(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2011 年 7 月 28 日(28.07.2011)

PCT

WO 2011/090013 A1

(51) 国際特許分類:
H04W 48/16 (2009.01) H04W 36/22 (2009.01)
H04W 36/14 (2009.01) H04W 48/18 (2009.01)

(21) 国際出願番号:
PCT/JP2011/050713

(22) 国際出願日:
2011 年 1 月 18 日(18.01.2011)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:
特許 2010-009925 2010 年 1 月 20 日(20.01.2010)
JP

(71) 出願人 (米国を除く全ての指定国について):
日本電気株式会社(NEC CORPORATION) [JP/JP]; 〒 1088001 東京都港区芝三丁目 7 番 1 号 Tokyo (JP)

(72) 発明者:
岡村 茂 (MIYAZAKI, Teruo et al.); 〒 1070052 東京都港区赤坂 1 丁目 9 番 20 号第 16 戸部ビル 8 階 Tokyo (JP)

(74) 代理人:
宮崎 昭和

(54) Title: MOBILE COMMUNICATION SYSTEM, ROUTING DEVICE, COMMUNICATION CONTROL METHOD AND ROUTING METHOD

(54) 発明の名称: 移動通信システム、ルーティング装置、通信制御方法およびルーティング方法

[図 1]

ルーティング
装置

第 2 の無線基地局

第 1 の無線基地局

移動機

110 ROUTING DEVICE
130 FIRST WIRELESS BASE STATION
140 SECOND WIRELESS BASE STATION
150 MOBILE UNIT

Abstract: Disclosed is a mobile communication system (100) comprising a routing device (110) and a plurality of wireless base stations (130 and 140) of different data communication speeds. The routing device (110), when a wireless base station (130) of high data communication speed is relayed data between a mobile unit and the routing device (110), calculates the throughput of data transmitted and received by the mobile unit. If the throughput calculated within a pre-defined time is less than or equal to a pre-defined threshold, the routing device (110) determines that communication between the mobile unit and the routing device (110) should be relayed by a wireless base station (140) of low data communication speed, and controls switching of the wireless base station.

(57) 要約: 本発明の移動通信システム（100）は、ルーティング装置（110）と、データ通信速度の異なる複数の無線基地局（130, 140）を有する。ルーティング装置（110）は、移動機と自装置の間の通信をデータ通信速度の高い無線基地局（130）が中継しているとき、その移動機によって送信されるデータのループバックを算出する。予め定められた時間内で算出されたループバックが予め定められた閾値以下である場合、ルーティング装置（110）は、その移動機と自装置の間の通信をデータ通信速度の低い無線基地局（140）で中継すべきと判定し、無線基地局の切り替えを制御する。
明細書

発明の名称:
移動通信システム、ルーティング装置、通信制御方法およびルーティング方法

技術分野

[0001] 本発明は、データ通信速度の異なる複数の無線基地局を有する移動通信システム、ルーティング装置、通信制御方法およびルーティング方法に関するものである。

背景技術

[0002] 現在、3GPP (3rd Generation Partnership Project) によって策定されたW-CDMA (Wideband Code Division Multiple Access) 方式を用いた、第3世代の移動通信システムが普及している。

[0003] 一方、3GPPは、ネットワークのさらなる高速化・広帯域化を実現するため、第3.9世代の移動通信システムとして、LTE (Long Term Evolution)／EPC (Evolved Packet Core) システムの構築を策定した。その仕様が、「3GPP TS 23.401 （以下では、非特許文献1と称する）」および「3GPP TS 23.402（以下では、非特許文献2と称する）」に開示されている。また、第3世代の移動体通信システムおよび第3.9世代の移動体通信システムの構成例が、特開2009-524324号（以下では、特許文献1と称する）に開示されている。

[0004] 第3世代の移動体通信システムに基づく第3世代携帯電話ネットワーク（以下、3Gネットワークと称する）は、既に広く普及しており、当面は継続して使用されるものと考えられる。一方、第3.9世代の移動体通信システムに基づく第3.9世代携帯電話ネットワーク（以下、3Gネットワークと称する）は、まず、通信トラフィックが集中するエリアを中心に展開され、その後段階的に全国に展開されるものと考えられる。つまり、3Gネットワークは、既に普及している3Gネットワークに対して、サ
ビジネスエリアを重畳する形で展開されるため、第３．９世代の移動通信システムが利用できるエリアでは、第３世代の移動通信システムも利用できることになる。

