/130235 PCT/US2011/032067

12. The system of claim 10, further comprising a timer that gathers user

inputs over a defined time period before providing data that reflects the inputs

to the server system.

13. The system of claim 10, further comprising a browser display area that

is not visible to a user of the browser, and wherein the view is programmed to

render characters entered by a user to the browser display area to determine

dimensions for displaying the characters with the view.

14. The system of claim 10, wherein the browser display area comprises

an HTML span element.

15. The system of claim 10, wherein the view is programmed to render the

model to a document object model (DOM) for the web browser.

16. A computer-implemented web browser-based document editing

system, comprising:

a first rich text model on a client computing device for storing a format

for a rich document having text and formatting definitions for the text;

a view of the model that is a visual representation of a portion of the

model with formatting applied to the model; and

means for generating the view from the model and for updating the

view in response to receiving keystrokes by a user of the client computing

device.

52

WO 2011/130235 PCT/US2011/032067

17. One or more tangible recordable storage media storing instructions

that, when executed, perform operations comprising:

accessing an electronic model of the document;

determining, with a computing device, positions for items in a visual

rendering of the electronic model based on relative sizes and positions of

other items in the electronic model;

generating, with the computing device, a document object model

(DOM) that represents at least part of the electronic model and defines an

editing surface, wherein the DOM (a) places the items at the determined

positions on the editing surface, (b) places a graphic element that represents

a cursor at a determined location on the editing surface, and (c) is arranged to

receive user input on the editing surface and to correlate a location of the

received user input to a location in the electronic model.

18. The tangible recordable storage media of claim 17, wherein the

operations further comprise receiving an entry of a character to the editing

surface, determining a display style for the character, placing the character at

a determined size with the style in a browser display area that is not visible to

the user, and measuring the size of the browser display area to determine a

location to display a cursor on the editing surface.

19. The tangible recordable storage media of claim 17, wherein the

operations further comprise receiving a copy command from the user, and in

response, populating text that is selected in the browser display area to a

hidden contentEditable element, placing focus on the contentEditable

53

WO 2011/130235 PCT/US2011/032067

element, and making the populated text available to a copy function of the

browser.

20. The tangible recordable storage media of claim 17, wherein the

operaitons further comprise receiving a paste command from the user, and in

response, reading text from a contentEditable element into which the browser

has placed selected text, and transforming the text in the contentEditable

element into the electronic model of the document.

21. The tangible recordable storage media of claim 17, wherein the

operations further comprise uploading, from the computing device to a central

server system that is remote form the computing device, information about

changes to the document model so that the central server system may

maintain a document model that matches the document model that is on the

computing device.

54

WO 2011/130235 PCT/US2011/032067

1/5

M
od

el

FI
G

. 1

WO 2011/130235 PCT/US2011/032067

2/5

208Β~ζ

Controller

Model
204A

FIG. 2A

206Β~ζ 204Β~ζ
<^200B

View Model

FIG. 2B

WO 2011/130235 PCT/US20U/032067

3/5

H
os

te
d D

oc
um

en
t S

ys
te

m

FI
G

. 2
C

WO 2011/130235 PCT/US2011/032067

4/5

FIG. 3

WO 2011/130235 PCT/US2011/032067

FI
G

. 4

