USE OF MACROLIDE COMPOUNDS FOR THE TREATMENT OF ARDS

Inventors: Tadatsura Koshika, Nishinomiya; Itsuo Nagatomi, Osaka, both of (JP)

Assignee: Fujisawa Pharmaceutical Co., Ltd., Osaka (JP)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 09/623,595
PCT Filed: Mar. 4, 1999
PCT No.: PCT/JP99/01064
§ 371 Date: Sep. 5, 2000
§ 102(e) Date: Sep. 5, 2000
PCT Pub. No.: WO99/44597
PCT Pub. Date: Sep. 10, 1999

FOREIGN APPLICATION Priority Data
Mar. 6, 1998 (AU) .. PP2231

ABSTRACT

Macrolide compounds, such as the FK506 Substance and its related compounds are provided for the prevention or treatment of adult respiratory distress syndrome. Composition containing such compounds is also disclosed.

5 Claims, No Drawings
US 6,333,334 B1

USE OF MACROLIDE COMPOUNDS FOR THE TREATMENT OF ARDS

TECHNICAL FIELD

This invention relates to a new use of macrolide compounds for pulmonary diseases. More specifically, this invention relates to a new use of macrolide compounds for preventing or treating adult respiratory distress syndrome (hereinafter, ARDS).

BACKGROUND ART

The ARDS has been recognized as a part of systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndromes (MODS). It is a life-threatening inflammatory lung condition characterized by severe acute hypoxemia, respiratory distress and pulmonary edema. In spite of the advances in ventilator and circulation therapy, it is reported that the mortality rate of patients with ARDS still remains high and it exceeds 50%.

Recently, no selective pharmacotherapy is available for ARDS. At present, in a clinical use, glucocorticoid anti-inflammatory steroids, which are very potent immunosuppressive agents, have not proved to be beneficial (TIPS, 14:436–441, 1993). Even high-dose glucocorticoid therapy of patients at risk of developing ARDS neither improved the clinical outcome nor reversed ARDS progression (Chest. 103:932–943, 1993).

DISCLOSURE OF INVENTION

The inventors of this invention have surprisingly found that the macrolide compounds mentioned here-in-below are useful for preventing or treating ARDS.

Accordingly, this invention provides a new use of the macrolide compounds for preventing or treating ARDS.

Further, this invention provides a prophylactic or therapeutic agent for ARDS, which comprises the macrolide compounds.

Still further, this invention provides a method for preventing or treating ARDS, which comprises administering said macrolide compounds to mammals.

As a particular example of the macrolide compounds, the tricyclic compound of the following formula (I), or its pharmaceutically acceptable salt, can be exemplified.

\[
\text{(I)}
\]

(wherein each of adjacent pairs of \(R^1, R^2, R^3, \text{ and } R^4\), and \(R^5\) independently

(a) is two adjacent hydrogen atoms, but \(R^2\) may also be an alkyl group or

(b) may form another bond formed between the carbon atoms to which they are attached;

\(R^7\) is a hydrogen atom, a hydroxy group, a protected hydroxy group, or an alkoxy group, or an oxo group together with \(R^1\);

\(R^6\) and \(R^9\) are independently a hydrogen atom or a hydroxy group;

\(R^{10}\) is a hydrogen atom, an alkyl group, an alkyl group substituted by one or more hydroxy groups, an alkenyl group, an alkenyl group substituted by one or more hydroxy groups, or an alkyl group substituted by an oxo group;

\(X\) is an oxo group, (a hydrogen atom and a hydroxy group), (a hydrogen atom and a hydrogen atom), or a group represented by the formula \(-\text{CH}_2\text{O};\)

\(Y\) is an oxo group, (a hydrogen atom and a hydroxy group), (a hydrogen atom and a hydrogen atom), or a group represented by the formula \(-\text{N}-\text{NR}^3\text{R}^{12}\) or \(-\text{N}-\text{OR}^{12};\)

\(R^{18}\) and \(R^{22}\) are independently a hydrogen atom, an alkyl group, an aryl group or a tosyl group;

