There is disclosed an organic-free, metal-containing zeolite Beta with a silica-to-alumina ratio (SAR) ranging from 5 and 20, and a metal content of at least 0.5 wt. %. There is also disclosed a method of making such a zeolite Beta without organic structure directing agent (SDA). The metal, which may comprise Fe or Cu, can be found in amounts ranging from 1-10 wt. %. A method of selective catalytic reduction of nitrogen oxides in exhaust gases using the disclosed zeolite is also disclosed.
Figure 1
Figure 8

- Fe-Beta, 4.0% Fe, Example 1
- Fe-Beta, 2.0% Fe, Example 4
- Fe-Beta, 3.4% Fe, Example 3
- Fe-Beta, 1.0% Fe, Example 2 (comparable)
- Fe-mordenite, 1.5% Fe, Example 5 (comparable)
Figure 9

Temperature (°C)

NO conversion (%)
Figure 10
Example 4, 4.8% Cu, fresh

Example 4, 4.8% Cu, steamed at 700°C, 16 h

Figure 11

Example 1, 4.0% Fe

Example 4, 2.0% Fe

Figure 12
Figure 13
NOVEL METAL-CONTAINING ZEOLITE BETA FOR NOX REDUCTION AND METHODS OF MAKING THE SAME

[0001] This application claims the benefit of domestic priority to U.S. Provisional Patent Application No. 61/347,210, filed May 21, 2010, which is herein incorporated by reference in its entirety.

[0002] The present disclosure relates to a metal-containing zeolite Beta and methods of making the same. The present disclosure also relates to methods of using such zeolites, including for selective catalytic reduction (SCR) of nitrogen oxides (NOx) in exhaust gases.

[0003] Nitric oxides (NOx) have long been known to be pollutants, principally by reason of their corrosive action. In fact, they are the primary reason for the cause of acid rain. A major contributor of pollution by NOx is their emission in the exhaust gases of diesel automobiles and stationary sources such as coal-fired power plants and turbines. To avoid these harmful emissions, SCR is employed and involves the use of zeolitic catalysts in converting NOx to nitrogen and water.

[0004] The following patents disclose the use of zeolites or similar catalytic materials, and are herein incorporated by reference: U.S. Pat. No. 4,952,385; U.S. Pat. No. 4,961,917; U.S. Pat. No. 5,451,387; U.S. Pat. No. 6,689,709; U.S. Pat. No. 7,118,722; U.S. Pat. No. 6,890,501.

[0005] In general, the synthesis of zeolites, particularly Beta zeolite, occurs in the presence of organic templates, which are known in the art as structure directing agents (SDAs). One common SDA that is typically used to synthesize Beta zeolite is tetraethylenelammonium hydroxide (TEAOH). However, the drawbacks associated with the use of such SDAs, including in increased material costs, increased processing steps, and adverse effect on environment, make it desirable to develop a process of synthesizing zeolites, such as Beta zeolite, without the use of organic SDAs.

[0006] Synthesis of organic-free zeolite Beta was known in the art. See, for example, B. Xie, J. Song, L. Ren, Y. Ji, J. Li, F.-S. Xiao, Chemistry of Materials, 2008, 20, 4533, and G. Majano, L. Delmotte, V. Valtchev, S. Mintova, Chemistry of Materials, 2009, 21, 4184, both of which are incorporated by reference in their entirety. Neither of these references, however, disclose the claimed method of making a metal-containing zeolite Beta, and certainly not one used for selective catalytic reduction of NOx. Thus, there is a need for synthesizing organic-free zeolite Beta, further comprising a metal and that allows for the selective catalytic reduction of NOx in exhaust gases. As a result, the finished Fe-Beta product is superior to any previous disclosed Fe-zeolites in Fe-dispersion and selective catalytic reduction activity.

SUMMARY

[0007] Thus, there is disclosed an organic-free metal-containing zeolite Beta with silica-to-alumina ratio (SAR) ranging from 5 and 20, and a method of making it. The Beta zeolite described herein is synthesized without any direct use of an organic structure directing agent (SDA). Thus, the resulting zeolite Beta has no organic template material in its crystal structure at any point during processing, excluding any residual amount resulting from the seeding materials. In one embodiment, the method of making zeolite Beta according to the present disclosure has silica utilization of greater than 30 percent from the synthesis mixture, such as a silica utilization of greater than 40 percent, or even greater than 50 percent.

[0008] In one embodiment, the metal comprises iron (Fe) or copper (Cu) in an amount of at least 0.5 wt. %, such as in an amount ranging from 1-10 wt. %.

