WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau ### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 5: (11) International Publication Number: WO 92/15308 A61K 31/505, C07D 411/04 **A1** (43) International Publication Date: 17 September 1992 (17.09.92) (21) International Application Number: PCT/GB92/00388 (22) International Filing Date: 5 March 1992 (05.03.92) (30) Priority data: 9104741.5 9109505.9 6 March 1991 (06.03.91) 2 May 1991 (02.05.91) GB GB (71) Applicant (for all designated States except US): THE WELL-COME FOUNDATION LIMITED [GB/GB]; Unicorn House, 160 Euston Road, London NW1 2BP (GB). (72) Inventors; and (75) Inventors/Applicants (for US only): PAINTER, George, Robert, III [US/US]; 108 Pitch Pine Lane, Chapel Hill, NC 27514 (US). FURMAN, Phillip, Allen [US/US]; 901 Bluestone Road, Durham, NC 27713 (US). (74) Agent: GARRETT, M.; The Wellcome Foundation Limited, Langley Court, Beckenham, Kent BR3 3BS (GB). (81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), CS, DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), HU, IT (European patent), JP, KR, LU (European patent), MC (European patent), NL (European patent), RU, SE (European patent), US. #### **Published** With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (54) Title: USE OF 5-FLUORO-2'-DEOXY-3'-THIACYTIDINE FOR THE TREATMENT OF HEPATITIS B (57) Abstract The use of a 1,3-oxathiolane nucleoside analogue and pharmaceutically acceptable derivatives thereof for the treatment of hepatitis B virus infections is disclosed. Pharmaceutical formulations are also provided. # FOR THE PURPOSES OF INFORMATION ONLY Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT. | . 7 | A | FI | Finland | MI | Mali | |-----|--------------------------|-----|------------------------------|-----|--------------------------| | AT | Austria | FR | France | MN | Mongolia | | AU | Australia | | | MR | Mauritania | | BB | Barbados | GA | Gabon | MW | Malawi | | BE | Belgium | GB | United Kingdom | | | | BF | Burkina Faso | GN | Guinea | NI. | Netherlands | | BG | Bulgaria | GR | Greece | NO | Norway | | BJ | Benin | HU | Hungary | PL | Poland | | BR | Brazil | IE | Ireland | RO | Romania | | | | iT | Italy | RU | Russian Federation | | CA | Canada | JР | Japan | SD | Sudan | | CF | Central African Republic | KP | Democratic People's Republic | SE | Sweden | | CG | Congo | R.F | • | SN | Senegal | | CH | Switzerland | | of Korca | SU | Soviet Union | | CI | Côte d'Ivoire | KR | Republic of Korea | | | | CM | Cameroon | LI | I iechtenstein | TD | Chad | | CS | Czechoslovakia | LK | Sri Lanka | TG | Togo | | ÐE | (jerniany | LU | Luxembourg | US | United States of America | | ÐK | Denmark | MC | Monaco | | | | ES | Spain | MG | Madagascar | | | ### USE OF 5-FLUORO-2'-DEOXY-3'-THIACYTIDINE FOR THE TREATMENT OF HEPATITIS B The present invention relates to the use of a 1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-cytosine derivative and physiologically functional derivatives thereof for the treatment of hepatitis B viral infections. Hepatitis B virus (HBV) is a viral pathogen of major worldwide importance. HBV is most common in Asian Countries, and prevalent in sub-Saharan Africa. The virus is etiologically associated with primary hepatocellular carcinoma and is thought to cause 80% of the In the United States more than ten thousand world's liver cancer. people are hospitalized for HBV illness each year, an average of 250 die with fulminant disease. The United States currently contains an estimated pool of 500,000 - 1 million infectious carriers. Chronic active hepatitis will develop in over 25% of carriers and often progresses to cirrhosis. It is estimated that 5000 people die from HBV-related cirrhosis each year in the U.S.A. and that perhaps 1000 die from HBV-related liver cancer. Even when a universal HBV vaccine is in place, the need for effective anti-HBV compounds will continue. The large reservoir of persistently infected carriers, estimated at 220 million worldwide, will receive no benefit from vaccination and will continue at high risk for HBV-induced liver disease. This carrier population serves as the source of infection of susceptible individuals perpetuating the instance of particularly in endemic areas or high risk groups such as i.v. drug abusers and homosexuals. Thus, there is a great need for effective antiviral agents, both to control the chronic infection and reduce progression to hepatocellular carcinoma. Clinical effects of infection with HBV range from headache, fever, malaise, nausea, vomiting, anorexia and abdominal pains. Replication of the virus is usually controlled by the immune response, with a course of