\(R^{23}, R^{19}, R^{21}, R^{24}, R^{18}, R^{17}, R^{16}, R^{15}, R^{14}, R^{13}, R^{12}, R^{22}\) and \(R^{23}\) are independently a hydrogen atom or an alkyl group;

\(R^{25}\) is an optionally substituted ring system which may contain one or more heteroatoms;

\(n\) is an integer of 1 or 2 and

in addition to the above definitions, \(Y, R^{10}\) and \(R^{25}\), together with the carbon atoms to which they are attached, may represent a saturated or unsaturated 5- or 6-membered nitrogen, sulfur and/or oxygen containing heterocyclic ring optionally substituted by one or more groups selected from the group consisting of an alkyl, a hydroxy, an alkoxy, a benzyloxy, a group of the formula \(-\text{CH}_2\text{Se}(\text{C}_3\text{H}_3)\), and an alkyl substituted by one or more hydroxy groups.

Preferable \(R^{25}\) may be cyclo(C\(_3\)H\(_2\))alkyl group, and the following ones can be exemplified.

(a) a 3,4-di-oxo-cyclohexyl group;

(b) a 3-R\(^{20}\)-4-R\(^{21}\)-cyclohexyl group,
in which R² is hydroxy, an alkoxy group, an oxo group, or a —OCH₂CH₂OCH₃ group, and R² in which R² is hydroxy, —OCN, an alkoxy group, a heteroaryloxy which may be substituted by suitable substituents, a —OCH₂CH₂OCH₃, a protected hydroxy group, chloro, bromo, iodo, aminoalkoxy, an azido group, p-tolyloxythiocarbonyl, or R²⁺RC(=O)OCH₂—, in which R² is optionally protected hydroxy or protected amino, and R² is hydrogen or methyl, or R²⁻ and R²⁺ together form an oxygen atom in an epoxide ring; or (c) cyclohexyl group substituted by methoxymethyl, optionally protected hydroxymethyl, acyloxyethyl (in which the acyl moiety optionally contains either a dimethylamino group which may be quaternized, or a carboxy group which may be esterified), one or more amino and/or hydroxy groups which may be protected, or aminoalkoxyalkylmethyl. A preferred example is a 2-formyl-cyclohexyl group. The definitions used in the above general formula (I) and the specific and preferred examples thereof are now explained and set forth in detail.

The term “lower” means, unless otherwise indicated, a group having 1 to 6 carbon atoms.

Preferable examples of the “alkyl groups” and an alkyl moiety of the “alkoxy group” include a straight or branched chain aliphatic hydrocarbon residue, for example, a lower alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, neopentyl and hexyl. Preferable examples of the “alkenyl groups” include a straight or branched chain aliphatic hydrocarbon residue having one double-bond, for example, a lower alkenyl group such as vinyl, propenyl (e.g., allyl group), butenyl, methylpropanoyl, pentenyl and hexenyl. Preferable examples of the “aryl groups” include phenyl, tolyl, xyllyl, cumenyl, mesityl and naphthyl. Preferable protective groups in the “protected hydroxy groups” and the “protected amino groups” are 1-lower alkoxy)-(lower alkyl group such as a lower alkythiokethyl group (e.g., methylthioethyl, ethylthioethyl, propylthioethyl, isopropylthioethyl, butylthiokethoxymethyl, isobutylthioethyl, butylthioethyl, isobutylthioethyl, isopropylthioethyl, butylthioethyl, etc.), more preferably trif(C₇₆-xalkylthiokethyl) group, most preferably methylthioethyl group; trisubstituted silyl group such as a silylalkoxyalkylsilyl group (e.g., trimethylsilyl, triethylsilyl, tributylsilyl, tert-butyldimethylsilyl, tri-t-tert-butyldisilyl, etc.) or lower alkyldiarylalkylsilyl group (e.g., ethylidiphenoxyethoxymethyl, propyldiphenoxyethoxymethyl, tert-butyldiphenylsilyl, etc.), more preferably trif(C₆<C₆alkylsilyl) group and C₆<C₆alkylidiphenoxyethoxymethyl group, most preferably tert-butylidiphenoxyethoxymethyl group and tert-butyldiphenylsilyl group; and an acyl group such as an aliphatic, aromatic acyl group or an aliphatic acyl group substituted by an aromatic group, which are derived from a carboxylic acid, sulfonic acid or carboxylic acid.