[0009] In one embodiment, the metal-containing zeolite Beta described herein exhibits a NOx conversion of at least 40% at 200°C after being steamed at 700°C for 16 h in 10% steam with balance air.

[0010] There is also disclosed a method of selective catalytic reduction of nitrogen oxides in exhaust gases using the zeolite Beta described herein. In one embodiment, the method comprises at least partially contacting the exhaust gases with a metal-containing zeolite Beta with SAR ranging from 5 and 20 and metal, such as iron or copper, in an amount of at least 0.5 wt %, such as from 1-10 wt. %.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The accompanying figures are incorporated in, and constitute a part of this specification.

[0012] FIG. 1 is a graph showing NO conversion on Fe-Beta materials steamed at 700°C for 16 h in 10% steam with balance air, on a sample according to the present disclosure and a comparative sample.

[0013] FIG. 2 is an X-ray diffraction pattern of Example 1.

[0014] FIG. 3 is an X-ray diffraction pattern of Example 3.

[0015] FIG. 4 is an X-ray diffraction pattern of Example 4.

[0016] FIG. 5 is a Scanning Electron Microscope image of the material of Example 1.

[0017] FIG. 6 is a Scanning Electron Microscope image of the material of Example 3.

[0018] FIG. 7 is a Scanning Electron Microscope image of the material of Example 4.

[0019] FIG. 8 is a graph showing NH3—SCR activity of Fe-exchanged zeolite Beta and mordenite samples [Steaming: 700°C for 16 h in 10% steam/air; SCR: 500 ppm NO, 500 ppm NH3, 5% O2, balance inert, SV: 60000 h⁻¹].

[0020] FIG. 9 is a graph showing NH3—SCR activity of Example 4 exchanged with various amounts of Fe [Steaming: 700°C for 16 h in 10% steam/air; SCR: 500 ppm NO, 500 ppm NH3, 5% O2, balance inert, SV: 60000 h⁻¹].

[0021] FIG. 10 is a graph showing NH3—SCR activity of fresh Fe-exchanged zeolite Beta, mordenite, and Y samples [SCR: 500 ppm NO, 500 ppm NH3, 5% O2, balance inert, SV: 60000 h⁻¹].

[0022] FIG. 11 is a graph showing NH3—SCR activity of fresh and steamed Cu-Beta [Steaming: 700°C for 16 h in 10% steam/air; SCR: 500 ppm NO, 500 ppm NH3, 5% O2, balance inert, SV: 60000 h⁻¹].

[0023] FIG. 12 is a graph showing UV data of Fe-exchanged zeolite Beta samples that were treated under the following conditions prior to recording the spectrum: steaming at 700°C for 16 h in 10% steam/air; dehydrated in situ to 400°C, followed by cooling down to ambient temperature.

[0024] FIG. 13 is a graph showing UV data of Example 4 exchanged with various amounts of Fe. Prior to recording the spectrum, the material was treated as follows: steaming at
700° C. for 16 h in 10% steam/air; dehydrated in situ to 400° C., followed by cooling down to ambient temperature.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

[0025] “Organic-free,” refers to a method of making Beta zeolite without the direct use of organic templates, such as organic structure directing agent (SDA), during synthesis. However, it is appreciated that when a seeding material is used, such as a pure Beta zeolite, the seeding material may have been made with or without an SDA. Thus, this term refers to fact that the resulting Beta product has never been in direct contact with an organic structure directing agent (SDA) during any processing step, but that a seed material may have been made using an SDA, providing, at most, residual or secondary contact with the pore structure. In one embodiment, the resulting Beta zeolite, even if exposed to residual or secondary contact with an SDA, would not require one or more post-synthesis treatment steps to open the porosity of the crystalline framework.

[0026] “Silica utilization” refers to the efficiency at which silica is used in the synthesis of zeolite Beta. Silica utilization can be calculated by dividing the silica-to-alumina ratio (SAR) of the product to the SAR of the synthesis mixture excluding the seeding material.

[0027] “Hydrothermally stable” means having the ability to retain a certain percentage of initial surface area and/or microporous volume after exposure to elevated temperature and/or humidity conditions (compared to room temperature) for a certain period of time.

[0028] “Initial Surface Area” means the surface area of the freshly made crystalline material before exposing it to any aging conditions.

[0029] “Initial Micropore Volume” means the micropore volume of the freshly made crystalline material before exposing it to any aging conditions.

[0030] “Direct synthesis” (or any version thereof) refers to a method that does not require a metal-doping step after the zeolite has been formed, such as a subsequent ion-exchange or impregnation method.

