
DE112008000180T520091203
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 11 2008 000 180 T5 2009.12.03

(12) Veröffentlichung

 der internationalen Anmeldung mit der
(87) Veröffentlichungs-Nr.: WO 2008/087634

in deutscher Übersetzung (Art. III § 8 Abs. 2 IntPatÜG)
(21) Deutsches Aktenzeichen: 11 2008 000 180.4
(86) PCT-Aktenzeichen: PCT/IL2008/000062
(86) PCT-Anmeldetag: 16.01.2008
(87) PCT-Veröffentlichungstag: 24.07.2008
(43) Veröffentlichungstag der PCT Anmeldung

in deutscher Übersetzung: 03.12.2009

(51) Int Cl.8: G06F 12/02 (2006.01)
G11C 16/10 (2006.01)

(54) Bezeichnung: Verfahren und System für die Umsetzung eines Fast-Wakeup eines Flashspeichersystems

(57) Hauptanspruch: Speichermodul, gekennzeichnet
durch:
(a) einen ersten nicht volatilen Speicher; und
(b) eine Steuerung des genannten ersten nicht volatilen
Speichers, die dazu dient, den ersten nicht volatilen Spei-
cher durch Schritte zu steuern, die folgende Schritte
umfassen
(i) Speichern im genannten ersten nicht volatilen Speicher
mindestens eines Teils einer Managementtabelle, deren
Inhalte einen Status des Speichersystems zu einem ersten
Zeitpunkt abbilden,
(ii) Speichern im genannten ersten nicht volatilen Speicher
einer künftigen Informationsdatenstruktur, die eine Mehr-
zahl von Datensätzen in Bezug auf Ereignisse im Spei-
chersystem umfasst, deren Eintritt nach dem Speichern
der genannten künftigen Informationsdatenstruktur erwar-
tet wird, und
(iii) zu einem zweiten Zeitpunkt, der auf das Speichern der
genannten künftigen Informationsdatenstruktur folgt, Bear-
beitung des genannten Ereignisses gemäß der künftigen
Informationsdatenstruktur.

(30) Unionspriorität:
60/885,412 18.01.2007 US
11/808,451 11.06.2007 US
11/808,452 11.06.2007 US

(71) Anmelder:
SanDisk IL Ltd., Kfar Saba, IL

(74) Vertreter:
Richardt, M., Dipl.-Ing., Pat.-Anw., 65343 Eltville

(72) Erfinder:
Lasser, Menahem, Kochav Yair, IL; Meir, Avraham,
Rishon Le Zion, IL
1/26

DE 11 2008 000 180 T5 2009.12.03
Beschreibung

ALLGEMEINER STAND DER TECHNIK

[0001] Die vorliegende Erfindung betrifft Verfahren
und Systeme für die Vorhaltung von Datenstrukturen,
die für die Umsetzung einer Wakeup-Funktion in ei-
nem Flash-Speichersystem nützlich sind.

[0002] Das US-Patent Nr. 6,510,488 von Lasser mit
dem Titel „Method for a Fast Wake-Up of a Flash Me-
mory System” (nachfolgend ”Lasser '488”) offenbart
ein Verfahren und System, mit denen ein Flashspei-
chersystem ein schnelles Hochfahren nach Einschal-
ten des Flash-Speichersystems erreicht, selbst wenn
die Flashsystemsoftware Managementtabellen ver-
wendet, deren Neuerstellung zeitaufwändig ist. Die
kurze Wakeup-Zeit wird ohne Beeinträchtigung der
Datenintegrität erreicht. Das genannte Patent von
Lasser '488 ist vorliegend für alle Zwecke durch Hin-
weis so aufgenommen als sei es in vorliegender Pa-
tentschrift vollumfänglich enthalten.

[0003] Wie in Lasser '488 dargelegt, erfordert die
Verwendung einer Flashspeichervorrichtung für
Computerdaten traditionell eine Software-Translati-
onsschicht zwischen dem Betriebssystem des
Hauptrechners und den systemnahen Zugangsrouti-
nen der Vorrichtung. Dies ist der Fall, da die Flash-
technologie einige Nutzungsbeschränkungen auf-
weist, die es unmöglich machen, zum Flashspeicher
einfach durch direkten linearen Zugriff Zugang zu er-
langen. Eine dieser Beschränkungen ist die Unmög-
lichkeit, einen beliebigen Ort im Flashspeicher direkt
zu überschreiben. Genau gesagt, kann das Schrei-
ben von neuem Inhalt in einen Flashspeicher zuerst
das Löschen des gesamten Blocks, in dem der be-
treffende Ort sich befindet, erfordern (unter Erhaltung
der Inhalte in anderen noch benötigten Orten), bevor
dann der neue Inhalt eingegeben werden kann.

[0004] Die Translationsschicht präsentiert dem Be-
triebssystem des Hauptrechners eine virtuelle An-
sicht einer Reihe unabhängiger und direkt zugängli-
cher Datensektoren und verbirgt zugleich die Einzel-
heiten des Mapping dieser virtuellen Adressen zu de-
ren realen Orten im Flashmedium. Dieser Translati-
onsmechanismus ist alles andere als trivial, und ein
Beispiel einer solchen Translationsschicht für einen
Flashspeicher ist in Amir Bans US-Patent Nr.
5,937,425 offenbart, das vorliegend durch Bezug-
nahme aufgenommen ist. Ban offenbart ein Verfah-
ren für die Umsetzung eines Mappingmechanismus
zwischen virtuellen und physischen Flashadressen.
Ein weiteres Beispiel eines solchen Systems ist in
US-Patent Nr. 6,678,785 offenbart, das ebenfalls
durch Hinweis vorliegend aufgenommen ist.

[0005] Der Translationsprozess nutzt interne Trans-
lationstabellen, die der Flashsystemsoftware die für

die Konversion der Zugangsanfragen vom Haupt-
rechner in Zugangsanfragen zum Flashgerät erfor-
derlichen Informationen liefern. Das Flashspeicher-
system erstellt diese Translationstabellen während
des Wakeup (oder später, sofern von der Betriebs-
software des Hauptrechners so vorgegeben) auf
Grundlage der im Flashgerät gespeicherten Steuer-
informationen. Theoretisch ist es zwar möglich, sol-
che Tabellen nicht zu erstellen und nur die rohen
Steuerdaten des Flashspeichers zu nutzen. In der
Praxis ist dies jedoch nicht möglich, da die Reakti-
onszeit auf eine Zugangsanfrage zu langsam wäre.
Das ist der Fall, da der Zugriff auf Daten auf einem
Flashgerät viel langsamer erfolgt als der Datenzugriff
in einem RAM-Speicher, und auch da die RAM-Spei-
chertabellen für während der Laufzeit erforderliche
Operationen gewöhnlich in Hinblick auf ihre Effizienz
optimiert werden, was bei Steuerdaten in Flashspei-
chern nicht der Fall ist.

[0006] So kann beispielsweise eine physische
Flasheinheit die Zahl der auf sie zugreifenden virtuel-
len Einheiten enthalten. Während der Laufzeit des
Programms müssen wir unter Umständen häufig die
virtuelle Nummer einer Einheit in ihr physisches Äqui-
valent konvertieren. Müssen wir uns dabei aus-
schließlich auf die im Flashspeicher hinterlegten
Steuerdaten verlassen, müssen wir möglicherweise
die Einheiten abtasten, bis wir die Einheit mit der an-
gegebenen Nummer der virtuellen Einheit finden.
Das ist für einen einfachen Medienzugang ein sehr
langer Prozess. Wird jedoch beim Hochfahren des
Systems der Flashspeicher einmal abgetastet und
eine Tabelle erstellt, die jede virtuelle Einheitsnum-
mer der Nummer der entsprechenden physischen
Einheit zuordnet, kann dieses Mapping später sehr
effizient durchgeführt werden.

[0007] Das Problem besteht darin, dass das Scan-
nen des Flashdatenspeichergeräts beim Hochfahren
des Systems lange dauern kann, insbesondere bei
Geräten hoher Speicherkapazität. Das ist besonders
ärgerlich bei Systemen und Geräten, deren Anwen-
der eine umgehende Betriebsbereitschaft erwarten
(z. B. Mobiltelefonen, PDA etc.). Bei Read-Only-Ge-
räten wie Flashgeräten, die nur Computercode spei-
chern, der vom Anwender nicht änderbar ist, mag
einfaches Speichern der Tabellen im Flashspeicher
ausreichen. Doch das bloße Speichern der Tabellen
im Flashspeicher ist bei Geräten, die verwendet wer-
den, um Daten zu speichern, die sich häufig ändern
können (z. B. Textdateien oder Spreadsheets in ei-
nem PDA), nicht erfolgreich. Denn wenn laufende
Eingaben in das Gerät erfolgen und die Inhalte im
Geräte laufend geändert werden, ändern sich die In-
halte der Translationstabellen ebenfalls. Es ist nicht
praktikabel, die Kopie der Tabellen im Flashspeicher
jedes Mal zu hochfahren, wenn sich die Tabellen im
RAM ändern, denn die dadurch entstehende Arbeits-
last wird das System deutlich verlangsamen. Folglich
2/26

DE 11 2008 000 180 T5 2009.12.03
akkumuliert sich eine Abweichung zwischen den im
Flashspeicher gespeicherten Tabellen und den „rich-
tigen” im RAM. Schaltet der Anwender nun die
Stromversorgung ab und dann wieder an ohne die
Tabellen zu hochfahren, wird die Software die fehler-
haften Translationstabellen aus dem Flashspeicher
lesen, mit der Folge eines möglichen Datenverlusts
bei der Eingabe neuer Daten.

[0008] Gemäß manchen in Lasser '488 offenbarten
Ausführungsbeispielen wird das Problem gelöst, in-
dem die Translationstabellen im Flashspeicher ge-
speichert werden und Mittel hinzugefügt werden, die
es der Software ermöglichen, die Translationstabel-
len auf eine Weise zu invalidieren, die jedes Mal fest-
stellbar ist, wenn sie gelesen werden. Zu den mögli-
chen Umsetzungen (doch nicht den einzigen) zählt
die Hinzufügung eines Prüfsummenwerts, der die
Summe aller Eingaben einem festen bekannten Wert
gleichsetzt, oder das Hinzufügen einer Wirksamkeits-
anzeige zu den gespeicherten Tabellen. Außerdem
sollte man die Anwendungssoftware auffordern, eine
bestimmte Funktion in der Translationsschicht aufzu-
rufen, bevor das System ausgeschaltet wird.

[0009] Mittels dieser Maßnahmen kann das Flash-
speichergerät schnelles Hochfahren einleiten, wenn
das System ordnungsgemäß heruntergefahren wur-
de, und sich auf das reguläre Hochfahren umstellen,
wenn es nicht ordnungsgemäß abgeschaltet wird.

[0010] Diese Lösung ist zwar in vielen Fällen nütz-
lich, doch es gibt Situationen, in denen sie möglicher-
weise nicht ausreicht. Ein erstes Beispiel, in denen
sie nicht ausreichend sein könnte, sind häufige
Stromausfälle, so dass zu erwarten ist, das viele
(oder sogar die meisten) der Einschaltereignisse auf
unwirksame gespeicherte Tabellen stoßen, so dass
es zu langsamem regulären Hochfahren kommt.

[0011] Ein zweites Beispiel, in dem die Lösung un-
genügend sein kann, ist wenn das Betriebssystem
des Geräts, auf dem der Flashspeicher gehostet
wird, der Softwareanwendung keine Funktion für die
ordnungsgemäße Demontage oder das ordnungsge-
mäße Abschalten anbietet. Während komplexe Be-
triebssysteme wie Linux solche Funktionen anbieten,
gibt es viele einfachere und kleinere Betriebssyste-
me, die darauf ausgelegt sind, das Speichersystem
bei Einschalten der Stromversorgung hochzufahren,
und nie das Betriebssystem ausschalten. In solchen
Fällen führen die Methoden gemäß Lasser '488 dazu,
dass jedes Einschalten des Geräts ein reguläres
Hochfahren des Flashmanagementsystems auslöst,
so dass mit diesen Methoden nichts gewonnen ist.

[0012] Ein drittes Beispiel, in dem die Lösung unge-
nügend sein kann, ist der Fall, dass das Zeitintervall
zwischen dem Einschalten des Systems und der Be-
triebsbereitschaft des Systems streng begrenzt ist.

Selbst wenn Stromausfälle selten sind und fast jedes
Einschalten zu einem raschen Hochfahren des
Flashmanagementsystems führt, ist es nicht akzep-
tabel, dass ein Stromausfall zu einer späteren regu-
lären Hochfahrsequenz führt, wie selten dies auch
immer der Fall sein mag.

[0013] In Anbetracht der vorstehend beschriebenen
Mängel von Lasser '488 offenbart die US-Patentan-
meldung 11/382,056 Lasser (nachfolgend „Lasser
'056”) eine weitere Lösung des Problems des ra-
schen Hochfahrens von Flashmanagementsyste-
men. Die genannte Anmeldung Lasser '056 wird vor-
liegend vollständig einbezogen.