Examples of the aliphatic acyl groups include a lower alkanoyl group optionally having one or more suitable substituents such as lower alkyl, e.g., cyclopropylhexoctyl, cyclobutylhexoctypropionyl, cycloheptoyxbutyryl, menthylexocacetyl, menthylexocpropionyl, menthylexocbutyryl, menthylexopentanoyl, menthylexohexanoyl, etc.; a camphorsulfonyl group; or a lower alkanoylbenzoyl group having one or more suitable substituents such as carboxy or protected carboxy, for example, carboxy(lower alkyl)carboxybenzoyl group (e.g., carboxymethylcarboxybenzoyl, carboxyethylecarboxybenzoyl, carboxypropylcarboxybenzoyl, carboxybutoxybenzoyl, carboxyhexanoylcarboxybenzoyl, etc.), tri-(lower alkyl)silylalkoxybenzoyl group (lower alkylbenzoyl group (e.g., trimethylsilylmethoxybenzoylcarboxybenzoyl, trimethylsilylhexoxybenzoylcarboxybenzoyl, triethylsilylhexoxybenzoylcarboxybenzoyl, tert-butylmethylsilylhexoxybenzoylcarboxybenzoyl, trimethylsilylpropoxybenzoylcarboxybenzoyl, etc.) and so on.

Examples of the aromatic acyl groups include an aryl group optionally having one or more suitable substituents such as nitro, e.g., benzyol, toluyl, xyloyl, naptholyl, nitrobenzoyl, dinitrobenzoyl, nitronaptholyl, etc.; and an anexasulfonyl group optionally having one or more suitable substituents such as halogen, e.g., benzenesulfonyl, toluenesulfonyl, xylenesulfonyl, naphthalesulfonyl, fluorenbensulfonyl, chlorofluorensulfonil, bromobenzensulfonyl, iodobenzensulfonyl, etc.

Examples of the aliphatic acyl groups substituted by an aromatic group include ar(lower)alkanoyl group optionally having one or more suitable substituents such as lower alkoxo or trihalo(lower)alkyl, e.g., phenylacetyl, phenylpropionyl, phenylbutyryl, 2,3-trifluoromethyl-2-methoxy-2-phenylacetyl, 2-ethyl-2-trifluoromethyl-2-phenylacetyl, 2,3-trifluoromethyl-2-propoxy-2-phenylacetyl, etc.

More preferable acyl groups among the aforesaid acyl groups are C₆<C₆alkanoyl group optionally having carboxy, cyclo(C₆-C₆)alkoxy(C₆-C₆)alkanoyl group having two(C₆-C₆)alkyls at the cycloalkyl moiety, camphorsulfonyl group, carboxy(C₆-C₆)alkylcarboxybenzoyl group, trif(C₆-C₆)alkylsilyl(C₆-C₆)alkoxybenzoyl(C₆-C₆)alkylcarboxybenzoyl group, benzoyl group optionally having one or two nitro, benzenesulfonyl, benzoyl, nitrobenzoyl, dinitrobenzoyl, iodobenzensulfonyl and 2-trifluoromethyl-2-methoxy-2-phenylacetyl. Preferable examples of the “5- or 6-membered nitrogen, sulfur and/or oxygen containing heterocyclic ring” include a pyrrol group and a tetrahydrofurfuryl group.

and FR900525 are products produced by microorganisms of the genus Streptomyces, such as *Streptomyces tsukubaensis* No. 9993 [deposited with National Institute of Bioscience and Human Technology Agency of Industrial Science and Technology (formerly Fermentation Research Institute Agency of Industrial Science and Technology)], at 1–3, Higashi-1-chome, Tsukuba-shi, Ibaraki, Japan, date of deposit Oct. 5, 1984, accession number FERM BP-927) or *Streptomyces hygroscopicus* subsp. *yukushinaensis* No. 7238 [deposited with National Institute of Bioscience and Human Technology Agency of Industrial Science and Technology (formerly Fermentation Research Institute Agency of Industrial Science and Technology)], at 1–3, Higashi-1-chome, Tsukuba-shi, Ibaraki, Japan, date of deposit Jan. 12, 1985, accession number FERM BP-928 [EP-A-0184162]. The FK506 Substance (general name: tacrolimus) of the following chemical formula, in particular, is a representative compound.