[0031] “Ion Exchange,” refers to exchanging non-framework ionic elements and/or molecules contained in zeolite materials with other elements and/or molecules, such as metals. In general, almost any conceivable element can be used in the ion exchange step, including at least one element from the following group: Cu, Fe, Co, Cr, Ni, V, and Nb, preferably Cu and Fe.

[0032] “Defined by the Structure Commission of the International Zeolite Association,” is intended to mean those structures included but not limited to, the structures described in “Atlas of Zeolite Framework Types,” ed. Baerlocher et al., Sixth Revised Edition (Elsevier 2007), which is herein incorporated by reference in its entirety.

[0033] “Selective Catalytic Reduction” or “SCR” refers to the reduction of NO₂, typically with ammonia, in the presence of oxygen to form nitrogen and H₂O.

[0034] “Exhaust gas” refers to any waste gas formed in an industrial process or operation and by internal combustion engines, such as from any form of motor vehicle.

[0035] The unique pore structure associated with crystalline microporous aluminosilicates, such as zeolites, have led to their successful uses in a wide variety of applications, including as catalysts, adsorbents, and ion-exchangers. In particular, the combination of its unique three dimensional, 12-ring channel system, and its high thermal stability, has made Beta zeolite one of the most important industrial zeolites. Traditionally, this zeolite was prepared from precursor materials containing organic structure directing agents (SDAs). The SDAs typically used to prepare Beta zeolite (such as TEAOH and dibenzyl-dimethylammonium hydroxide) are not only expensive, but they inevitably are encapsulated in the zeolitic framework, such that a removal step, e.g. heat treating, is required for their removal. In addition, when organic SDAs are used to prepare Beta zeolite, high silica products are typically obtained. For example, the typical SAR of synthetic Beta zeolite is over 20, often over 40.

[0036] According to the present invention it has been found that a metal containing Beta zeolite can be produced without using an organic structure directing agent (SDA). By avoiding the use of an organic template, the resulting Beta zeolite does not have unwanted organic materials in the crystalline material. As a result, one or more post-synthetic treatments such as calcination for removing SDAs from the crystallized material is unnecessary.

[0037] Thus, there is disclosed a metal-containing zeolite Beta that has never been in contact with an organic structure directing agent (SDA) and a method of making the same. In one embodiment, the zeolite Beta has a SAR ranging from 5 to 20, preferably not more than 12, such as a range from 5 to 11.

[0038] In one embodiment, the zeolite Beta disclosed herein has crystal size greater than 0.1 microns, such as a crystal size ranging from 0.2 to 5 microns.

[0039] In one embodiment, the metal portion of the zeolite Beta comprises copper or iron, which can be introduced into the zeolite Beta in various ways, such as by liquid-phase, or solid ion-exchange, or impregnation, or incorporated by direct-synthesis. In one embodiment, the metal portion comprises at least 1.0 weight percent of the total weight of the material, such as a range from 1.0-10.0 weight percent of the total weight of the material.

[0040] In one embodiment, the metal portion of the zeolite Beta comprises iron in an amount ranging from 1.0 to 10.0 weight percent of the total weight of the material, with at least 60 percent of the iron present as isolated cations at the exchanged sites.

[0041] In another embodiment, the metal portion of the zeolite Beta comprises copper in an amount ranging from 1.0 to 10.0 weight percent of the total weight of the material.

[0042] The source of iron is typically an iron salt is chosen from ferric nitrate, ferric chloride, ferrous chloride, and ferrous sulfate.

[0043] The source of copper is typically chosen from cupric acetate, cupric chloride, cupric hydroxide, cupric nitrate and cupric sulfate.

[0044] There is also disclosed a method of making a metal containing zeolite Beta. Generally, the present method is directed to making a metal-containing Beta zeolite by first making an aqueous solution comprising NaOH and a source of alumina. Non-limiting examples of sources of alumina that may be used in the present disclosure include sodium aluminate, aluminum hydroxide, alumina, aluminum nitrate, and aluminum sulfate.

[0045] Next, a source of silica is added to the solution and mixed. The source of silica may comprise a silica gel or silica sol, which is typically added under vigorous stirring conditions. Non-limiting examples of other sources of silica that
might be used include known silicates, such as silica gel, sodium silicate, and sodium metasilicate, as well as colloidal silica, precipitated silica, silica-alumina, and the like.