[0014] Lasser '056 offenbart eine Technik, mit der
eine oder mehrere Flashmanagementtabellen nach
manchen, aber nicht allen Ereignissen im Flashspei-
chersystem aktualisiert und gespeichert werden.
Stellt sich beim Hochfahren heraus, dass eine gege-
bene im Flashspeicher gespeicherte Flashmanage-
menttabelle veraltete Informationen enthält, lassen
sich die gespeicherte Tabelle(n) dennoch für das
Hochfahren des Systems verwenden, und es ist nicht
erforderlich, die veraltete Tabelle zu invalidieren.
Statt sie zu invalidieren, kann die im Flashspeicher
vor dem Abschalten und/oder Stromausfall gespei-
cherte veraltete Flashmanagementtabelle beim
Hochfahren verwendet werden, um die „richtige” Ta-
belle zu rekonstruieren (d. h. die, die dem aktuellen
Status des Systems entspricht).

[0015] Dies erfolgt, indem im Flashspeicher ein Er-
eignisprotokoll geführt wird. Beim Hochfahren wer-
den im Ereignisprotokoll hinterlegte Daten verwen-
det, um die Flashspeichertabelle zu aktualisieren und
somit die Datenintegrität zu sichern, selbst wenn das
System vor dem Ausschalten oder Stromausfall nicht
ordnungsgemäß heruntergefahren wurde. In den
meisten Fällen erfolgt der Abruf einer „aktualisierten”
aus einer im Flashspeicher hinterlegten „veralteten”
Tabelle unter Zugriff auf ein Ereignisprotokoll schnel-
ler als die Konstruktion einer aktualisierten Tabelle
mittels Scannen des Flashspeichers.

[0016] Ein Nachteil von Lasser '056 besteht darin,
dass ein Ereignisprotokoll im Flashspeicher vorge-
halten werden muss. Das ist zwar in manchen Flash-
managementsystemen kein großer Mangel, da in ih-
nen schon aus anderen Gründen ein Ereignisproto-
koll geführt wird. Doch es gibt viele Flashmanage-
mentsysteme, in denen ein Ereignisprotokoll ansons-
ten nicht benötigt wird, so dass die Verfahren gemäß
Lasser '056 in Hinblick auf die Schreibleistung auf-
wändig sind.

[0017] Folglich besteht ein allgemein anerkannter
Bedarf an einem Verfahren und System, das eine
Methode für das rasche Hochfahren eines Flashspei-
chersystems bietet, ohne die Integrität der Flash-Da-
3/26

DE 11 2008 000 180 T5 2009.12.03
tenstrukturen oder die Systemleistung zu beeinträch-
tigen, und es wäre von Vorteil, über ein solches Ver-
fahren und System zu verfügen.

DEFINITIONEN

[0018] Für die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet der Ausdruck „Block” die
kleinste Einheit des Flashspeichers, die in einem ein-
zigen Vorgang gelöscht werden kann. Der Ausdruck
„Seite” bezeichnet die kleinste Einheit des Flashspei-
chers, die in einem einzigen Vorgang geschrieben
werden kann (aus historischen Gründen auch „pro-
grammiert” genannt). Ein Block umfasst im Allgemei-
nen viele Seiten.

[0019] Für die Zwecke der vorliegenden Offenle-
gungsschrift sind die Ausdrücke „Flashmanagement-
system” und „Flashdateisystem” synonym und wer-
den austauschbar verwendet. Beide Begriffe be-
zeichnen ein Softwaremodul, das die Speicherung
von Daten in einem Flashspeichergerät steuert, un-
abhängig davon, ob die vom Modul exportierte
Schnittstelle dateiorientiert ist (mit Befehlen wie „Da-
tei öffnen” oder „Datei schreiben”) oder blockorien-
tiert (mit Befehlen wie „Block lesen” oder „Block
schreiben”) und ungeachtet der Tatsache, ob das Mo-
dul auf einem Steuergerät läuft, das ausschließlich
dem Flashmanagement dient, oder auf dem gleichen
Hauptrechner, auf dem auch die Anwendungen lau-
fen, die das Speichersystem nutzen.

[0020] Für die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet „Flashmanagementtabelle”
jede Tabelle, die Daten enthält, die von einem Flash-
managementsystem zur Unterstützung des Betriebs
seiner Algorithmen verwendet werden, wobei die Da-
ten in der Tabelle zu jedem gegebenen Zeitpunkt ei-
nen Aspekt des Status des Flashspeichersystems zu
diesem spezifischen Zeitpunkt abbilden. Ist die
Flashmanagementtabelle zum Beispiel eine Tabelle,
die ein Bit für jeden Block des Flashspeichers enthält,
wobei das Bit anzeigt, ob der entsprechende Block
für die Verwendung frei zur Verfügung steht, dann
sind die Inhalte der Tabelle zu einem ersten Zeitpunkt
ein erstes Bitmuster, das den Aspekt des Systemsta-
tus anzeigt, welche der Blöcke zu diesem Zeitpunkt
frei und welche nicht frei sind. Zu einem späteren
Zeitpunkt könnte das Bitmuster in der Tabelle demje-
nigen zum ersten Zeitpunkt entsprechen oder sich
von demjenigen zum ersten Zeitpunkt unterscheiden,
was eine unterschiedliche Kombination freier und
nicht freier Blöcke impliziert, die dadurch verursacht
worden ist, dass manche freie Blöcke nun nicht frei
sind und andere zuvor nicht freie frei geworden sind.

[0021] Für die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet „Ereignis” jeden Schreibbe-
fehl, Löschbefehl oder Verwaltungsbefehl an den
Flashspeicher von einer Einheit, die den Flashspei-

cher steuert. Die Einheit könnte eine Flashspeicher-
steuerung gemäß nachstehender Abb. 1, eine Stan-
dard-CPU gemäß nachstehender Abb. 5 oder eine
Flashspeichersteuerung und Standard-CPU, die zu-
sammenwirken, gemäß nachstehender Abb. 6 sein.

[0022] Für die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet „ausgewähltes Ereignis” ein
vom Systementwickler des Flashspeichersystems
ausgewähltes Ereignis, das die Erstellung einer oder
mehrerer Aktualisierungen einer oder mehrerer Spei-
chermanagementtabellen anstößt.

BESCHREIBUNG DER ERFINDUNG

[0023] Einige oder alle vorgenannten Anforderun-
gen sowie weitere Anforderungen werden durch
mehrere Aspekte der vorliegenden Erfindung erfüllt.

[0024] Die vorliegende Erfindung umfasst ein Ver-
fahren, das zur Erfüllung der genannten Anforderung
im Flashspeicher Informationen zu künftigen Ereig-
nissen im Flashspeichersystem hinterlegt. Das Sys-
tem speichert zum Beispiel während der Speiche-
rung des aktuellen Werts in einer Translationstabelle
für die Konvertierung virtueller in physische Adressen
gleichzeitig mit der Tabelle auch eine Liste der nächs-
ten physischen Blöcke, die künftig zu verwenden
sind, wenn Ereignisse im System die Zuteilung neuer
freier physischer Blöcke erfordern.

[0025] Zu einem späteren Zeitpunkt kann ein Ereig-
nis im System (z. B. ein Schreibbefehl) die Zuteilung
eines neuen physischen Blocks auslösen, der einen
anderen physischen Block als den korrespondieren-
den Block eines virtuellen Blocks ersetzen soll, wo-
durch eine Änderung im Status der die Adressen
mappierenden Flashmanagementtabelle ausgelöst
wird. Tritt ein solches Ereignis ein, wird die Flashma-
nagementsoftware als neu zugeteilten Block den
Block an erster Stelle in der gespeicherten Liste zu-
teilen. Nach Abschluss der Bearbeitung des Schreib-
befehls ist die gespeicherte Kopie der Tabelle nicht
mehr aktuell, da das durch die Schreiboperation er-
folgte Mappieren des virtuellen Blocks nicht mehr
dem aktuellen Zustand des Systems entspricht.

[0026] Wird das System hochgefahren, wird zuerst
die gespeicherte Kopie der Managementtabelle gela-
den. Zu diesem Zeitpunkt besteht keine Gewissheit,
dass die Tabelle den Status des Systems richtig ab-
bildet, da die Möglichkeit besteht, dass ein paar Er-
eignisse vor Abschalten des Systems mehrere In-
kompatibilitäten zwischen der hinterlegten Tabelle
und der richtigen Tabelle verursacht haben. Doch die
im Flashspeicher hinterlegte und die hinterlegte Ta-
belle betreffende „künftige Information” bietet genü-
gend Angaben für die Korrektur der hinterlegten Ta-
belle und Rekonstruktion der richtigen aktualisierten
Tabellenversion.
4/26

DE 11 2008 000 180 T5 2009.12.03
[0027] Dies ist möglich, da wir wissen, dass jede Zu-
teilung physischer Blocks, die den Mappingstatus ge-
ändert hat (soweit einer bestand), die in der Liste auf-
geführten physischen Blöcke verwendet haben
muss. Außerdem müssen die Blöcke exakt in der in
der Liste vorgegebenen Reihenfolge verbraucht wor-
den sein. Um zu bestimmen, ob die gespeicherte Ta-
belle aktuell ist oder nicht, ist es folglich ausreichend,
den Systemstatus in Hinblick auf den physischen
Block, der an erster Stelle in der Liste steht, zu prü-
fen. Ist dieser erste Block noch immer frei, ist keine
neue Zuteilung erfolgt, und die Tabelle ist aktuell. Ist
der erste Block in der Liste hingegen nicht mehr frei,
muss eine Änderung im System eingetreten sein, und
die Tabelle ist nicht mehr aktuell. In diesem Fall fin-
den wir die Aktualisierung, die in der Tabelle vorzu-
nehmen ist, um der Zuteilung des ersten Blocks in
der Liste zu entsprechen, und aktualisieren die Kopie
der Tabelle im RAM. Stellt sich heraus, dass der erste
Block verwendet wird, müssen wir nacheinander den
gleichen Test für die nächsten Blöcke in der Liste
durchführen und die gleiche Logik wiederholt anwen-
den. Dies wird wiederholt, bis wir in der Liste einem
Block begegnen, der noch nicht verwendet worden
ist, oder bis wir zum Ende der Liste gelangen.

[0028] Um festzustellen, ob ein Block zurzeit ver-
wendet wird, und die Änderungen zu bestimmen, die
an der Tabelle vorzunehmen sind, sofern der Block
zurzeit verwendet wird, wird Zugang zu den Steuer-
daten im Flashspeicher und möglicherweise im be-
treffenden Block selbst benötigt. Obgleich der Flash-
speicherzugang im Vergleich zum RAM-Zugang
langsam ist, benötigt das Verfahren gemäß vorlie-
gender Erfindung nur eine geringe Anzahl an Zugän-
gen zum Flashspeicher, da nur Blöcke in der „Zu-
kunftsliste” geprüft werden und generell nur einige
Blöcke gemäß der vorstehend beschriebenen Logik
zu prüfen sind. Daher ist das vorliegende Verfahren
für die Generierung einer aktualisierten Version eines
Flashmanagementsystems aus einer veralteten Ver-
sion der Tabelle sehr viel schneller als eine vollstän-
dige Rekonstruktion der Tabelle mittels umfassenden
Scannens aller Blöcke des Flashspeichers.

[0029] Die vorliegende Erfindung lässt sich in ge-
wisser Weise als Analogie zum Verfahren gemäß
Lasser '056 betrachten. Beide Verfahren rekonstruie-
ren eine aktualisierte Version einer Managementta-
belle aus einer gespeicherten Kopie der Tabelle mit
Hilfe zusätzlicher flashgespeicherter Informationen.
Doch während in Lasser '056 die zusätzlichen Daten
ein Ereignisprotokoll sind, sind sie in vorliegender Er-
findung eine auf „künftige Ereignisse” bezogene Lis-
te. In Lasser '056 werden die zusätzlichen Informati-
onen zu einem Zeitpunkt hinterlegt, der später ist als
der Zeitpunkt des Speicherns der Tabelle im Flash-
speicher, während in vorliegender Erfindung die zu-
sätzlichen Informationen generell zum gleichen Zeit-
punkt gespeichert werden, an dem auch die Tabelle

im Flashspeicher hinterlegt wird.

[0030] Hiermit wird erstmals ein Verfahren für die
Pflege der Datenstrukturen eines Speichersystems
auf Grundlage der Ereignisse im System offen gelegt,
das die folgenden Schritte umfasst: (a) Speicherung
mindestens eines Teils einer Managementtabelle,
deren Inhalte einen Status des Speichersystems an-
zeigen, in einem nicht volatilen Speicher des Spei-
chersystems zu einem ersten Zeitpunkt; (b) Speiche-
rung einer künftigen Informationsdatenstruktur ein-
schließlich einer Vielzahl von Datensätzen, die sich
auf Ereignisse im Speichersystem beziehen, deren
Eintritt nach Speicherung der Informationsdaten-
struktur erwartet wird, im nicht volatilen Speicher; und
(c) zu einem zweiten Zeitpunkt, der zeitlich nach dem
ersten Zeitpunkt folgt, Bearbeitung eines Ereignisses
gemäß der künftigen Informationsdatenstruktur.