recovery lasting weeks or months in humans, but infection may be more severe leading to persistent chronic liver disease as outlined above. In "Viral Infections of Humans" (second edition, Ed. Evans, A.S. (1982) Plenum Publishing Corporation, New York), Chapter 12 describes the etiology of viral hepatitis infections. European Patent Specification 0 382 526 discloses certain 1,3-oxathiolane nucleoside analogues which are effective in inhibiting the replication of human immunodeficiency virus (HIV). We have now surprisingly found that a 1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-cytosine derivative of formula I $$\begin{array}{c} NH_2 \\ \hline \\ N \\ \hline \\ N \\ \end{array}$$ namely 1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine and physiologically functional derivatives thereof have potent activity against HBV. It should be noted that the compound of formula (I) contains two chiral centers and therefore exists in the form of two pairs of optical isomers (i.e. enantiomers) and mixtures thereof including racemic mixtures. Thus, the compound of formula (I) may be either a cis or a trans isomer or mixtures thereof. Each cis and trans isomer can exist as one of two enantiomers or mixtures thereof including racemic mixtures. All such isomers and mixtures thereof including racemic mixtures and tautomeric forms of the compound of formula (I) are within the scope of the invention. The cis isomers of the compound of formula (I) are preferred. According to one feature of the present invention we provide the compound of formula (I) or a physiologically functional derivative WO 92/15308 thereof for use in the treatment or prophylaxis of a hepatitis B virus infection. According to a further feature of the present invention we provide the use of the compound of formula (I) or a physiologically functional derivative thereof, in the manufacture of a medicament for the treatment or prophylaxis of a hepatitis B virus infection. In a further aspect of the present invention there is included a method for the treatment or prophylaxis of a hepatitis B virus infection in a host, for example, a mammal such as a human which comprises treating the host with a therapeutically effective amount of the compound of formula (I) or a physiologically functional derivative thereof. By "physiologically functional derivative" is meant a pharmaceutically acceptable salt, amide, ester or salt of an ester of the compound of formula (I) or any other compound which upon administration to the recipient, is capable of providing (directly or indirectly) the said compound of formula (I) or an active metabolite or residue thereof. Preferred esters in accordance with the invention include carboxylic acid esters in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched n-propyl, t-butyl, n-butyl, alkyl e.g. alkoxyalkyl (e.g. methoxymethyl), arylalkyl (e.g. benzyl), aryloxyalkyl (e.g. phenoxymethyl), and aryl (e.g. phenyl); sulfonate esters such as alkyl- or arylalkylsulfonyl (e.g. methanesulfonyl); amino acid esters (e.g. L-valyl or L-isoleucyl); dicarboxylic acid esters hemisuccinate); and 5'- mono- di- or tri-phosphate esters. phosphate esters may be further esterified by, for example, a C_{1-20} alcohol or reactive derivative thereof, or by a $2,3-di(C_{6-24})acyl$ glycerol. Any alkyl moiety present in such esters advantageously contains 1 to 18 carbon atoms, particularly 1 to 4 carbon atoms. aryl moiety present in such esters advantageously comprises a phenyl group optionally substituted e.g. by halogen, C1 alkyl, C1-/ or nitro. The above-mentioned pharmaceutically acceptable amides of the compound of formula (I) include those derivatives wherein the cytosine amino group is present in the form of an amide, e.g. -NHCOR where R is $^{\rm C}_{1-6}$ alkyl or aryl (e.g. phenyl optionally substituted by halogen, $^{\rm C}_{1-4}$ alkoxy, nitro or hydroxyl). Examples of pharmaceutically acceptable salts according to the invention include base salts, e.g. derived from an appropriate base, such as alkali metal (e.g. sodium), alkaline earth metal (e.g. magnesium) salts, ammonium and NX_4^+ (wherein X is C_{1-4} alkyl). Pharmaceutically acceptable acid addition salts include salts of organic carboxylic acids such as acetic, lactic, tartaric, malic, isethionic, lactobionic and succinic acids; organic sulfonic acids such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids and inorganic acids such as hydrochloric, sulfuric, phosphoric and sulfamic acids. The amount of the compound of formula (I) (hereinafter also referred to as the "active ingredient") or physiologically functional derivative thereof which is required in a medication