[0046] Next, a source of zeolite Beta is added, typically in an amount ranging from about 1 to 15 weight percent, such as 10 wt. %, with respect to the silica content of the slurry. The source of Beta zeolite is a commercially available Beta. In one embodiment, the source of zeolite Beta are seed crystals comprising a zeolithic material having a Beta framework structure. While the mixture can be prepared by any known means. In one embodiment, mixing by agitation or stirring is used. After mixing for about 30 minutes, a gel is formed. The mixing time can be up to 24 hours, or even up to 48 hours.

[0047] Next, the gel is heated to form a product. The duration of the crystallization step varies depending on the desired parameters of the final product, such as crystal size and purity. The synthesis is halted when pure zeolite Beta is formed. In one embodiment, the crystallization step comprises heating the gel in an autoclave at a temperature ranging from 100° C. to 200° C., such as 125° C., for a time ranging from 24 to 200 hours, such as from 40 to 150 hours, or even 50 to 125 hours.

[0048] It is important in the commercial manufacturing of zeolite to efficiently use raw materials. In the synthesis of zeolite Beta without SDA, the silica utilization is of the highest importance since it is the largest component by weight in the synthesis mixture. In commercial zeolite synthesis, silica utilization should be greater than 95%, such as greater than 40%, or even greater than 90%. Silica utilization can be calculated by dividing the silica-to-alumina ratio (SAR) of the product by the SAR of the synthesis mixture excluding the seed material.

[0049] Next, the crystallized material is optionally treated with at least one process chosen from isolation, washing, and drying. Isolation of the crystallized product occurs using well-known techniques, such as filtration, ultracentrifugation, diafiltration, centrifugation and/or decantation methods, wherein filtration methods can involve suction and/or pressure filtration steps.

[0050] After the foregoing procedures of filtering, washing and drying, the crystallized product shows a phase-material Beta zeolite.

[0051] With respect to the optional washing steps, suitable agents which may be used include, water, alcohols, such as methanol or ethanol, or mixtures thereof. Typically, the isolated and purified zeolitic material is washed until the pH of the effluent is in the range of 6 to 8.

[0052] The method may comprise an additional step of removing any residual sodium from the product. This is typically done via an ion-exchange process with known salts or the like, including ammonium salts of Ca, SO₄, NO₃. In one embodiment, residual sodium is removed by slurrying the product in a solution of a desired salt, such as NH₄NO₃, for example slurrying the solid at least one time in a NH₄NO₃ solution (3.6 M).

[0053] In one embodiment, the product may further subject to an ion-exchange and/or impregnation step to increase the amount of metal or add at least one additional metal.

[0054] In addition to the inventive method of making and the inventive Beta zeolite, there is disclosed a method of using the disclosed inventive Beta zeolite. For example, a typical exhaust gas of a diesel engine contains from about 2 to 15 volume percent oxygen and from about 20 to 300 volume parts per million nitrogen oxides (normally comprising a mixture of NO and NO₂). The reduction of nitrogen oxides with ammonia to form nitrogen and H₂O can be catalyzed by metal-promoted zeolites, hence the process is often referred to as the “selective” catalytic reduction (“SCR”) of nitrogen oxides.

[0055] Thus, there is also disclosed a method of selective catalytic reduction of nitrogen oxides in exhaust gas. In one embodiment, the method comprises:

[0056] at least partially contacting exhaust gases with an article comprising a metal-containing zeolite Beta with SAR between 5 and 20, where the zeolite Beta is made without organic structure directing agent (SDA) and the metal comprises iron and/or copper in an amount of at least 1.0 wt. %, such as an amount ranging from 1-10 wt. %.

[0057] It is appreciated that the contacting step may be performed in the presence of ammonia, urea or an ammonia generating compound. Non-limiting examples of ammonia generating compounds include, ammonium carbamate, ammonium formate, ammonium carbonate and metal-ammonium complexes. It is appreciated that any compound that is capable of generating ammonia may be used in the contacting step described herein. In this embodiment, the contacting step is typically performed in the presence of a hydrocarbon compound.

[0058] In one embodiment, the article described herein may be in the form of a channeled or honeycombed-shaped body, a packed bed, microspheres; or structural pieces. The packed bed may comprise balls, pebbles, pellets, tablets, extrudates, other particles, or combinations thereof. The structural pieces may be in the form of plates or tubes. In addition, the channeled or honeycombed-shaped body or structural piece may be formed by extruding a mixture comprising the Beta zeolite.

[0059] In one embodiment, the metal-containing zeolite Beta described herein exhibits an NO₃ conversion of at least 40% at 200° C. for selective catalytic reduction with an ammonia generating compound after exposure to 700° C. for 16 h in the presence of up to 10 volume % of water vapor.

