发明名称
三银热致变色玻璃及其制备方法

摘要
本发明涉及一种三银热致变色玻璃及其制备方法。三银热致变色玻璃包括玻璃基片以及依次形成于该玻璃基片上的第一介质层、第一底部保护层、第一红外反射层、第一上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上部保护层、第三介质层、第三底部保护层、第三红外反射层、第三上部保护层与第四介质层，其中该第一介质层、该第二介质层、该第三介质层与该第四介质层的其中之一包括二氧化钒基薄膜层，另外三个为复合介质层。本发明还提供一种三银热致变色玻璃的制备方法。上述三银热致变色玻璃具有可对室内温度与光线进行智能调节的优点。
1. 一种三银热致变色玻璃，其包括玻璃基片，其特征在于，该三银热致变色玻璃还包括依次形成于该玻璃基片上的第一介质层、第一底部保护层、第一红外反射层、第一上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上部保护层、第三介质层、第三底部保护层、第三红外反射层、第三上部保护层与第四介质层，其中该第一介质层、该第二介质层、该第三介质层与该第四介质层的其中一个包括二氧化钒基薄膜层，另外三个为复合介质层。

2. 如权利要求1所述的三银热致变色玻璃，其特征是：该二氧化钒基薄膜层是由掺钨、铌或钼的二氧化钒形成，其中钨、铌或钼的掺杂量为二氧化钒中钒的重量的0.5%~3%。

3. 如权利要求2所述的三银热致变色玻璃，其特征是：该二氧化钒基薄膜层是由掺钨的二氧化钒形成，且该二氧化钒基薄膜层的厚度为20~120nm。

4. 如权利要求1所述的三银热致变色玻璃，其特征是：该第一红外反射层、该第二红外反射层或该第三红外反射层是由银或铜或银合金形成，且该第一红外反射层、该第二红外反射层或该第三红外反射层的厚度为5~25nm。

5. 如权利要求1所述的三银热致变色玻璃，其特征是：该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层是由钛、镍铬合金或镍铬钛合金形成，且该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层的厚度为0.5~5nm。

6. 如权利要求1所述的三银热致变色玻璃，其特征是：该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层是由掺铝氧化锌形成，且该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层的厚度为2~25nm。

7. 一种三银热致变色玻璃的制备方法，其包括以下步骤：

 提供玻璃基片；以及

 通过磁控溅射镀膜的方式依次在该玻璃基片上沉积第一介质层、第一底部保护层、第一红外反射层、第一上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上部保护层、第三介质层、第三底部保护层、第三红外反射层、第三上部保护层与第四介质层，其中该第一介质层、该第二介质层、该第三介质层与该第四介质层的其中一个包括二氧化钒基薄膜层，另外三个为复合介质层。

8. 如权利要求7所述的三银热致变色玻璃的制备方法，其特征是：在沉积二氧化钒基薄膜层时沉积的温度为350~480℃，沉积其他层时的温度为室温。

9. 如权利要求7所述的三银热致变色玻璃的制备方法，其特征是：磁控溅射镀膜沉积各层时的温度为室温，在沉积完各层后，还包括对形成有各层的玻璃基片进行钢化处理，其中，钢化处理的温度为650~700℃，时间为1~10分钟。

10. 如权利要求7所述的三银热致变色玻璃的制备方法，其特征是：磁控溅射镀膜沉积各层时的温度为室温，在沉积完各层后，还包括对形成有各层的玻璃基片进行退火处理，其中，退火的温度为400~650℃，退火时间为20分钟至2小时。
三银热致变色玻璃及其制备方法

技术领域
[0001] 本发明涉及一种节能玻璃，尤其是一种三银热致变色玻璃及其制备方法。

背景技术
[0002] 随着国家节能减排政策的执行力加强以及人们对低碳环保意识的加强，以低辐射玻璃为代表的节能玻璃在门窗、玻璃幕墙中的应用越来越广泛。低辐射玻璃家族中，节能性能优异的三银低辐射玻璃得到大量应用。
[0003] 然而，现有的三银低辐射玻璃还存在一定的局限性，无法根据环境的变化实现对室内温度与光线的智能化调节，如其一旦安装好，其光学特性就固定下来，不能随环境条件的变化而改变，因此在舒适性和节能效果上仍有所欠缺。