発明の概要

３．９Ｇネットワークと３Ｇネットワークが共存するエリアにおいて、３．９Ｇネットワークの無線通信品質が劣化した場合には、９Ｇネットワークを介した通信セッションを３Ｇネットワークへ移行するための Ｉｎｔｅｒ－ＲＡＴ Ｈａｎｄｏｖｅｒ が３ＧＰＰによって規定されている（非特許文献１参照）。しかし、３ＧＰＰが策定した仕様では、３．９Ｇネットワークの無線通信品質と３Ｇネットワークの無線通信品質がいずれも良好である場合、所定の通信セッションをいずれのネットワークを介して行うべきかが規定されていない。

上述した第３．９世代の移動通信システムは、下り方向の通信速度が１００Ｍｂｐｓ以上であり、上り方向の通信速度が５０Ｍｂｐｓ以上である広帯域サービスを提供するが、全ての通信においてそのような広帯域サービスが必要となるわけではない。３Ｇネットワークを介して通信可能な低速なデータ通信が３．９Ｇネットワークを介して行われると、３．９Ｇネットワークの無線リソースおよび有線リソースが低速なデータ通信に割り当てられることになる。そのため、ネットワーク全体として、無線リソースおよび有線リソースを効率よく利用できないという問題点があった。

本発明の目的の一つは、データ通信速度の異なる複数の無線基地局を有する移動通信システムにおいて、ネットワーク内の通信リソースを効率よく利用するための技術を提供することである。

本発明の一側面の移動通信システムは、複数の無線基地局を有する移動通信システムであって、移動機と無線通信が可能な第１の無線基地局と、第１の無線基地局よりデータ通信速度が低く、移動機と無線通信が可能な第２の無線基地局と、第１の無線基地局及び第２の無線基地局に接続されるルーティング装置と、を有する。そして、ルーティング装置は、移動機と自装置の
間の通信を第1の無線基地局が中継しているとき、移動機が第1の無線基地局を介して送受信するデータをルーティングすると共に、ルーティングしたデータのスルーポットを算出し、予め定められた時間内で算出されたスルーポットが予め定められた閾値以下である場合、移動機と自装置の間の通信を第2の無線基地局が中継すべきと判定し、移動機と自装置の間の通信の中継を終了するための切断要求を第1の無線基地局に送信すると共に、移動機と自装置の間の通信を中継するための接続要求を第2の無線基地局に送信し、第1の無線基地局は、移動機とルーティング装置の間の通信を中継しているとき、切断要求を受信すると、中継を終了し、第2の無線基地局は、接続要求を受信すると、移動機とルーティング装置の間の通信を中継するものである。

[0009] 本発明の一側面のゲートウェイ装置は、複数の無線基地局と接続されるルーティング装置であって、移動機と無線通信が可能な第1の無線基地局と接続されると共に、第1の無線基地局よりデータ通信速度が低く、移動機と無線通信が可能な第2の無線基地局と接続され、移動機と自装置の間の通信を第1の無線基地局が中継しているとき、第1の無線基地局を介して移動機が送受信するデータをルーティングすると共に、ルーティングしたデータのスルーポットを算出する通信手段と、予め定められた時間内で算出されたスルーポットが予め定められた閾値以下であるか否かに基づいて、移動機と自装置の間の通信を第2の無線基地局が中継すべきか否かを判定する判定手段と、判定手段によって、移動機と自装置の間の通信を第2の無線基地局が中継すべきと判定された場合、移動機と自装置の間の通信を中継する無線基地局を第1の無線基地局から第2の無線基地局へ切り替えるように制御する制御手段と、を有する。

[0010] 本発明の一側面の通信制御方法は、移動機と無線通信が可能な第1の無線基地局と、第1の無線基地局よりデータ通信速度が低く、移動機と無線通信が可能な第2の無線基地局と、第1の無線基地局及び第2の無線基地局と接続されるルーティング装置と、を有する移動通信システムの通信制御方法で
あって、ルーティング装置が、移動機と自装置の間の通信を第１の無線基地局が中継しているとき、第１の無線基地局を介して移動機が送受信するデータをルーティングすると共に、ルーティングしたデータのスループットを算出し、予め定められた時間内で算出されたスループットが予め定められた閾値以下である場合、移動機と自装置の間の通信を第２の無線基地局が中継すべきと判定し、移動機と自装置の間の通信の中継を終了するための切断要求を第１の無線基地局に送信すると共に、移動機と自装置の間の通信を中継するための接続要求を第２の無線基地局に送信し、第１の無線基地局が、移動機とルーティング装置の間の通信を中継しているとき、切断要求を受信すると、中継を終了し、第２の無線基地局が、接続要求を受信すると、移動機とルーティング装置の間の通信を中継するものである。

[0011] 本発明の一側面のルーティング方法は、移動機が無線基地局を介して送受信するデータを、ルーティングするルーティング方法であって、第１の無線基地局を介して移動機と送受信するデータのスループットを算出し、スループットが予め定められた閾値以下である場合、移動機と送受信するデータを中継する基地局を、データ通信速度が第１の無線基地局とは異なる第２の無線基地局に切り替えるものである。