[0060] Thus, in one embodiment there is also disclosed a method of SCR of nitrogen oxides in exhaust gases which comprises at least partially contacting an exhaust gas with the Beta zeolite disclosed herein. In order to reduce the emissions of nitrogen oxides various exhaust gases, ammonia is typically added to the gaseous stream containing the nitrogen oxides. In one embodiment of the present invention, ammonia is used to allow the gaseous stream, when contacted with the inventive Beta zeolite at elevated temperatures, to catalyze the reduction of nitrogen oxides.

[0061] In one embodiment, a urea solution may be used to provide the ammonia to the gaseous stream. This is particularly true when used in automotive exhaust treatment applications and stationary NOx reduction applications.

[0062] Non-limiting examples of the types of exhaust gases that may be treated with the disclosed zeolites include both automotive exhaust, from on and off road vehicles, including diesel engines. In addition, exhaust from stationary sources, such as power stations, stationary diesel engines, and coal-fired plants, may be treated. Thus, there are also disclosed methods of treating exhaust emissions, such as automotive exhaust or exhaust from stationary sources.

[0063] The Beta zeolite of the present invention may be provided in the form of a fine powder which is admixed with or coated by a suitable refractory binder, such as alumina, bentonite, silica, or silica-alumina, and formed into a slurry
which is deposited upon a suitable refractory substrate. In one embodiment, the carrier substrate may have a “honeycomb” structure. Such carriers are well known in the art as having a many fine, parallel gas flow passages extending there through. Non-limiting examples of the material used to make the honeycomb structure comprise cordierite, mullite, silicon carbide, alumina, titania, zirconia, silica, alumina-silica, alumin-zirconia, stainless steel, Fe−Cr—Al alloy and the combinations thereof.

In another embodiment, the Beta zeolite may be provided in discrete forms (as opposed to a coating on a substrate). Non-limiting examples of such forms include pellets, tablets or particles of any other suitable shape, for use in a packed bed, for example. The Beta zeolite according to the present invention may also be formed into shaped pieces such as plates, tubes, or the like.

Aside from the subject matter discussed above, the present disclosure includes a number of other exemplary features such as those explained hereinafter. It is to be understood that both the foregoing description and the following description are exemplary only.

EXAMPLES

Example 1

Synthesis of Organic-Free Beta (SAR=10.3) and Subsequent Fe-Exchange to make Fe-Beta (4.0 wt % Fe, SAR=10.3)

[0066] Water, NaOH (50%) and sodium aluminate (23.5% Al₂O₃, 19.6% Na₂O) were mixed together. Silica gel (PQ Corporation) was added to the solution and mixed vigorously for 1 hour. Finally, commercially available zeolite Beta (Zeolyst International) in the amount of 5 wt. % with respect to the silica content of the slurry were added to the mixture and stirred for 30 minutes. The gel had the following molar composition:

[0067] 15.0SiO₂·1.0Al₂O₃·3.8Na₂O·259H₂O

[0068] The gel was loaded into a 45-mL Parr bomb and heated under static conditions to 125°C for 120 hours. After cooling, the product was recovered by filtration and washing. The X-ray diffraction pattern of the product showed pure-phase zeolite Beta.

[0069] To remove residual sodium, the solid was slurried in a 3.6 M NH₄NO₃ solution and stirred at 90°C for 2 hours. This NH₄NO₃ exchange process was repeated twice. After filtering, washing, and drying, the final product had silica-to-alumina ratio (SAR) of 10.3. The BET surface area of the product was 665 m²/g and micropore volume was 0.23 cc/g.

[0070] The sample was then ion-exchanged with a FeSO₄ solution at 70°C for 2 hours. After filtering, washing and drying, the Fe-Beta product contained 4.0 wt. % Fe.

[0071] After steaming at 700°C for 16 hours in 10% steam/air, the surface area of the material was 590 m²/g and the micropore volume was 0.16 cc/g.

Example 2 (Comparable)

Fe-Beta (1.0 wt. % Fe, SAR=25) by Aqueous Ion-Exchange

[0072] Commercial Beta zeolite from Zeolyst (CP 814E, SAR=25) was ion-exchanged with FeCl₃ solution at 80°C for 2 hours. After filtering, washing and drying, the Fe-Beta product had 1.0 wt. % Fe, a BET surface area of 693 m²/g and a micropore volume of 0.19 cc/g.

Example 3

Synthesis of Organic-Free Beta

[0073] After steaming at 700°C for 16 hours in 10% steam/air, the surface area of the material was 590 m²/g and the micropore volume was 0.16 cc/g.

