(19) (19 DE 11 2008 000 180 T5 2009.12.03

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Veroffentlichung

der internationalen Anmeldung mit der
(87) Veroffentlichungs-Nr.: WO 2008/087634
in deutscher Ubersetzung (Art. Ill § 8 Abs. 2 IntPatUG)
(21) Deutsches Aktenzeichen: 11 2008 000 180.4
(86) PCT-Aktenzeichen: PCT/IL2008/000062
(86) PCT-Anmeldetag: 16.01.2008
(87) PCT-Verdffentlichungstag: 24.07.2008
(43) Veroffentlichungstag der PCT Anmeldung
in deutscher Ubersetzung: 03.12.2009

s1yntcte: GO6F 12/02 (2006.01)

G11C 16/10(2006.01)

(30) Unionsprioritat:
60/885,412 18.01.2007 us
11/808,451 11.06.2007 us
11/808,452 11.06.2007 us
(71) Anmelder:

SanDisk IL Ltd., Kfar Saba, IL

(74) Vertreter:
Richardt, M., Dipl.-Ing., Pat.-Anw., 65343 Eltville

(72) Erfinder:
Lasser, Menahem, Kochav Yair, IL; Meir, Avraham,
Rishon Le Zion, IL

(54) Bezeichnung: Verfahren und System fiir die Umsetzung eines Fast-Wakeup eines Flashspeichersystems

(57) Hauptanspruch:
durch:

(a) einen ersten nicht volatilen Speicher; und

(b) eine Steuerung des genannten ersten nicht volatilen
Speichers, die dazu dient, den ersten nicht volatilen Spei-
cher durch Schritte zu steuern, die folgende Schritte
umfassen

(i) Speichern im genannten ersten nicht volatilen Speicher
mindestens eines Teils einer Managementtabelle, deren
Inhalte einen Status des Speichersystems zu einem ersten
Zeitpunkt abbilden,

(i) Speichern im genannten ersten nicht volatilen Speicher
einer kinftigen Informationsdatenstruktur, die eine Mehr-
zahl von Datensatzen in Bezug auf Ereignisse im Spei-
chersystem umfasst, deren Eintritt nach dem Speichern
der genannten kiinftigen Informationsdatenstruktur erwar-
tet wird, und

(iii) zu einem zweiten Zeitpunkt, der auf das Speichern der
genannten kinftigen Informationsdatenstruktur folgt, Bear-
beitung des genannten Ereignisses gemaf der kiinftigen
Informationsdatenstruktur.

Speichermodul, gekennzeichnet

Tabelle aus dem F i laden 414]
Liste kiinftiger Informationen aus dem
Fiash laden 418

Ersten Eintrag In der Liste ansteuern 422 :]

rZelgsr auf ersten Eintrag setzen _42_6 J

&

P

Bezioht sich der
Eintrag auf einen
zugeteilten Block?

JA NEIN

430

Die korrespondierende
virtuelle Blocknummer laden

Tabelle Im Flashspeicher
Zusammen mit der neu
berechneten Liste kinftiger
Informationen speichern

434

Tabelle im RAM aktualisieren
438

446

Den reguléren Betrieb wieder,
Zeiger weiter-
fiihren

a4

aufnehmen 450

DE 11 2008 000 180 TS 2009.12.03

Beschreibung
ALLGEMEINER STAND DER TECHNIK

[0001] Die vorliegende Erfindung betrifft Verfahren
und Systeme fir die Vorhaltung von Datenstrukturen,
die fur die Umsetzung einer Wakeup-Funktion in ei-
nem Flash-Speichersystem niitzlich sind.

[0002] Das US-Patent Nr. 6,510,488 von Lasser mit
dem Titel ,Method for a Fast Wake-Up of a Flash Me-
mory System” (nachfolgend "Lasser '488”) offenbart
ein Verfahren und System, mit denen ein Flashspei-
chersystem ein schnelles Hochfahren nach Einschal-
ten des Flash-Speichersystems erreicht, selbst wenn
die Flashsystemsoftware Managementtabellen ver-
wendet, deren Neuerstellung zeitaufwandig ist. Die
kurze Wakeup-Zeit wird ohne Beeintrachtigung der
Datenintegritat erreicht. Das genannte Patent von
Lasser '488 ist vorliegend fur alle Zwecke durch Hin-
weis so aufgenommen als sei es in vorliegender Pa-
tentschrift vollumfénglich enthalten.