[0031] Der nicht volatile Speicher ist vorzugsweise
ein Flashspeicher. Gemäß einigen Ausführungsbei-
spielen umfasst die Speicherung von mindestens ei-
nem Teil mindestens einer Managementtabelle die
Aktualisierung von mindestens einem Teil mindes-
tens einer Managementtabelle im nicht volatilen
Speicher.

[0032] Gemäß manchen Ausführungsbeispielen
umfasst die Speicherung von mindestens einem Teil
mindestens einer Managementtabelle, deren Inhalte
den Status des Speichersystems anzeigen, auch die
Speicherung mindestens eines Teils mindestens ei-
ner Managementtabelle in einem volatilen Speicher
des Speichersystems. Die Aktualisierung erfolgt alle
N > 1 Male, wenn mindestens ein Teil von mindestens
einer Managementtabelle im volatilen Speicher ge-
ändert wird. Andere Arten der Durchführung der Ak-
tualisierung als Reaktion auf ausgewählte Ereignisse
umfassen die periodische Aktualisierung und die Ak-
tualisierung entsprechend der Verfügbarkeit von Ka-
pazität im Speichersystem.

[0033] Gemäß einer Reihe von Ausführungsbei-
spielen umfasst die Datenstruktur für künftige Infor-
mationen eine Liste von Blöcken im nicht volatilen
Speicher, die als erste frei sind.

[0034] Vorliegend wird erstmals ein Verfahren für
die Aktivierung eines Speichersystems offen gelegt,
das folgende Schritte umfasst: (a) das Lesen mindes-
tens eines Teils mindestens einer Managementtabel-
le, die einen Status des Speichersystems zu einem
Zeitpunkt vor dem Hochfahren des Systems be-
schreibt, aus einem nicht volatilen Speicher des Spei-
chersystems; (b) das Lesen einer künftigen Informa-
tionsdatenstruktur, die eine Vielzahl von Datensätzen
in Bezug auf Ereignisse enthält, deren Eintritt nach
Speicherung der künftigen Informationsdatenstruktur
erwartet wird, aus dem nicht volatilen Speicher; und
(c) die Aktualisierung mindestens eines Teils mindes-
5/26

DE 11 2008 000 180 T5 2009.12.03
tens einer nicht volatilen Managementtabelle gemäß
mindestens einem Datensatz der künftigen Informati-
onsdatenstruktur.

[0035] Gemäß manchen Ausführungsbeispielen ist
der nicht volatile Speicher ein Flashspeicher.

[0036] Gemäß manchen Ausführungsbeispielen
verändert das Aktualisieren mindestens einen Teil
mindestens einer Managementtabelle, um einen ak-
tuellen Status des Speichersystems abzubilden. Die
Aktualisierung erfolgt bedingt. Erfolgte der System-
ausstieg ordnungsgemäß, ist keine Aktualisierung er-
forderlich. Gemäß manchen Ausführungsbeispielen
umfasst das Verfahren beispielsweise auch den
Schritt des Vergleichens einer Vielzahl von Datensät-
zen mit dem nicht volatilen Speicher, um festzustel-
len, ob sich der Status des Speichersystems seit je-
nem Zeitpunkt geändert hat, so dass die Aktualisie-
rung dann davon abhängig erfolgt, ob sich der Status
des Speichersystems seit diesem Zeitpunkt verän-
dert hat.

[0037] Vorliegend wird erstmals ein Speichermodul
offen gelegt, das (a) einen ersten nicht volatilen Spei-
cher; und (b) eine Steuerung des nicht volatilen Spei-
chers umfasst, der dazu dient, den ersten nicht vola-
tilen Speicher mittels folgender Schritte zu steuern: (i)
Speichern im ersten nicht volatilen Speicher mindes-
tens eines Teils mindestens einer Managementtabel-
le, deren Inhalte einen Status des Speichersystems
zu einem ersten Zeitpunkt anzeigen; (ii) Speichern im
ersten nicht volatilen Speicher einer künftigen Infor-
mationsdatenstruktur, einschließlich einer Vielzahl
von Datensätzen in Bezug auf Ereignisse im Spei-
chersystem, deren Eintritt nach Speicherung der
künftigen Informationsdatenstruktur erwartet wird;
und (iii) zu einem zweiten Zeitpunkt nach Speiche-
rung der künftigen Informationsdatenstruktur Bear-
beitung des Ereignisses gemäß der künftigen Infor-
mationsdatenstruktur.

[0038] Gemäß manchen Ausführungsbeispielen
umfasst das Modul des Weiteren einen zweiten nicht
volatilen Speicher; und die Steuerung dient zur Um-
setzung der Schritte mittels Ausführung eines im
zweiten nicht volatilen Speicher hinterlegten Codes.

[0039] Vorliegend wird erstmals ein Speichersystem
offen gelegt, das Folgendes umfasst: (a) ein Spei-
chermodul, das einen nicht volatilen Speicher ent-
hält; und (b) ein Hostrechner des Speichermoduls,
der bei der Verwaltung des nicht volatilen Speichers
u. a. durch folgende Schritte mitwirkt: (i) Speicherung
mindestens eines Teils mindestens einer Manage-
menttabelle, deren Inhalte einen Status des Spei-
chersystems zu einem ersten Zeitpunkt anzeigen, im
ersten nicht volatilen Speicher; (ii) Speicherung einer
künftigen Informationsdatenstruktur, einschließlich
einer Vielzahl von Datensätzen in Bezug auf Ereig-

nisse im Speichersystem, deren Eintritt nach Hinter-
legung der besagten Informationsdatenstruktur er-
wartet wird, in dem ersten nicht volatilen Speicher;
und (iii) zu einem zweiten Zeitpunkt nach Speiche-
rung der künftigen Informationsdatenstruktur Bear-
beiten eines Ereignisses gemäß den Vorgaben der
künftigen Informationsdatenstruktur.

[0040] Gemäß manchen Ausführungsbeispielen
werden diese Schritte ausschließlich vom Hostrech-
ner ausgeführt. Gemäß anderen Ausführungsbei-
spielen umfasst das Speichermodul auch eine Steu-
erung, die mit dem Hostrechner bei der Ausführung
der Schritte zusammenwirkt.

[0041] Vorliegend wird erstmals ein Speichermodul
offen gelegt, das Folgendes umfasst: (a) einen ersten
nicht volatilen Speicher; und (b) eine Steuerung des
nicht volatilen Speichers, der dazu dient, das Spei-
chermodul mittels folgender Schritte zu aktivieren: (i)
Auslesen aus dem ersten nicht volatilen Speicher
mindestens eines Teils mindestens einer Manage-
menttabelle, die einen Status des Speichermoduls zu
einem Zeitpunkt vor der Aktivierung beschreibt; (ii)
Auslesen aus dem nicht volatilen Speicher einer
künftigen Informationsdatenstruktur einschließlich ei-
ner Vielzahl von Datensätzen in Bezug auf Ereignis-
se, deren Eintritt nach diesem Zeitpunkt erwartet
wird; und (iii) Aktualisieren mindestens eines Teils der
mindestens einen Flashmanagementtabelle gemäß
mindestens eines Datensatzes der künftigen Infor-
mationsdatenstruktur.

[0042] Gemäß einigen Ausführungsbeispielen um-
fasst das Speichermodul des Weiteren einen zweiten
nicht volatilen Speicher, und die Steuerung dient da-
zu, die Schritte durch Ausführung eines im zweiten
nicht volatilen Speicher hinterlegten Codes umzuset-
zen.

[0043] Vorliegend wird erstmals ein Speichersystem
offen gelegt, das Folgendes umfasst: (a) ein Spei-
chermodul mit einem nicht volatilen Speicher; und (b)
einen Hostrechner des Speichermoduls, der an der
Verwaltung des nicht volatilen Speichers u. a. mittels
folgender Schritte mitwirkt: (i) Auslesen aus dem
nicht volatilen Speicher mindestens eines Teils min-
destens einer Managementtabelle, die einen Zustand
des Speichersystems zu einem Zeitpunkt vor der Ak-
tivierung beschreibt; (ii) Auslesen aus dem nicht vo-
latilen Speicher einer künftigen Informationsdaten-
struktur, einschließlich einer Vielzahl von Datensät-
zen in Bezug auf Ereignisse, deren Eintritt nach Spei-
cherung der künftigen Informationsdatenstruktur er-
wartet wird; und (iii) Aktualisierung der mindestens ei-
nen Managementtabelle gemäß mindestens einem
Datensatz der künftigen Informationsdatenstruktur.

[0044] Gemäß manchen Ausführungsbeispielen
werden die Schritte ausschließlich durch den Host-
6/26

DE 11 2008 000 180 T5 2009.12.03
rechner ausgeführt. Gemäß anderen Ausführungs-
beispielen umfasst das Speichermodul eine Steue-
rung, die mit dem Hostrechner bei der Umsetzung
der Schritte zusammenwirkt.

[0045] Vorliegend wird erstmals ein computerlesba-
res Speichermedium offen gelegt, das computerles-
baren Code für die Pflege der Datenstrukturen eines
Speichersystems gemäß den Ereignissen im System
umfasst, wobei der computerlesbare Code Folgen-
des umfasst: (a) Programmcode für die Speicherung
mindestens eines Teils mindestens einer Manage-
menttabelle, deren Inhalte einen Status des Spei-
chersystems zu einem ersten Zeitpunkt anzeigen, in
einem nicht volatilen Speicher des Speichersystems;
(b) Programmcode für die Speicherung einer künfti-
gen Informationsdatenstruktur einschließlich einer
Vielzahl von Datensätzen in Bezug auf Ereignisse im
Speichersystem, deren Eintritt nach Speicherung der
künftigen Informationsdatenstruktur erwartet wird, im
nicht volatilen Speicher; und (c) Programmcode für
die Bearbeitung des Ereignisses gemäß der künfti-
gen Informationsdatenstruktur zu einem zweiten Zeit-
punkt nach Speicherung derselben.

[0046] Vorliegend wird erstmals ein computerlesba-
res Speichermedium offen gelegt, das computerles-
baren Code für die Aktivierung eines Speichersys-
tems umfasst, wobei der computerlesbare Code Fol-
gendes umfasst: (a) Programmcode für das Ausle-
sen mindestens eines Teils mindestens einer Ma-
nagementtabelle, die einen Status des Speichersys-
tems zu einem Zeitpunkt vor der Aktivierung be-
schreibt, aus einem nicht volatilen Speicher des Spei-
chersystems; (b) Programmcode für das Auslesen ei-
ner künftigen Informationsdatenstruktur, die eine
Vielzahl von Datensätzen bezüglich Ereignissen ent-
hält, deren Eintritt nach Speicherung der künftigen In-
formationsdatenstruktur erwartet wird, aus dem nicht
volatilen Speicher; und (c) Programmcode für die Ak-
tualisierung mindestens eines Teils der mindestens
einen Managementtabelle gemäß mindestens einem
Datensatz der künftigen Informationsdatenstruktur.

KURZBESCHREIBUNG DER ABBILDUNGEN

[0047] Abb. 1 ist ein Blockdiagramm eines Ausfüh-
rungsbeispiels eines Flashspeichersystems gemäß
mancher Ausführungsbeispiele der vorliegenden Er-
findung;

[0048] Abb. 2A–Fig. 2B zeigen ein Beispiel einer
Translationstabelle gemäß mancher Ausführungs-
beispiele vorliegender Erfindung;

[0049] Abb. 3 ist ein Flussdiagramm der Pflege ei-
ner Flashmanagementtabelle in einem Flashspeicher
sowie einer künftigen Informationsdatenstruktur ge-
mäß eines Ausführungsbeispiels vorliegender Erfin-
dung;

[0050] Abb. 4 ist ein Flussdiagramm einer beispiel-
haften Routine für die Aktivierung.

[0051] Abb. 5 und Abb. 5 sind Blockdiagramme
weiterer beispielhafter Flashspeichersysteme gemäß
mancher Ausführungsbeispiele vorliegender Erfin-
dung.

BESCHREIBUNG DER BEVORZUGTEN AUSFÜH-
RUNGSBEISPIELE

[0052] Die vorliegende Erfindung wird nun anhand
spezifischer Ausführungsbeispiele beschrieben. Es
sei darauf hingewiesen, dass die Erfindung sich nicht
auf die offen gelegten Ausführungsbeispiele be-
schränkt. Es sei weiter darauf hingewiesen, dass
nicht jedes Merkmal der vorliegend offen gelegten
Verfahren, Vorrichtungen und computerlesbaren Co-
des für die Pflege von Datenstrukturen auf Grundlage
der Ereignisse in einem Flashspeichersystem erfor-
derlich ist, um die Erfindung gemäß einem der nach-
stehend beigefügten Ansprüche umzusetzen. Ver-
schiedene Elemente und Merkmale von Vorrichtun-
gen werden beschrieben, um die vollständige Umset-
zung der Erfindung zu ermöglichen. Es sei außerdem
darauf hingewiesen, dass die Schritte in vorliegender
Offenlegungsschrift gezeigter oder beschriebener
Verfahren oder Methoden in beliebiger Reihenfolge
oder gleichzeitig durchgeführt werden können, es sei
denn aus dem Zusammenhang ist klar, dass ein
Schritt die vorherige Ausführung eines anderen
Schrittes erfordert.