Example 4

Synthesis of Organic-Free Beta

[0074] Water, NaOH (50%) and sodium aluminate (23.5% Al₂O₃) were mixed together. Silica gel (PQ Corporation) was added to the solution and mixed vigorously for 1 hour. Finally, commercially available zeolite Beta (Zeolyst International) in the amount of 10 wt. % with respect to the silica content of the slurry were added to the mixture and stirred for 24 hours. The gel had the following molar composition:

[0075] 32.8SiO₂·1.0Al₂O₃·9.2Na₂O·794H₂O

[0076] The gel was loaded into a 2-liter Parr autoclave and heated at 125°C for 47 hours under static conditions. After cooling, the product was recovered by filtration and washing. The X-ray diffraction pattern of the product showed pure-phase Beta zeolite.

[0077] To remove residual sodium, the solid was slurried in a 3.6 M NH₄NO₃ solution and stirred at 90°C for 2 hours. This NH₄NO₃ exchange process was repeated twice. The properties of the material after filtering, washing, and drying are listed in Table 1.

[0078] The sample was then ion-exchanged with a FeSO₄ solution at 70°C for 2 hours, followed by filtering, washing and drying. The Fe content, surface area and micropore volume are listed in Table 2.

Example 5

Synthesis of Organic-Free Beta

[0079] Water, NaOH (50%) and sodium aluminate (23.5% Al₂O₃) were mixed together. Silica gel (PQ Corporation) was added to the solution and mixed vigorously for 1 hour. Finally, commercially available zeolite Beta (Zeolyst International) in the amount of 10 wt. % with respect to the silica content of the slurry were added to the mixture and stirred for 24 hours. The gel had the following molar composition:

[0080] 22.0SiO₂·1.0Al₂O₃·6.2Na₂O·337H₂O

[0081] The gel was loaded into a 2-liter Parr autoclave and heated at 125°C for 52 hours while stirring at 100 rpm. After cooling, the product was recovered by filtration and washing. The X-ray diffraction pattern of the product showed pure-phase Beta zeolite.

[0082] To remove residual sodium, the solid was slurried in a 3.6 M NH₄NO₃ solution and stirred at 90°C for 2 hours. This NH₄NO₃ exchange process was repeated twice. The properties of the material after filtering, washing, and drying are listed in Table 1.

[0083] The sample was then ion-exchanged with a FeSO₄ solution at 70°C for 2 hours, followed by filtering, washing and drying. The Fe content, surface area and micropore volume are listed in Table 2.

[0084] The NH₄-exchanged Beta from this example was also ion-exchanged to obtain different Fe-loadings using FeSO₄ solutions at 20°C for 2 hours, followed by filtering, washing and drying.

[0085] The NH₄-exchanged Beta from this example was also ion-exchanged with copper nitrate to obtain a sample containing 4.8% Cu.
TABLE 1
Properties of NH-exchanged organic-free Beta samples

<table>
<thead>
<tr>
<th>Example</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal size (microns)</td>
<td>0.4-0.6</td>
<td>0.1</td>
<td>0.1-0.3</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>S:(Al/O, molar ratio)</td>
<td>10.3</td>
<td>23</td>
<td>10.8</td>
<td>9.3</td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>665</td>
<td>696</td>
<td>679</td>
<td>672</td>
</tr>
<tr>
<td>Micropore Volume (cc/g)</td>
<td>0.23</td>
<td>0.18</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Acidity (mmol/g)</td>
<td>2.1</td>
<td>1.0</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Silica utilization in synthesis (%)</td>
<td>69</td>
<td>—</td>
<td>33</td>
<td>42</td>
</tr>
</tbody>
</table>

TABLE 2
Properties of Fe-exchanged Beta samples in fresh form and after steaming at 700 °C for 16 h in 10% water/air.

<table>
<thead>
<tr>
<th>Example</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe (wt%)</td>
<td>4.0</td>
<td>1.0</td>
<td>3.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Fresh sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>693</td>
<td>621</td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>Micropore Volume (cc/g)</td>
<td>0.16</td>
<td>0.21</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Sample steamed at 700 °C, 16 h, 10% water/air</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Area (m²/g)</td>
<td>461</td>
<td>590</td>
<td>476</td>
<td>494</td>
</tr>
<tr>
<td>Micropore Volume (cc/g)</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Surface area retention (%)</td>
<td>85</td>
<td>77</td>
<td>77</td>
<td>79</td>
</tr>
</tbody>
</table>

Example 5 (Comparable)
Fe-Mordenite (1.5 wt. % Fe, SAR=14) by Aqueous Ion-Exchange

Commercial mordenite zeolite from Zeolyst (SAR=14) was ion-exchanged with FeSO₄ solution at 70°C for 2 hours. After filtering, washing and drying, the Fe-mordenite product had 1.5 wt. % Fe, a BET surface area of 522 m²/g and a micropore volume of 0.19 cc/g.