to achieve the desired effect will depend on a number of factors, in particular the specific application, the nature of the particular compound used, the mode of administration and the condition of the patient. In general a suitable dose will be in the range of 3.0 to 120 mg per kilogram body weight of the recipient per day, preferably in the range of 6 to 90 mg per kilogram body weight per day and most preferably in the range 15 to 60 mg per kilogram body weight per day. The desired dose is preferably presented as two, three, four, five, six or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 10 to 1500 mg, preferably 20 to 1000 mg, and most preferably 50 to 700 mg of active ingredient per unit dosage form. Ideally, the active ingredient should be administered to achieve peak plasma concentrations of the active ingredient of from about 1 to WO 92/15308 PCT/GB92/00388 - 5 - about $75\mu\text{M}$, preferably about 2 to $50\mu\text{M}$, most preferably about 3 to about $30\mu\text{M}$. This may be achieved, for example, by the intravenous injection of a 0.1 to 5% solution of the active ingredient, optionally in saline, or orally administered as a bolus containing about 1 to about 100 mg/kg of the active ingredient. Desirable blood levels may be maintained by a continuous infusion to provide about 0.01 to about 5.0 mg/kg/hour or by intermittent infusions containing about 0.4 to about 15 mg/kg of the active ingredient. In the manufacture of a medicament according to the invention, hereinafter referred to as a "formulation", the compound of formula (I) or a physiologically functional derivative thereof herein as "active ingredient", is typically admixed with, <u>inter alia</u>, one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents. The formulations include those suitable for oral, rectal, nasal, topical (including transdermal, buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product. Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste. 3 A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a freeflowing form such as a powder or granules, optionally mixed with a binder (e.g. povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (e.g. sodium cross-linked sodium starch glycollate, cross-linked povidone, carboxymethyl cellulose) surface-active or dispersing agent. tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein hydroxypropylmethyl cellulose using, for example proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach. Formulations suitable for oral use as described above may also include buffering agents designed to neutralize stomach acidity. Such buffers may be chosen from a variety of organic or inorganic agents such as weak acids or bases admixed with their conjugated salts. Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier. Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate. Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels pastes, foams or spray formulations WO 92/15308 PCT/GB92/00388 - 7 - containing in addition to the active ingredient such carriers as are known in the art to be appropriate. Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injections solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may suspending agents and thickening agents, as liposomes or other microparticulate systems which are designed to target the compounds to blood components or one or more organs. The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient. It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include such further agents as sweeteners, thickeners and flavoring agents. The compound of formula I may be prepared for example by: a) reacting an optionally protected 5-F-cytosine compound with a 1.3-oxathiolane of formula IIA wherein \mathbf{R}_{1} is hydrogen or a hydroxy protecting group and L is a leaving group; or # b) reacting a compound of formula IIB (wherein \mathbf{R}_1 is as defined above and $\mathbf{R}_1^{\ a}$ is an amino protecting group) with a fluorinating agent serving to introduce a fluorine atom in the 5-position of the cytosine ring; or # c) reacting a compound of formula IIC $$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$ (wherein R_1 is as defined above) with an agent serving to convert the oxo group in the 4-position of the uracil ring to an amino group; any remaining protecting groups being removed for example by acid or base hydrolysis to produce the desired product. With regard to process a), the hydroxy protecting group includes protecting groups such as acyl (e.g. acetyl), arylacyl (e.g. benzoyl or substituted benzoyl), trityl or monomethoxytrityl, benzyl or substituted benzyl, trialkylsilyl (e.g. dimethyl-<u>t</u>-butylsilyl) or