[0053] Die vorliegend offen gelegten Verfahren,
Systeme und computerlesbaren Codes für die Pflege
von Datenstrukturen sind nützlich für die Umsetzung
eines „raschen Wakeup” des Flashspeichersystems,
zum Beispiel in Umgebungen, in denen häufig
Stromausfälle auftreten. Das ist jedoch nicht als Be-
schränkung vorliegender Erfindung auszulegen und
wird lediglich als eine nicht beschränkende Anwen-
dung der vorliegend offen gelegten Techniken für die
Pflege der Datenstrukturen von Flashspeichersyste-
men offen gelegt.

[0054] Die vorliegend offen gelegten Techniken die-
nen der Umsetzung eines „raschen Wakeup” eines
Flashmanagementsystems ohne Beeinträchtigung
der Datenintegrität selbst unter Bedingungen, in de-
nen häufig unvorhersehbare Stromausfälle auftreten.

[0055] Bezug nehmend auf die Zeichnungen ist
Abb. 1 ein Blockdiagramm eines nicht beschränken-
den beispielhaften Flashspeichersystems 100 ge-
mäß manchen Ausführungsbeispielen vorliegender
Erfindung. Das beispielhafte System 100 umfasst ein
Speichermodul 120 für die Speicherung von Daten
und einen Hostrechner 110 (Beispiele des Hostrech-
ners 110: ein Mikrocomputer, ein Smartcard-Termi-
nal, eine digitale Kamera, ein Mobiltelefon, ein PDA
7/26

DE 11 2008 000 180 T5 2009.12.03
oder jedes andere Gerät), der mit dem Speichermo-
dul 120 über eine Hostschnittstelle 180 kommuni-
ziert.

[0056] Das Speichermodul 120 umfasst einen
Flashspeicher 130 beliebigen Typs sowie eine Steu-
erung 140, die auf den Flashspeicher 130 gemäß den
über die Hostschnittstelle 180 empfangenen Lese-
und/oder Schreibbefehlen zugreift. Für das in Abb. 1
gezeigte Beispiel umfasst die Steuerung 140 ein
CPU 150, eine ROM 160 (in der der von der CPU 150
ausgeführte Code hinterlegt ist) und ein RAM 170,
das von der CPU 150 verwendet wird, um die Ausfüh-
rung des Code durch die Steuerung 140 zu unterstüt-
zen.

[0057] Dieses Blockdiagramm des nicht beschrän-
kenden Beispiels gemäß Abb. 1 ist repräsentativ für
typische nicht volatile Speichermodule wie SecureDi-
gital Flashspeicherkarten oder mobile USB Flas-
hlaufwerke.

[0058] Abb. 5 ist ein Blockdiagramm eines weiteren
nicht beschränkenden Flashspeichersystems 220
gemäß manchen Ausführungsbeispielen vorliegen-
der Erfindung. Das exemplarische Flashspeichersys-
tem 220 umfasst eine Standard-CPU 250, ein RAM
260, den Flashspeicher 280, eine Busschnittstelle
290 zum Flashspeicher 280, einen Boot-ROM 270,
eine Speichervorrichtung 300 und einen Bus 240, die
die verschiedenen anderen Komponenten miteinan-
der verbinden. Wenn das System 220 startet, lädt
das System aus dem ROM 270; dann werden der
Computercode und die Daten aus dem Speicherme-
dium 300 in die RAM 260 geladen. Auch Emulations-
code für die Steuerung des Flashspeichers 280 wird
aus dem Speichermedium 300 geladen. Die
Bus-Schnittstelle 290 greift auf den Flashspeicher
280 gemäß den vom CPU 250 empfangenen Lese-
und/oder Schreibbefehlen zu. Das Speichermedium
300 ist ein Beispiel eines computerlesbaren Spei-
chermediums, das Computercode für die Umsetzung
der Verfahren gemäß vorliegender Erfindung trägt.
Typischerweise ist das Speichermedium 300 eine
Festplatte oder eine Flashspeichervorrichtung. Wei-
tere Beispiele solcher computerlesbarer Speicher-
medien sind unter anderen CDs, DVD, Disketten etc.
Im Unterschied zu dem Ausführungsbeispiel des
Flashspeichersystems gemäß Abb. 1 hat dieses bei-
spielhafte Flashspeichersystem 220 keine Flashspei-
chersteuerung (die das Flashspeichersystem kontrol-
liert). Stattdessen lädt die CPU 250 den Steuerungs-
emulationscode aus dem Massenspeicher 300 auf
die RAM 260, und dann führt die CPU 250 den Code
aus RAM 260 aus, um die Steuerung 140 gemäß
Abb. 1 zu emulieren. Die Speicherungen der Flash-
managementtabellen und deren Wiederherstellung
und Rekonstruktion nach dem Einschalten sowie
weitere Flashmanagementfunktionen werden alle
durch den von der CPU 250 ausgeführten Emulati-

onscode umgesetzt.

[0059] Abb. 6 ist ein Blockdiagramm eines weiteren
nicht beschränkenden Flashspeichersystems 320
gemäß manchen Ausführungsbeispielen vorliegen-
der Erfindung. Das exemplarische System 320 um-
fasst eine Standard-CPU 350, ein RAM 360, ein
Flashspeichermodul 330, eine Flashspeichersteue-
rung 310, einen Flashspeicher 380, eine Bus-Schnitt-
stelle 390 zum Flashspeichermodul 330, eine
Boot-ROM 370, ein Speichermedium 400 und einen
Bus 340, die die verschiedenen anderen Komponen-
ten miteinander verbinden. Wenn das System 329
startet, lädt das System aus ROM 379; dann werden
der Computercode und die Daten aus dem Speicher-
medium 400 auf die RAM 360 geladen. Ebenfalls aus
dem Speichermedium 400 geladen wird der Emulati-
onscode, der das Flashspeichermodul 330 steuert.
Die Bus-Schnittstelle 390 greift auf den Flashspei-
cher 380 gemäß den von der CPU 350 empfangenen
Lese- und/oder Schreibbefehlen zu. Wie das Spei-
chermedium 300 ist auch das Speichermedium 400
ein Beispiel eines computerlesbaren Speichermedi-
ums, das Computercode für die Ausführung der Ver-
fahren gemäß vorliegender Erfindung vorhält. Im Un-
terschied zum Flashspeichersystem gemäß Abb. 5
hat dieses beispielhafte Flashspeichersystem 320
auch in seinem Flashspeichermodul 330 eine Flash-
speichersteuerung 310, die mit CPU 350 zusammen-
wirkt, um das Flashspeichersystem 380 zu steuern.
Die CPU 350 lädt Steuerungsemulationscode aus
dem Speichermedium 400 auf RAM 360, und dann
führt die CPU 350 den Code aus RAM 360 aus, um
einige der Funktionen der Steuerung 140 gemäß
Abb. 1 zu emulieren. Die Speicherung der Flashma-
nagementtabellen sowie deren Wiederherstellung
und Rekonstruktion nach dem Einschalten und weite-
re Flashmanagementfunktionen werden gemeinsam
von der Steuerung 310 und CPU 350 ausgeführt.

Flashmanagementtabellen

[0060] Zu beachten ist, dass das Flashspeichersys-
tem 100 typischerweise eine oder mehrere Flashma-
nagementtabellen in einem volatilen Speicher hinter-
legt, zum Beispiel in RAM 170 des Speichermediums
120, in der RAM des Hostgeräts 110 oder an einem
anderen geeigneten Ort. Ein nicht beschränkendes
Ausführungsbeispiel einer solchen Flashmanage-
menttabelle ist eine Translationstabelle, die eine
Adressentranslation aus einer virtuellen Blocknum-
mer in eine physische Blocknummer vornimmt. Dies
ist ein Mapping, das in vielen Flashmanagementsys-
temen vorhanden ist, wie zum Beispiel im System ge-
mäß US-Patent 5,937,425. Es ist zu beachten, dass
die gleichen Konzepte und Verfahren auch für viele
andere Arten von Flashmanagementtabellen an-
wendbar sind, so zum Beispiel auf eine Tabelle zuge-
ordneter Blöcke, die darstellt, welche Blöcke zurzeit
zugeteilt und nicht frei für die Verwendung verfügbar
8/26

DE 11 2008 000 180 T5 2009.12.03
sind und welche Blocke nicht zugeteilt sind, sowie auf
eine Tabelle, die ein Mapping aus einer virtuellen
Blocknummer in eine Gruppe einer oder mehrerer
physischer Blocknummern abbildet.

[0061] Die im Flashspeicher gespeicherten Daten
können sich im Laufe der Zeit ändern; und auch ver-
schiedene zugehörige Daten, die sich auf den Flash-
speicher beziehen, können sich ebenfalls ändern.
Der „Status” des Flashspeichersystems ändert sich
im Zeitverlauf, wenn verschiedene Ereignisse (zum
Beispiel Schreibbefehle, Verwaltungsoperationen
etc.) des Flashmanagementsystems eintreten.

[0062] Zu beachten ist, dass jede Flashmanage-
menttabelle einen oder mehrere Aspekte des gesam-
ten „Status” des Flashmanagementsystems abbildet.
Folglich stellt eine gegebene Flashmanagementta-
belle oder ein Satz solcher Tabellen nicht unbedingt
den gesamten Status des Systems dar, sondern nur
einen oder mehrere Aspekte des Systems. Im Fall
der vorstehend erwähnten Tabelle freier Blöcke, ist
das Wissen, welche Blöcke frei sind und welche
nicht, in jedem Fall nicht ausreichend, um den ge-
samten Status des Systems zu definieren. Ein nicht
freier Block kann eine einzige verwendete Seite um-
fassen, oder manche bzw. alle Seiten eines nicht frei-
en Blocks können mit gültigen Daten gefüllt sein. Das
wird von der Tabelle freier Blöcke nicht abgebildet,
sondern entweder durch andere Flashmanagement-
tabellen oder sonstige Mittel. Dennoch bildet die ge-
nannte Tabelle einen Aspekt des Systemstatus ab
und erfüllt daher die Definition einer Flashmanage-
menttabelle.

[0063] Werden bestimmte Flashspeichertabellen,
die einen „aktuellen Status” oder einen „früheren Sta-
tus” oder einen „späteren Status” oder den „jüngsten
Status” des Flashspeichersystems abbilden, in ei-
nem volatilen oder nicht volatilen Speicher hinterlegt,
so wird damit folglich ein „früherer” oder „aktueller”
oder „späterer” oder „jüngster” Status der Aspekte
des Flashspeichersystems abgebildet, der in der je-
weiligen Flashspeichertabelle abgebildet ist.

[0064] Im Zeitverlauf bewegt sich eine Flashma-
nagementtabelle durch eine Folge von Zuständen,
von denen jeder zu einem gegebenen Zeitpunkt ei-
nen oder mehrere Aspekte des Flashmanagement-
systems zu diesem Zeitpunkt abbildet. Der Aspekt
des Systemstatus, der von der Tabelle modelliert ist,
wechselt zwischen diskreten Zuständen mit eindeuti-
gen Übergangspunkten, die den Ereignissen des
Flashspeichersystems entsprechen.

Beispiel einer Flashmanagementtabelle

[0065] Abb. 2A zeigt den Inhalt einer exemplari-
schen Flashmanagementtabelle, die zu einem ersten
Zeitpunkt (t = t1) virtuelle Blocknummern auf physi-

sche Blocknummern mappiert. Die Tabelle ist nach
virtuellen Blocknummern indexiert und führt die phy-
sische Blocknummer auf, die zu diesem Zeitpunkt die
Daten des entsprechenden virtuellen Blocks enthält.
In praktischen Implementierungen besteht oft keine
Notwendigkeit, Raum für die Speicherung der virtuel-
len Blocknummern zuzuteilen, da die Tabelle durch
diese virtuellen Blocknummern geordnet ist und sich
daher direkt auf den richtigen Eintrag indexieren
lässt. Doch zwecks besserer Übersicht ist die Tabelle
so dargestellt, als seien beide Spalten physisch ab-
gebildet.

[0066] Der in Abb. 2A dargestellte Status des Map-
ping virtuell-auf-physisch ist so, dass wenn auf den
virtuellen Block Nummer 2 zugegriffen werden muss,
die Tabelle uns mitteilt, dass die entsprechende Num-
mer des physischen Blocks 172 lautet. Zu einem be-
stimmten Zeitpunkt können an das Flashmanage-
mentsystem übermittelte Befehle (oder interne Ver-
waltungsfunktionen des Systems, die ohne externe
Befehle erfolgen, wie das Einsammeln redundanter
Daten) Änderungen des Mapping auslösen. Zum Bei-
spiel kann ein Befehl, der neue Daten in den virtuel-
len Block Nummer 2 schreibt und daher die vorheri-
gen Daten des Blocks Nummer 2 überschreibt, das
Flashmanagementsystem veranlassen, dem virtuel-
len Block Nummer 2 einen anderen physischen Block
zuzuordnen, in dem die neuen Daten dann gespei-
chert werden.