図面の簡単な説明

[0012] [図1]図1は本実施形態の移動通信システムの構成を示すブロック図である。
[図2]図2は本実施形態のルーティング装置の構成を示すブロック図である。
[図3]図3は図1に示した移動通信システムで移動機１５０とルーティング装置１１０の間の通信を中継する無線基地局を切り替えるときのルーティング装置１１０、第１の無線基地局１３０、第２の無線基地局１４０及び移動機１５０の処理手順を示すシーケンス図である。
[図4]図4は本発明の移動通信システムの実施例の構成を示すブロック図である。
[図5]図5は図4に示した移動通信システムでUE8による通信セッションを中継する無線基地局を切り替えるときのeNB1、MME2、SGW3、N
ode B5、RNC6、SGSN7及びUE8の処理手順を示すシーケンス図である。

発明を実施するための形態

[0013] 本実施形態の移動通信システムを、図面を参照して詳細に説明する。図1は本実施形態の移動通信システムの構成を示すブロック図である。

[0014] 図1に示すように、本実施形態の移動通信システム100は、ルーティング装置110、第1の無線基地局130及び第2の無線基地局140を有する。ルーティング装置110には、第1の無線基地局130及び第2の無線基地局140が接続される。

[0015] ルーティング装置110、第1の無線基地局130及び第2の無線基地局140は、例えば、論理回路等から構成されるLSI（Large Scale Integration）、またはCPU（Central Processing Unit）もしくはDSP（Digital Signal Processor）等の半導体集積回路を備えており、半導体集積回路は以下に説明する各種の機能を有している。ルーティング装置110、第1の無線基地局130及び第2の無線基地局140がCPUやDSPを備えている場合、CPUやDSPは、不図示の記録媒体に記録されたプログラムにしたがって処理を実行することで、以下に記載する機能を実現する。

[0016] 移動機150は、携帯電話やPHS（Personal Handyphone System）などのような携帯端末である。

[0017] 第1の無線基地局130は、移動機150と無線通信が可能な無線基地局であり、移動機150とルーティング装置110の間の通信を中継する機能を有する。

[0018] 第2の無線基地局140は、第1の無線基地局130よりデータ通信速度が低く、移動機150と無線通信が可能な無線基地局であり、移動機150とルーティング装置110の間の通信を中継する機能を有する。

[0019] ルーティング装置110は、第1の無線基地局130及び第2の無線基地局140と接続され、さらに、不図示の他の移動通信システムと接続される。ルーティング装置110は、第1の無線基地局130及び第2の無線基地
局１４０と不図示の他の移動通信システムとの間で送受信されるデータをルーティングする機能を有する。また、ルーティング装置１１０は、第１の無線基地局１３０及び第２の無線基地局１４０の通信セッションを制御する機能を有する。

[0020] 本実施形態の移動通信システムにおいて、移動機１５０が第１の無線基地局１３０と無線通信する場合、移動機１５０は、第１の無線基地局１３０及びルーティング装置１１０を介して不図示の他の移動通信システムと接続される。一方、移動機１５０が第２の無線基地局１４０と無線通信する場合、移動機１５０は、第２の無線基地局１４０及びルーティング装置１１０を介して不図示の他の移動通信システムと接続される。いずれの場合でも、ルーティング装置１１０がアンカーポイントとなる。

[0021] 以下、本実施形態のルーティング装置１１０の動作について説明する。

[0022] 第２の無線基地局１４０でも中継可能な低速なデータ通信を第１の無線基地局１３０に中継すると、第１の無線基地局１３０の無線リソースおよび有線リソース（以下では、これらのリソースを通信リソースと称する）が低速なデータ通信に割り当てられるため、ネットワーク全体の通信リソースの利用効率が悪くなる。

[0023] そこで、本実施形態のルーティング装置１１０は、移動機１５０と自装置の間の通信を第１の無線基地局１３０が中継しているとき、移動機１５０によって送受信されるデータのスリープビットに基づいて、移動機１５０と自装置の間の通信を第２の無線基地局１４０が中継すべきか否かを判定する。

[0024] 図２は本実施形態のルーティング装置の構成を示すブロック図である。

[0025] 図２に示すように、本実施形態のルーティング装置１１０は、通信部１１１、判定部１１２及び制御部１１３を有する。

[0026] 通信部１１１は、第１の無線基地局１３０及び第２の無線基地局１４０と接続され、さらに、不図示の他の移動通信システムと接続される。通信部１１１は、第１の無線基地局１３０、第２の無線基地局１４０または不図示の他の移動通信システムを介して送受信されるデータをルーティングする。通
信部１１１は、移動機１５０と自装置の間の通信を第１の無線基地局１３０が中継しているとき、移動機１５０によって送受信されたデータのスループットを算出し、算出したスループットを示すスループット情報を判定部１１２に送信する。