diphenylmethylsilyl. The 5-R-cytosine compound may be optionally protected with silyl, e.g. trimethyl silyl groups. Such groups may be removed in conventional manner. The leaving group L is a leaving group typical of those known in the art of nucleoside chemistry e.g. halogen such as chlorine or bromine, alkoxy such as methoxy or ethoxy or acyl such as acetyl or benzoyl. The reaction in process a) may be effected in an organic solvent (e.g. 1,2-dichloroethane or acetonitrile) in the presence of a Lewis acid such as stannic chloride or trimethylsilyl triflate. Compounds of formula IIA may be obtained from a suitably protected 2-hydroxyacetaldehyde of formula III, $$R_1$$ OCH $_2$ CHO (III) wherein R_1 is defined above, as described in Can. J. Research, 8, 129 (1933) and European Patent Specification 0 382 526. Reaction of compounds of formula III with a mercaptoacetal ${\rm HSCH_2CH(OR)_2}$, wherein R is ${\rm C_{1-4}}$ alkoxy such as ${\rm HSCH_2CH(OC_2H_5)_2}$, known in the art (Chem. Ber. 85:924-932, 1952), yields compounds of formula IIA wherein L is OR (alkoxy) e.g. methoxy or ethoxy. Alternatively, compounds of formula IIA, wherein L is alkoxy, may be converted to compounds of formula IIA wherein L is halogen or acyl by methods known in the art of carbohydrate chemistry. Compounds of formula III may be prepared from 1,2-0-isopropylidene glycerol by introduction of R_1 (e.g. trisubstituted silyl, benzyl or trityl) and removal of the isopropylidene group with mild acid (e.g. aqueous formic or acetic acid) or zinc bromide in acetonitrile, followed by oxidation of the alcohol group with aqueous periodate. With regard to process b), the 5-fluoro substituent may be introduced by methods known in the art (M.J. Robins, et al., in Nucleic Acid Chemistry, Part 2, L.B. Townsend and R.S. Tipson, editors, J. Wiley and Sons, New York, 895-900 (1978) and references therein; R. Duschinsky in Nucleic Acid Chemistry, Part 1, L.B. Townsend and R.S. Tipson, editors, J. Wiley and Sons, New York, 43-46 (1978) and references therein). The fluorinating agent may be, for example, trimethylhypofluorite in fluorotrichloromethane. With regard to process c), the compound of formula IIC is advantageously treated with 1,2,4-triazole, advantageously together with 4-chlorophenyl dichlorophosphate, to form the corresponding 4-(1,2,4-triazolyl) compound which is then converted to the desired 4-amino (cytidine) compound by reaction with for example methanol. The starting materials of formula IIB and IIC may be prepared for example by reaction of an appropriate (optionally protected) base with a compound of formula IIA in an analogous manner to that described in process a). 5-Fluorouracil and 5-fluorocytosine are commercially available from Aldrich Chemical Co., Milwaukee, WI 53233, USA. Separation of the (\pm) -cis and (\pm) -trans isomers for example in a protected form, may be accomplished by chromatography on silica gel with mixtures of organic solvents such as ethyl acetate/methanol, ethylacetate/hexane or dichloromethane/methanol. Any protecting group may then be removed using the appropriate reagent for each group. The compound of formula (I) may be converted into a pharmaceutically acceptable esters and amides by reaction with an appropriate acylating agent, for example, an acid halide or anhydride serving to acylate the 5'-OH and 4-NH₂ groups. The acyl group may then be removed selectively from one or other of the 5'-OH and 4-NH $_{\!\!\!2}$ groups. example, treatment of the diacylated compound under acidic conditions, eg. a Lewis acid such as zinc bromide in methanol, removes the 4N-acyl group to yield the corresponding 5'-OH ester where treatment of the diacylated compound under alkaline conditions, eg. with methoxide removes the 5'-OH acyl group to yield the corresponding The acyl groups can also be removed selectively by treatment with commercially avialable esterase or lipase enzymes, eg. pig liver esterase or pancreatic lipase, or by treatment in accordance with methods described in U.S. Patent Specification No. 5071983. compound of formula (I) may be converted into a pharmaceutically acceptable salt thereof in a conventional manner, for example, by treatment with an appropriate base. An ester or salt of a compound of formula (I) may be converted into the parent compound, for example, by hydrolysis. For a better understanding of the invention, the following Examples are given by way of illustration. # Example 1: cis-1-(2-(Hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine Method A: (\pm) -<u>cis</u> and (\pm) -<u>trans</u> 2-benzoyloxymethyl-5- $(N_4$ -acetyl-cytosin-1-yl)-1,3-oxathiolane are