(54) Title: HTS FILTERS WITH SELF-RESONANT SPIRAL RESONATORS

(57) Abstract

High temperature superconductor mini-filters and mini-multiplexers utilize self-resonant spiral resonators and have very small size and very low cross-talk between adjacent channels.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
<th>LS</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslavia</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HTS FILTERS WITH SELF-RESONANT SPIRAL RESONATORS

Background of the Invention

This invention relates to high temperature superconductor (HTS) mini-filters and mini-multiplexers with self-resonant spiral resonators as the building blocks, which have the advantages of very small size and very low cross-talk between adjacent filters.

HTS filters have the advantages of extremely low in-band insertion loss, high off-band rejection, steep skirts, due to extremely low loss in the HTS materials. The HTS filters have many applications in telecommunication, instrumentation and military equipment. However, for the regular design of a HTS filter, the resonators as its building blocks are large in size. In fact, at least one dimension of the resonator is equal to approximately a half wavelength. For low frequency HTS filters with many poles, the regular design requires very large substrate area. The substrates of thin film HTS circuits are special single crystal dielectric materials with high cost. Moreover, the HTS thin film coated substrates are even more costly. Therefore, for saving material cost, it is desirable to reduce the HTS filter size without sacrificing its performance. Further more, for the HTS filter circuits, the cooling power, the cooling time, and the cost to cool it down to operating cryogenic temperature increases with increasing circuits size. These are the reasons to reduce the HTS filter size without sacrificing its performance.

There is a prior art design to reduce the HTS filters size, i.e. by using “lumpy circuit” elements such as capacitors and inductors to build the resonator used as the building blocks of HTS filters. This approach does reduce the size of HTS filters. However, it also has problems. First, the regular lumpy element inductors such as the spiral inductor shown in Figure 1 have wide spread magnetic fields, which reaches the region far beyond the inductor and causes undesirable cross-talk between adjacent circuits. Second, in the lumpy circuit filter design, the two ends of the spiral inductor must be connected to other circuit components such as capacitors etc. But one of the inductor’s two ends is located at the center of the spiral, which cannot be directly connected to other components. In order to make the connection from the center end of the spiral inductor to another component, air-bridge or multi-layer over-pass must be fabricated on top of the HTS spiral inductor. They not only degrade the performance of the filter, but also are difficult to fabricate. Third, there are two ways to introduce lumpy capacitors: One is using “drop-in” capacitor, which usually has unacceptable very large tolerance. The other is using planar interdigital capacitor, which requires very
narrow gap between two electrodes with high rf voltage across them, which may cause arcing.

The purpose of this invention is to use self-resonant spiral resonators to reduce the size of HTS filters and at the same time to solve the cross-talk and connection problems.

Brief Description Of The Drawings

Figure 1 shows the prior art conventional spiral inductors, in which Figure 1a shows a square spiral inductor and Figure 1b shows a circular spiral inductor. Figure 2 shows the present self-resonant spiral resonators in different forms. Figure 2a shows a self-resonant spiral resonator in the rectangular form. Figure 2b shows a self-resonant spiral resonator in the rectangular form with rounded corners. Figure 2c shows a self-resonant spiral resonator in the octagon form. Figure 2d shows a self-resonant spiral resonator in the circular form.

Figure 3 shows a first embodiment of the present invention of a microstrip line 4-pole HTS mini-filter with self-resonant rectangular spiral resonators with rounded corners, center tuning pads, and parallel lines input/output coupling circuits. Fig. 3a shows the front view. Fig. 3b shows the cross section view.

Figure 4 shows a second embodiment of the present invention of a microstrip line 4-pole HTS mini-filter with self-resonant rectangular spiral resonators, transverse offset inter-resonator coupling adjustment, and inserted line input and output coupling circuits. Fig. 4a shows the front view. Fig. 4b shows the cross section view.

Figure 5 shows a third embodiment of the present invention of a microstrip line 4-pole HTS mini-filter with self-resonant octagon spiral resonators, transverse offset inter-resonator coupling adjustment, and inserted line coupling input and output circuits. Fig. 5a shows the front view. Fig. 5b shows the cross section view.

Figure 6 shows a fourth embodiment of the present invention of a microstrip line 4-pole HTS mini-filter with self-resonant circular spiral resonators, circular center tuning pads, and parallel lines input/output coupling circuits. Fig. 6a shows the front view. Fig. 6b shows the cross section view.

Figure 7 shows a fifth embodiment of the present invention of a microstrip line 5-pole HTS mini-filter with four self-resonant rectangular spiral resonators, one symmetrical double spiral resonator, and inserted line input and output coupling circuits. Fig. 7a shows the front view. Fig. 7b shows the cross section view.
Figure 8 shows a first embodiment of the present invention of a microstrip line mini-multiplexer with two channels. Each channel comprises an 8-pole HTS mini-filter with self-resonant rectangular spiral resonators and parallel lines input/output coupling circuits. The input circuit of the multiplexer is in the binary splitter form. Fig. 8a shows the front view. Fig. 8b shows the cross section view.

Figure 9 shows a second embodiment of the present invention of a microstrip line mini-multiplexer with four channels. Each channel comprises an 8-pole HTS mini-filter with self-resonant rectangular spiral resonators and parallel lines input/output coupling circuits. The input circuit of the multiplexer is in the cascaded binary splitter form. Fig. 9a shows the front view. Fig. 9b shows the cross section view.