[0027] 判定部１１２は、通信部１１１からスループット情報を受信すると、受信したスループット情報に基づいて、移動機１５０と自装置の間の通信を第２の無線基地局１４０が中継すべきか否かを判定する。

[0028] 移動機１５０による通信セッションの例としては、他の移動機との間の音声通信、Ｗｅｂサーバへのアクセス、映像配信サーバからの映像データの受信等がある。各通信セッションはパケット通信により実現されるため、送受信されるデータのスループットは一定にはならないが、大量のデータが送受信される通信セッションではスループットの低い状態が長時間継続する可能性は低い。

[0029] そこで、判定部１１２は、予め定められた時間（例えば１分間）に通信部１１１から受信した全てのスループット情報に示されるスループットが予め定められた閾値以下である場合、移動機１５０と自装置の間の通信を第２の無線基地局１４０が中継すべきと判定する。判定部１１２は、移動機１５０と自装置の間の通信を第２の無線基地局１４０が中継すべきと判定すると、移動機１５０と自装置の間の通信を中継する無線基地局を切り替えるための切替要求を制御部１１３に送信する。切替要求には、移動機１５０のアドレス情報と、移動機１５０による全ての通信セッションを示すセッション情報が含まれる。

[0030] 制御部１１３は、判定部１１２から切替要求を受信すると、移動機１５０と自装置の間の通信を中継する無線基地局の切り替えを制御する。

[0031] 具体的には、制御部１１３は、まず、第１の無線基地局１３０に、移動機１５０と自装置の間の通信の中継を終了するための切断要求を送信する。切断要求には、移動機１５０のアドレス情報とセッション情報が含まれる。切断要求を受け信した第１の無線基地局１３０は、移動機１５０とルーティング
装置１１０の間の通信の中継を終了し、制御部１１３に切断応答を返信する。

【0032】また、制御部１１３は、第２の無線基地局１４０に、移動機１５０と自装置の間の通信を中継するための接続要求を送信する。接続要求には、移動機１５０のアドレス情報とセッション情報が含まれる。接続要求を受信した第２の無線基地局１３０は、移動機１５０とルーティング装置１１０の間の通信の中継を実施し、制御部１１３に接続応答を返信する。

【0033】以上の処理により、制御部１１３は、移動機１５０と自装置の間の通信を中継する無線基地局を第１の無線基地局１３０から第２の無線基地局１４０に切り替える。

【0034】次に図１に示した移動通信システムで移動機１５０とルーティング装置１１０の間の通信を中継する無線基地局を切り替えるときのルーティング装置１１０、第１の無線基地局１３０、第２の無線基地局１４０及び移動機１５０の処理手順について説明する。

【0035】図３は図１に示した移動通信システムで移動機１５０とルーティング装置１１０の間の通信を中継する無線基地局を切り替えるときのルーティング装置１１０、第１の無線基地局１３０、第２の無線基地局１４０及び移動機１５０の処理手順を示すシーケンス図である。

【0036】図３に示す処理手順において、まず、移動機１５０は、第１の無線基地局１３０及びルーティング装置１１０を介して不図示の他の移動通信システムと接続しているものとする（ステップＳ１）。

【0037】ルーティング装置１１０の通信部１１１は、移動機１５０によって送受信されたデータのループバックを算出し（ステップＳ２）、算出したループバックを示すループバック情報を判定部１１２に送信する。

【0038】判定部１１２は、通信部１１１からループバック情報を受信すると、受信したループバック情報に基づいて、移動機１５０と自装置の間の通信を第２の無線基地局１４０が中継すべきか否かを判定する（ステップＳ３）。予め定められた時間に通信部１１１から受信した全てのループバック情報に示さ
れるスルーバットが予め定められた閾値以下である場合、判定部１１２は、
移動機１５０と自装置の間の通信を第２の無線基地局１４０が中継すべきと
判定する。移動機１５０と自装置の間の通信を第２の無線基地局１４０が中
継すべきと判定すると、判定部１１２は、移動機１５０のアドレス情報とセッショ^{-}

[0039] 判定部１１２から切替要求を受信すると、制御部１１３は、移動機１５０
のアドレス情報とセッション情報を含む切替要求を第１の無線基地局１３０
に送信すると共に（ステップＳ４）、移動機１５０のアドレス情報とセッシ-