发明内容
[0004] 鉴于上述状况，有必要提供一种可对室内温度与光线进行智能调节的三银热致变色玻璃及其制备方法。
[0005] 本发明提供一种三银热致变色玻璃，其包含玻璃基片以及依次形成于该玻璃基片上的第一介质层、第一底部保护层、第一红外反射层、第一上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上部保护层与第四介质层，其中该第一介质层、该第二介质层、该第三介质层与该第四介质层的其中之一包括二氧化钒基薄膜层，另外三个为复合介质层。
[0006] 该二氧化钒基薄膜层是由掺钕、铌或钼的二氧化钒构成，其中钕、铌或钼的掺杂量为二氧化钒中钒的质量的 0.5%~3%。
[0007] 该二氧化钒基薄膜层是由掺钕的二氧化钒构成，且该二氧化钒基薄膜层的厚度为 20~120nm。
[0008] 该第一红外反射层、该第二红外反射层或该第三红外反射层是由银或铜化镍合金形成，且该第一红外反射层、该第二红外反射层或该第三红外反射层的厚度为 5~25nm。
[0009] 该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层是铁镍或镍铬镍合金形成，且该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层的厚度为 0.5~5nm。
[0010] 该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层是由掺铝氧化锌构成，且该第一底部保护层、该第一上部保护层、该第二底部保护层、该第二上部保护层、该第三底部保护层或该第三上部保护层的厚度为 2~25nm。
[0011] 本发明还提供一种三银热致变色玻璃的制备方法，其包括以下步骤：提供玻璃基片；通过磁控溅射镀膜的方式依次在该玻璃基片上沉积第一介质层、第一底部保护层、第一红外反射层、第一上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上
部分保护层、第三介质层、第三底部保护层、第三红外反射层、第三上部保护层与第四介质层，其中该第一介质层、该第二介质层、该第三介质层与该第四介质层的其中之一包括二氧化钒基薄膜层，另外三个为复合介质层。

[0012] 在沉积二氧化钒基薄膜层时沉积的温度为 350°~480°C，沉积其他层时的温度为室温。

[0013] 磁控溅射镀膜沉积各层时的温度为室温，在沉积完各层后，还包括对形成有各层的玻璃基片进行钢化处理。

[0014] 磁控溅射镀膜沉积各层时的温度为室温，在沉积完各层后，还包括对形成有各层的玻璃基片进行退火处理，其中，退火的温度为 400°~650°C，退火时间为 20 分钟至 2 小时。

[0015] 上述三银热致变色玻璃在保留三银低辐射玻璃优异的隔热性能的基础上，还可利用二氧化钒基薄膜层在室温附近发生的由于半导体相与金属相的可逆转变而表现出来的对阳光辐射能量透过的变化，实现依据环境温度的改变而改变三银热致变色玻璃的光热性能；这使得三银热致变色玻璃在应用于建筑材料时，可对室内温度与光线进行智能调节，进而不仅可增加室内环境的舒适性而且还可降低能耗。

附图说明

[0016] 图 1 是本发明第一实施例的三银热致变色玻璃示意图。

[0017] 图 2 是本发明第二实施例的三银热致变色玻璃示意图。

[0018] 图 3 是本发明第三实施例的三银热致变色玻璃示意图。

[0019] 图 4 是本发明第四实施例的三银热致变色玻璃示意图。

具体实施方式

[0020] 下面结合附图及实施例对本发明的三银热致变色玻璃及其制备方法作进一步的详细说明。

[0021] 请参见图 1，本发明第一实施例的三银热致变色玻璃 100 包括玻璃基片 10 与依次形成于玻璃基片 10 上的第一介质层 11、第一底部保护层 12、第一红外反射层 13、第一上部保护层 14、第二介质层 15、第二底部保护层 16、第二红外反射层 17、第二上部保护层 18、第三介质层 19、第三底部保护层 20、第三红外反射层 21、第三上部保护层 22 与第四介质层 23。其中第一介质层 11、第二介质层 15、第三介质层 19 与第四介质层 23 的其中之一可包括二氧化钒(V2O5)基薄膜层，另外三个为复合介质层。