prepared and separated to the (\pm) -<u>cis</u> and (\pm) <u>trans</u> isomers as described in European Patent (EP) Specification 0 382 526. The (\pm) -<u>cis</u> isomer is fluorinated with trifluoromethyl hypofluorite in fluorotrichloromethane (CCI₃F) and chloroform at -78°C, according to the method of Robins, et al. Nucleic Acid Chemistry, Part 2, 895-900, 1978. The N_4 -acetyl and 2-benzoyl groups are removed with dimethylamine in ethanol, and the product, (\pm) -<u>cis</u>-1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine, is isolated. Method B: (±)-cis and (±)-trans-2-benzoyloxymethyl-5-(uracil-1-yl)-1,3-oxathiolane are prepared as described in EP 0 382 526. After deprotection of the 2-hydroxyl group with saturated methanolic ammonia, the isomers are separated on silica gel using EtOAc/MeOH as eluant (EP 0 382 526). The (±)-cis isomer is reacted with acetic anhydride in pyridine at room temperature to give the 2-acetate. Solvent is removed in vacuo at <30°C. The 2-acetate is then dissolved in CHCl₃ and washed with aqueous sodium bicarbonate. The separated organic layer is dried, and CHCl₃ is evaporated in vacuo. (±)-cis-2-Acetyloxymethyl-5-(uracil-1-yl)-1,3-oxathiolane is fluorinated as described above (Method A) by the method of Robins et al. Conversion of the 5-F-uracil base to the 5-F-cytosine base is carried out by preparation of the 4-(1,2,4-triazol-1-yl) derivative according to the methods of C.B. Reese, J. Chem. Soc., Perkins I, 1171, 1984 and W.L. Sung, Nucleic Acids Res. 9:6139, 1981, using 1,2,4-triazole and 2 equivalents of 4-chlorophenyldichlorophosphate in dry pyridine at ambient temperature. This conversion is followed by reaction with methanol previously saturated with ammonia at 0° C, and the 2-acetate is hydrolyzed to give (\pm)-cis-1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine. ### Pharmaceutical Formulations In the following formulation Examples, the "Active Ingredient" is cis-1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine. ### Example 2 ### Tablet Formulations The following formulations A, B and C are prepared by wet granulation of the ingredients with a solution of povidone, followed by addition of magnesium stearate and compression. ### Formulation A | | | mg/tablet | mg/tablet | |-----|--------------------------|-----------|-----------| | (a) | Active ingredient | 250 | 250 | | (b) | Lactose B.P. | 210 | 26 | | (c) | Povidone B.P. | 15 | 9 | | (d) | Sodium Starch Glycollate | 20 | 12 | | (e) | Magnesium Stearate | 5 | 3 | | | | 500 | 300 | ## Formulation B | | | mg/tablet | mg/tablet | |-----|--------------------------|------------|-----------| | | | | | | (a) | Active ingredient | 250 | 250 | | (b) | Lactose | 150 | - | | (c) | Avicel PH 101 | 60 | 26 | | (d) | Povidone B.P. | 15 | 9 | | (e) | Sodium Starch Glycollate | 20 | 12 | | (f) | Magnesium Stearate | . <u>5</u> | 3 | | | | 500 | 300 | # Formulation C | | mg/tablet | |--------------------|-----------| | | 100 | | Active ingredient | , | | Lactose | 200 | | Starch | 50 | | Povidone | 5 | | Magnesium Stearate | 4 | | | 359 | The following formulations, D and E, are prepared by direct compression of the admixed ingredients. The lactose in formulation E is of the direct compression type (Dairy Crest - "Zeparox"). # Formulation D | | mg/tablet | |----------------------------|------------| | Active ingredient | 250 | | Pregelatinized Starch NF15 | <u>150</u> | | _ | 400 | PCT/GB92/00388 - 15 - ### Formulation E | | mg/tablet | |---------------------------|------------| | Active ingradiant | 250 | | Active ingredient Lactose | 150 | | Avicel | <u>100</u> | | | 500 | ### Formulation F (Controlled Release Formulation) The formulation is prepared by wet granulation of the ingredients (below) with a solution of povidone followed by the addition of magnesium stearate and compression. | | | mg/tablet | |-----|--------------------------------------|-----------| | | | | | (a) | Active ingredient | 500 | | (b) | ${\tt Hydroxypropylmethylcellulose}$ | 112 | | | (Methocel K4M Premium) | | | (c) | Lactose B.P. | 53 | | (d) | Povidone B.P. | 28 | | (e) | Magnesium Stearate | | | | | 700 | Drug release takes place over a period of about 6-8 hours and is complete after 12 hours. ### Example 3 # Capsule Formulations ## Formulation A A capsule formulation is prepared by admixing the ingredients of Formulation D in Example 2 above and filling into a two-part hard gelatin capsule. Formulation B (\underline{infra}) is prepared in a similar manner. ### Formulation B | | | mg/capsule | |-----|--------------------------|------------| | | | | | (a) | Active ingredient | 250 | | (b) | Lactose B.P. | 143 | | (c) | Sodium