[0003] Wie in Lasser '488 dargelegt, erfordert die
Verwendung einer Flashspeichervorrichtung fir
Computerdaten traditionell eine Software-Translati-
onsschicht zwischen dem Betriebssystem des
Hauptrechners und den systemnahen Zugangsrouti-
nen der Vorrichtung. Dies ist der Fall, da die Flash-
technologie einige Nutzungsbeschrankungen auf-
weist, die es unmoglich machen, zum Flashspeicher
einfach durch direkten linearen Zugriff Zugang zu er-
langen. Eine dieser Beschrankungen ist die Unmdg-
lichkeit, einen beliebigen Ort im Flashspeicher direkt
zu uberschreiben. Genau gesagt, kann das Schrei-
ben von neuem Inhalt in einen Flashspeicher zuerst
das Loschen des gesamten Blocks, in dem der be-
treffende Ort sich befindet, erfordern (unter Erhaltung
der Inhalte in anderen noch benétigten Orten), bevor
dann der neue Inhalt eingegeben werden kann.

[0004] Die Translationsschicht prasentiert dem Be-
triebssystem des Hauptrechners eine virtuelle An-
sicht einer Reihe unabhangiger und direkt zugangli-
cher Datensektoren und verbirgt zugleich die Einzel-
heiten des Mapping dieser virtuellen Adressen zu de-
ren realen Orten im Flashmedium. Dieser Translati-
onsmechanismus ist alles andere als trivial, und ein
Beispiel einer solchen Translationsschicht fiir einen
Flashspeicher ist in Amir Bans US-Patent Nr.
5,937,425 offenbart, das vorliegend durch Bezug-
nahme aufgenommen ist. Ban offenbart ein Verfah-
ren fur die Umsetzung eines Mappingmechanismus
zwischen virtuellen und physischen Flashadressen.
Ein weiteres Beispiel eines solchen Systems ist in
US-Patent Nr. 6,678,785 offenbart, das ebenfalls
durch Hinweis vorliegend aufgenommen ist.

[0005] Der Translationsprozess nutzt interne Trans-
lationstabellen, die der Flashsystemsoftware die fir

die Konversion der Zugangsanfragen vom Haupt-
rechner in Zugangsanfragen zum Flashgerat erfor-
derlichen Informationen liefern. Das Flashspeicher-
system erstellt diese Translationstabellen wahrend
des Wakeup (oder spater, sofern von der Betriebs-
software des Hauptrechners so vorgegeben) auf
Grundlage der im Flashgerat gespeicherten Steuer-
informationen. Theoretisch ist es zwar maglich, sol-
che Tabellen nicht zu erstellen und nur die rohen
Steuerdaten des Flashspeichers zu nutzen. In der
Praxis ist dies jedoch nicht méglich, da die Reakti-
onszeit auf eine Zugangsanfrage zu langsam ware.
Das ist der Fall, da der Zugriff auf Daten auf einem
Flashgerat viel langsamer erfolgt als der Datenzugriff
in einem RAM-Speicher, und auch da die RAM-Spei-
chertabellen fur wahrend der Laufzeit erforderliche
Operationen gewdhnlich in Hinblick auf ihre Effizienz
optimiert werden, was bei Steuerdaten in Flashspei-
chern nicht der Fall ist.

[0006] So kann beispielsweise eine physische
Flasheinheit die Zahl der auf sie zugreifenden virtuel-
len Einheiten enthalten. Wahrend der Laufzeit des
Programms missen wir unter Umstanden haufig die
virtuelle Nummer einer Einheit in ihr physisches Aqui-
valent konvertieren. Mulssen wir uns dabei aus-
schlieflich auf die im Flashspeicher hinterlegten
Steuerdaten verlassen, missen wir moglicherweise
die Einheiten abtasten, bis wir die Einheit mit der an-
gegebenen Nummer der virtuellen Einheit finden.
Das ist fur einen einfachen Medienzugang ein sehr
langer Prozess. Wird jedoch beim Hochfahren des
Systems der Flashspeicher einmal abgetastet und
eine Tabelle erstellt, die jede virtuelle Einheitsnum-
mer der Nummer der entsprechenden physischen
Einheit zuordnet, kann dieses Mapping spater sehr
effizient durchgefiihrt werden.