[0067] Abb. 2B zeigt die Inhalte der Flashmanage-
menttabelle virtuell-auf-physisch zu einem späteren
Zeitpunkt (t = t2) nach Eintritt dieser Änderung. Jetzt
entspricht der virtuelle Block Nummer 2 in der Tabelle
dem physischen Block Nummer 777 und nicht mehr
dem physischen Block 172. Die Tabelle ist also von
einem ersten in einen zweiten Status gewechselt.
Jede Änderung der Inhalte einer Flashmanagement-
tabelle ist definiert als Änderung des Status der Ta-
belle.

[0068] Zu beachten ist, dass nicht jede Schreibope-
ration im Flashmanagementsystem eine Statusände-
rung in allen Flashmanagementtabellen des Flash-
managementsystems nach sich zieht. Sind zum Bei-
spiel im physischen Block Nummer 172 einige Seiten
unbelegt und ergeht ein Schreibbefehl an den virtuel-
len Block Nummer 2, so dass gemäß den Algorith-
men des Flashmanagementsystems die neuen Da-
ten in diesen unbelegten Seiten des physischen
Blocks 172 gespeichert werden, erfolgt keine Ände-
rung des Mapping virtuell-auf-physisch, und die Ta-
belle bleibt nach dieser Schreiboperation unverän-
dert. Folglich ist die Rate der Änderungen des Status
einer Flashmanagementtabelle generell langsamer
als die Rate der im System ausgeführten Vorgänge.
Hinzu kommt: werden im gleichen Flashmanage-
mentsystem mehrere Flashmanagementtabellen vor-
gehalten (von denen jede einen anderen Aspekt des
9/26

DE 11 2008 000 180 T5 2009.12.03
Systemstatus abbildet), kann jede dieser Tabellen ih-
ren Status zu unterschiedlichen Zeitpunkten ändern.

Speichern künftiger Informationsdatenstrukturen, die
beim Wakeup nützlich sind

[0069] Wie bereits erklärt, ist es bei der Initialisie-
rung des Systems nach dem Einschalten oft erforder-
lich, dass die Steuerungssoftware im RAM (z. B.
RAM 170) eine vollständig aktualisierte Kopie jeder
Flashmanagementtabelle erstellt, die die Steue-
rungssoftware verwendet. Um ein schnelles Hoch-
fahren des Systems zu gewährleisten, ist es generell
nicht angemessen, die Inhalte der Tabellen lediglich
aus über die Blöcke des Speichersystems verstreu-
ten Daten wiederherzustellen, da das zu langsam ist.
Auch die umgekehrte Option, jedes Mal, wenn sich
der Tabellenstatus ändert, eine Kopie der Tabelle im
Flashspeicher abzuspeichern, ist nicht angemessen,
da das Speichern einer Kopie einer Tabelle im Flash-
speicher jedes Mal, wenn der Tabellenstatus sich än-
dert, viel Kapazität beansprucht und die Systemleis-
tung mindert.

[0070] Die Techniken der verschiedenen Ausfüh-
rungsbeispiele vorliegender Erfindung bieten einen
Kompromiss zwischen diesen beiden Vorgehenswei-
sen des Standes der Technik. So wird eine Flashma-
nagementtabelle generell nur bei manchen Statusän-
derungen im Flashspeicher hinterlegt, und nicht je-
des Mal, wenn eine Statusänderung eintritt.

[0071] Das zeigt Abb. 2, ein Flussdiagramm einer
beispielhaften Routine für die Pflege von Datenstruk-
turen des Flashmanagementsystems im Flashspei-
cher gemäß einigen Ausführungsbeispielen vorlie-
gender Erfindung. Für die vorliegenden Zwecke um-
fasst der Ausdruck „Pflege im Flashspeicher” auch
das Speichern im Flashspeicher. Die Pflege im Flash-
speicher umfasst generell die Pflege der Tabelle
und/oder der relevanten Daten für die Befüllung der
Tabelle im volatilen Speicher/RAM und, zu verschie-
denen Zeitpunkten, das Speichern einer aktualisier-
ten Version der Tabelle (d. h. einer Tabelle, die auf ei-
nen aktuellen Status des Flashspeichersystem syn-
chronisiert ist) im Flashspeicher.

[0072] Gemäß dem nicht beschränkenden Ausfüh-
rungsbeispiel der Abb. 3 ist zu beachten, dass in
nicht beschränkenden Ausführungsbeispielen das
System zu manchen Zeitpunkten inaktiv ist und 206
auf ein nächstes Ereignis wartet. Nach Bearbeitung
210 eines Ereignisses des Flashmanagementsys-
tems, werden generell je nach eingetretenem Ereig-
nis eine oder mehrere Tabellen im volatilen Speicher
aktualisiert 214. Diese Tabelle(n) können nach einem
gegebenen Ereignis im Flashspeicher aktualisiert
werden oder nicht.

Beschreibung einer beispielhaften künftigen Informa-
tionsdatenstruktur

[0073] In Situationen, in denen die Flashmanage-
menttabelle nach Eintritt einiger, aber nicht aller Er-
eignisse gespeichert wird, ist es nützlich, auch im
Flashspeicher eine Datenstruktur zu pflegen, die In-
formationen enthält, die die Handhabung künftiger
Ereignisse in Bezug auf die Tabelle beeinflussen. In
Ausführungsbeispielen enthält diese künftige Infor-
mationsdatenstruktur eine Vielzahl von Datensätzen,
wobei jeder Datensatz Daten umfasst, die ein künfti-
ges Ereignis im Flashmanagementsystem beeinflus-
sen. Obgleich dies keine Beschränkung vorliegender
Erfindung begründet, ist anzumerken, dass diese
künftigen Informationen generell nicht nach jedem
Ereignis im Flashspeicher aktualisiert werden. Die
künftige Informationsdatenstruktur ist nützlich für den
Erhalt der Datenintegrität in Situationen, in denen (ei-
ne) aktualisierte Tabelle(n) (d. h. aktualisiert gemäß
dem letzten Ereignis im Flashspeichersystem) nicht
immer im Flashspeicher hinterlegt wird/werden.

[0074] Für Ausführungsbeispiele, in denen Datenin-
tegrität gesichert wird (d. h. selbst im Falle eines
Stromausfalls), ist generell zu jedem beliebigen Zeit-
punkt einer der folgenden Zustände gegeben: a) eine
gemäß einem jüngsten Ereignis aktualisierte Tabelle
ist im Flashspeicher hinterlegt, b) eine gemäß einem
früheren Zustand aktualisierte Tabelle (d. h. früher als
ein jüngstes Ereignis, so dass andere Ereignisse seit
dem „früheren” Ereignis im Flashspeichersystem ein-
getreten sind) wird im Flashspeicher hinterlegt, und
die im Flashspeicher gespeicherte künftige Informati-
onsdatenstruktur enthält Informationen bezüglich al-
ler Ereignisse, die seit dem „früheren Ereignis” einge-
treten sind.

[0075] Ein Ausführungsbeispiel der künftigen Infor-
mationsdatenstruktur ist eine geordnete Liste, die In-
formationen für die Handhabung der nächsten paar
Ereignisse enthält, die den Status des Systems be-
einflussen (d. h. den Status des „mindestens einen
Aspekts des Systems”, der in der einen oder mehre-
ren Flashmanagementtabelle(n) gespeichert ist), sei
es ein externer Schreibbefehl, ein interner Verwal-
tungsvorgang oder ein sonstiges Ereignis, das den
Status des Systems beeinflusst.

[0076] Zu beachten ist, dass eine künftige Informa-
tionsdatenstruktur an jedem Ort im Flashspeicher
hinterlegt werden kann, und nicht unbedingt in physi-
scher Nachbarschaft zu der Flashmanagementtabel-
le, auf die sich die künftige Informationsdatenstruktur
bezieht.

[0077] Wie in Abb. 3 dargestellt, wird/werden 230
die Flashmanagementtabelle(n) für manche, aber
nicht alle Ereignisse im Flashmanagementsystem (d.
h. nur Ereignisse, für die eine Bedingung für „Tabelle
10/26

DE 11 2008 000 180 T5 2009.12.03
speichern” erfüllt ist 226 – diese Bedingung wird
nachstehend erörtert) im Flashspeicher gespeichert.
In manchen Ausführungsbeispielen wird jedes Mal,
wenn (a) eine/mehrere Flashmanagementtabelle(n)
im Flashspeicher hinterlegt werden, auch eine aktua-
lisierte künftige Informationsdatenstruktur gespei-
chert 234. Zu diesem Zeitpunkt gilt/gelten die im
Flashspeicher gespeicherten Flashmanagementta-
belle(n) als „auf den neusten Stand” oder „das jüngs-
te Ereignis” synchronisiert. Obgleich nicht ausdrück-
lich in Abb. 3 dargestellt, ist zu beachten, dass es rat-
sam ist (jedoch für den Einsatz vorliegender Erfin-
dung nicht wesentlich), eine Kopie der zuletzt gespei-
cherten künftigen Informationsdatenstruktur im
RAM-Speicher zu hinterlegen, damit die Bearbeitung
künftiger Ereignisse erfolgen kann, ohne dass Zu-
gang zum nicht volatilen Speicher nötig ist, um die
künftige Informationsdatenstruktur abzurufen.

[0078] In Bezug auf Schritt 230 ist anzumerken: wird
eine den aktuellen Status des Flashspeichersystems
abbildende Tabelle im Flashspeicher gespeichert, ist
dies vorliegend definiert als „Synchronisieren der Ta-
belle im Flashspeicher auf einen aktuellen Status”.

[0079] Insgesamt wird der Prozess, in dem die
Flashmanagementtabelle(n) nach diversen Ereignis-
sen (aber nicht notwendigerweise allen Ereignissen)
im Flashspeicher gespeichert wird/werden vorlie-
gend als „Pflege der Tabelle im Flashspeicher” defi-
niert. Zu verschiedenen Zeitpunkten wird somit eine
unterschiedliche Version der Flashmanagementta-
belle(n) im Flashspeicher hinterlegt (wobei generell
jede folgende Version einen späteren Zustand des
Flashspeichersystems abbildet). Es ist für die „Pflege
der Tabelle im Flashspeicher” daher nicht erforder-
lich, für einen gegebenen Zeitpunkt die zuletzt im
Flashspeicher hinterlegte Tabelle aus den aktuellen
Status des Flashspeichersystems zu synchronisie-
ren. Abb. 3 zeigt, dass es generell Zeiträume gibt, in
denen die zuletzt gespeicherte(n) Flashspeicherta-
belle(n) einen früheren Zustand des Flashspeicher-
systems abbilden (d. h. einen Status des Systems vor
Eintritt jüngerer Ereignisse im Flashspeichersystem).

[0080] Es ist zu beachten, dass die künftige Infor-
mationsdatenstruktur später aus dem Flashspeicher
abgerufen werden kann, zum Beispiel nach dem Ein-
schalten des Flashsystems. Durch Prüfung der Da-
tenstruktur (wie nachstehend beschrieben) wird zu
jedem gegebenen Zeitpunkt festgestellt, ob die hin-
terlegte(n) Flashmanagementtabelle(n) den jüngsten
Status des Systems (d. h. den in der Tabelle abgebil-
deten Aspekt des Status) abbildet/n.

[0081] Wir wenden uns nun der beispielhaften
Flashmanagementtabelle gemäß Abb. 2A und
Abb. 2B zu, um das nicht beschränkende Ausfüh-
rungsbeispiel einer künftigen Informationsdaten-
struktur zu beschreiben. Die Flashmanagementtabel-

le gemäß Abb. 2A und Abb. 2B bietet ein Mapping
von virtuellen Blocknummern zu korrespondierenden
physischen Blocknummern. Während des Systembe-
triebs ändert sich der Status der Tabelle jedes Mal,
wenn die Flashmanagementsoftware einen freien
physischen Block einem gegebenen virtuellen Block
zuordnet, wobei gleichzeitig der zuvor diesem virtuel-
len Block zugeordnete physische Block frei gestellt
wird.

[0082] Die der Tabelle gemäß einem Ausführungs-
beispiel vorliegender Erfindung zugeordnete künftige
Informationsdatenstruktur ist eine geordnete Liste
der aktuell freien Blöcke. Die Liste definiert die exakte
Reihenfolge, in der die freien Blöcke künftig zugeteilt
werden. Anders gesagt: das nächste Mal, wenn die
Flashmanagementsoftware einen freien Block zuteilt,
ist garantiert, dass die Flashmanagementsoftware
den Block an erster Stelle in der Liste auswählen
wird. Das zweite Mal, wenn die Flashmanagement-
software einen freien Block zuteilt, ist garantiert, dass
die Flashmanagementsoftware den Block an zweiter
Stelle in der Liste zuteilen wird, usw.