Figure 10 shows a third embodiment of the present invention of a microstrip line mini-multiplexer with four channels. Each channel comprises an 8-pole HTS mini-filter with self-resonant rectangular spiral resonators and parallel lines input/output coupling circuits. The input circuit of the multiplexer is in the multi-branch line form. Fig. 10a shows the front view. Fig. 10b shows the cross section view.

Figure 11 shows an embodiment of the present invention of a strip line 4-pole HTS mini-filter with self-resonant rectangular spiral resonators with rounded corners, center tuning pads, and parallel lines input/output coupling circuits. Fig. 11a is a cross-sectional view of the mini-filter and Fig. 11b is a plan view as seen along lines and arrows A-A of Fig 11a.

Fig. 12 shows the layout of a prototype 3-pole 0.16 GHz bandwidth centered at 5.94 GHz microstrip line HTS mini-filter with three self-resonant rectangular spiral resonators.

Fig. 13 shows the measured S-parameters data of the mini-filter shown in Fig. 12, in which Fig. 13a shows S_{11} versus frequency data. Fig. 13b shows S_{12} versus frequency data. Fig. 13c shows S_{21} versus frequency data. Fig. 13d shows S_{22} versus frequency data.

Fig. 14 shows the measured S_{21} versus frequency data of the mini-filter shown in Fig. 12 to show the frequency shift caused by changing the medium of the space above the circuit.

Fig. 15 shows the measured third order intermodulation data of the mini-filter shown in Fig. 12 to show its nonlinearity behavior.
Summary Of The Invention

In one aspect, the invention comprises a self-resonating spiral resonator comprising a high temperature superconductor line oriented in a spiral fashion such that adjacent lines are spaced from each other by a gap distance which is less than the line width; and wherein a central opening in the resonator has a dimension approximately equal to that of the gap distance in each dimension.

In another aspect the invention comprises an HTS mini-filter comprising

a) a substrate having a front side and a back side;
b) at least two self-resonant spiral resonators in intimate contact with the front side of the substrate;
c) at least one inter-resonator coupling mechanism;
d) an input coupling circuit comprising a transmission line with a first end connected to an input connector of the filter and a second end coupled to a first one of the at least two self-resonant spiral resonators;
e) an output coupling circuit comprising a transmission line with a first end connected to an output connector of the filter and a second end coupled to a last one of the at least two self-resonant spiral resonators;
f) a blank high temperature superconductor film disposed on the back side of the substrate as a ground plane; and
g) a blank gold film disposed on the blank high temperature superconductor film.

In another embodiment, the mini-filters have a strip line form and further comprise:

a) a superstrate having a front side and a back side, wherein the front side of the superstrate is positioned in intimate contact with the at least two resonators disposed on the front side of the substrate;
b) a second blank high temperature superconductor film disposed at the back side of the superstrate as a ground plane; and
c) a second blank gold film disposed on the surface of said second high temperature superconductor film.

In another aspect, the invention comprises mini-multiplexers comprising at least two of the mini-filters with different and non-overlapping frequency bands; a distribution network with one common port as an input for the mini-multiplexer and multiple distributing ports, wherein one distributing port is connected to a
corresponding input of one mini-filter; and a multiple of output lines, wherein one output line is connected to a corresponding output of one mini-filter.

These and other aspects of the invention and the preferred embodiments will become apparent on a further reading of the specification and claims.

Detailed Description Of The Embodiments

The present invention provides for reducing the size of HTS filters without sacrificing its performance and is based upon the use of self-resonant spiral resonators. The self-resonant spiral resonators have different shapes, including rectangular, rectangular with rounded corners, polygon and circular.

In order to reduce the size of self-resonant spiral resonator and to confine its electromagnetic fields for minimizing the cross-talk, it is preferred to reduce the width of the gap between adjacent lines and reduce the center open area in the spiral resonator.

There are several methods to change the resonant frequency of the self-resonant spiral resonator: 1. Change the length of the spiral line; 2. Change the gap width between the adjacent lines of the spiral; 3. Place a conductive tuning pad at the center of the spiral. The third method can be used as fine frequency tuning.

The input and output coupling circuits of the mini-filter have two basic configurations: 1. Parallel lines configuration, it comprises a transmission line with one end connected to the mini-filter’s connector via a gold pad on top of the line, the other end of the line is extended to be close by and in parallel with the spiral line of the first resonator (for the input circuit) or the last resonator (for the input circuit) to provide the input or output couplings for the filter; 2. Inserted line configuration, it comprises a transmission line with one end connected to the mini-filter’s connector via a gold pad on top of the line, the other end of the line is extended to be inserted into the split spiral line of the first resonator (for the input circuit) or the last resonator (for the input circuit) to provide the input or output couplings for the filter.