[0007] Das Problem besteht darin, dass das Scan-
nen des Flashdatenspeichergerats beim Hochfahren
des Systems lange dauern kann, insbesondere bei
Geraten hoher Speicherkapazitat. Das ist besonders
argerlich bei Systemen und Geraten, deren Anwen-
der eine umgehende Betriebsbereitschaft erwarten
(z. B. Mobiltelefonen, PDA etc.). Bei Read-Only-Ge-
raten wie Flashgeraten, die nur Computercode spei-
chern, der vom Anwender nicht anderbar ist, mag
einfaches Speichern der Tabellen im Flashspeicher
ausreichen. Doch das blof3e Speichern der Tabellen
im Flashspeicher ist bei Geraten, die verwendet wer-
den, um Daten zu speichern, die sich haufig dndern
kénnen (z. B. Textdateien oder Spreadsheets in ei-
nem PDA), nicht erfolgreich. Denn wenn laufende
Eingaben in das Gerat erfolgen und die Inhalte im
Gerate laufend geandert werden, andern sich die In-
halte der Translationstabellen ebenfalls. Es ist nicht
praktikabel, die Kopie der Tabellen im Flashspeicher
jedes Mal zu hochfahren, wenn sich die Tabellen im
RAM andern, denn die dadurch entstehende Arbeits-
last wird das System deutlich verlangsamen. Folglich

2/26

DE 11 2008 000 180 TS 2009.12.03

akkumuliert sich eine Abweichung zwischen den im
Flashspeicher gespeicherten Tabellen und den ,rich-
tigen” im RAM. Schaltet der Anwender nun die
Stromversorgung ab und dann wieder an ohne die
Tabellen zu hochfahren, wird die Software die fehler-
haften Translationstabellen aus dem Flashspeicher
lesen, mit der Folge eines mdglichen Datenverlusts
bei der Eingabe neuer Daten.

[0008] Gemal manchen in Lasser '488 offenbarten
Ausfuhrungsbeispielen wird das Problem gel6st, in-
dem die Translationstabellen im Flashspeicher ge-
speichert werden und Mittel hinzugefligt werden, die
es der Software ermdglichen, die Translationstabel-
len auf eine Weise zu invalidieren, die jedes Mal fest-
stellbar ist, wenn sie gelesen werden. Zu den mdgli-
chen Umsetzungen (doch nicht den einzigen) zahlt
die Hinzufiigung eines Prifsummenwerts, der die
Summe aller Eingaben einem festen bekannten Wert
gleichsetzt, oder das Hinzufligen einer Wirksamkeits-
anzeige zu den gespeicherten Tabellen. Auferdem
sollte man die Anwendungssoftware auffordern, eine
bestimmte Funktion in der Translationsschicht aufzu-
rufen, bevor das System ausgeschaltet wird.

[0009] Mittels dieser MaRnahmen kann das Flash-
speichergerat schnelles Hochfahren einleiten, wenn
das System ordnungsgemal heruntergefahren wur-
de, und sich auf das regulare Hochfahren umstellen,
wenn es nicht ordnungsgeman abgeschaltet wird.

[0010] Diese Losung ist zwar in vielen Fallen nitz-
lich, doch es gibt Situationen, in denen sie méglicher-
weise nicht ausreicht. Ein erstes Beispiel, in denen
sie nicht ausreichend sein konnte, sind haufige
Stromausfalle, so dass zu erwarten ist, das viele
(oder sogar die meisten) der Einschaltereignisse auf
unwirksame gespeicherte Tabellen stol3en, so dass
es zu langsamem regularen Hochfahren kommt.