[0022] 具体在本实施例中，第一介质层 11 是二氧化钒基薄膜层；第二介质层 15、第三介质层 19 与第四介质层 23 是复合介质层。其中，第一介质层 11 可由掺铟、铋或锌的二氧化钒形成，其中铟、铋或锌的掺杂量可为二氧化钒中钒的质量的 0.5%~3%；优选地，第一介质层 11 是由掺铟的二氧化钒形成。并且，此时第一介质层 11 的厚度可为 20~120 纳米(nm)。第二介质层 15、第三介质层 19 与第四介质层 23 可由金属或非金属的氧化物或氮化物来形成，例如氧化钛(TiO2)、锌钛氧化物(ZnSnO3)、氧化锌(SnO2)、氧化锌(ZnO)、氧化硅(SiO2)、氧化铟(Ta2O5)、氧化铌(Bi2O3)、氧化铝(Al2O3)、氧化铌(Nb2O5)、氮化硅(Si3N4) 或硅铝氧化物(ATO) 来形成。并且第二介质层 15 的厚度可为 15~45nm；第三介质层 19 的厚度可为 55~80nm；第四介质层 23 的厚度可为 25~60nm。
第一红外反射层 13、第二红外反射层 17 与第三红外反射层 21 可分别由银 (Ag) 或铜银 (AgCu) 合金形成。第一红外反射层 13、第二红外反射层 17 与第三红外反射层 21 的厚度可分别为 5~25nm。

第一底部保护层 12、第一上部保护层 14、第二底部保护层 16、第二上部保护层 18、第三底部保护层 20 与第三上部保护层 22 可分别由金属或金属合金形成，例如钛 (Ti)、镍铬 (NiCr) 合金或镍钛 (NiTi) 合金；且第一底部保护层 12、第一上部保护层 14、第二底部保护层 16、第二上部保护层 18、第三底部保护层 20 与第三上部保护层 22 的厚度可分别为 0.5~5nm。在另一实施例中，第一底部保护层 12、第一上部保护层 14、第二底部保护层 16、第二上部保护层 18、第三底部保护层 20 与第三上部保护层 22 还可分别由掺铝氧化锌 (AZO) 形成，且此时第一底部保护层 12、第一上部保护层 14、第二底部保护层 16、第二上部保护层 18、第三底部保护层 20 与第三上部保护层 22 的厚度可分别为 2~25nm。

上述三银热致变色玻璃 100 中的第一介质层 11 是二氧化钒基薄膜层。由于二氧化钒是一种具有相变特性的功能材料，当温度低于相变点时，呈单斜晶系结构，表现为半导体特性；当温度高于相变点时，转变为四方金红石结构，表现为金属特性。在从低温半导体相到高温金属相的转变过程中，可见光区域的透过率变化较大，但红外光区域的透过率变化显著。高温金属相的红外区域透过率相比低温半导体相有显著下降，特别对于波长大于 2500nm 的中远红外区域几乎不能透过。并且二氧化钒的这种低温半导体相与高温金属相之间的转变是可逆的。二氧化钒发生半导体相与金属相之间的可逆转变的温度点为 68°C，对其进行合适的掺杂，在晶格中引入预定的金属离子 (本实施例中为钨、铟或锗) 能降低相变温度点至室温附近。因此，上述三银热致变色玻璃 100，在保持了三银低辐射玻璃优越的隔热性能的同时，又能根据环境温度的变化来改变阳光红外辐射能量透过，当环境温度较低时，能让阳光尽量透过从而提高室内温度、降低供暖所需的能耗；当环境温度较高时，又能屏蔽全部或部分阳光，进一步起到隔热的效果，降低制冷所需的能耗，从而实现对室内温度与光线的智能化控制与调节。因此，上述三银热致变色玻璃 100 在保留三银低辐射玻璃优异的隔热性能的基础上，还可利用二氧化钒基薄膜层在室温附近发生的由于半导体相与金属相的可逆转变而表现出来的对阳光辐射能量透过的变化，实现依据环境温度的改变而改变三银热致变色玻璃 100 的光热性能，这使得三银热致变色玻璃 100 在应用于建筑材料时，可对室内温度与光线进行智能调节，进而不仅可增加室内环境的舒适性而且可降低能耗。