The inter-resonator couplings between adjacent resonators in the mini-filter is provided by the overlapping of the electromagnetic fields at the edges of the adjacent resonators. The coupling strength can be adjusted by three ways: 1. Change the longitudinal distance between adjacent spiral resonators; 2. Change the orientation of the spiral resonators; 3. Shift the spiral resonator’s location along the transverse direction. The third way can be used as coupling strength fine adjustment.
The mini-filters of this invention can be used to build mini-multiplexers, which have very small size without sacrificing their performance. The mini-multiplexer comprises at least two channels with two mini-filters having slightly different non-overlapping frequency bands, an input distribution network, and an output port for each channel. The input distribution network has three different configurations: 1. Single binary splitter for the 2-channel mini-multiplexer, it uses a binary splitter to combine the two inputs of the two channels into a common port serving as the input for the mini-multiplexer; 2. Cascaded binary splitter, it consists of cascaded multiple stages of binary splitters. In an N-stage cascaded distribution network, the 2^N output ports can be used for combining 2^N channels into a common port serving as the input for the mini-multiplexer; 3. Matched multi-branch lines, it consists a common port as the input of the mini-multiplexer a multiple of branch lines connected to each channel. The length, width of these lines must appropriately chosen in such a way to achieve matching at the input and the output of the mini-multiplexer over the entire frequency band of the mini-multiplexer.

The mini-filters and mini-multiplexers of this invention can be in the microstrip line form with one substrate and one ground plane, they also can be in the strip line form with a substrate, a superstrate and two ground planes.

The conventional way to make small filters is using lumpy circuit design, which utilizes lumpy inductance and lumpy capacitance to form resonators as the building block of the filter. A prior art spiral inductor is shown in Fig. 1, in which Fig. 1a shows a rectangular shape and Fig. 1b shows a circular shape. Because the structural components of the inductor of Fig. 1a is the same as that of Fig. 1b (the only difference being the shape or configuration of the spiral), the same reference numerals are used to denote the same structural components. Accordingly, numeral 1 designates the spiral conductor line and numeral 2 is the gap between adjacent turns of conductor line 1. Numerals 3 and 4 are the connecting pads located at the terminal ends of conductor line 1 and numeral 5 is a open area without conductor at the center of the spiral inductor.

The inductors shown in Fig. 1 are used in the conventional design for forming a lumpy circuit resonator as the building block of a filter. In the prior art conventional design, the dimensions of the lump inductor must be carefully chosen such that to make its "self-resonant" frequency much higher than the highest frequency in the frequency band of the filter to avoid adverse interference from the self-resonance of the inductor. In order to do so, the gap 2 between adjacent turns should be large compared to the width of conductor line 1, and the center open area 5 should be sufficiently large to let the magnetic fields generated
by the current in the spiral line go through. Both measures cause the magnetic fields spreading far beyond the spiral inductor and cause cross-talk between adjacent circuits. As mentioned above, the other problem with the conventional design approach is the difficulty of connecting the terminal pad 4 located at the center of the spiral to other circuit components.

The present invention solve the problems by utilizing the self-resonance of the spiral inductors instead of avoiding it. The self-resonance occurs when the operating frequency equals to the self-resonance frequency, f_s:

$$f_s = \frac{1}{2\pi\sqrt{L/C_p}}$$

Here L is the inductance of the spiral. and C_p is the parasitic capacitance between adjacent turns. As mentioned above, for HTS filter design, it is desirable to reduce the size of the filter circuit which requires that the open area of the spiral (numeral 5 in Fig. 1a and 1b), as well as the gap (numeral 2 in Fig. 1a and 1b) between the conductor lines be minimized. These measures not only reduce the size of the spiral resonator, but also eliminate the need for additional capacitance and the need for center connection. Moreover, these measures also confine most of the electromagnetic fields beneath the spiral resonator, hence solve the crosstalk problem caused by far reaching magnetic fields in the lumpy conductor.

Fig. 2 shows four embodiments of the self-resonant spiral resonator as follows: rectangular is shown in Fig 2a, a rectangular form with rounded corners is shown in Fig 2b. a polygon shape is shown in Fig. 2c. and a circular shape shown in Fig. 2d. As seen in Figures 2a-2d. the self-resonant spiral resonators comprise a high temperature superconductor line oriented in a spiral fashion. The adjacent lines that form the spiral are spaced from each other by a gap distance which is less than the width of the line. The central opening in the resonator has a dimension approximately equal to that of the gap distance. It is understood, however, that the gap dimension has only one dimension (i.e., width) whereas the central opening has two dimensions (i.e., length (or height) and width). Accordingly, the phrase "dimension approximately equal to that of the gap distance" means that each dimension of the central opening is approximately the same as the single dimension of the gap distance. It should also be noted from Figures 2a-2d that the central opening is substantially symmetrical and has a shape correspondingly (although not necessarily identical to) the shape of the resonator.

With reference first to Fig 2a, numeral 11 is the conductive line, numeral 12 is the gap between adjacent turns, numeral 13 is the center open area with its dimension close to the width of the reduced gap 12. and numeral 14 indicates the 90-degree sharp corners of the line 11.
The rf electrical charge and current are intended to concentrate at the line corners, which may reduce the power handling capability of the HTS rectangular spiral resonator. To solve the problem, Fig. 2b shows a second embodiment of the self-resonant spiral resonator in a rectangular form with rounded corners. In the embodiment of Fig. 2b, numeral 15 is the conductive line, numeral 16 is the gap between adjacent turns, numeral 17 is the reduced center open area with its dimension close to the width of the reduced gap 16, and numeral 18 indicate the rounded corners of the line 15.

Fig. 2c shows a third embodiment of the self-resonant spiral resonator in a octagon form in which numeral 20 is the conductive line, numeral 21 is the gap between adjacent turns, numeral 22 is the reduced center open area with its dimension close to the width of the reduced gap 21 and numeral 23 indicate the 120-degree corners of the line 20. The self-resonant spiral resonator is not restricted to this particular octagon form. Rather, it can be of any polygon shape, provided that it has more than four corners to distinguish the rectangular shapes.