Example 6 (Comparable)
Fe—Y (1.5 wt. % Fe, SAR=5.5) by Aqueous Ion-Exchange

Commercial Y zeolite from Zeolyst (CBV 500, SAR=5.5) was Fe-exchanged. After filtering, washing and drying, the Fe—Y product had 1.5 wt. % Fe, a BET surface area of 759 m²/g and a micropore volume of 0.27 cc/g. NH₃—SCR of NO with Ferrialluminosilicate Zeolites

The activities of Fe-Beta for NO conversion using NH₃ as reductant were evaluated in a flow-through type reactor. Powder zeolite samples were pressed and sieved to 35/70 mesh and loaded into a quartz tube reactor. The gas stream contained 500 ppm NO, 300 ppm NH₃, 5% O₂, and balance N₂. The hourly space velocity for all reactions was 60,000 h⁻¹. The reactor temperature was ramped and NO conversion was determined using an infrared analyzer at each temperature interval. FIG. 1 compares SCR of NO with NH₃ on Fe-Beta samples steamed at 700 °C. For 16 hours in 10% H₂O/air.

FT-UV Spectroscopy of Fe-Containing Zeolites

UV spectra were collected at ambient temperature from 200 to 400 nm on steamed Fe-samples after evacuation in situ at 400°C, and are shown in FIGS. 12 and 13. The spectra were deconvoluted to 5 Gaussian peaks centered at 192, 200, 228, 266 and 308 nm (+/-10 nm variation for each peak) with a fit accuracy of R²=0.99. Peak areas as well as peak area percentages are shown in Table 3. The peaks centered below 300 nm are associated with isolated Fe-species, whereas the peaks above 300 nm are associated with oligomeric Fe-species. Fe-exchanged materials of various Fe-loadings based on Beta made in Example 4 have more than 80% of Fe as isolated Fe-sites, whereas Comparable Example 2 has 73% isolated sites.

Example 7 (Comparable)
Fe-Mordenite (1.5 wt. % Fe, SAR=14) by Aqueous Ion-Exchange

Commercial mordenite zeolite from Zeolyst (SAR=14) was ion-exchanged with FeSO₄ solution at 70°C for 2 hours. After filtering, washing and drying, the Fe-mordenite product had 1.5 wt. % Fe, a BET surface area of 522 m²/g and a micropore volume of 0.19 cc/g.

Example 8 (Comparable)
Fe—Y (1.5 wt. % Fe, SAR=5.5) by Aqueous Ion-Exchange

Commercial Y zeolite from Zeolyst (CBV 500, SAR=5.5) was Fe-exchanged. After filtering, washing and drying, the Fe—Y product had 1.5 wt. % Fe, a BET surface area of 759 m²/g and a micropore volume of 0.27 cc/g. NH₃—SCR of NO with Ferrialluminosilicate Zeolites

The activities of Fe-Beta for NO conversion using NH₃ as reductant were evaluated in a flow-through type reactor. Powder zeolite samples were pressed and sieved to 35/70 mesh and loaded into a quartz tube reactor. The gas stream contained 500 ppm NO, 300 ppm NH₃, 5% O₂, and balance N₂. The hourly space velocity for all reactions was 60,000 h⁻¹. The reactor temperature was ramped and NO conversion was determined using an infrared analyzer at each temperature interval. FIG. 1 compares SCR of NO with NH₃ on Fe-Beta samples steamed at 700 °C. For 16 hours in 10% H₂O/air.

FT-UV Spectroscopy of Fe-Containing Zeolites

UV spectra were collected at ambient temperature from 200 to 400 nm on steamed Fe-samples after evacuation in situ at 400°C, and are shown in FIGS. 12 and 13. The spectra were deconvoluted to 5 Gaussian peaks centered at 192, 200, 228, 266 and 308 nm (+/-10 nm variation for each peak) with a fit accuracy of R²=0.99. Peak areas as well as peak area percentages are shown in Table 3.
being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.

[0093] Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

What is claimed is:

1. An organic-free, metal-containing zeolite Beta with molar silica-to-alumina ratio (SAR) ranging from 5 to 20, wherein said metal comprises iron and/or copper in an amount of at least 1.0 wt. %.

2. The organic-free, metal-containing zeolite Beta of claim 1, with the proviso that said zeolite Beta contains an organic structure directing agent (SDA) within the pore structure it originated from the seed material during synthesis.