请参见图 2，所示为本发明第二实施例的三银热致变色玻璃 300。三银热致变色玻璃 300 与上述三银热致变色玻璃 100 相似，其不同点在于；第二介质层 35 是二氧化钒基薄膜层，第一介质层 31、第三介质层 39 与第四介质层 43 是复合介质层；第二介质层 35 的厚度可为 20~120 纳米，第一介质层 31 的厚度可为 15~45nm；第三介质层 39 的厚度可为 55~80nm；第四介质层 43 的厚度可为 25~60nm。

请参见图 3，所示为本发明第三实施例的三银热致变色玻璃 500。三银热致变色玻璃 500 与上述三银热致变色玻璃 100 相似，其不同点在于；第三介质层 59 是二氧化钒基薄膜层，第一介质层 51、第二介质层 55 与第四介质层 63 是复合介质层；第三介质层 59 的厚度可为 20~120 纳米，第一介质层 51 的厚度可为 15~45nm；第二介质层 55 的厚度可为 55~80nm；第四介质层 63 的厚度可为 25~60nm。
请参见图4，所示为本发明第四实施例的三银热变色玻璃700。三银热变色玻璃700与三银热变色玻璃100相似，其不同点在于：第四介质层83是二氧化硅基薄膜层；第一介质层71、第二介质层75与第三介质层79是复合介质层；第四介质层83的厚度可为20~120纳米，第一介质层71的厚度可为15~45nm；第二介质层75的厚度可为55~80nm；第三介质层79的厚度可为25~60nm。

本发明还提供一种三银热变色玻璃的制备方法，其首先是提供玻璃基片。其中，玻璃基片一般需要清洗干净、烘干，然后置于真空腔室镀膜区域。

接着，通过磁控溅射镀膜的方式依次在该玻璃基片上沉积第一介质层、第一底部保护层、第一红外反射层、第一上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上部保护层、第三介质层、第三底部保护层、第三红外反射层、第三上部保护层与第四介质层，其中第一介质层、第二介质层、第三介质层与第四介质层的其中之一包括二氧化硅基薄膜层，另外三个为复合介质层。

在本实施例中，以第一介质层为二氧化硅基薄膜层为例进行说明。在磁控溅射镀膜时，第一介质层的沉积温度为350~480℃，而第一底部保护层、第一红外反射层、第一上部保护层、第二介质层、第二底部保护层、第二红外反射层、第二上部保护层、第三介质层、第三底部保护层、第三红外反射层、第三上部保护层与第四介质层的沉积温度为室温。本发明并不以此为限，在另一实施例中，第一介质层的沉积温度可为室温，即各层均是在室温下进行磁控溅射镀膜沉积形成的，但在沉积完各层后需对形成有各层的玻璃基片进行后处理，以使二氧化硅基薄膜具备热变色性能。后处理的方式可包括对形成有各层的玻璃基片进行钢化处理，其中钢化处理的温度为650~700℃，时间约1~10分钟；或者包括对形成有各层的玻璃基片进行退火处理，其中，退火的温度为400~650℃，退火时间为20分钟至2小时。

具体实施例

实施例1

一种三银热变色玻璃，其膜层结构由玻璃基片向外依次是：Si₃N₄(16nm)/AZO(15nm)/AgCu(12nm)/AZO(10nm)/VO₂/15nm/AZO(15nm)/AgCu(13.5nm)/AZO(10nm)/Si₃N₄(50nm)/AZO(15nm)/AgCu(15nm)/AZO(10nm)/Si₃N₄(34nm)。

