[72]	Inventors	Edward Franklin Guenard 2210 Barbara Avenue; Lionel A. Chretien, 710 Ridgeview Terrace, both of Kamloops, British Columbia, Canada
[21]	Appl. No.	818,684
[22]	Filed	Apr. 23, 1969
[45]	Patented	June 1, 1971

[54] DIAMOND DRILL CORE TRAYS 5 Claims, 14 Drawing Figs.
[52] U.S. Cl... 220/22 206/65, 206/72, 220/23.4
[51] Int. Cl... B65d 25/04, B65d 25/10, B65d 1/36
[50] Field of Search 220/20,22,
23.4; 206/65, 72

[56]	References Cited		
	UNIT	ED STATES PATENTS	
2,343,936	3/1944	Showers	206/72X
3,196,229	7/1965	Glass.	206/65
3,272,329	9/1966	Mehalov.	220/20X
3,343,705	9/1967	Erickson	220/23.4
3,467,247	9/1969	Weiss	206/72

Primary Examiner-George E. Lowrance Attorney-Polachek \& Saulsbury

ABSTRACT: Trays adapted for supporting cylindrical mineral earth cores have cylindrically curved compartments with parallel flutes to support the cores laterally and underneath. Trays are made partially or entirely of plastic material. They may be made in different colors. Trays can be made of individual rails interlocked with each other and with an underlying baseboard. Covers fit snugly on trays which have rabbeted sidewalls.

SHEET 1 OF 2

SHEET 2 OF 2

DIAMOND DRILL CORE TRAYS

This invention concerns trays or boxes used for storing, classifying and shipping mineral earth cores. These are of particular utility in the mining industry, in mineralogical explorations, and the like. Heretofore trays used for storing and shipping mineral earth cores have been flat, rectangular wooden boxes with spaced slats defining open top compartments in which the fragile cores are placed. The compartments are rectangular in cross section and the cores are cylindrical. The cores fit loosely. As a result the cores frequently break up into small fragments when the trays are shipped. This is very objectionable. Furthermore the wooden loaded or unloaded trays frequently break when handled and while in shipment. The cores also break up. The present invention is directed at overcoming the above and other difficulties and disadvantages by providing trays or boxes for mineral earth cores of improved structure.
According to the invention a strong, lightweight tray is provided which can be made of plastic material and can be produced on known types of plastic working machinery by injection molding, extrusion, vacuum forming, pressing, casting and the like. The tray has a plurality of flutes, defining compartments with cylindrical bottoms to support the cylindrical cores. Sidewalls and bottom of the tray are integrally formed therewith to define a rigid, unitary structure. Ends of the tray can be attached to the inner and sidewalls or can be integrally formed therewith. Trays can be manufactured in different colors for classifying different kinds of mineral cores. The trays can be provided with covers which fit snugly on sides of the trays. The trays are arranged so that a multiplicity of them can be stacked in a compact array with ends exposed and bearing identifying cards or labels. The cards can be removably inserted in supporting clips or frames on ends of the trays.
The invention will be explained in further detail in connection with the drawings, wherein:

FIG. 1 is a fragmentary perspective view of a stacked array of trays embodying the invention.
FIG. 2 is an enlarged perspective view of a tray partially withdrawn from the stacked array of FIG. 1.
FIG. 3 is an enlarged cross-sectional view taken on line 3-3 of FIG. 1 showing details of a first form of tray and an associated cover, part of which is broken away.