Fig. 2d shows a fourth embodiment of the self-resonant spiral resonator in a circular form. In this embodiment, numeral 25 is the conductive line, numeral 26 is the gap between adjacent turns, numeral 27 is the reduced center open area with its dimension close to the width of the reduced gap 26 and numeral 28 is a conductive tuning pad located at the center open area 27 for fine tuning the resonant frequency of the spiral resonator. The tuning pad is not restricted to this specific form of circular shape, but instead may be in rectangular form or any arbitrary forms. It is further to be understood that the tuning pad may be used with any of the other configurations described above and is not restricted in its use to the spiral resonator having the circular configuration.

Fig. 3 shows a first embodiment of the 4-pole HTS mini-filter circuit having four self-resonant spiral resonators (in this case having a rectangular configuration with rounded corners) as its frequency selecting element. Fig. 3a shows the top or front view of the filter, and Fig. 3b shows a cross section view. In Figures 3a and 3b, numeral 30 is a dielectric substrate with a front side and a back side. The HTS filter mini-circuit is disposed on the front side of the substrate 30 as shown in Fig. 3a and 3b. The back side of the substrate 30 (which is seen in the cross sectional view of Fig. 3b but is not seen in the view of Fig. 3a) is disposed with a blank HTS film 31 (see Fig. 3b) serving as the ground of the mini-filter circuit. A gold film 32 (see Fig. 3b) is disposed on top of HTS film 31 and functions as the contact to the mini-filter’s case, which is not shown. In Fig. 3a, numerals 33, 34, 33a, and 34a are four self-resonant rectangular spiral resonators with rounded corners. The inter-resonator couplings are provided by
the coupling gaps, 38a and 38b, between the adjacent resonators. The input coupling circuit is in a parallel lines form, which comprises an input line 35 and the coupling gap 39 between 35 and the first resonator 33. The output coupling circuit is in a parallel lines form, which comprises an output line 35a and the coupling gap 39a between 35a and the last resonator 33a. Two tuning pads 36, 36a are placed at the center of resonators 34 and 34a, respectively, for fine tuning the resonant frequency of the resonators 34 and 34a. Gold connecting pads 37 and 37a are disposed on the input and output line 35 and 35a, respectively, providing the connections to the mini-filter’s connectors, not shown.

Fig. 4 shows a second embodiment of the 4-pole HTS mini-filter circuit having four self-resonant rectangular spiral resonators as its frequency selecting element, in which Fig. 4a shows the front view and Fig. 4b shows the cross section view. Numeral 40 is a dielectric substrate with a front side and a back side. The HTS mini-filter circuit is disposed on the front side of the substrate 40 as shown in Fig. 5a. As indicated by the cross section view shown in Fig. 3b, the back side of the substrate 40 is disposed with a blank HTS film 41 serving as the ground of the mini-filter circuit, and a gold film 42 is disposed on top of 41 serving as the contact to the mini-filter’s case, which is not shown. In Fig. 4a, numerals 43, 44, 43a, and 44a are the four self-resonant rectangular spiral resonators. The inter-resonator couplings are provided by the coupling gaps 49, 49a, 49b between adjacent resonators. In this particular case, the inter-resonator coupling strength is adjusted by changing the gap width between the adjacent resonators, as well as by shifting the resonator’s location in the transverse direction for the fine adjustment. The input coupling circuit is in the inserted line form, which comprises an input line 45 with its extended narrower line 46 inserted into the split spiral line of the first resonator 43 with a coupling gap 47 between them. The output coupling circuit is in the inserted line form, which comprises an output line 45a with its extended narrower line 46a inserted into the split spiral line of the last resonator 43a with a coupling gap 47a between them. Gold connecting pads 48 and 48a are disposed on the input and output lines 45 and 45a, respectively, providing the connections to the mini-filter’s connectors, not shown.

Fig. 5 shows a third embodiment of the 4-pole HTS mini-filter circuit having self-resonant four octagon spiral resonators as its frequency selecting element, in which Fig. 5a shows the front view, and Fig. 5b shows the cross section view. Numeral 50 is a dielectric substrate with a front side and a back side. The HTS mini-filter circuit is disposed on the front side of the substrate 50 as shown in Fig. 5a. As indicated by the cross section view shown in Fig. 5b, the back side of the substrate 50 is disposed with a blank HTS film 51 serving as the
ground of the mini-filter circuit, and a gold film 52 is disposed on top of 51 serving as the contact to the mini-filter's case, not shown. In Fig. 5a, numerals 53, 54, 53a, and 54a are the four self-resonant octagon spiral resonators. The inter-resonator couplings are provided by the coupling gaps 59, 59a, 59b, between adjacent resonators. In this particular case, the inter-resonator coupling strength is adjusted by changing the gap width between the adjacent resonators, as well as by shifting the resonator's location in the transverse direction for the fine adjustment. The input coupling circuit is in the inserted line form, which comprises an input line 55 with its extended line 56 inserted into the split spiral line of the first resonator 53 with a coupling gap 57 between them. The output coupling circuit is in the inserted line form, which comprises an output line 55a with its extended line 56a inserted into the split spiral line of the last resonator 53a with a coupling gap 57a between them. Gold connecting pads 58 and 58a are disposed on the input and output lines 55 and 55a, respectively, providing the connections to the mini-filter's connectors, not shown.