[0011] Ein zweites Beispiel, in dem die Lésung un-
genugend sein kann, ist wenn das Betriebssystem
des Gerats, auf dem der Flashspeicher gehostet
wird, der Softwareanwendung keine Funktion fur die
ordnungsgemafle Demontage oder das ordnungsge-
maRe Abschalten anbietet. Wahrend komplexe Be-
triebssysteme wie Linux solche Funktionen anbieten,
gibt es viele einfachere und kleinere Betriebssyste-
me, die darauf ausgelegt sind, das Speichersystem
bei Einschalten der Stromversorgung hochzufahren,
und nie das Betriebssystem ausschalten. In solchen
Fallen fihren die Methoden gemaf Lasser '488 dazu,
dass jedes Einschalten des Gerats ein regulares
Hochfahren des Flashmanagementsystems auslost,
so dass mit diesen Methoden nichts gewonnen ist.

[0012] Ein drittes Beispiel, in dem die Losung unge-
nigend sein kann, ist der Fall, dass das Zeitintervall
zwischen dem Einschalten des Systems und der Be-
triebsbereitschaft des Systems streng begrenzt ist.

Selbst wenn Stromausfalle selten sind und fast jedes
Einschalten zu einem raschen Hochfahren des
Flashmanagementsystems fuhrt, ist es nicht akzep-
tabel, dass ein Stromausfall zu einer spateren regu-
laren Hochfahrsequenz fuhrt, wie selten dies auch
immer der Fall sein mag.

[0013] In Anbetracht der vorstehend beschriebenen
Mangel von Lasser '488 offenbart die US-Patentan-
meldung 11/382,056 Lasser (nachfolgend ,Lasser
'056”) eine weitere Losung des Problems des ra-
schen Hochfahrens von Flashmanagementsyste-
men. Die genannte Anmeldung Lasser '056 wird vor-
liegend vollstandig einbezogen.

[0014] Lasser '056 offenbart eine Technik, mit der
eine oder mehrere Flashmanagementtabellen nach
manchen, aber nicht allen Ereignissen im Flashspei-
chersystem aktualisiert und gespeichert werden.
Stellt sich beim Hochfahren heraus, dass eine gege-
bene im Flashspeicher gespeicherte Flashmanage-
menttabelle veraltete Informationen enthalt, lassen
sich die gespeicherte Tabelle(n) dennoch fir das
Hochfahren des Systems verwenden, und es ist nicht
erforderlich, die veraltete Tabelle zu invalidieren.
Statt sie zu invalidieren, kann die im Flashspeicher
vor dem Abschalten und/oder Stromausfall gespei-
cherte veraltete Flashmanagementtabelle beim
Hochfahren verwendet werden, um die ,richtige” Ta-
belle zu rekonstruieren (d. h. die, die dem aktuellen
Status des Systems entspricht).

[0015] Dies erfolgt, indem im Flashspeicher ein Er-
eignisprotokoll gefihrt wird. Beim Hochfahren wer-
den im Ereignisprotokoll hinterlegte Daten verwen-
det, um die Flashspeichertabelle zu aktualisieren und
somit die Datenintegritat zu sichern, selbst wenn das
System vor dem Ausschalten oder Stromausfall nicht
ordnungsgemaly heruntergefahren wurde. In den
meisten Fallen erfolgt der Abruf einer ,aktualisierten”
aus einer im Flashspeicher hinterlegten ,veralteten”
Tabelle unter Zugriff auf ein Ereignisprotokoll schnel-
ler als die Konstruktion einer aktualisierten Tabelle
mittels Scannen des Flashspeichers.

[0016] Ein Nachteil von Lasser '056 besteht darin,
dass ein Ereignisprotokoll im Flashspeicher vorge-
halten werden muss. Das ist zwar in manchen Flash-
managementsystemen kein groRer Mangel, da in ih-
nen schon aus anderen Griinden ein Ereignisproto-
koll geflihrt wird. Doch es gibt viele Flashmanage-
mentsysteme, in denen ein Ereignisprotokoll ansons-
ten nicht bendtigt wird, so dass die Verfahren geman
Lasser '056 in Hinblick auf die Schreibleistung auf-
wandig sind.