Starch Glycollate | 25 | | (d) | Magnesium Stearate | 2 | | | | 420 | ### Formulation C | | | mg/capsule | |-----|--------------------|------------| | (a) | Active ingredient | 250 | | (b) | Macrogol 4000 B.P. | <u>350</u> | | | | 600 | ### Formulation D | | mg/capsule | |-------------------|------------| | | | | Active ingredient | 250 | | Lecithin | 100 | | Arachis Oil | <u>100</u> | | | 450 | Capsules of formulation D are prepared by dispersing the active ingredient in the lecithin and arachis oil and filling the dispersion into soft, elastic gelatin capsules. # Formulation E (Controlled Release Capsule) The following controlled release capsule formulation is prepared by extruding ingredients a, b and c using an extruder, followed by spheronization of the extrudate and drying. The dried pellets are then coated with controlled-release membrane (d) and filled into a two-piece, hard gelatin capsule. | | | mg/capsule | |-----|----------------------------|------------| | (a) | Active ingredient | 250 | | (b) | Microcrystalline Cellulose | 125 | | (c) | Lactose B.P. | 125 | | (d) | Ethyl Cellulose | _13 | | | | 513 | ### Example 4 ### Injectable Formulation ### Formulation A | Active ingredient | | | 0.200 g | |-----------------------------|--------|------------|---------------| | Hydrochloric acid solution, | 0.1 M, | or | | | Sodium hydroxide solution, | 0.1 M | q.s. to pH | 4.0 to 7.0 | | Sterile water | | | q.s. to 10 mL | The active ingredient is dissolved in most of the water (35°C-40°C) and the pH adjusted to between 4.0 and 7.0 with the hydrochloric acid or the sodium hydroxide as appropriate. The batch is then made up to volume with the water and filtered through a sterile micropore filter into a sterile 10 mL amber glass vial (type 1) and sealed with sterile closures and overseals. ## Formulation B | Active ingredient | | 0.1 | L25 | | |---------------------------------------|------|-----|-----|----| | Sterile, pyrogen-free, pH 7 phosphate | | | | | | Buffer. | q.s. | to | 25 | mL | ### Example 5 # Intramuscular injection | Active ingredient | | 0.20 g | |-------------------|------|------------| | Benzyl Alcohol | | 0.10 g | | Glycofurol 75 | | 1.45 g | | Benzyl Alcohol | q.s. | to 3.00 mL | The active ingredient is dissolved in the glycofurol. The benzyl alcohol is then added and dissolved, and water added to 3 mL. The mixture is then filtered through a sterile micropore filter and sealed in sterile 3 mL amber glass vials (type 1). ## Example 6 ### Syrup | Active ingredient | | | 0.25 g | |-------------------------|---|------|------------| | Sorbitol Solution | | | 1.50 g | | Glycerol | | | 2.00 g | | Sodium Benzoate | | | 0.005 g | | Flavor, Peach 17.42.316 | 9 | | 0.0125 mL | | Purified Water | | q.s. | to 5.00 mL | The active ingredient is dissolved in a mixture of the glycerol and most of the purified water. An aqueous solution of the sodium benzoate is then added to the solution, followed by addition of the sorbitol solution and finally the flavor. The volume is made up with purified water and mixed well. ### Example 7 ## Suppository | | mg/suppository | |----------------------------------------------|----------------| | Active ingredient | 250 | | Hard Fat, B.P. (Witepsol H15 - Dynamit Nobel |) <u>1770</u> | | • | 2020 | One-fifth of the Witepsol H15 is melted in a steam-jacketed pan at 45°C maximum. The active ingredient is sifted through a 200 M sieve and added to the molten base with mixing, using a Silverson fitted with a cutting head, until smooth dispersion is achieved. Maintaining the mixture at 45°C, the remaining Witepsol H15 is added to the suspension and stirred to ensure a homogenous mix. The entire suspension is passed through a 250 M stainless steel screen and, with continuous stirring, is allowed to cool to 40°C. At a temperature of 38°C to 40°C, 2.02 g of the mixture is filled into suitable, 2 mL plastic molds. The suppositories are allowed to cool to room temperature. ### Example 8 ### <u>Pessaries</u> | | mg/pessary | |--------------------------------------|------------| | Astive ingredient | 250 | | Active ingredient Anhydrate Dextrose | 380 | | Potato Starch | 363 | | Magnesium Stearate | 7 | | | 1000 | The above ingredients are mixed directly and pessaries prepared by direct compression of the resulting mixture. ### Example 9 ## Antiviral Activity Against Hepatitis B Virus (HBV) The compound <u>cis</u>-1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine, was tested as described below. The human HBV producer cell line of HepG_2 , 2.2.15, described and characterized by Sells et al., PNAS 84:1005, 1987 and J. Virol. 