Fig. 6 shows a fourth embodiment of the 4-pole HTS mini-filter circuit having four self-resonant circular spiral resonators as its frequency selecting element, in which Fig. 6a shows the circuit front view, and Fig. 6b shows the cross section view. Numeral 60 is an dielectric substrate with a front side and a back side. The HTS mini-filter circuit is disposed on the front side of the substrate 60 as shown in Fig. 6a. As indicated by the cross section view shown in Fig. 6b, the back side of the substrate 60 is disposed with a blank HTS film 61 serving as the ground of the mini-filter circuit, and a gold film 62 is disposed on top of 61 serving as the contact to the mini-filter's case, not shown. In Fig. 6a, numerals 63, 64, 63a, and 64a are the four self-resonant circular spiral resonators. The inter-resonator couplings are provided by the coupling gaps 63b, 63c, 63d, between adjacent resonators. The input coupling circuit is in the parallel line form, which comprises an input line 66 and an extended line 67. The input coupling is provided by the gap 69 between 67 and the first resonator 63. The output coupling circuit is in the parallel line form, which comprises an output line 66a and an extended line 67a. The output coupling is provided by the gap 69a between 67 and the first resonator 63. Two tuning pads 65, 65a are placed at the center of resonators 63 and 63a, respectively, for fine tuning the resonant frequency of the resonators 63 and 63a. Gold connecting pads 68 and 68a are disposed on the input and output lines 66 and 66a, respectively, providing the connections to the mini-filter's connectors, not shown in the figures.

Fig. 7 shows one embodiment of a 5-pole HTS mini-filter circuit having five self-resonant rectangular spiral resonators as its frequency selecting element.
in which Fig. 7a shows the circuit front view and Fig. 7b shows the cross section view. Numeral 70 is a dielectric substrate with a front side and a back side. The HTS mini-filter circuit is disposed on the front side of the substrate 70 as shown in Fig. 7a. As indicated by the cross section view shown in Fig. 7b, the back side of the substrate 70 is disposed with a blank HTS film 71 serving as the ground of the mini-filter circuit. And a gold film 72 is disposed on top of 71 serving as the contact to the mini-filter’s case, which is not shown. In Fig. 7a, numerals 73, 74, 73a, and 74a are the four self-resonant rectangular single spiral resonators, 75 is a self-resonant rectangular double spiral resonator, which serves as the middle resonator. The use of double spiral resonator 75 at the middle of the 5-pole filter is to make the circuit geometry symmetrical with respect to the input and the output. This approach is also suitable for any symmetrical mini-filter with odd number poles. The inter-resonator couplings are provided by the coupling gaps 75a, 75b, 75c, 75d. between adjacent resonators. In this particular case, the inter-resonator coupling strength is adjusted by changing the gap width between the adjacent resonators. The input coupling circuit is in a inserted line form, which comprises an input line 76 with its extended narrower line 77 inserted into the split spiral line of first resonator 73 with a coupling gap 78 between them. The output coupling circuit is in a inserted line form, which comprises an output line 76a with its extended narrower line 77a inserted into the split spiral line of last resonator 73a with a coupling gap 78a between them. Gold connecting pads 79 and 79a are disposed on the input and output lines 76 and 76a, respectively, providing the connections to the mini-filter’s connectors, not shown.

Fig. 8 shows a 2-channel mini-multiplexer, each channel has a 8-pole HTS mini-filter 83, 83A, respectively, with eight rectangular self-resonant spiral resonators. Fig. 8a shows the front view and Fig. 8b shows the cross section view. Numeral 80 is a dielectric substrate with a front side and a back side. The HTS mini-multiplexer circuit is disposed on the front side of 80 as shown in Fig. 8a. As indicated by the cross section view shown in Fig. 8b, the back side of the substrate 80 is disposed with a blank HTS film 81 serving as the ground of the mini-multiplexer circuit. And a gold film 82 is disposed on top of 81 serving as the contact to the mini-multiplexer’s case, which is not shown. The frequency band of mini-filters 83 and 83a are slightly different and without overlapping to form two channels. The input coupling circuit of mini-filters 83 and 83a are in the parallel lines form, which comprises input lines 84 and 84a and the gaps 84b, 84c. respectively, between 84 or 84a and the first spiral resonator of filters 83 or 83a. respectively. A distribution network in a single binary splitter form serves as the input of the multiplexer, which comprises the common input line 86, a T-junction.
87, and branch lines 85, 85a, with their one end connected to 87 and the other end connected to 84 and 84a, respectively. The dimensions of 84, 84a, 85, 85a, 86 and 87 are selected in such a way to provide the input impedance matching of the mini-multiplexer over the frequency range covering the two frequency bands of filters 83 and 83a. The output coupling circuits of filters 83 and 83a is in the parallel lines form, which comprise the output lines 87a and 87b, and the gap 87c. 87d, respectively, between them and the last resonator of filters 83 or 83a. 87a and 87b also serve as the output lines for the two channels of the mini-multiplexer. Gold connecting pads 88, 88a, 88b are disposed on the input line 86, and output lines 87a, 87b, respectively, providing the connections to the mini-multiplexer’s connectors, not shown.