[0017] Folglich besteht ein allgemein anerkannter
Bedarf an einem Verfahren und System, das eine
Methode fiir das rasche Hochfahren eines Flashspei-
chersystems bietet, ohne die Integritat der Flash-Da-

3/26

DE 11 2008 000 180 TS 2009.12.03

tenstrukturen oder die Systemleistung zu beeintrach-
tigen, und es ware von Vorteil, Uiber ein solches Ver-
fahren und System zu verfiigen.

DEFINITIONEN

[0018] Fur die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet der Ausdruck ,Block” die
kleinste Einheit des Flashspeichers, die in einem ein-
zigen Vorgang geltscht werden kann. Der Ausdruck
~oeite” bezeichnet die kleinste Einheit des Flashspei-
chers, die in einem einzigen Vorgang geschrieben
werden kann (aus historischen Grinden auch ,pro-
grammiert” genannt). Ein Block umfasst im Allgemei-
nen viele Seiten.

[0019] Fur die Zwecke der vorliegenden Offenle-
gungsschrift sind die Ausdriicke ,Flashmanagement-
system” und ,Flashdateisystem” synonym und wer-
den austauschbar verwendet. Beide Begriffe be-
zeichnen ein Softwaremodul, das die Speicherung
von Daten in einem Flashspeichergerat steuert, un-
abhangig davon, ob die vom Modul exportierte
Schnittstelle dateiorientiert ist (mit Befehlen wie ,Da-
tei 6ffnen” oder ,Datei schreiben”) oder blockorien-
tiert (mit Befehlen wie ,Block lesen” oder ,Block
schreiben”) und ungeachtet der Tatsache, ob das Mo-
dul auf einem Steuergerat lauft, das ausschlieflich
dem Flashmanagement dient, oder auf dem gleichen
Hauptrechner, auf dem auch die Anwendungen lau-
fen, die das Speichersystem nutzen.

[0020] Fur die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet ,Flashmanagementtabelle”
jede Tabelle, die Daten enthalt, die von einem Flash-
managementsystem zur Unterstltzung des Betriebs
seiner Algorithmen verwendet werden, wobei die Da-
ten in der Tabelle zu jedem gegebenen Zeitpunkt ei-
nen Aspekt des Status des Flashspeichersystems zu
diesem spezifischen Zeitpunkt abbilden. Ist die
Flashmanagementtabelle zum Beispiel eine Tabelle,
die ein Bit fur jeden Block des Flashspeichers enthal,
wobei das Bit anzeigt, ob der entsprechende Block
fur die Verwendung frei zur Verfigung steht, dann
sind die Inhalte der Tabelle zu einem ersten Zeitpunkt
ein erstes Bitmuster, das den Aspekt des Systemsta-
tus anzeigt, welche der Blocke zu diesem Zeitpunkt
frei und welche nicht frei sind. Zu einem spateren
Zeitpunkt kdnnte das Bitmuster in der Tabelle demje-
nigen zum ersten Zeitpunkt entsprechen oder sich
von demjenigen zum ersten Zeitpunkt unterscheiden,
was eine unterschiedliche Kombination freier und
nicht freier Blocke impliziert, die dadurch verursacht
worden ist, dass manche freie Blécke nun nicht frei
sind und andere zuvor nicht freie frei geworden sind.

[0021] Fur die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet ,Ereignis” jeden Schreibbe-
fehl, Loschbefehl oder Verwaltungsbefehl an den
Flashspeicher von einer Einheit, die den Flashspei-

cher steuert. Die Einheit konnte eine Flashspeicher-
steuerung geman nachstehender Abb. 1, eine Stan-
dard-CPU gemal nachstehender Abb. 5 oder eine
Flashspeichersteuerung und Standard-CPU, die zu-
sammenwirken, gemal nachstehender Abb. 6 sein.

[0022] Fir die Zwecke der vorliegenden Offenle-
gungsschrift bezeichnet ,ausgewahltes Ereignis” ein
vom Systementwickler des Flashspeichersystems
ausgewahltes Ereignis, das die Erstellung einer oder
mehrerer Aktualisierungen einer oder mehrerer Spei-
chermanagementtabellen anstoft.