制备这种三银热变色玻璃的方法依次是：

（1）玻璃基片清洗干净并吹干，置于真空溅射区；

（2）在玻璃基片上采用磁控溅射的方式沉积Si₃N₄层，所用靶材为SiAl旋转靶，电源为中频电源，功率为10~100KW，工艺气体为氩气和氮气的混合气体，在室温下沉积；

（3）在Si₃N₄层上面采用磁控溅射的方式沉积AZO层，所用靶材为陶瓷AZO旋转靶，电源为中频电源，功率为10~100KW，工艺气体为纯氩气或者氩气和氮气的混合气体，在室温下沉积；

（4）在AZO层上面采用磁控溅射的方式沉积AgCu层，所用靶材为AgCu平面靶，电源为直流加脉冲电源，功率为1~10KW，工艺气体为纯氩气，在室温下沉积；

（5）在AgCu层上面采用磁控溅射的方式沉积AZO层，所用靶材为陶瓷AZO旋转靶，电源为中频电源，功率为10~100KW，工艺气体为纯氩气或者氩气和氮气的混合气体，在室温下沉积。
在 AZO 层上面采用磁控溅射的方式沉积 VOₓ W 层，所用靶材为掺杂 W 的 VOₓ (W 掺杂比例为 1wt%) 陶瓷旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为氯气和氧气的混合气体，沉积时玻璃基片的温度为 400℃；

在 VOₓ W 层上面采用磁控溅射的方式沉积 AZO 层，所用靶材为陶瓷 AZO 旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为纯氩气或者氩气和氮气的混合气体，在室温下沉积；

在 AZO 层上面采用磁控溅射的方式沉积 AgCu 层，所用靶材为 AgCu 平面靶，电源为直流脉冲电源，功率为 1~10KW，工艺气体为纯氩气，在室温下沉积；

在 AgCu 层上面采用磁控溅射的方式沉积 AZO 层，所用靶材为陶瓷 AZO 旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为纯氩气或者氩气和氮气的混合气体，在室温下沉积；

在 AZO 层上面采用磁控溅射的方式沉积 Si₃N₄ 层，所用靶材为 SiAl 旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为氯气和氮气的混合气体，在室温下沉积；

在 Si₃N₄ 层上面采用磁控溅射的方式沉积 AZO 层，所用靶材为陶瓷 AZO 旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为纯氩气或者氩气和氮气的混合气体，在室温下沉积；

在 AZO 层上面采用磁控溅射的方式沉积 AgCu 层，所用靶材为 AgCu 平面靶，电源为直流脉冲电源，功率为 1~10KW，工艺气体为纯氩气，在室温下沉积；

在 AgCu 层上面采用磁控溅射的方式沉积 AZO 层，所用靶材为陶瓷 AZO 旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为纯氩气或者氩气和氮气的混合气体，在室温下沉积；

在 AZO 层上面采用磁控溅射的方式沉积 Si₃N₄ 层，所用靶材为 SiAl 旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为氯气和氮气的混合气体，在室温下沉积。

实施例 2

一种三银热致变色玻璃，其膜层结构由玻璃基片向外依次是 :Si₃N₄ (30nm)/NiCr (1.5nm)/Ag (10nm)/NiCr (1.5nm)/AZO (15nm)/Si₃N₄ (36nm)/AZO (15nm)/NiCr (2nm)/Ag (14nm)/NiCr (1nm)/VOₓ W (70nm)/NiCr (2nm)/Ag (16nm)/NiCr (2nm)/AZO (10nm)/Si₃N₄ (34nm)。

制备这种三银热致变色玻璃的方法依次是：

（1）玻璃基片清洗干净并吹干，置于真空溅射区；

（2）在玻璃基片上采用磁控溅射的方式沉积 Si₃N₄ 层，所用靶材为 SiAl 旋转靶，电源为中频电源，功率为 10~100KW，工艺气体为氯气和氮气的混合气体，在室温下沉积；