[0040] ルーティング装置１１０の制御部１１３から切換要求を受信すると、第１
の無線基地局１３０は、移動機１５０とルーティング装置１１０の間の通信
の中継を終了し、制御部１１３に切断応答を返信する（ステップＳ６）。

[0041] また、ルーティング装置１１０の制御部１１３から接続要求を受信すると
、第２の無線基地局１４０は、移動機１５０とルーティング装置１１０の間
の通信の中継を実施し、制御部１１３に接続応答を返信する（ステップＳ７

[0042] その後、移動機１５０は、第２の無線基地局１４０及びルーティング装置
１１０を介して不図示の他の移動通信システムと接続する（ステップＳ８）

[0043] 移動機１５０とルーティング装置１１０の間の通信の中継を終了すると、
第１の無線基地局１３０は、移動機１５０の通信セッションで用いられてい
た通信リソースを解放する（ステップＳ９）。

[0044] なお、本実施形態では、ルーティング装置１１０が、移動機１５０と自装
置の間の通信を中継する無線基地局の切り替えの要求を第１の無線基地局１
３０及び第２の無線基地局１４０に送信する例を示したが、本発明はこれに
限定されるものではない。例えば、ルーティング装置１１０は、移動機１５
０と自装置の間の通信を中継する無線基地局の切り替えの要求を移動機１５
０に送信することにもよる。その場合、ルーティング装置１１０は、第１の無線基地局１３０を介して移動機１５０に、無線通信する無線基地局を第２の無線基地局１４０に切り替えるための要求を送信する。その要求を受信した移動機１５０は、自身が無線通信する無線基地局を第１の無線基地局１３０から第２の無線基地局１４０に切り替える。

[0045] また、本実施形態では、ルーティング装置１１０は、移動機１５０によって送受信されたデータのスループットが、予め定められた時間、予め定められた閾値以下である場合、移動機１５０が自装置の間の通信を第２の無線基地局１４０が中継すべき判定する例を示した。しかしながら、本発明はこれに限定されるものではない。例えば、ルーティング装置１１０は、移動機１５０によって送受信されるデータのスループットの予め定められた時間の平均値が予め定められた閾値以下である場合、移動機１５０と自装置の間の通信を第２の無線基地局１４０が中継すべき判定することにしてもよい。

[0046] 以上説明したように、本実施形態によれば、ルーティング装置は、移動機と自装置の間の通信をデータ通信速度の高い無線基地局が中継しているとき、その移動機によって送受信されたデータのスループットを計測する。予め定められた時間内で算出されたスループットが予め定められた閾値以下である場合、ルーティング装置は、その移動機と自装置の間の通信をデータ通信速度の低い無線基地局で中継すべき判定し、無線基地局の切り替えを制御する。

[0047] ルーティング装置は、移動機によって送受信されるデータのスループットに基づいて、その移動機と自装置の間の通信を中継すべき無線基地局を適切に選択できる。これにより、移動通信システムは、低速なデータ通信を通信速度の低い無線基地局に割り当て、高速なデータ通信を通信速度の高い無線基地局に割り当てることができ、ネットワーク内の通信リソースを効率よく利用できる。

[0048] （実施例）
次に本発明の実施例について図面を用いて説明する。本実施例は、3Gネットワークと3Gネットワークが共存するエリアに移動通信システムを適用する例である。

[0049] 図4は本発明の移動通信システムの実施例の構成を示すブロック図である。

[0050] 図4に示すように、本実施例の移動通信システムは、UE（User Equipment）と、3Gネットワークの無線アクセスネットワークであるLTE（Long Term Evolution）ネットワーク10と、3Gネットワークのコアネットワークであり、LTEネットワーク10の上位ネットワークとなるEPC（Evolved Packet Core）11と、3Gネットワークを形成するW-CDMAネットワーク12を有する。EPC11はLTEネットワーク10と接続され、3Gネットワークが形成される。また、EPC11はW-CDMAネットワーク12とも接続される。

[0051] W-CDMAネットワーク12は、NodeB5、RNC（Radio Network Controller）6及びSGSN（Serving General packet radio service Support Node）7を有する。LTEネットワーク10は、複数のeNB（evolved Node B）11、12を有する。EPC11は、MME（Mobility Management Entity）2、複数のSGW（Serving Gateway）3、3及びPGW（Packet Data Network Gateway）4を有する。

[0052] eNB11、eNB12、MME2、SGW31、SGW32、PGW4、NodeB5、RNC6及びSGSN7は、例えば、論理回路等から構成されるLSI、またはCPUもしくはDSP等の半導体集積回路を備え、半導体集積回路は以下に説明する各種の機能を有している。eNB11、eNB12、MME2、SGW31、SGW32、PGW4、NodeB5、RNC6及びSGSN7がCPUやDSPを備えている場合、CPUやDSPは、不図示の記録媒体に記録されたプログラムにしたがって処理を実行することで、以下に記載する機能を実現する。