BESCHREIBUNG DER ERFINDUNG

[0023] Einige oder alle vorgenannten Anforderun-
gen sowie weitere Anforderungen werden durch
mehrere Aspekte der vorliegenden Erfindung erflllt.

[0024] Die vorliegende Erfindung umfasst ein Ver-
fahren, das zur Erfillung der genannten Anforderung
im Flashspeicher Informationen zu kinftigen Ereig-
nissen im Flashspeichersystem hinterlegt. Das Sys-
tem speichert zum Beispiel wahrend der Speiche-
rung des aktuellen Werts in einer Translationstabelle
fur die Konvertierung virtueller in physische Adressen
gleichzeitig mit der Tabelle auch eine Liste der nachs-
ten physischen Blocke, die kinftig zu verwenden
sind, wenn Ereignisse im System die Zuteilung neuer
freier physischer Blocke erfordern.

[0025] Zu einem spateren Zeitpunkt kann ein Ereig-
nis im System (z. B. ein Schreibbefehl) die Zuteilung
eines neuen physischen Blocks auslésen, der einen
anderen physischen Block als den korrespondieren-
den Block eines virtuellen Blocks ersetzen soll, wo-
durch eine Anderung im Status der die Adressen
mappierenden Flashmanagementtabelle ausgeldst
wird. Tritt ein solches Ereignis ein, wird die Flashma-
nagementsoftware als neu zugeteilten Block den
Block an erster Stelle in der gespeicherten Liste zu-
teilen. Nach Abschluss der Bearbeitung des Schreib-
befehls ist die gespeicherte Kopie der Tabelle nicht
mehr aktuell, da das durch die Schreiboperation er-
folgte Mappieren des virtuellen Blocks nicht mehr
dem aktuellen Zustand des Systems entspricht.

[0026] Wird das System hochgefahren, wird zuerst
die gespeicherte Kopie der Managementtabelle gela-
den. Zu diesem Zeitpunkt besteht keine Gewissheit,
dass die Tabelle den Status des Systems richtig ab-
bildet, da die Mdéglichkeit besteht, dass ein paar Er-
eignisse vor Abschalten des Systems mehrere In-
kompatibilitaten zwischen der hinterlegten Tabelle
und der richtigen Tabelle verursacht haben. Doch die
im Flashspeicher hinterlegte und die hinterlegte Ta-
belle betreffende ,klinftige Information” bietet genu-
gend Angaben fir die Korrektur der hinterlegten Ta-
belle und Rekonstruktion der richtigen aktualisierten
Tabellenversion.

4/26

DE 11 2008 000 180 TS 2009.12.03

[0027] Dies ist moglich, da wir wissen, dass jede Zu-
teilung physischer Blocks, die den Mappingstatus ge-
andert hat (soweit einer bestand), die in der Liste auf-
gefuhrten physischen Blécke verwendet haben
muss. Auflerdem missen die Blocke exakt in der in
der Liste vorgegebenen Reihenfolge verbraucht wor-
den sein. Um zu bestimmen, ob die gespeicherte Ta-
belle aktuell ist oder nicht, ist es folglich ausreichend,
den Systemstatus in Hinblick auf den physischen
Block, der an erster Stelle in der Liste steht, zu pru-
fen. Ist dieser erste Block noch immer frei, ist keine
neue Zuteilung erfolgt, und die Tabelle ist aktuell. Ist
der erste Block in der Liste hingegen nicht mehr frei,
muss eine Anderung im System eingetreten sein, und
die Tabelle ist nicht mehr aktuell. In diesem Fall fin-
den wir die Aktualisierung, die in der Tabelle vorzu-
nehmen ist, um der Zuteilung des ersten Blocks in
der Liste zu entsprechen, und aktualisieren die Kopie
der Tabelle im RAM. Stellt sich heraus, dass der erste
Block verwendet wird, miissen wir nacheinander den
gleichen Test fur die nachsten Blocke in der Liste
durchfihren und die gleiche Logik wiederholt anwen-
den. Dies wird wiederholt, bis wir in der Liste einem
Block begegnen, der noch nicht verwendet worden
ist, oder bis wir zum Ende der Liste gelangen.