62:2836, 1988, has been shown to share many characteristics of the HBV chronically infected hepatocyte. It is infectious as demonstrated by the ability to cause disease in chimpanzees. This cell line was utilized in vitro to identify compounds with anti-HBV activity. To test compounds for antiviral activity, monolayer cultures were Supernatant media treated with compound, $50-200\mu\mathrm{M}$ for ten days. containing extracellular virion DNA (Dane particles) were harvested on days three, six and ten, treated with proteinase K (1 mg/mL) and sodium dodecyl sulfate (1%), and incubated at 50°C for one hour. DNA was extracted with equal volumes of phenol followed by chloroform and then precipitated by ammonium acetate and propanol. DNA precipitate was dissolved and collected on nitrocellulose using the procedure of Schleicher and Schuell (S & S, 10 Optical Ave., Keene, NH 03431, Publication No. 700, 1987), and treated as described by Southern, J. Mol. Biol. 98:503, 1975. Cells were harvested, and the intracellular DNA was obtained after cell lysis with guanidine isothiocyanate. The intracellular DNA was handled in the same manner as the extracellular DNA. After precipitation by ammonium acetate and propanol, the intracellular DNA precipitate was dissolved, cut by restriction endonuclease, Hind III, applied to agarose gel and then treated as described by Southern to determine the quantity of replicative intermediate forms. The antiviral effect of the compound was determined by measuring at least a 100-fold reduction of the amount of Dane particles extruded into the culture medium and a similar decrease in the intracellular replicative intermediates. The results are given below: Effect of cis-1-(2-(Hydroxymethyl)-1,3-oxathiolan-5-yl)-5fluorocytosine on HBV Production in 2.2.15 Cell Cultures ## Intracellular HBV DNA* | Treatment | | | Replica-
tive | HBV | DNA in (pg/r | | Medium | |--------------|----------|-------|------------------|-----|--------------|-----|--------| | Compound | Integra- | Mono- | inter- | Day | Day | Day | Day | | (μm) | ted | mer- | mediate | 0 | 3 | 6 | 10 | | | | | | | | | | | A. untreated | 1.1 | 2.0 | 81 | 58 | 67 | 93 | 77 | | cells | 0.9 | 2.3 | 77 | 89 | 110 | 100 | 88 | | 100 | 1.0 | 0.0 | 0 | 64 | 11 | 3 | 0 | | 100 | 1.9 | 0.8 | 2 | | 11 | | 0 | | | 1.5 | 1.9 | 1 | 34 | 19 | 2 | 0 | | B. untreated | 1.5 | 1.9 | 110 | 65 | 44 | 86 | 71 | | cells | 1.0 | 2.3 | 67 | 90 | 120 | 80 | 82 | | | | | _ | | | | | | 100 | 1.6 | 0.8 | 1 | 90 | 16 | 0 | 0 | | | 1.0 | 0.7 | 1 | 74 | 10 | 0 | U | ^{*} Analysis of intracellular HBV DNA (Dane particles) was 24 hours following the 10th day of treatment. $^{^{+}}_{+}$ A "zero" indicates an undetectable level of HBV DNA, sensitivity cutoff was 0.1 pg/mL ### CLAIMS 1. Use of a compound of formula $$\frac{NH_2}{N}$$ namely 1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine or a physiologically functional derivative thereof in the manufacture of a medicament for the treatment or prophylaxis of a hepatitis B virus infection. - Use as claimed in claim 1 wherein the compound of formula (I) is in the form of the <u>cis</u> isomer. - 3. Use as claimed in claim 1 wherein the physiologically functional derivative is a pharmaceutically acceptable salt or ester of the compound of formula (I). - 4. Use as claimed in any of the preceding claims wherein the said medicament is in the form of a dosage unit. - 5. Use as claimed in claim 4 wherein the said dosage unit contains 10 to 1500mg of the compound of formula (I) or a physiologically functional derivative thereof. - 6. Use as claimed in claim 4 or claim 5 wherein the said dosage unit is a tablet or capsule. - 7. A compound of formula (I) (as defined in claim 1) or a physiologically functional derivative thereof for use in the treatment or prophylaxis of a hepatitis B virus infection. - 8. <u>Cis-1-(2-(Hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine</u> for use in the treatment or prophylaxis of a hepatitis B virus infection. - 9. A method of treating a human having a hepatitis B virus infection comprising the administration to said human of an effective anti-hepatitis B treatment amount of a compound of formula (I) (as defined in claim 1) or a physiologically functional derivative thereof to said human. - 10. A method as claimed in claim 11 in which the said compound of formula (I) is <u>cis</u>-1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-5-fluorocytosine. # INTERNATIONAL SEARCH REPORT International Applicatio. J PCT/GB 92/00388 | I. CLASSIFIC | CATION OF SUBJE | CT MATTER (if several classification syn | nbols apply, indicate all) ⁶ | | |---|--|--|--|--| | According to Int.Cl. | International Patent | Classification (IPC) or to both National Cla | ssification and IPC D 411/04 | | | II. FIELDS S | SEARCHED | | | | | | | Minimum Documen | | | | Classificatio | n System | C | Classification Symbols · | | | Int.Cl | . 5 | A 61 K C | 07 D | | | | | Documentation Searched other t