[0083] Es ist zu beachten, dass jeder physische
Block generell in sich die Nummer des virtuellen
Blocks enthält, dem der betreffende physische Block
aktuell zugeordnet ist. Dies ermöglicht der Flashma-
nagementsoftware, den aktuellen Status der Tabelle
aus der hinterlegten (und nicht aktuellen) Version der
Tabelle und ihrer diesbezüglichen Liste künftiger In-
formationen zu rekonstruieren, wie nachstehend in
der Beschreibung des Wakeup-Prozesses des Sys-
tems erörtert wird.

Regeln für die Bestimmung des Zeitpunkts der Spei-
cherung (einer) aktualisierter/n Flashmanagementta-

belle(n) im Flashspeicher

[0084] Jede Regel für die Bestimmung eines Ereig-
nisses, für das die aktualisierte Tabelle im Flashspei-
cher gespeichert wird – d. h. die „Speicherbedingung”
gemäß Schritt 226 –, ist im Schutzumfang vorliegen-
der Erfindung inbegriffen.

[0085] Der Schutzumfang vorliegender Erfindung
umfasst eine Reihe von Regeln für die Bestimmung,
wann (eine) aktualisierte Flashmanagementtabel-
le(n) gemäß bestimmten Ausführungsbeispielen vor-
liegender Erfindung im Flashspeicher zu speichern
ist.

[0086] In einem ersten Ausführungsbeispiel wird
eine Tabelle bei jeder Nten Änderung des Status der
Tabelle gespeichert, wobei N vorgegeben ist. N kann
so klein wie 2 sein, wenn die Datensicherungsbelas-
tung niedrig ist, oder so groß wie 100 oder sogar
mehr, zum Beispiel, wenn die Datensicherungsbelas-
tung hoch ist. Daher wird eine Zählervariable auf Null
gesetzt. Nach jedem Ereignis wird die Zählervariable
11/26

DE 11 2008 000 180 T5 2009.12.03
erhöht. Überschreitet die Zählervariable den vorge-
gebenen Wert N, werden eine oder mehrere Tabellen
im Flashspeicher gespeichert, und die diesen Tabel-
len zugeordnete künftige Informationsdatenstruktur
wird neu berechnet und zusammen mit der/den Ta-
belle(n) im Flashspeicher hinterlegt.

[0087] In einem zweiten Ausführungsbeispiel wird
die Bedingung für „Tabelle speichern” gemäß der
durch ein jüngstes Ereignis ausgelösten Änderung
des Status bestimmt. Für diesen Zweck werden Sta-
tusänderungen als „geringfügige” oder „bedeutende”
Änderungen klassifiziert. Änderungen im Tabellen-
status, die geringfügig sind, lösen kein sofortiges (d.
h. vor Bearbeitung 210 des nächsten Ereignisses)
Speichern der Tabelle aus (d. h. den Zweig „NO”
nach Schritt 226), während bedeutende Änderungen
sofortiges Speichern auslösen. Ein nicht beschrän-
kendes Beispiel einer Klassifizierung von Änderun-
gen in geringfügig und bedeutend im Falle einer
Flashmanagementtabelle eines freien Blocks ist,
dass eine Änderung, die einen nicht freien Block in ei-
nen freien Block verwandelt, als bedeutend gilt.

[0088] In einem dritten Ausführungsbeispiel
wird/werden die Tabelle(n) periodisch gespeichert,
sobald ein vorgegebenes Zeitintervall abgelaufen ist.
Generell besteht ein Kompromiss zwischen der Häu-
figkeit der Tabellenaktualisierung und dem Umfang
der verfügbaren Systemkapazität, der durch das
Speichern der Flashmanagementtabelle(n) im Flash-
speicher beansprucht wird. Andererseits bedeutet
das Speichern der Managementtabelle(n) öfter, dass
im Durchschnitt eine beim Wakeup aus dem Flash-
speicher abgerufene Tabelle voraussichtlich aktuali-
sierter sein wird, so dass der Wakeup-Vorgang
schneller erfolgt. Zu beachten ist, dass jedes Zeitin-
tervall im Schutzumfang der vorliegenden Erfindung
inbegriffen ist. In nicht beschränkenden Ausfüh-
rungsbeispielen beträgt das Zeitintervall zwischen ei-
ner Zehntelsekunde und fünf oder mehr Minuten.

[0089] In einem vierten Ausführungsbeispiel wird
die Häufigkeit der Tabellenaktualisierung gemäß der
Verfügbarkeit von Systemkapazität bestimmt. In ei-
nem Beispiel, in dem die Steuerung 140 viele Le-
se-/Schreib-/Löschbefehle bearbeitet, oder in einer
Zeit, in der viele Verwaltungsabläufe erfolgen,
wird/werden die Flashmanagementtabelle(n) weni-
ger häufig im Flashspeicher gesichert, um Systemka-
pazität zu sparen. In Zeiten „geringer Beanspru-
chung”, wenn das System ansonsten ruht oder gerin-
ger Beanspruchung unterliegt, ist es generell mög-
lich, die Flashmanagementtabelle(n) häufiger ohne
bedeutende Auswirkungen auf die Leistung des
Flashsystems im Flashspeicher zu speichern.

[0090] Weitere Ausführungsbeispiele der Regeln
zur Bestimmung der Zeitpunkte, an denen eine Spei-
cherung einer Flashmanagementtabelle im Flash-

speicher erfolgt, sind ebenfalls möglich.

[0091] Wird/werden (eine) Flashmanagementtabel-
le(n) im Flashspeicher gesichert, sollte die zugehöri-
ge künftige Informationsdatenstruktur vorzugsweise
ausreichend Information enthalten, um die Bearbei-
tung aller künftigen Ereignisse zu gewährleisten, bis
die nächste Speicherung erfolgt. Es ist ratsam, eine
Sicherheitsmarge vorzusehen und für mehr Ereignis-
se Vorsorge zu treffen als bis zum nächsten Spei-
chervorgang erwartet werden. Im Kontext des aktuel-
len Ausführungsbeispiels können wir eine Liste der
freien Blöcke erstellen, die als nächstes zu verwen-
den sind, die mehr freie Blöcke enthält, als bis zum
nächstes Speichervorgang als erforderlich erachtet.
Doch die Erfindung hängt nicht davon ab, dass so
verfahren wird, und bearbeitet alle Ereignisse kor-
rekt, selbst wenn sich schließlich herausstellt, dass
alle gespeicherten künftigen Informationen bereits
verbraucht worden sind und ein zusätzliches Ereignis
empfangen wird. In diesem Fall führen wir einfach,
als sei eine „Speicherbedingung” erfüllt, eine umge-
hende Synchronisierung der Tabelle auf den Flash
durch. Aus Gründen der Übersichtlichkeit ist dieser
Fall des Verbrauchs künftiger Informationen in
Abb. 3 nicht dargestellt.

[0092] Da nicht jeder Status eine Speicherung der
Tabelle auslöst, entsteht schließlich eine Lücke oder
Fehlanpassung zwischen der letzten gespeicherten
Kopie einer Tabelle und der zuletzt aktualisierten Ko-
pie der Tabelle im RAM. Bei jedem Speichern der Ta-
belle wird die Lücke eliminiert, und die beiden Kopien
(d. h. die Kopie im volatilen RAM-Speicher und die im
Flashspeicher gesicherte Kopie) werden identisch,
doch darauf folgende neue Statusänderungen, die
keine Speicherung der Tabelle auslösen, erzeugen
wieder eine Lücke.

Wakeup

[0093] In manchen Ausführungsbeispielen
wird/werden, wenn eine Anwendung ordnungsge-
mäß beendet wird, aktualisierte Flashmanagement-
tabelle(n) (d. h. (a) Flashmanagementtabelle(n), die
gemäß den jüngsten Ereignissen im Flashspeicher-
system aktualisiert wurde(n)) im Flashspeicher ge-
speichert. Fährt das Flashspeichersystem hoch,
wird/werden diese Flashmanagementtabelle(n) aus
dem Flashspeicher abgerufen.

[0094] Erfolgt kein ordnungsgemäßes Beenden, ist
es beim Hochfahren möglich, die „veraltete(n)” Flash-
managementtabelle(n) aus dem Flashspeicher in
den volatilen Speicher zu laden und dann gemäß in
der künftigen Informationsdatenstruktur gespeicher-
ten Informationen die veraltete Flashmanagementta-
belle im volatilen Speicher zu aktualisieren.

[0095] Ausführungsbeispiele der vorliegenden Er-
12/26

DE 11 2008 000 180 T5 2009.12.03
findung machen daher die Invalidierung veralteter Ta-
bellen wie in Lasser US 6,510,488 vorgesehen über-
flüssig.

[0096] Abb. 4 ist ein Flussdiagramm einer beispiel-
haften Wakeup-Routine gemäß einigen Ausfüh-
rungsbeispielen vorliegender Erfindung. Abb. 4 zeigt
eine beispielhafte Wakeup-Routine im Kontext des
vorstehenden Beispiels der Tabelle in Abb. 2A und
Abb. 2B, wobei die künftige Informationsdatenstruk-
tur eine geordnete Liste freier Blöcke ist, die als
nächste zugeteilt werden. Nach Einschalten von 410
ruft das Flashmanagementsystem 414 die gespei-
cherte Kopie einer Flashmanagementtabelle auf.
Dann ruft das Flashmanagementsystem 418 die zu-
gehörige Liste künftiger Informationen auf, die zum
gleichen Zeitpunkt gespeichert wurde, als die Flash-
managementtabelle im Flashspeicher hinterlegt wur-
de.

[0097] Als nächstes ruft 422 das System die erste
physische Blocknummer in der Liste auf und setzt ei-
nen Marker 426 auf den ersten Eintrag in der Liste.

[0098] Wurde das System sofort nach der letzten
Speicherung der Flashmanagementtabelle und vor
Eintritt einer weiteren Änderung des Status der Tabel-
le abgeschaltet (zum Beispiel nach „ordnungsgemä-
ßem Herunterfahren” oder in jeder anderen Situati-
on), sollte der erste Block in der Liste noch frei sein.
Sind jedoch nach der letzten Speicherung der Tabelle
und vor dem Abschalten des Systems eine oder meh-
rere Statusänderungen der Flashmanagementtabel-
le(n) eingetreten, sollte der erste Block in der Liste
jetzt belegt sein.

[0099] Das Einschalten der Flashmanagementsoft-
ware kann feststellen, ob ein physischer Block aktuell
belegt ist oder nicht. Dies lässt sich unabhängig von
jeder Flashmanagementtabelle durch Prüfung der In-
halte eines oder mehrerer Kontrollfelder innerhalb
des Blocks bestimmen. In manchen Flashmanage-
mentsystemen reicht es aus, das Kontrollfeld „korre-
spondierende virtuelle Blocknummer” zu suchen. Ist
dort eine gültige virtuelle Blocknummer eingetragen,
ist der Block belegt; enthält das Feld keine gültige vir-
tuelle Blocknummer, ist der Block nicht belegt. In an-
deren Flashmanagementsystemen erfordert die Be-
stimmung, ob ein physischer Block zurzeit frei ist
oder nicht, die Prüfung von mehr als einem Kontroll-
feld, doch die Bestimmung ist in jedem Fall relativ
leicht und rasch umsetzbar.

[0100] Durch Anwendung der beschriebenen Tech-
niken zur Bestimmung des „freien” Status des ersten
physischen Blocks in der Liste künftiger Informatio-
nen kann die Flashmanagementsoftware daher be-
stimmen, ob eine Diskrepanz zwischen der empfan-
genen Tabelle und der „wahren” Tabelle besteht, die
den aktuellen Status des Systems abbilden würde.

[0101] Stellt sich heraus, dass der erste Block in der
Liste belegt ist, wissen wir, dass die aufgerufene Ta-
belle aktualisiert werden sollte. Wir rufen dann 434,
die aktuelle korrespondierende virtuelle Blocknum-
mer des Blocks, aus dem ersten Block auf. Dies ge-
stattet uns, die Tabelle in RAM 438 zu aktualisieren,
um die aktuelle Korrespondenz zwischen den virtuel-
len und physischen Blocknummern abzubilden. Der
in der aufgerufenen Tabelle als dem virtuellen Block
(von dem jetzt bekannt ist, dass er durch den ersten
Block in der Liste ersetzt worden ist) korrespondie-
rend angezeigte physische Block wird von der Tabel-
le nicht mehr angezeigt, da dieser physische Block
aktuell nicht belegt ist.

[0102] Als nächstes wird der Zeiger in der Liste wei-
ter geschoben 442, und der gleiche Ablauf wird für
den nächsten physischen Block in der Liste wieder-
holt. So lange der gesichtete Block sich als belegt er-
weist, wird die Tabelle im RAM aktualisiert, um das
Ereignis der Zuteilung des betreffenden Blocks abzu-
bilden.