It should be understood that the form of the self-resonant spiral resonators in the mini-multiplexer is not restricted to the rectangular form illustrated in Fig 8, but rather they can be of any configuration shown in Fig 2a-2d or combinations thereof. Further it is to be understood that the form of the input and output coupling circuits of the mini-filters in the mini-multiplexer is not restricted to the parallel line form shown in Fig. 8, but instead other line forms, such as the inserted line form or combinations of inserted line form and parallel line form.

Fig. 9 shows a second embodiment of the 4-channel mini-multiplexer, each channel has a 8-pole HTS mini-filter with eight self-resonant rectangular spiral resonators, in which Fig. 9a shown the front view and Fig. 9b shows the cross section view. Numerals 90 is a dielectric substrate with a front side and a back side. The HTS mini-multiplexer circuit is disposed on the front side of 90 as shown in Fig. 9a. As indicated by the cross section view shown in Fig. 9b, the back side of the substrate 90 is disposed with a blank HTS film 91 serving as the ground of the mini-multiplexer circuit, and a gold film 92 is disposed on top of 91 serving as the contact to the mini-multiplexers case, not shown. Numerals 93 and 93a are used to designate two 2-channel mini-multiplexer similar to that shown in Fig. 8. The frequency band of 93 and 93a are slightly different and without overlapping. The distribution network at the input of the 4-channel mini-multiplexer is in a 2-stage cascaded binary splitter form. The first stage comprises a common input line 95, a T-junction 96, and two branch lines 94, 94a, with their one end connected to 96 and the other end connected to the inputs of the second stage. The second stage comprises two binary splitters, which actually are the input binary splitters of the two 2-channel mini-multiplexer 93 and 93a, and comprise input lines 94b, 94c; T-junctions 94d, 94e; branch lines 94f, 94g, 94h, 94i; and input lines 94j, 94k, 94l and 94m. as shown in Fig 9a. The dimensions of 93, 93a, 94, 94a-94m, 95 and 96 are selected in such a way to provide the input
impedance matching of the mini-multiplexer over the frequency range covering the four frequency bands of the 4-channel mini-multiplexer. The output circuits of the 4-channel mini-multiplexer comprises the two 2-channel mini-multiplexers' output lines: 97, 97a, 97b, 97c, which serve as the four output lines for the 4-channel mini-multiplexer as shown in Fig. 9a.

Fig. 10 shows a third embodiment of the 4-channel mini-multiplexer, each channel comprises an 8-pole HTS mini-filter 103, 103a, 103b, 103c, with eight self-resonant rectangular spiral resonators. Fig. 10a shows the front view and Fig. 10b shows the cross section view. Numeral 100 is a dielectric substrate with a front side and a back side. The HTS mini-multiplexer circuit is disposed on the front side of 100 as shown in Fig. 10a. As indicated by the cross section view shown in Fig. 10b, the back side of the substrate 100 is disposed with a blank HTS film 101 serving as the ground of the mini-multiplexer circuit, and a gold film 102 is disposed on top of 101 serving as the contact to the mini-multiplexer's case, which is not shown. The frequency band of filters 103, 103a, 103b, and 103c are slightly different and without overlapping to form four channels. The distribution network at the input of the 4-channel mini-multiplexer is in a matched branch lines form, which comprises a common input line 106, a matching section 105, line sections 104, 104a, 104b, 104c, and five junctions: 107, 107a, 107b, 107c and 107d. The dimensions of 104, 104a, 104b, 104c, 105, 106, 107, 107a, 107b, 107c and 107d are selected in such a way to provide the input impedance matching of the mini-multiplexer over the frequency range covering the four frequency bands of the 4-channel mini-multiplexer. The output circuits of the 4-channel mini-multiplexer comprises the four mini-filter's output lines: 108, 108a, 108b, 108c, which serve as the four output lines for the 4-channel mini-multiplexer as shown in Fig. 10a.

Fig. 11 shows an example of a 4-pole HTS filter in the strip line form with four rectangular self-resonant spiral resonator with rounded corners as its frequency selecting element. Fig. 11a is a cross sectional view of the filter and Fig. 11b is a view as seen along lines and arrows A-A of Fig 11a. Numeral 110 is a dielectric substrate with a front side and a back side. The HTS filter circuit 113 is disposed on the front side of 110 as seen in Fig 11b. As shown in Fig. 11a, a blank HTS film 111 is disposed on the back side of 110 serving as one of the two ground planes for the strip line, a gold film 112 is disposed on top of 111 serving as the contact to the filter's case, which is not shown in the figures. Numeral 110a is a dielectric superstrate with a front side and a back side. As shown in Fig. 11a, a blank HTS film 111a is disposed on the back side of 110a serving as one of the two ground planes for the strip line, a gold film 112a is disposed on top of 111a
serving as the contact to the filter's case. Although not shown, it is understood that the mirror image of HTS filter circuit 113 could also be disposed on the front side of superstrate 110a and the two mirror image circuits aligned. As shown in Fig. 11b, the input and output strip lines 114, 114a are extended into broader microstrip lines 115, 115a on the substrate 110. Gold contact pads 116, 116a are disposed on 115, 115a, respectively, providing the connections to the filter case. The line width of 114, 114a, 115, 115a are selected in such a way to achieve the impedance matching at the input and the output.