[0053] UE8は、携帯電話やPHSなどのような携帯端末である。
eNB1、eNB2は、それぞれ、EPC1のMME2及びSGW3、SGW3と接続される。eNB1、eNB2は、UE8と無線通信が可能な、LTE方式の発展的無線基地局であり、UE8による通信セッションで用いられる通信リソースを管理する機能と、UE8のモビリティ管理機能を有する。

MME2は、SGW3、SGW3と接続され、W-CDMAネットワーク12のSGSN7と接続され、LTEネットワーク10のeNB1、eNB2と接続される。MME2は、eNB1、eNB2の通信セッションを制御する機能を有する。

SGW3、SGW3は、PGW4と接続され、W-CDMAネットワーク12のSGSN7と接続され、LTEネットワーク10のeNB1、eNB2と接続される。SGW3、SGW3は、SGSN7が送受信するデータとeNB1、eNB2が送受信するデータをルーティングする機能を有する。

PGW4は、不図示のISP（Internet Services Provider）や企業LAN（Local Area Network）と接続され、さらにSGW3、SGW3と接続される。PGW4は、ISPや企業LANと、SGW3、SGW3との間で送受信されるデータを中継する。

NodeB5は、RNC6と接続される。NodeB5は、UE8と無線通信が可能な、W-CDMA方式の無線基地局である。

RNC6は、NodeB5と接続され、さらにSGSN7と接続される。RNC6は、NodeB5の無線リソースを管理する機能を有する。

SGSN7は、RNC6と接続され、さらにEPC1のSGW3、SGW3と接続される。SGSN7は、UE8がNodeB5及びRNC6を介して送受信するデータをルーティングする機能を有する。

本実施例のSGW3、SGW3はルーティング装置110の通信部111及び判定部112の機能を有し、MME2はルーティング装置110の制御部113の機能を有する。また、eNB1、eNB2は第1の無線基地局130に対応し、NodeB5は第2の無線基地局140に対応し、UE8は
移動機１５０に対応する。

[0062] なお、eNB1、eNB1、SGW3、SGW3の数については、図４に示した数に限らない。また、NodeB5、RNC6の数は１つに限らず、複数であってもよい。

[0063] 本実施例の移動通信システムにおいて、UEがLTEネットワーク１０のeNB1と無線通信する場合、UEは、eNB1、SGW3（あるいはSGW3）及びPGW4を介して不図示のISPや企業LANと接続される。一方、UEがW-CDMAネットワーク１２のNodeB5と無線通信する場合、UEは、NodeB5、RNC6、SGSN7、SGW3（あるいはSGW3）及びPGW4を介して不図示のISPや企業LANと接続される。いずれの場合でも、SGW3（あるいはSGW3）がアンカーポイントとなる。

[0064] SGW3、SGW3は、UE8と自装置の間の通信をeNB1またはeNB1が中継しているとき、UE8によって送受信されたデータのスループットを算出する。SGW3、SGW3は、予め定められた時間内に算出されたスループットが予め定められた閾値以下である場合、UE8と自装置の間の通信をNodeB5が中継すべきと判定する。SGW3、SGW3は、UE8と自装置の間の通信をNodeB5が中継すべきと判定すると、UE8と自装置の間の通信を中継する無線基地局を切り替えるための切替要求をMME2に送信する。

[0065] MME2は、SGW3またはSGW3から切替要求を受信すると、UE8と自装置の間の通信を中継する無線基地局の切り替えを制御する。

[0066] 次に図４に示した移動通信システムでUE8による通信セッションを中継する無線基地局を切り替えるときのeNB1、MME2、SGW3、NodeB5、RNC6、SGSN7及びUE8の処理手順について説明する。

[0067] 図５は図４に示した移動通信システムでUE8による通信セッションを中継する無線基地局を切り替えるときのeNB1、MME2、SGW3、NodeB5、RNC6、SGSN7及びUE8の処理手順を示すシーケンス図
である。

[0068] 図5に示す処理手順において、まず、UE8は、eNB1、SGW3及びPGW4を介して、不図示のISPや企業LANと接続しているものとする（ステップS21）。図中の実線は、ユーザデータの流れを示し、点線は、制御信号の流れを示す。ユーザデータは、eNB1及びSGW3を介して送受信され、制御信号は、eNB1、MME2及びSGW3を介して送受信される。