[0103] Schließlich erreichen wir einen Punkt, an
dem der gesichtete physische Block sich als frei er-
weist. Dies impliziert, dass keine weiteren Aktualisie-
rungen der Tabelle im RAM erforderlich sind und
dass die Tabelle den Systemstatus jetzt zutreffend
abbildet. Jetzt wird die aktualisierte Tabelle im Flash-
speicher 446 gespeichert. Gleichzeitig wird auch eine
neu berechnete Liste künftiger Informationen (die die
nächsten zuzuteilenden freien Blöcke anzeigt) im
Flashspeicher hinterlegt, so dass nach erneutem Ab-
schalten des Systems die gleiche Wakeup-Routine
wieder den korrekten Status der Tabelle wiederher-
stellt. Zu beachten ist, dass Schritt 446 des Spei-
cherns der Tabelle im Flashspeicher nicht wirklich er-
forderlich ist, wenn festgestellt wird, dass kein Block
aus der Liste künftiger Informationen zugeteilt wor-
den ist, da in diesem Fall die gespeicherte Tabelle be-
reits aktualisiert ist. Aus Gründen der besseren Über-
sicht ist dies in Abb. 4 nicht dargestellt.

[0104] Nachdem festgestellt ist, dass die Flashspei-
chertabelle(n) im volatilen und im nicht volatilen Spei-
cher aktualisiert ist/sind, kann 450 mit dem regulären
Betrieb des Flashspeichersystems fortgefahren wer-
den.

[0105] Interessant ist die Beobachtung, dass die
Verfahren gemäß vorliegender Erfindung in gewisser
Weise das genaue Gegenteil der Verfahren von Las-
ser '056 sind. Beide Verfahren haben viele Gemein-
samkeiten – sie aktualisieren beide die Flashma-
nagementtabellen im Flashspeicher nur gelegentlich
und gestatten dadurch die Entstehung einer Lücke
zwischen dem gespeicherten Status und dem aktuel-
len Status. Beide behandeln diese Lücke mittels
„Playback” eines iterativen Aktualisierungsprozesses
zum Zeitpunkt des Einschaltens auf Grundlage der
13/26

DE 11 2008 000 180 T5 2009.12.03
im Flash gespeicherten Informationen, die eindeutig
die Ereignisse definieren, die zur Entstehung der Lü-
cke geführt haben. Doch besteht ein grundlegender
Unterschied zwischen den Verfahren bezüglich die-
ser Informationen. Lasser '056 bearbeitet die einge-
henden Ereignisse auf Grundlage der spezifischen
Algorithmen des Flashmanagementsystems, welche
auch immer diese sein mögen, und hinterlegt dann
diese Ereignisse im Flash in einer Weise, die abbil-
det, wie diese Ereignisse bearbeitet worden sind. Die
vorliegende Erfindung hinterlegt erst im Flash, wie
eingehende Ereignisse künftig bearbeitet werden sol-
len (wieder auf Grundlage der Algorithmen des
Flashmanagementsystems, aber vor Eintritt der Er-
eignisse), und bearbeitet die Ereignisse dann, wenn
sie tatsächlich eintreten, gemäß den hinterlegten Be-
arbeitungsentscheidungen.

Allgemeine Erörterung zur Leistung

[0106] Ein Vorteil bestimmter Ausführungsbeispiele
vorliegender Erfindung besteht darin, dass das Le-
sen der gespeicherten Kopie einer Flashmanage-
menttabelle und die Aktualisierung der Tabelle in Be-
zug auf die Ereignisse, die noch nicht in der gespei-
cherten Tabelle abgebildet sind, sehr viel weniger
Zeit benötigt als die Neuerstellung der Tabelle durch
Scannen der vielen Blöcke des Speichersystems.
Wurde das System nach Speicherung der Tabelle vor
Eintritt weiterer Statusänderungen abgeschaltet
(zum Beispiel im Falle ordnungsgemäßen Herunter-
fahrens oder wenn wir das „Glück” hatten, anzuschal-
ten bevor neue Ereignisse eingetreten waren), erfolgt
das Wakeup in manchen Ausführungsbeispielen
schnell, so wie bei Lasser '488 im Fall des ordnungs-
gemäßen Herunterfahrens. Doch selbst wenn nach
dem letzten Speichern der Tabelle einige Statusän-
derungen eingetreten sind, ist die für das Wakeup be-
nötigte Zeit unter Umständen nicht so lang wie beim
Verfahren gemäß Lasser '488, wenn kein ordnungs-
gemäßes Herunterfahren stattgefunden hat. In vielen
Situationen müssen nur wenige Ereignisse entdeckt
und ihre Folgen für den Status der Tabellen wieder-
hergestellt werden. Die genaue Zeit, die dafür gene-
rell benötigt wird, hängt von der Anzahl der Einträge
ab, die mit der künftigen Informationsdatenstruktur
bearbeitet werden müssen. Dies wiederum kann von
der Häufigkeit abhängen, mit der die Tabelle im nicht
volatilen Speicher hinterlegt wird. Je höher die Häu-
figkeit, desto weniger Einträge sind im Durchschnitt
zu bearbeiten und desto schneller ist durchschnittlich
der Wakeup-Vorgang. Andererseits: je höher die
Häufigkeit des Speicherns, desto länger ist die für die
Berechnung und Vorbereitung der künftigen Informa-
tionsdatenstruktur aufgewendete Zeit.

[0107] Die vorliegende Erfindung ähnelt in dieser
Hinsicht in ihrer Leistung den Verfahren von Lasser
'056. Doch dies gilt nur, wenn die für das Schreiben
des Ereignisprotokolls in Lasser '056 aufgewendete

Kapazitätsbelastung keine zusätzliche Kapazitätsbe-
lastung bedingt, wie beispielsweise, wenn das Proto-
koll aus anderen Gründen ohnehin vorgehalten wird.
Ist dies nicht der Fall, bieten die Verfahren gemäß
vorliegender Erfindung eine bessere Gesamtleistung
als Lasser '056, da das aufwändige Vorhalten des
Protokolls nicht mehr erforderlich ist.

[0108] Während die vorstehenden Erörterungen
sich im Wesentlichen auf eine einzelne Flashma-
nagementtabelle im Flashmanagementsystem bezie-
hen, ist die Erfindung gleichermaßen auf viele Flash-
managementtabellen anwendbar, von denen jede ei-
nen unterschiedlichen Aspekt des Systemstatus ab-
bildet. Sind viele Tabellen gegeben, wird jede Tabelle
auf Grundlage der jeweils eigenen Speicherregeln
der Tabelle gespeichert, und nicht unbedingt zu den
gleichen Zeitpunkten. Bei Einschalten wird jede
Flashmanagementtabelle mittels der beschriebenen
Verfahren auf Grundlage der spezifischen Informati-
onsdaten jeder Flashmanagementtabelle rekonstru-
iert. Es ist ebenfalls möglich, dass zwei oder mehr Ta-
bellen eine gemeinsame künftige Informationsdaten-
struktur besitzen, die zur Steuerung der Bearbeitung
eingehender Ereignisse für diese multiplen Tabellen
verwendet wird.

[0109] Es ist zu beachten, dass die vorliegende Er-
findung sich nicht auf die vorstehend beschriebenen
Ausführungsbeispiele beschränkt, die der Erklärung
der Verfahren der Erfindung dienen. Die Erfindung ist
gleichermaßen auch auf viele andere Typen von
Flashmanagementtabellen und künftiger Informati-
onsdatenstrukturen anwendbar, die alle im Schutz-
umfang der beanspruchten Erfindung liegen.

Zusätzliche Erörterung der vorliegend beschriebenen
Systeme

[0110] Die vorliegend offen gelegten Techniken las-
sen sich mit jeder Kombination von Hardware, Firm-
ware und Software umsetzen.

[0111] In einem nicht beschränkenden Ausfüh-
rungsbeispiel werden das Speichern der Flashma-
nagementtabellen und deren Wiederherstellung und
Rekonstruktion nach dem Einschalten alle durch die
Steuerung 140 durchgeführt, oder genauer gesagt
durch das Ausführen von in ROM 160 hinterlegtem
Code durch CPU 150. Dies ist jedoch nicht die einzi-
ge mögliche Systemarchitektur für den Einsatz vorlie-
gender Erfindung. Es ist zum Beispiel auch möglich,
die Verfahren der Erfindung durch im Hostrechner
110 ausgeführten Code umzusetzen, was der Fall ist,
wenn das Speichermodul eine On-board-NAND Flas-
hvorrichtung ist und keine selbständig operierende
Steuerung vorhanden ist. Eine weitere Möglichkeit
ist, dass die erfindungsgemäßen Verfahren wenigs-
tens zum Teil durch den Hostrechner 110 und zum
Teil durch die Steuerung 140 umgesetzt werden. Alle
14/26

DE 11 2008 000 180 T5 2009.12.03
diese Architekturen und viele weitere sind im Schutz-
umfang vorliegender Erfindung umfasst.

[0112] In der Beschreibung und den Ansprüchen
vorliegender Anmeldung werden jedes der Verben
„umfassen”, „einschließen” und „haben” sowie deren
Konjugate verwendet, um anzuzeigen, dass das oder
die Objekte des Verbs nicht unbedingt eine vollstän-
dige Auflistung der Glieder, Komponenten, Elemente
oder Teile des Subjekts oder der Subjekte des Verbs
sind.

[0113] Alle vorliegend zitierten Veröffentlichungen
sind durch Hinweis vollständig in vorliegende Offen-
legung aufgenommen. Das Zitieren einer Veröffentli-
chung beinhaltet kein Eingeständnis, dass sie zum
Stand der Technik zählt.

[0114] Die Artikel „der”, „die”, „das” dienen vorlie-
gend dem Hinweis auf eines oder mehrere (d. h. min-
destens eines) der grammatischen Objekte des Arti-
kels. Zum Beispiel bezeichnet „ein Element” ein Ele-
ment oder mehr als ein Element.

[0115] Der Ausdruck „einschließlich” bedeutet vor-
liegend „einschließlich, doch ohne Beschränkung
hierauf” und wird mit dieser Formulierung austausch-
bar verwendet.

[0116] Der Ausdruck „oder” bedeutet vorliegend
„und/oder” und wird damit austauschbar verwendet,
es sei denn aus dem Zusammenhang geht klar eine
andere Bedeutung hervor.

[0117] Der Ausdruck „wie beispielsweise” bedeutet
und wird vorliegend austauschbar verwendet mit der
Formulierung „wie beispielsweise, aber nicht be-
schränkt auf”.

[0118] Die vorliegende Erfindung wurde vorstehend
unter Verwendung detaillierter Beschreibungen von
Ausführungsbeispielen derselben beschrieben, die
als Beispiele vorgesehen sind und nicht dazu dienen,
den Schutzumfang der Erfindung zu beschränken.
Die beschriebenen Ausführungsbeispiele umfassen
unterschiedliche Merkmale, von denen nicht jedes in
allen Ausführungsbeispielen der Erfindung erforder-
lich ist. Manche Ausführungsbeispiele vorliegender
Erfindung verwenden nur manche dieser Merkmale
oder möglicher Merkmalskombinationen. Abwand-
lungen der Ausführungsbeispiele vorliegender Erfin-
dung, die andere Kombinationen der in den beschrie-
benen Ausführungsbeispielen genannten Merkmale
umfassen, werden dem Fachmann einfallen.

[0119] Die Erfindung wurde zwar in Hinblick auf eine
begrenzte Anzahl von Ausführungsbeispielen be-
schrieben, doch lassen sich viele Abwandlungen,
Modifikationen und sonstige Anwendungen der Erfin-
dung vornehmen.

Zusammenfassung

Verfahren und System für die Umsetzung eines
Fast-Wakeup eines Flashspeichersystems

[0120] Verfahren und Systeme für die Pflege von
Datenstrukturen auf Grundlage der Ereignisse in ei-
nem nicht volatilen Speichersystem. Mindestens ein
Teil einer oder mehrerer Managementtabellen sowie
eine künftige Informationsdatenstruktur sind in einem
nicht volatilen Speicher hinterlegt. Die künftige Infor-
mationsdatenstruktur umfasst Datensätze zu Ereig-
nissen, deren Eintritt nach dem Speichern der künfti-
gen Informationsdatenstruktur erwartet wird. Treten
Ereignisse im Flashspeicher ein, werden sie auf
Grundlage der künftigen Informationsdatenstruktur
bearbeitet. Beim Hochfahren des Speichersystems
wird/werden die Managementtabelle(n) geladen und
die Datensätze der künftigen Informationsdatenstruk-
tur mit dem Status der Tabelle(n) verglichen. Die Ta-
belle(n) wird/werden auf Grundlage der künftigen In-
formationsdatenstruktur aktualisiert.
15/26

DE 11 2008 000 180 T5 2009.12.03
ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Doku-
mente wurde automatisiert erzeugt und ist aus-
schließlich zur besseren Information des Lesers auf-
genommen. Die Liste ist nicht Bestandteil der deut-
schen Patent- bzw. Gebrauchsmusteranmeldung.
Das DPMA übernimmt keinerlei Haftung für etwaige
Fehler oder Auslassungen.