Example

A mini-filter having the circuit layout shown in Figure 12 was prepared. It is a 3-pole 0.16 GHz bandwidth centered at 5.94 GHz mini filter in the microstrip line form. It consists of three rectangular self-resonant spiral resonators, 121, 121a, 121b. each having a tuning pad at the center. 122, 122a, 122b. parallel lines input and output coupling circuits, 123, 123a. The substrate 120 is made of LaAlO₃ with dimensions of 5.250 mm x 3.000 mm x 0.508 mm. The HTS thin film is Tl₂Ba₂CaCu₂O₈. The filter was fabricated and tested at 77 K. The measured S-parameter data are shown in Fig. 13, in which Fig. 13a shows S₁₁ versus frequency data. Fig. 13b shows S₁₂ versus frequency data. Fig. 13c shows S₁₁ versus frequency data. Fig. 13d shows S₂₂ versus frequency data. The measured data were in agree with the computer simulated data very well, the center frequency difference is less than 0.1%.

The mini-filter was also tested under two different conditions. That is, it was tested in the air with a relative dielectric constant of approximately 1.00, and also was tested in liquid nitrogen with a relative dielectric constant of approximately 1.46. Fig. 14 shows the S₂₁ versus frequency data, in which 131 is for the air data and 132 is for the liquid nitrogen data. The results indicate a frequency shift of only 0.04 GHz corresponding to 0.67% of the center frequency. The very small frequency shift is an indirect indication of most electromagnetic fields confinement beneath the spiral resonators.

The filter was also tested under power from 0.01 watt up to 0.2 watt cw rf power without measurable changes in its S₁₁. The Third Order Intercept (TOI) test data are shown in Fig. 15 in a log-log scale, in which 141 is the best fit straight line with a slop of 1 for the sum of two fundamental frequencies. 142 is the best fit straight line with a slop of 3 for the third order intermodulation. The intercept of these two lines gives a TOI of 39.5 dBm. Both the power and the TOI test data are in line with similar conventional HTS filters with the same line width and ten times larger size. These test results confirmed that the one order of magnitude
reduction of size does not degrade the mini-filter's performance compared to the conventional design.
WHAT IS CLAIMED IS:

1. A self-resonant spiral resonator comprising a high temperature superconductor line oriented in a spiral fashion such that adjacent lines are spaced from each other by a gap distance which is less than the line width; and wherein a central opening in the resonator has a dimension approximately equal to that of the gap distance in each dimension.

2. The resonator of claim 1. wherein the resonator has a shape selected from the group consisting of rectangular, rectangular with rounded corners, polygon, and circular.

3. A high temperature superconductor mini-filter comprising:
 a) a substrate having a front side and a back side;
 b) at least two self-resonant spiral resonators in intimate contact with the front side of the substrate;
 c) at least one inter-resonator coupling mechanism;
 d) an input coupling circuit comprising a transmission line with a first end connected to an input connector of the filter and a second end coupled to a first one of said at least two self-resonant spiral resonators;
 e) an output coupling circuit comprising a transmission line with a first end connected to an output connector of the filter and a second end coupled to a last one of said at least two self-resonant spiral resonators;
 f) a blank high temperature superconductor film disposed on the back side of the substrate as a ground plane; and
 g) a blank gold film disposed on said blank high temperature superconductor film.

4. The mini-filter of claim 3. further comprising:
 a) a superstrate having a front side and a back side, wherein the front side of the superstrate is positioned in intimate contact with the at least two resonators disposed on the front side of the substrate;
 b) a second blank high temperature superconductor film disposed at the back side of the superstrate as a ground plane; and
 c) a second blank gold film disposed on the surface of said second high temperature superconductor film.
5. The mini-filter of claim 4, wherein the superstrate is smaller in size than the substrate and wherein the first end of the input coupling circuit and the first end of the output coupling circuit are each located outside the dimensions of the superstrate.

6. The mini-filter of claim 3, wherein the high temperature superconductor film is selected from the group consisting of YBa$_2$Cu$_3$O$_7$, Tl$_2$Ba$_2$CaCu$_2$O$_y$, TlBa$_2$Ca$_2$Cu$_3$O$_x$, (TlPb)Sr$_2$CaCu$_2$O$_y$, and (TlPb)Sr$_2$Ca$_2$Cu$_3$O$_y$.

7. The mini-filters of claim 3, wherein the substrate and the superstrate are each independently selected from the group consisting of LaAlO$_3$, MgO, LiNbO$_3$, sapphire or quartz.

8. The mini-filter of claim 3, wherein all of the at least two self-resonant spiral resonators have an identical configuration selected from the group consisting of rectangles, rectangles with rounded corners, polygons having more than four corners, and circles.

9. The mini-filter of claim 8, wherein a conductive pad is disposed at the center of each of the at least two self-resonant spiral resonators.

10. The mini-filter of claim 8, wherein said filter contains an odd number of self-resonant spiral resonators with one resonator being centrally located and wherein the centrally located resonator comprises a double spiral form resonator comprising two connected spiral lines with a 180-degree rotational symmetry.

11. The mini-filter of claim 3, wherein said filter contains an odd number of self-resonant spiral resonators with one resonator being centrally located and wherein the centrally located resonator comprises a double spiral form resonator comprising two connected spiral lines with a 180-degree rotational symmetry.