FIG. 4 is a cross-sectional view similar to FIG. 3, but on a reduced scale showing a second form of tray.
FIGS. 5, 6, 7 and 8 are exploded end elevational views, partially in section of third, fourth, fifth and sixth forms respectively of different trays.
FIG. 9 is a reduced fragmentary perspective view of the bottom of the sixth form of tray shown in FIG. 8.
FIG. 10 is a perspective view of a seventh form of tray.
FIG. 11 is an enlarged perspective view partially in section taken on line 11-11 of FIG. 10.
FIG. 12 is a fragmentary cross-sectional view on a reduced scale similar to a portion of FIG. 3, showing an eighth form of tray,
FIG. 13 and FIG. 14 are cross-sectional views of ninth and tenth forms of trays.
Referring first to FIGS. 1 and 2, there is shown a shed 20 in which is stacked array of trays 25 . The trays contain mineral earth cores 26 obtained by diamond drilling in or at mine sites. The cylindrical cores 26 are disposed end-to-end and side-byside in compartments 28 of each tray 25. FIGS. 2 and 3 show one form of tray structure to best advantage. The tray has a bottom wall $\mathbf{3 0}$ which is flat at its underside 32. A plurality of flutes 32 extend upwardly from wall 30 in spaced disposition to define partitions between compartments 28. The bottom 34 of each compartment is cylindrically curved. The cores 26 seat snugly in the curved bottoms 34 and are laterally in contact with inner opposing sides 36 of the compartments. Outer lateral sidewalls 40 are integral with bottom wall 30 and have rabbets or grooves 42 extending the full lengths of sidewalls 40. These rabbets will receive sidewalls 44 of a rectangular cover 50 which will fit snugly on the tray. identically numbered. Principal differences are in the ways in which the rails of the trays interlock with each other to strengthen the tray structure.
In tray 25C of FIG. 6, opposite ends of crosshead 69c of 5 some T-shaped rails $32 c$ are formed with dovetail tenons 80.
These tenons fit slidably into dovetail grooves 82 formed in some T-shaped raiss $32 c$ are formed with dovetail tenons 80.
These tenons fit slidably into dovetail grooves 82 formed in ends of crossheads $69 c^{\prime}$ of one or more other 'T-shaped rails
$32 c^{\prime}$. The tenons 80 also engage in dovetail grooves 84 formed ends of crossheads $69 c^{\prime}$ of one or more other T-shaped rails
$32 c^{\prime}$. The tenons 80 also engage in dovetail grooves 84 formed in lower portions $76 c$ of side rails 40 c . Screws 64 attach baseboard 66 to rails $32 c, 32 c^{\prime}$. End plates of walls $46 c$ are attached to opposite ends of the rails to complete the tray. By
the arrangement described the rails interlock and are thus tached to opposite ends of the rails to complete the tray. By
the arrangement described the rails interlock and are thus prevented from separating laterally. The dovetail tenons and prevented from separating laterally. The dovetail tenons and
grooves are interlocked by sliding the rails longitudinally 75 parallel to each other. of the cover will fit flush with flat upper ends 54 of the partitions. Cover $\mathbf{5 0}$ may also be made of plastic material.

The bottom, side and inside walls of the tray define a unitary structure which can be extruded as a channeled member of indefinite length. The extrusion can be polyvinyl chloride or other tough, durable plastic. It can have any desired color. By the arrangement described it is apparent that the tray provides effective support and protection for the fragile cores 26. When covers 50 are applied the closed, covered boxes are shipped long distances by a variety of transportation means and the cores will arrive intact and unbroken. Cards 51 bearing indicia 53 can be inserted in clips 55 on end walls 46 , to identify the cores 26 in the tray.

FIG. 4 shows a tray 25A which is similar to tray 25 and corresponding parts are identically numbered. Tray 25A has four interior flutes or partitions 32 defining with lateral sidewalls 40 five compartments 28 as contrasted with tray 25 which has three interior flutes or partitions and only four interior compartments. The bottom wall 30, interior partitions 32 and sidewalls $40 a$ are all integrally formed as a unitary structure. End walls $46 a$ are attached by screws or may be cemented or otherwise fused in place. Sidewalls $40 a$ are higher than partitions 32. Cover 50 fits on tray 25A.
FIG. 5 shows a tray 25 B made in part of rigid, plastic rails $32 b, 40 b$. Each of the interior rails $32 b$ has lateral concave sides 60 the lower portions of which are cylindrically curved and the upper portions of which are straight. The bottom surfaces 62 of the rails are flat and are secured by screws 64 to baseboard 66 which can be a rectangular plywood board. Inside the tray the rails abut each other at flat, vertical sides 68. Rails $32 b$ are generally T -shaped in cross section with crossheads 69 at the bottom and pedestals 70 extending upwardly. The rails $\mathbf{3 2 b}$ define long, parallel compartments $28 b$ inside the tray extending the full length of the tray just like compartments 28 in trays 25 and 25A. Side rails $40 b$ are generally L -shaped in cross section with depending narrow flanges 72 abutting lateral edges of baseboard 66 and receiving screws 74 . Screws 75 extend upwardly from the baseboard into lower sections 76 of rails 40 b . Inner sides 60^{\prime} of rails $40 b$ are concave and cylindrically curved like sides 60 of rails $32 b$ to define compartments with adjacent rails. End walls or plates $46 b$ may be attached to ends of the rails $32 b, 40 b$ and to ends of baseboard 66 by screws 73 inserted into screwholes 77, 78.
A particular advantage of the structure of tray 25 B is the modular arrangement of rails. As many rails $32 b$ as desired can be assembled in side-by-side disposition to make a tray of any desired number of compartments. Great economies in manufacture are effected by mass producing rails $32 b$ and $40 b$ as extrusions of indefinite length subsequently cut into any desired lengths.
FIGS. 6, 7 and 8 show trays 25C, 25D, and 25E which are generally similar to tray 25B and corresponding parts are