Zitierte Patentliteratur

- US 6510488 [0002, 0095]
- US 5937425 [0004, 0060]
- US 6678785 [0004]
16/26

DE 11 2008 000 180 T5 2009.12.03
Patentansprüche

1. Speichermodul, gekennzeichnet durch:
(a) einen ersten nicht volatilen Speicher; und
(b) eine Steuerung des genannten ersten nicht vola-
tilen Speichers, die dazu dient, den ersten nicht vola-
tilen Speicher durch Schritte zu steuern, die folgende
Schritte umfassen
(i) Speichern im genannten ersten nicht volatilen
Speicher mindestens eines Teils einer Management-
tabelle, deren Inhalte einen Status des Speichersys-
tems zu einem ersten Zeitpunkt abbilden,
(ii) Speichern im genannten ersten nicht volatilen
Speicher einer künftigen Informationsdatenstruktur,
die eine Mehrzahl von Datensätzen in Bezug auf Er-
eignisse im Speichersystem umfasst, deren Eintritt
nach dem Speichern der genannten künftigen Infor-
mationsdatenstruktur erwartet wird, und
(iii) zu einem zweiten Zeitpunkt, der auf das Spei-
chern der genannten künftigen Informationsdaten-
struktur folgt, Bearbeitung des genannten Ereignis-
ses gemäß der künftigen Informationsdatenstruktur.

2. Speichermodul gemäß Anspruch 1, gekenn-
zeichnet durch:
(c) einen zweiten nicht volatilen Speicher;
wobei die genannte Steuerung dazu dient, die ge-
nannten Schritte mittels Ausführen von im zweiten
nicht volatilen Speicher hinterlegtem Code umzuset-
zen.

3. Speichersystem, gekennzeichnet durch:
(a) ein Speichermodul einschließlich eines nicht vola-
tilen Speichers; und
(b) einen Hostrechner des genannten Speichermo-
duls, der bei der Steuerung des nicht volatilen Spei-
chers durch Schritte mitwirkt, die folgende Schritte
umfassen:
(i) Speichern im genannten ersten nicht volatilen
Speicher mindestens eines Teils einer Management-
tabelle, deren Inhalte einen Status des Speichersys-
tems zu einem ersten Zeitpunkt abbilden,
(ii) Speichern im genannten ersten nicht volatilen
Speicher einer künftigen Informationsdatenstruktur,
die eine Mehrzahl von Datensätzen in Bezug auf Er-
eignisse im Speichersystem umfasst, deren Eintritt
nach dem genannten Speichern der genannten künf-
tigen Informationsdatenstruktur erwartet wird, und
(iii) zu einem zweiten Zeitpunkt nach dem genannten
Speichern der künftigen Informationsdatenstruktur
Bearbeiten eines Ereignisses auf Grundlage der ge-
nannten künftigen Informationsdatenstruktur.

4. Speichersystem gemäß Anspruch 3, dadurch
gekennzeichnet, dass die genannten Schritte aus-
schließlich durch den genannten Hostrechner ausge-
führt werden.

5. Speichersystem gemäß Anspruch 3, dadurch
gekennzeichnet, dass das genannte Speichermodul

eine Steuerung umfasst, die mit dem genannten
Hostrechner zusammenwirkt, um die genannten
Schritte auszuführen.

6. Speichermodul, gekennzeichnet durch:
(a) einen ersten nicht volatilen Speicher; und
(b) eine Steuerung des nicht volatilen Speichers, die
dazu dient, das Speichermodul durch Schritte hoch-
zufahren, die folgende Schritte umfassen
(i) Auslesen aus dem genannten ersten nicht volati-
len Speicher mindestens eines Teils einer Manage-
menttabelle, die einen Status des Speichermoduls zu
einem Zeitpunkt vor dem Hochfahren abbildet;
(ii) Auslesen aus dem genannten nicht volatilen Spei-
cher einer künftigen Informationsdatenstruktur, die
eine Mehrzahl von Datensätzen in Bezug auf Ereig-
nisse umfasst, deren Eintritt nach dem Speichern der
genannten künftigen Informationsdatenstruktur er-
wartet wird; und
(iii) Aktualisieren der genannten Managementtabelle
auf Grundlage mindestens eines Datensatzes der
genannten künftigen Informationsdatenstruktur.

7. Das Speichermodul gemäß Anspruch 6, ge-
kennzeichnet durch:
(c) einen zweiten nicht volatilen Speicher;
wobei die genannte Steuerung dazu dient, die ge-
nannten Schritte durch das Ausführen von Code
durchzuführen, der im genannten zweiten nicht vola-
tilen Speicher hinterlegt ist.

8. Speichersystem, gekennzeichnet durch:
(a) ein Speichermodul, das einen nicht volatilen Spei-
cher umfasst; und
(b) einen Hostrechner des genannten Speichermo-
duls, der bei der Steuerung des genannten nicht vo-
latilen Speichers durch Schritte mitwirkt, die folgende
Schritte umfassen:
(i) Auslesen aus dem genannten nicht volatilen Spei-
cher mindestens eines Teils einer Managementtabel-
le, die einen Status des Speichersystems zu einem
Zeitpunkt vor dem Hochfahren abbildet;
(ii) Auslesen aus dem genannten nicht volatilen Spei-
cher einer künftigen Informationsdatenstruktur, die
eine Mehrzahl von Datensätzen umfasst, die sich auf
Ereignisse beziehen, deren Eintritt nach einem Spei-
chern der genannten künftigen Informationsdaten-
struktur erwartet wird; und
(iii) Aktualisieren der genannten Managementtabelle
auf Grundlage mindestens eines Datensatzes der
genannten künftigen Informationsdatenstruktur.

9. Speichersystem gemäß Anspruch 8, dadurch
gekennzeichnet, dass die genannten Schritte aus-
schließlich vom Hostrechner ausgeführt werden.

10. Speichersystem gemäß Anspruch 8, dadurch
gekennzeichnet, dass das genannte Speichermodul
eine Steuerung umfasst, die mit dem genannten
Hostrechner bei der Umsetzung der genannten
17/26

DE 11 2008 000 180 T5 2009.12.03
Schritte zusammenwirkt.

11. Computerlesbares Speichermedium mit darin
integriertem computerlesbaren Code für die Pflege
der Datenstrukturen eines Speichersystems auf
Grundlage von Systemereignissen, wobei der com-
puterlesbare Code gekennzeichnet ist durch:
(a) Programmcode für das Speichern mindestens ei-
nes Teils einer Managementtabelle, deren Inhalte ei-
nen Status des Systems zu einem ersten Zeitpunkt
abbilden, in einem nicht volatilen Speicher des Spei-
chersystems;
(b) Programmcode für das Speichern einer künftigen
Informationsdatenstruktur, die eine Mehrzahl von Da-
tensätzen umfasst, die sich auf Ereignisse im Spei-
chersystem beziehen, deren Eintritt nach dem ge-
nannten Speichern der genannten Informationsda-
tenstruktur erwartet wird, im genannten nicht volati-
len Speicher; und
(c) Programmcode für die Bearbeitung eines Ereig-
nisses auf Grundlage der künftigen Informationsda-
tenstruktur zu einem zweiten Zeitpunkt nach dem ge-
nannten Speichern der genannten künftigen Informa-
tionsdatenstruktur.

12. Computerlesbares Speichermedium, ge-
kennzeichnet durch darin integrierten computerles-
baren Code für das Hochfahren eines Speichersys-
tems, wobei der computerlesbare Code Folgendes
umfasst:
(a) Programmcode für das Auslesen aus einem nicht
volatilen Speicher des Speichersystems mindestens
eines Teils einer Managementtabelle, die einen Sta-
tus des Speichersystems zu einem Zeitpunkt vor dem
Hochfahren abbildet;
(b) Programmcode für das Auslesen aus dem ge-
nannten nicht volatilen Speicher einer künftigen Infor-
mationsdatenstruktur, die eine Mehrzahl von Daten-
sätzen umfasst, die sich auf Ereignisse beziehen, de-
ren Eintritt nach einem Speichern der genannten
künftigen Informationsdatenstruktur erwartet wird;
und
(c) Programmcode für das Aktualisieren der genann-
ten Managementtabelle auf Grundlage mindestens
eines Datensatzes der genannten künftigen Informa-
tionsdatenstruktur.

13. Verfahren für die Pflege von Datenstrukturen
eines Speichersystems auf Grundlage der Ereignisse
im System, gekennzeichnet durch folgende Schritte:
(a) Speichern in einem nicht volatilen Speicher des
Speichersystems mindestens eines Teils einer Ma-
nagementtabelle, deren Inhalte einen Status des
Speichersystems zu einem ersten Zeitpunkt abbil-
den;
(b) Speichern im genannten nicht volatilen Speicher
einer künftigen Informationsdatenstruktur, die eine
Mehrzahl von Datensätzen umfasst, die sich auf Er-
eignisse im Speichersystem beziehen, deren Eintritt
nach dem genannten Speichern der genannten Infor-

mationsdatenstruktur erwartet wird; und
(c) zu einem zweiten Zeitpunkt nach dem genannten
Speichern der künftigen Informationsdatenstruktur
Bearbeitung eines Ereignisses auf Grundlage der ge-
nannten künftigen Informationsdatenstruktur.

14. Verfahren gemäß Anspruch 13, dadurch ge-
kennzeichnet, dass der genannte nicht volatile Spei-
cher ein Flashspeicher ist.

15. Verfahren gemäß Anspruch 13, dadurch ge-
kennzeichnet, dass das genannte Speichern des ge-
nannten mindestens einen Teils der genannten Ma-
nagementtabelle das Aktualisieren des genannten
mindestens einen Teils der genannten Management-
tabelle im genannten nicht volatilen Speicher um-
fasst.

16. Verfahren gemäß Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Speichern des ge-
nannten mindestens einen Teils der Managementta-
belle, deren Inhalte einen Zustand des Speichersys-
tem zu einem ersten Zeitpunkt abbilden, auch das
Speichern mindestens eines Teils der genannten Ma-
nagementtabelle in einem volatilen Speicher um-
fasst, sowie dadurch gekennzeichnet, dass das ge-
nannte Aktualisieren jedes N > 1 Mal erfolgt, das die
Managementtabelle im genannten volatilen Speicher
geändert wird.

17. Verfahren gemäß Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren in
Reaktion auf den Eintritt ausgewählter Ereignisse
folgt.

18. Verfahren gemäß Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren peri-
odisch erfolgt.

19. Verfahren gemäß Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren auf
Grundlage der Verfügbarkeit von Kapazität im Spei-
chersystem erfolgt.

20. Verfahren gemäß Anspruch 13, dadurch ge-
kennzeichnet, dass die genannte künftige Informati-
onsdatenstruktur eine Auflistung von Blöcken des ge-
nannten nicht volatilen Speichers umfasst, die zum
genannten ersten Zeitpunkt unbelegt sind.

21. Verfahren zum Hochfahren eines Speicher-
systems, gekennzeichnet durch folgende Schritte:
(a) Auslesen aus einem nicht volatilen Speicher des
Speichersystems mindestens eines Teils einer Ma-
nagementtabelle, die einen Status des Speichersys-
tems zu einem Zeitpunkt vor dem Hochfahren abbil-
det;
(b) Auslesen aus dem genannten nicht volatilen Spei-
cher einer künftigen Informationsdatenstruktur, die
eine Mehrzahl von Datensätzen umfasst, die sich auf
18/26

DE 11 2008 000 180 T5 2009.12.03
Ereignisse beziehen, deren Eintritt nach einem Spei-
chern der genannten künftigen Informationsdaten-
struktur erwartet wird; und
(c) Aktualisieren der genannten Managementtabelle
auf Grundlage mindestens eines Datensatzes der
genannten künftigen Informationsdatenstruktur.

22. Verfahren gemäß Anspruch 21, dadurch ge-
kennzeichnet, dass der genannte nicht volatile Spei-
cher ein Flashspeicher ist.

23. Verfahren gemäß Anspruch 21, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren die
genannte Managementtabelle ändert, um einen aktu-
ellen Status des Speichersystems abzubilden.

24. Verfahren gemäß Anspruch 21, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren be-
dingt erfolgt.

25. Verfahren gemäß Anspruch 24, gekennzeich-
net durch folgenden weiteren Schritt:
(d) Prüfung der genannten Datensätze, um zu be-
stimmen, ob der Status des Speichersystems sich
seit dem genannten Zeitpunkt geändert hat,
wobei das Aktualisieren voraussetzt, dass der Status
des Speichersystems sich seit diesem Zeitpunkt ge-
ändert hat.

Es folgen 7 Blatt Zeichnungen
19/26

DE 11 2008 000 180 T5 2009.12.03
Anhängende Zeichnungen
20/26

DE 11 2008 000 180 T5 2009.12.03
21/26

DE 11 2008 000 180 T5 2009.12.03
22/26

DE 11 2008 000 180 T5 2009.12.03
23/26

DE 11 2008 000 180 T5 2009.12.03
24/26

DE 11 2008 000 180 T5 2009.12.03
25/26

DE 11 2008 000 180 T5 2009.12.03
26/26

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