[0069] SGW3は、UE8によって送受信されたデータのスループットを算出する（ステップS22）。

[0070] SGW3は、算出したスループットに基づいて、UE8と自装置の間の通信をNodeB5が中継すべきか否かを判定する（ステップS23）。予め定められた時間内で算出されたスループットが予め定められた閾値以下である場合、SGW3は、UE8と自装置の間の通信をNodeB5が中継すべきと判定する。UE8と自装置の間の通信をNodeB5が中継すべきと判定すると、SGW3は、UE8のアドレス情報とセッション情報を含む切替要求をMME2に送信する（ステップS24）。

[0071] SGW3から切替要求を受けると、MME2は、UE8による全ての通信セッションを中継する基地局を切り替えるためのセッション切替要求をeNB1に送信する（ステップS24）。セッション切替要求には、UE8のアドレス情報とセッション情報が含まれる。

[0072] MME2からセッション切替要求を受信すると、eNB1は、UE8の全ての通信セッションを解放できるか否かを判定する。eNB1は、UE8の全ての通信セッションを解放できる場合、セッション切替応答をMME2に返信する（ステップS25）。

[0073] eNB1からセッション切替応答を受信すると、MME2は、3GPPで規定されるInter-RAT Relocation処理を実行する（ステップS26）。Inter-RAT Relocation処理により、MME2は、UE8と自装置の間の通信を中継する無線基地局をeNB1か
らNodeB5に切り替える。これにより、UE8の全ての通信セッションは、W-CDMAネットワーク12内に確立され、LTEネットワーク10から解放される。

[0074] なお、このとき、SGW3がUE8の通信セッションのアンカーポイントとなる。また、Inter-RAT Relocation処理は、非特許文献1の「5.5.2.1E-UTRAN to UTRAN Mode Inter-RAT handover」に示される、MMEがeNodeBから「Handover Required」メッセージを受けとった後の処理に該当するものであり、ここでは詳細な説明は省略する。

[0075] その後、UE8は、NodeB5、RNC6、SGSN7、SGW3及びPGW4を介して、不図示のISPや企業LANと接続する。

[0076] 以上説明したように、本実施例によれば、3Gネットワークと3Gネットワークが共存するエリアに移動通信システムを適用することができる。
これにより、移動通信システムは、低速なデータ通信をW-CDMA方式の無線基地局に割り当て、高速なデータ通信をLTE方式の無線基地局に割り当てることができ、ネットワーク内の通信リソースを効率よく利用できる。

[0077] 本発明の効果の一例として、通信速度の異なる複数の無線基地局を有する移動通信システムにおいて、ネットワーク内の通信リソースを効率よく利用できる。

[0078] 以上、実施形態を参照して本願発明を説明したが、本願発明は前記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

[0079] なお、この出願は、2010年1月20日に出願された日本出願の特願2010-009925の内容が全て取り込まれており、この日本出願を基礎として優先権を主張するものである。

符号の説明

[0080] 1、2 eNB
2 MME
31, 32 SGW
4 PGW
5 Node B
6 RNC
7 SGSN
8 UE
10 LTEネットワーク
11 EPC
12 W-CDMAネットワーク
100 移動通信システム
110 ルーティング装置
111 通信部
112 判定部
113 制御部
130 第1の無線基地局
140 第2の無線基地局
150 移動機
請求の範囲

[請求項1] 複数の無線基地局を有する移動通信システムであって、
移動機と無線通信が可能な第1の無線基地局と、
該第1の無線基地局よりデータ通信速度が低く、前記移動機と無線
通信が可能な第2の無線基地局と、
前記第1の無線基地局及び前記第2の無線基地局と接続されるルー
ティング装置と、を有し、

前記ルーティング装置は、前記移動機と自装置の間の通信を前記第
1の無線基地局が中継しているとき、該移動機が該第1の無線基地局
を介して送受信するデータをルーティングすると共に、該ルーティン
グしたデータのスループットを算出し、予め定められた時間内で算出
された前記スループットが予め定められた閾値以下である場合、前記
移動機と自装置の間の通信を前記第2の無線基地局が中継すべきと判
定し、前記移動機と自装置の間の通信の中継を終了するための切断要
求を前記第1の無線基地局に送信すると共に、前記移動機と自装置の
間の通信を中継するための接続要求を前記第2の無線基地局に送信し
、