（3）在 Si₃N₄ 层上面采用磁控溅射的方式沉积 NiCr 层，所用靶材为金属 NiCr 平面靶，电源为直流脉冲电源，功率为 1~10KW，工艺气体为纯氩气，在室温下沉积；

（4）在 NiCr 层上面采用磁控溅射的方式沉积 Ag 层，所用靶材为 Ag 平面靶，电源为直流脉冲电源，功率为 1~10KW，工艺气体为纯氩气，在室温下沉积。

（5）在 Ag 层上面采用磁控溅射的方式沉积 NiCr 层，所用靶材为金属 NiCr 平面靶，电源为直流脉冲电源，功率为 1~10KW，工艺气体为纯氩气，在室温下沉积。

（6）在 NiCr 层上面采用磁控溅射的方式沉积 AZO 层，所用靶材为陶瓷 AZO 旋转靶，
电源为中频电源，功率为10~100kW，工艺气体为氩气或氮气和氮气的混合气体，在室温下沉积；
【0059】（7）在AZO层上面采用磁控溅射的方式沉积Si₃N₄层，所用靶材为SiAl旋转靶，电源为中频电源，功率为10~100kW，工艺气体为氩气和氮气的混合气体，在室温下沉积；
【0060】（8）在Si₃N₄层上面采用磁控溅射的方式沉积AZO层，所用靶材为陶瓷AZO旋转靶，电源为中频电源，功率为10~100kW，工艺气体为氩气或氮气和氮气的混合气体，在室温下沉积；
【0061】（9）在AZO层上面采用磁控溅射的方式沉积NiCr层，所用靶材为金属NiCr平面靶，电源为直流脉冲电源，功率为1~10kW，工艺气体为纯氩气，在室温下沉积；
【0062】（10）在NiCr层上面采用磁控溅射的方式沉积Ag层，所用靶材为Ag平面靶，电源为直流脉冲电源，功率为1~10kW，工艺气体为纯氩气，在室温下沉积；
【0063】（11）在Ag层上面采用磁控溅射的方式沉积NiCr层，所用靶材为金属NiCr平面靶，电源为直流脉冲电源，功率为1~10kW，工艺气体为纯氩气，在室温下沉积；
【0064】（12）在NiCr层上面采用磁控溅射的方式沉积V₂O₅层，所用靶材为掺杂W的V₂O₅（W掺杂比例为1.5wt%）陶瓷旋转靶，电源为中频电源，功率为10~100kW，工艺气体为氩气和氮气的混合气体，在室温下沉积；
【0065】（13）在V₂O₅层上面采用磁控溅射的方式沉积NiCr层，所用靶材为金属NiCr平面靶，电源为直流脉冲电源，功率为1~10kW，工艺气体为纯氩气，在室温下沉积；
【0066】（14）在NiCr层上面采用磁控溅射的方式沉积Ag层，所用靶材为Ag平面靶，电源为直流脉冲电源，功率为1~10kW，工艺气体为纯氩气，在室温下沉积；
【0067】（15）在Ag层上面采用磁控溅射的方式沉积NiCr层，所用靶材为金属NiCr平面靶，电源为直流脉冲电源，功率为1~10kW，工艺气体为纯氩气，在室温下沉积；
【0068】（16）在NiCr层上面采用磁控溅射的方式沉积AZO层，所用靶材为陶瓷AZO旋转靶，电源为中频电源，功率为10~100kW，工艺气体为氩气或氮气和氮气的混合气体，在室温下沉积；
【0069】（17）在AZO层上面采用磁控溅射的方式沉积Si₃N₄层，所用靶材为SiAl旋转靶，电源为中频电源，功率为10~100kW，工艺气体为氩气和氮气的混合气体，在室温下沉积；
【0070】（18）将制成的玻璃进行氧化处理。
【0071】以上所述，仅为本发明的较佳实施例而已，并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上，然而并非用以限定本发明，任何熟悉本专业的技术人员，在不脱离本发明技术方案范围内，当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例，但凡是未脱离本发明技术方案内容，依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰，均仍属于本发明技术方案的范围内。
图 1
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 2
图 3