Chemical name: 17-allyl-1,14-dihydroxy-12-[2-(4-hydroxy-3-methoxy-cyclohexyl)-1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxo-4-azatricyclo[22.3.1.0^7,13,21,25,15,20,17,22]octacos-18-ene-2,3,10,16-tetraone

The preferred examples of the tricyclic compounds (I) are the ones, wherein each of adjacent pairs of R^5 and R^6 or R^1 and R^2 independently form another bond formed between the carbon atoms to which they are attached;

each of R^8 and R^23 is independently a hydrogen atom;

R^9 is a hydroxy group;

R^20 is a methyl group, an ethyl group, a propyl group or an allyl group;

X is a (hydrogen atom and a hydrogen atom) or an oxo group;

Y is an oxo group;

each of R^14, R^15, R^16, R^17, R^18, and R^19, and R^22 is a methyl group;

R^21 is a 3-R^20-4-R^21-cyclohexyl group, in which

R^20 is hydroxy, an alkoxy group, an oxo group, or a —OCH_3, OCH_2CH_3, OCH_2CH_2CH_3 group, and

R^21 is hydroxy, —OCN, an alkoxy group, a heteroalkoxy which may be substituted by suitable substituents, a —OCH_3, OCH_2CH_3, OCH_2CH_2CH_3 group, a protected hydroxy group, chloro, bromo, iodo, aminooxyaloexy or R^25R^26CH-COO—,
example, in solid, semisolid or liquid form, which contains the macrolide compounds of the present invention, as an active ingredient, in admixture with an organic or inorganic carrier or excipient suitable for external/topical, enteral, intravenous, intramuscular, or parenteral applications. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable, carriers for tablets, pellets, capsules, eye drops, suppositories, solutions (saline, for example), emulsion, suspensions (olive oil, for example), ointment and any other form suitable for use. The carriers which can be used are water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form, and in addition auxiliary, stabilizing, thickening and coloring agents and perfumes may be used. The active object compound is included in the pharmaceutical composition in an effective amount sufficient to produce the desired effect upon the process or condition of the disease.

Mammals which may be treated using the method of the present invention include livestock mammals such as cows, horses, etc., domestic animals such as dogs, cats, rats, etc. and humans.

While the dosage of therapeutically effective amount of the macrolide compounds varies from and also depends upon the age and condition of each individual patient to be treated, a daily dose of about 0.001–100 mg, preferably 0.001–500 mg and more preferably 0.01–100 mg of the active ingredient is generally given for treating diseases, and an average single dose of about 0.001–0.01 mg, 0.2–0.5 mg, 1 mg, 5 mg, 10 mg, 50 mg, 100 mg, 250 mg and 500 mg is generally administered. Daily doses for chronic administration in humans will be in the range of about 0.1–0.3 mg/kg/day. Most preferably, the macrolide compounds can be administered to humans by intravenously in proper forms for such administration.

The following examples illustrate the present invention in further detail, it being to be understood that those examples are not intended to limit the scope of the invention.

EXAMPLE 1

<table>
<thead>
<tr>
<th>FK 506 Substance</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCO-60 (polyoxyethylenehydrogenated castor oil 60)</td>
<td>400 mg</td>
</tr>
<tr>
<td>Ethanol</td>
<td>to 3 ml</td>
</tr>
</tbody>
</table>

The solution comprising the ingredients stated above is prepared by dissolving the FK506 Substance and HCO-60 in ethanol by a conventional manner. It can be administered via intravenous infusion by diluting with a proper volume of physiological saline.