前記第1の無線基地局は、前記移動機と前記ルーティング装置の間
の通信を中継しているとき、前記切断要求を受信すると、該中継を終
了し、

前記第2の無線基地局は、前記接続要求を受信すると、前記移動機
と前記ルーティング装置の間の通信を中継する移動通信システム。

[請求項2] 請求項1に記載の移動通信システムにおいて、
前記第1の無線基地局は、L T E (L o n g T e r m E v o l u t i o n) 方式の無線基地局であり、
前記第2の無線基地局は、W－CDMA（W i d e b a n d C o d e D i v i s i o n M u l t i p l e A c c e s s）方式の
無線基地局である、移動通信システム。
[請求項3]
複数の無線基地局と接続されるルーティング装置であって、
移動機と無線通信が可能な第1の無線基地局と接続されると共に、
該第1の無線基地局よりデータ通信速度が低く、前記移動機と無線通
信が可能な第2の無線基地局と接続され、前記移動機と自装置の間の
通信を前記第1の無線基地局が中継しているとき、該第1の無線基地
局を介して該移動機が送受信するデータをルーティングすると共に、
該ルーティングしたデータのスループットを算出する通信手段と、
予め定められた時間内で算出された前記スループットが予め定めら
れた閾値以下であるか否かに基づいて、前記移動機と自装置の間の通
信を前記第2の無線基地局が中継すべきか否かを判定する判定手段と
、

前記判定手段によって、前記移動機と自装置の間の通信を前記第2
の無線基地局が中継すべきと判定された場合、前記移動機と自装置の
間の通信を中継する無線基地局を前記第1の無線基地局から前記第2
の無線基地局へ切り替えるように制御する制御手段と、を有するルー
ティング装置。

[請求項4]
移動機と無線通信が可能な第1の無線基地局と、該第1の無線基地
局よりデータ通信速度が低く、前記移動機と無線通信が可能な第2の
無線基地局と、前記第1の無線基地局及び前記第2の無線基地局と接
続されるルーティング装置と、を有する移動通信システムの通信制御
方法であって、

前記ルーティング装置が、前記移動機と自装置の間の通信を前記第
1の無線基地局が中継しているとき、該第1の無線基地局を介して該
移動機が送受信するデータをルーティングすると共に、該ルーティン
グしたデータのスループットを算出し、予め定められた時間内で算出
された前記スループットが予め定められた閾値以下である場合、前記
移動機と自装置の間の通信を前記第2の無線基地局が中継すべきと判
定し、前記移動機と自装置の間の通信の中継を終了するための切断要
求を前記第1の無線基地局に送信すると共に、前記移動機と自装置の間の通信を中継するための接続要求を前記第2の無線基地局に送信し、

前記第1の無線基地局が、前記移動機と前記ルーティング装置の間の通信を中継しているとき、前記切断要求を受信すると、該中継を終了し、

前記第2の無線基地局が、前記接続要求を受信すると、前記移動機と前記ルーティング装置の間の通信を中継する通信制御方法。

[請求項5]
請求項4に記載の通信制御方法において、
前記第1の無線基地局は、LTE（Long Term Evolution）方式の無線基地局であり、
前記第2の無線基地局は、W-CDMA（Wideband Code Division Multiple Access）方式の無線基地局である、通信制御方法。

[請求項6]
移動機が無線基地局を介して送受信するデータを、ルーティングするルーティング方法であって、
第1の無線基地局を介して移動機と送受信するデータのスルーブットを算出し、
前記スルーブットが予め定められた閾値以下である場合、前記移動機と送受信するデータを中継する基地局を、データ通信速度が前記第1の無線基地局とは異なる第2の無線基地局に切り替える、ルーティング方法。
図3

移動体150 移動体150 第1の無線基地局130 第2の無線基地局140 ルーティング装置110

S1通信中

スループット算出(S2)
判定処理(S3)

切断要求(S4)

接続要求(S5)

切断応答(S6)

接続応答(S7)

通信リソース解放(S9)

S8通信中
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
H04W48/16 (2009.01)i, H04W36/14 (2009.01)i, H04W36/22 (2009.01)i, H04W48/18 (2009.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
H04W4/00-99/00

Documentation searched other than minimum documentation to the extent that such documents are included in the field searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Further documents are listed in the continuation of Box C.
See patent family annex.

Date of the actual completion of the international search 11 April, 2011 (11.04.11)
Date of mailing of the international search report 26 April, 2011 (26.04.11)

Name and mailing address of the ISA/
Japanese Patent Office
Authorized officer

Facsimile No.
Telephone No.
A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. H04W48/16 (2009.01) i, H04W36/14 (2009.01) i, H04W36/22 (2009.01) i, H04W48/18 (2009.01) i

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. H04W4/00-99/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
日本国公開実用新案公報 1971-2011年
日本国実用新案登録公報 1996-2011年
日本国登録実用新案公報 1994-2011年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>引用文献名 和及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
</table>

■ C欄の続きにも文献が列挙されている。 ■ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ
 「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
 「E」国際案発映の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又はその文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前でかつ優先権の主張の基礎となる出願

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞ヶ浦三丁目4番3号
特許庁審査官（権限のある職員）
久松 和之
電話番号03-3581-1101 内線3534

様式PCT／ISA／210（第2ページ）（2009年7月）