[0028] Um festzustellen, ob ein Block zurzeit ver-
wendet wird, und die Anderungen zu bestimmen, die
an der Tabelle vorzunehmen sind, sofern der Block
zurzeit verwendet wird, wird Zugang zu den Steuer-
daten im Flashspeicher und mdglicherweise im be-
treffenden Block selbst bendétigt. Obgleich der Flash-
speicherzugang im Vergleich zum RAM-Zugang
langsam ist, bendtigt das Verfahren gemaf vorlie-
gender Erfindung nur eine geringe Anzahl an Zugan-
gen zum Flashspeicher, da nur Blécke in der ,Zu-
kunftsliste” gepruft werden und generell nur einige
Blocke gemaR der vorstehend beschriebenen Logik
zu prifen sind. Daher ist das vorliegende Verfahren
fur die Generierung einer aktualisierten Version eines
Flashmanagementsystems aus einer veralteten Ver-
sion der Tabelle sehr viel schneller als eine vollstan-
dige Rekonstruktion der Tabelle mittels umfassenden
Scannens aller Blocke des Flashspeichers.

[0029] Die vorliegende Erfindung lasst sich in ge-
wisser Weise als Analogie zum Verfahren gemaf
Lasser '056 betrachten. Beide Verfahren rekonstruie-
ren eine aktualisierte Version einer Managementta-
belle aus einer gespeicherten Kopie der Tabelle mit
Hilfe zusétzlicher flashgespeicherter Informationen.
Doch wahrend in Lasser '056 die zusatzlichen Daten
ein Ereignisprotokoll sind, sind sie in vorliegender Er-
findung eine auf ,kiinftige Ereignisse” bezogene Lis-
te. In Lasser '056 werden die zusatzlichen Informati-
onen zu einem Zeitpunkt hinterlegt, der spater ist als
der Zeitpunkt des Speicherns der Tabelle im Flash-
speicher, wahrend in vorliegender Erfindung die zu-
satzlichen Informationen generell zum gleichen Zeit-
punkt gespeichert werden, an dem auch die Tabelle

im Flashspeicher hinterlegt wird.

[0030] Hiermit wird erstmals ein Verfahren fir die
Pflege der Datenstrukturen eines Speichersystems
auf Grundlage der Ereignisse im System offen gelegt,
das die folgenden Schritte umfasst: (a) Speicherung
mindestens eines Teils einer Managementtabelle,
deren Inhalte einen Status des Speichersystems an-
zeigen, in einem nicht volatilen Speicher des Spei-
chersystems zu einem ersten Zeitpunkt; (b) Speiche-
rung einer kinftigen Informationsdatenstruktur ein-
schlief3lich einer Vielzahl von Datensatzen, die sich
auf Ereignisse im Speichersystem beziehen, deren
Eintritt nach Speicherung der Informationsdaten-
struktur erwartet wird, im nicht volatilen Speicher; und
(c) zu einem zweiten Zeitpunkt, der zeitlich nach dem
ersten Zeitpunkt folgt, Bearbeitung eines Ereignisses
gemal der kiinftigen Informationsdatenstruktur.

[0031] Der nicht volatile Speicher ist vorzugsweise
ein Flashspeicher. Gemal einigen Ausfiihrungsbei-
spielen umfasst die Speicherung von mindestens ei-
nem Teil mindestens einer Managementtabelle die
Aktualisierung von mindestens einem Teil mindes-
tens einer Managementtabelle im nicht volatilen
Speicher.

[0032] Gemal® manchen Ausfuhrungsbeispielen
umfasst die Speicherung von mindestens einem Teil
mindestens einer Managementtabelle, deren Inhalte
den Status des Speichersystems anzeigen, auch die
Speicherung mindestens eines Teils mindestens ei-
ner Managementtabelle in einem volatilen Speicher
des Speichersystems. Die Aktualisierung erfolgt alle
N > 1 Male, wenn mindestens ein Teil von mindestens
einer Managementtabelle im volatilen Speicher ge-
andert wird. Andere Arten der Durchfiihrung der Ak-
tualisierung als Reaktion auf ausgewabhlte Ereignisse
umfassen die periodische Aktualisierung und die Ak-
tualisierung entsprechend der Verflugbarkeit von Ka-
pazitat im Speichersystem.