3. The metal-containing zeolite Beta of claim 1, wherein said SAR ranges from 5 to 11.

4. The metal-containing zeolite Beta of claim 1, wherein said iron or copper is introduced by liquid-phase or solid ion-exchange, impregnation, or incorporated by direct-synthesis.

5. The metal-containing zeolite Beta of claim 1, wherein said metal comprises iron in an amount ranging from 1.0 to 10 wt. %.

6. The metal-containing zeolite Beta of claim 1, wherein said metal comprises iron in an amount ranging from 2.0 to 10 wt. %.

7. The metal-containing zeolite Beta of claim 1, wherein said metal comprises iron in an amount ranging from 3.0 to 8.0 wt. %.

8. The metal-containing zeolite Beta of claim 4, where at least 60% of the iron is present as isolated cation at the exchanged site.

9. The metal-containing zeolite Beta of claim 1, wherein said metal comprises copper in an amount ranging from 1.0 to 10 wt. %.

10. The metal-containing zeolite Beta of claim 1, wherein said metal comprises copper in an amount ranging from 2.0 to 10 wt. %.

11. The metal-containing zeolite Beta of claim 1, which exhibits an NOx conversion of at least 40% at 200 °C. for selective catalytic reduction with an ammonia generating compound after exposure to 700 °C. for 16 h in the presence of up to 10 volume % of water vapor.

12. The metal-containing zeolite Beta of claim 1, which exhibits an NOx conversion of at least 60% at 200 °C. for selective catalytic reduction with an ammonia generating compound after exposure to 700 °C. for 16 h in the presence of up to 10 volume % of water vapor.

13. A method of selective catalytic reduction of nitrogen oxides in exhaust gas, said method comprising:

at least partially contacting said exhaust gases with an article comprising an organic-free, metal-containing zeolite Beta, wherein said metal comprises iron and/or copper in an amount of at least 0.5 wt. %.

14. The method of claim 13, wherein said organic-free, metal-containing zeolite Beta has a molar silica-to-alumina ratio (SAR) ranging from 5 to 20.

15. The method of claim 14, wherein said zeolite Beta has SAR ranging from 5 to 11.

16. The method of claim 13, with the proviso that if said zeolite Beta contains any organic structure directing agent (SDA) within the pore structure it originated from the seed material during synthesis.

17. The method of claim 13, wherein said contacting step is performed in the presence of ammonia, urea or an ammonia generating compound.

18. The method of claim 13, wherein said contacting step is performed in the presence of hydrocarbon compound.

19. The method of claim 13, wherein said copper or iron is introduced by liquid-phase or solid ion-exchange, impregnation, or incorporated by direct-synthesis.

20. The method of claim 13, wherein said iron comprises at least 1.0 weight percent of the total weight of said material and at least 50% of the iron is present as isolated cation at the exchanged site.

21. The method of claim 13, wherein said iron comprises an amount ranging from 1.0 to 10.0 weight percent of the total weight of said material.

22. The method of claim 13, wherein said iron comprises an amount ranging from 2.0 to 10.0 weight % of the total weight of said material.

23. The method of claim 13, wherein said iron comprises an amount ranging from 3.0 to 8.0 wt. % of the total weight of said material.

24. The method of claim 13, wherein said copper comprises an amount ranging from 1.0 to 10.0 wt. % of the total weight of said material.

25. The method of claim 13, wherein said copper comprises an amount ranging from 2.0 to 10.0 wt. % of the total weight of said material.

26. The method of claim 13, wherein said zeolite Beta has crystal size greater than 0.1 micron.

27. The method of claim 13, wherein said zeolite Beta has crystal size ranging from 0.2 to 5 microns.

28. The method of claim 13, wherein said article is in the form of a channelled or honeycombed-shaped body; a packed bed; microspheres; or structural pieces.

29. The method of claim 28, wherein said packed bed comprises balls, pebbles, pellets, tablets, extrudates, other particles, or combinations thereof.

30. The method of claim 28, wherein said structural pieces are in the form of plates or tubes.

31. The method of claim 28, wherein the channelled or honeycombed-shaped body or structural piece is formed by extruding a mixture comprising the Beta zeolite.

32. A method of synthesizing zeolite Beta with molar silica-to-alumina ratio (SAR) ranging from 5 to 20, without organic structure directing agent (SDA), excluding any seeding materials, wherein said zeolite Beta has silica utilization of greater than 30 percent from the synthesis mixture.

33. The method of claim 32, wherein said zeolite Beta has silica utilization of greater than 50 percent from the synthesis mixture.

* * * * *