to the Extent that such Documents a | han Minimum Documentation
re Included in the Fields Searched ⁸ | | | III. DOCUM | ÆNTS CONSIDERI | ED TO BE RELEVANT ⁹ | | 19 | | Category ° | Citation of D | ocument, 11 with indication, where appropria | ate, of the relevant passages ¹² | Relevant to Claim No.13 | | Х | INTERN
lines | 0382526 (IAF BIOCHEM
NATIONAL INC.) 16 August
6-31; examples 7,21; cl | : 1990, see page 9,
laims 1 - 5,8-13 (cited | 7,8 | | Y | in the | e application) | | 1-6,9,
10 | | Ρ,Χ | October the re | Natl. Acad. Sci. USA, wer 1991, SL. DOONG et eplication of hepatitis dideoxy-3'-thiacytiding gues", pages 8495-8499, le | al.: "Inhibition of
B virus in vitro by
e and related | 1-10 | | Y | FOUND | 0206497 (THE WELLCOME
ATION LTD) 30 December
raph 2; example 12; cla | 1986, see page 3,
ims
-/- | 1-6,9,
10 | | "A" de co ci ci ci ci ci r"P" de la | onsidered to be of par
arlier document but pr
ling date
ocument which may th
hich is cited to establi-
tation or other special
locument referring to
ther means
ocument published pro-
ater than the priority | general state of the art which is not ticular relevance ublished on or after the international arow doubts on priority claim(s) or ish the publication date of another i reason (as specified) an oral disclosure, use, exhibition or ior to the international filing date but | "T" later document published after the inter or priority date and not in conflict with cited to understand the principle or theo invention "X" document of particular relevance; the cleanot be considered novel or cannot be involve an inventive step "Y" document of particular relevance; the cleanot be considered to involve an inventive step occument is combined with one or more ments, such combination being obvious in the art. "&" document member of the same patent for pa | aimed invention e considered to aimed invention e considered to aimed invention ntive step when the other such docu- to a person skilled amily | | | | - 1992 | Sign of Authority Officer | <u> </u> | | Internatio | nal Searching Author
EURO | PEAN PATENT OFFICE | (1):41as | 7 | International Application No (CONTINUED FROM THE SECOND SHEET) III. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to Claim No. Citation of Document, with indication, where appropriate, of the relevant passages Category o 1-6,9, 10 Gastroenterology, vol. 94, no. 5, part 2, 1988, C. KASSIANIDES et al.: "Effects of Y 2',3'-dideoxycytidine on duck hepatitis B virus", page A552, see the abstract ## INTERNATIONAL SEARCH REPORT It rational application No. PCT/GB92/00388 | Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) | | |--|----------| | This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: | | | 1. Claims Nos.: 9 + 15 because they relate to subject matter not required to be searched by this Authority, namely: | | | Remark: Although claims 9 and 10 are directed to a method of treatment of the human or animal body the search has been carried out and based on the alleged effects of the compounds. | | | 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: | | | · | | | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). | | | Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) | \dashv | | This International Searching Authority found multiple inventions in this international application, as follows: | | | | | | | | | | | | 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. | | | 2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. | | | 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: | | | | | | 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: | | | | | | Remark on Protest The additional search fees were accompanied by the applicant's protest. | - | | No protest accompanied the payment of additional search fees. | | | | | # ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. GB 9200388 SA 57303 This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 01/07/92 The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. | Patent document cited in search report | Publication
date | | | I ubilication | | Publication
date | |--|---------------------|--|---|--|--|---------------------| | EP-A- 0382526 | 16-08-90 | US-A-
AU-A-
CA-A-
JP-A- | AU-A- 4920190
CA-A- 2009637 | | | | | EP-A- 0206497 | 30-12-86 | AU-B-
AU-A-
AU-B-
AU-A-
JP-A-
US-A- | 622950
4544389
591125
5744086
61280500
4920210 | 30-04-92
17-05-90
30-11-89
20-11-86
11-12-86
24-04-90 | | |