12. The mini-filter of claim 3 wherein the input or output coupling circuit in the parallel lines form comprise:
 a) a microstrip line.
 b) a gap between the said microstrip line and the first resonator (for the input coupling circuit) or the last resonator (for the output coupling circuit) of the said mini-filter.
 c) a gold pad at the end the microstrip line.
13. A high temperature superconductor mini-multiplexer, comprising:
 a) at least two mini-filters, each mini-filter having a frequency band
 which is different from and does not overlap with the frequency
 bands of each other mini-filter;
 b) a distribution network with one common port as an input for the
 mini-multiplexer and multiple distributing ports, wherein one
 distributing port is connected to a corresponding input of one mini-
 filter;
 c) a multiple of output lines, wherein one output line is connected to a
 corresponding output of one mini-filter;
 d) wherein each of said at least two mini-filters comprises:
 (1) a substrate having a front side and a back side;
 (2) at least two self-resonant spiral resonators in intimate
 contact with the front side of the substrate;
 (3) at least one inter-resonator coupling mechanism;
 (4) an input coupling circuit comprising a transmission line
 with a first end connected to a corresponding one said
 distribution port of the multiplexer and a second end
 coupled to a first one of said at least two self-resonant spiral
 resonators;
 (5) an output coupling circuit comprising a transmission line
 with a first end connected to a corresponding output line for
 the multiplexer and a second end coupled to a last one of
 said at least two self-resonant spiral resonators;
 (6) a blank high temperature superconductor film disposed on
 the back side of the substrate as a ground plane; and
 (7) a blank gold film disposed on said blank high temperature
 superconductor film.

14. The mini-multiplexer of claim 13, wherein each of said mini-filters further
 comprise:
 a) a superstrate having a front side and a back side, wherein the front
 side of the superstrate is positioned in intimate contact with the at
 least two resonators disposed on the front side of the substrate:
 b) a second blank high temperature superconductor film disposed at
 the back side of the superstrate as a ground plane: and
 c) a second blank gold film disposed on the surface of said second
 high temperature superconductor film.
15. The mini-multiplexer of claim 13, wherein the high temperature superconductor film is selected from the group consisting of $\text{YBa}_2\text{Cu}_3\text{O}_y$, $\text{Tl}_2\text{Ba}_2\text{Ca}_4\text{Cu}_3\text{O}_{8+}$, $\text{TlBa}_2\text{Ca}_2\text{Cu}_3\text{O}_{6+}$, $(\text{TIPb})\text{Sr}_2\text{CaCu}_2\text{O}_7$, and $(\text{TIPb})\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_{6+}$.

16. The mini-multiplexer of claim 13, wherein the substrate is selected from the group consisting of LaAlO_3, MgO, LiNbO_3, sapphire or quartz.
Fig. 1a

Fig. 1b

Fig. 1 Prior art
Fig. 14
Fig. 15
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 H01P1/203 H01P7/08 H01P1/213

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 6 H01P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A WOLFF I ET AL: "MODELING OF CIRCULAR SPIRAL INDUCTORS FOR MMICS" HANDBUCH DER ANORGANISCHEN CHEMIE,DE,LEIPZIG, VERLAG HIRZEL, vol. BAND 4, page 123-126 XP000012386 figures 1,2,7 1-3,13

A PETTENPAUL ET AL: "CAD MODELS OF LUMPED ELEMENTS ON GAAS UP TO 18 GHz" IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 36, no. 2, February 1988 (1988-02), pages 294-304, XP002122372 IEEE INC. NEW YORK, US ISSN: 0018-9480 page 299, right-hand column, line 45 - page 300, left-hand column, line 10; figure 1C; table 2 1-3,13

X Further documents are listed in the continuation of box C.
X Patent family members are listed in annex.

* Special categories of cited documents:
* A" document defining the general state of the art which is not considered to be of particular relevance
* E" earlier document but published on or after the international filing date
* L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* O" document referring to an oral disclosure, use, exhibition or other means
* P" document published prior to the international filing date but later than the priority date claimed

** T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
* A" document member of the same patent family

Date of the actual completion of the international search
12 November 1999

Date of mailing of the international search report
24/11/1999

Name and mailing address of the ISA
European Patent Office, P. B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Te 31 651 icp nl, Fax: (+31-70) 340-3016

Authorized officer
Den Otter, A

Form PCT/SA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GALKIN V A: "A MINIATURE STRIP FILTER BASED ON PLANE SPIRALS*" TELECOMMUNICATIONS AND RADIO ENGINEERING, US, BEGELL HOUSE, INC., NEW YORK, NY, vol. 45, no. 6, page 82-84 XP000241238 ISSN: 0040-2508 page 84, line 8 - line 11; figure 1</td>
<td>1-3,13</td>
</tr>
<tr>
<td>A</td>
<td>US 4 999 597 A (GAYNOR) 12 March 1991 (1991-03-12) column 2, line 25 - line 40; figure 1</td>
<td>1-3,13</td>
</tr>
<tr>
<td>A</td>
<td>US 5 506 551 A (KANEKO ET AL.) 9 April 1996 (1996-04-09) column 10, line 8 - column 11, line 14; figures 17-20</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>MANSOUR R R: "DESIGN OF SUPERCONDUCTIVE MULTIPLEXERS USING SINGLE-MODE AND DUAL-MODE FILTERS" IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, US, IEEE INC. NEW YORK, vol. 42, no. 7, PART 02, page 1411-1418 XP000457511 ISSN: 0018-9480 page 1417, right-hand column, line 1 - line 11</td>
<td>6,13,15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 4999597 A</td>
<td>12-03-1991</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7022821 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2820001 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7046003 A</td>
</tr>
</tbody>
</table>