End walls 46 of tray 25 are shown attached to ends of the partitions and sidewalls of the tray by screws 48 inserted in screwholes 49. The end walls $\mathbf{4 5}$ of cover 50 will overlap end walls or plates $\mathbf{4 6}$ of the tray and flat, rectangular top wall 52

In tray 25D of FIG. 6, rabbets 86 are formed at opposite ends of crossheads $69 d$ of some T-shaped rails $32 d$. These rabbets receive undercut sides $\mathbf{8 6}^{\prime}$ of one or more other T-shaped rails $\mathbf{3 2} d^{\prime}$. Undercut sides $\mathbf{8 8}$ of lower portions of L-shaped side rails $40 d$ interfit with rabbets 86 . Screws 64, 74 and $75 d$ secure the rails to baseboard 66 and end walls $46 a$ are attached to opposite ends of the rails to complete the tray.

In tray 25 E , dovetail grooves 90 are formed in the flat bottoms $62 e$ of T-shaped rails $32 e$. These grooves receive dovetail tenons 92 integrally formed on baseboard 66e; see FIG. 9. The tenons are disposed parallel to each other and extend longitudinally of the baseboard. They are spaced apart transversely of the baseboard. The baseboard is formed of plastic material and can be extruded or otherwise formed in indefinite lengths to be cut subsequently to desired lengths and widths. Further dovetail grooves 90^{\prime} are formed in bottoms of L-shaped side rails $40 e$. The tray 25 E has the advantage that the rails and baseboard are entirely made of plastic material and the use of screws to attach the rails to the baseboard is avoided. End walls $46 e$ can be cemented or otherwise attached to the rails and baseboard to complete the tray.

FIGS. 10 and 11 show a tray 25F which is molded as a unitary structure of plastic material. The end walls 46 f are integral with the ends of sidewalls $40 f$ and inner partitions or flutes 32f. Partitions $32 f$ are joined by integral cylindrically curved webs 91. The compartments 28 receive cylindrical mineral earth cores 26 . Rabbets 42 seat sides of a cover such as cover 50 shown in FIGS. 3 and 4. Tray $25 f$ is very light in weight and is fabricated with a minimum use of material. The rounded bottom 92 of webs 91 are coplanar in bottom plane P with bottom edges $40 f^{\prime}$ of sidewalls $49 f$, and with bottom edges $46 f^{\circ}$ of end walls $46 f$. This insures a very strong tray which can withstand much rough handling, insertion and removal of heavy cores and repeated reuse. The tray can be made in any desired color depending on the color coding required for any system of core classification. Identification card 51 fits removably in integral frame $55 f$ on end wall $46 f$.

Tray 25G, a part of which is shown in FIG. 12 has sidewalls $40 g$, interior partitions $32 g$ and bottom $66 g$ made entirely of molded plastic material as a unitary structure. End walls $46 g$ are subsequently attached to opposite ends of the sidewalls, partitions and bottom of tray. Cylindrical and triangular chambers or passages 96,97 and 98 are provided to save in use of plastic material and to lighten the weight of the tray without materially reducing the strength of the tray.

Tray 25 H shown in FIG. 13 is constructed like tray 25 E of FIG. 8, except that triangular passages 97 ' and 98 ' are formed in sidewalls or rails $40 h$ and in interior partitions or rails $32 h$.