EXAMPLE 2

The efficacy of FK506 Substance on ARDS-model was evaluated in accordance with the below-mentioned method.

Methods

Fifteen dogs weighing 10.0–15.0 kg were anesthetized with 50 mg/kg of intravenous sodium pentobarbital. After the anesthesia, trachea was exposed and incised, followed by cannulation for artificial ventilation with a mixture of 30% O2 and 70% N2 (tidal volume:180 ml/breath;respiration rate:15–20 breaths/min) and the measurement of airway pressure. Instrumentation included insertions of both bilateral central venous and aortic polyethylene catheters, and introduction of 7F SwanGanz catheter into main pulmonary line. Mean arterial pressure, heart rate, central venous pressure, pulmonary pressure were monitored and recorded continuously. Cardiac output was measured in duplicate using the thermodilution technique. Samples obtained from aortic line, related to various pulmonary functions, such as arterial blood O2 tension (PaO2), hemoglobin oxygen saturation (SO2) and shunt % etc, were analyzed. After the surgical preparation has been completed, the animal was left to stabilize (to ensure arterial carbon dioxide tension: PaCO2; ranging from 35–45 mmHg and pH; from 7.35–7.45) before the start of the study. Heating pads were used to prevent hypothermia. At the end of consecutive experiment, the animals were killed with hemorrhage and left lung was used to determine both lung wet and dry ratio.

All animals receiving intravenous administration of 0.5 mg/kg of Lipopolyasacharide (LPS) and 30 μg/kg of Phorbol myristate acetate (PMA) were divided into 3 groups. In the first group of 5 animals receiving LPS and PMA (served as control), saline was infused throughout the study. In the second group of 5 animals, Methylprednisolone (MP) was given intravenously as an infusion (0.025 mg/kg/hr) starting 30 min prior to LPS/PMA injection and continued throughout the duration of the experiment (until 6 h post-LPS/PMA injection). Measurement of each hemodynamic parameter and analysis of arterial and venous blood gas were performed in every hour after the LPS/PMA administration. Each lung sample from left lower lobe was placed in container, weighed immediately after being taken out, and then dried in an oven (Sanyo, TSE) at 105°C for 24 h. Then, the dry tissue weight was measured. W/D ratio calculated to evaluate the degree of lung edema. W/D ratio was estimated as follows;

W/D ratio=net weight of lung/net dry weight of lung. All data are presented as mean±standard error (S.E.). ANOVA and Dunnett’s multiple comparison test or
Student-t test were applied to access statistical significance between groups. A value of p<0.05 were considered as significant differences between groups.

Results

A difference with change in each hemodynamic parameter failed to be perceived among all 3 groups. Although in respect of each parameter related to pulmonary function there was a similar change in control and MP group, there was the marked improvement of PaO₂, sO₂, and shunt % in FK506 Substance. Moreover, lung wet/dry ratio in FK 506 Substance tended to decrease (5.2±2.4% in control and MP (7.8±0.7% group). Treatment with FK 506 Substance led to reverse the above ratio dose-dependently.

The above results indicate that the macrolides compounds such FK506 Substance have therapeutic effect against ARDS, and/or acute lung injury.

The patents, patent applications and publications cited herein are incorporated by reference.

We claim:

1. A method for treating an inflammatory lung condition characterized by pulmonary edema which comprises administering a tricyclic compound of the following formula (I):

 \[
 R^1 \quad R^2 \quad R^3 \quad R^4
 \]

 wherein each of adjacent pairs of R¹ and R², R³ and R⁴, and R² and R³ independently
 (a) is two adjacent hydrogen atoms, but R² may also be an alkyl group or
 (b) may form another bond formed between the carbon atoms to which they are attached;

2. The method of claim 1, wherein said inflammatory lung condition is adult respiratory distress syndrome.

3. The method of claim 1, wherein said tricyclic compound is FK506 or a FK506 hydrate.

4. A method for treating pulmonary edema, which comprises administering FK506 or a FK506 hydrate to a mammal.

5. The method of claim 1, wherein the heterocyclic ring is a pyrrolyl group or tetrahydrofuryl group.