[0033] GemalR einer Reihe von Ausflihrungsbei-
spielen umfasst die Datenstruktur fir kinftige Infor-
mationen eine Liste von Blécken im nicht volatilen
Speicher, die als erste frei sind.

[0034] Vorliegend wird erstmals ein Verfahren fir
die Aktivierung eines Speichersystems offen gelegt,
das folgende Schritte umfasst: (a) das Lesen mindes-
tens eines Teils mindestens einer Managementtabel-
le, die einen Status des Speichersystems zu einem
Zeitpunkt vor dem Hochfahren des Systems be-
schreibt, aus einem nicht volatilen Speicher des Spei-
chersystems; (b) das Lesen einer kinftigen Informa-
tionsdatenstruktur, die eine Vielzahl von Datensatzen
in Bezug auf Ereignisse enthalt, deren Eintritt nach
Speicherung der kiinftigen Informationsdatenstruktur
erwartet wird, aus dem nicht volatilen Speicher; und
(c) die Aktualisierung mindestens eines Teils mindes-

5/26

DE 11 2008 000 180 TS 2009.12.03

tens einer nicht volatilen Managementtabelle geman
mindestens einem Datensatz der kinftigen Informati-
onsdatenstruktur.

[0035] Gemal manchen Ausflihrungsbeispielen ist
der nicht volatile Speicher ein Flashspeicher.

[0036] GemalR manchen Ausfuhrungsbeispielen
verandert das Aktualisieren mindestens einen Teil
mindestens einer Managementtabelle, um einen ak-
tuellen Status des Speichersystems abzubilden. Die
Aktualisierung erfolgt bedingt. Erfolgte der System-
ausstieg ordnungsgemal, ist keine Aktualisierung er-
forderlich. GemaR manchen Ausflihrungsbeispielen
umfasst das Verfahren beispielsweise auch den
Schritt des Vergleichens einer Vielzahl von Datensat-
zen mit dem nicht volatilen Speicher, um festzustel-
len, ob sich der Status des Speichersystems seit je-
nem Zeitpunkt geandert hat, so dass die Aktualisie-
rung dann davon abhangig erfolgt, ob sich der Status
des Speichersystems seit diesem Zeitpunkt veran-
dert hat.

[0037] Vorliegend wird erstmals ein Speichermodul
offen gelegt, das (a) einen ersten nicht volatilen Spei-
cher; und (b) eine Steuerung des nicht volatilen Spei-
chers umfasst, der dazu dient, den ersten nicht vola-
tilen Speicher mittels folgender Schritte zu steuern: (i)
Speichern im ersten nicht volatilen Speicher mindes-
tens eines Teils mindestens einer Managementtabel-
le, deren Inhalte einen Status des Speichersystems
zu einem ersten Zeitpunkt anzeigen; (ii) Speichern im
ersten nicht volatilen Speicher einer kunftigen Infor-
mationsdatenstruktur, einschliel3lich einer Vielzahl
von Datensatzen in Bezug auf Ereignisse im Spei-
chersystem, deren Eintritt nach Speicherung der
kinftigen Informationsdatenstruktur erwartet wird;
und (iii) zu einem zweiten Zeitpunkt nach Speiche-
rung der kunftigen Informationsdatenstruktur Bear-
beitung des Ereignisses gemal der kunftigen Infor-
mationsdatenstruktur.

[0038] GemalR manchen Ausfuhrungsbeispielen
umfasst das Modul des Weiteren einen zweiten nicht
volatilen Speicher; und die Steuerung dient zur Um-
setzung der Schritte mittels Ausfihrung eines im
zweiten nicht volatilen Speicher hinterlegten Codes.

[0039] Vorliegend wird erstmals ein Speichersystem
offen gelegt, das Folgendes umfasst: (a) ein Spei-
chermodul, das einen nicht volatilen Speicher ent-
halt; und (b) ein Hostrechner des Speichermoduls,
der bei der Verwaltung des nicht volatilen Speichers
u. a. durch folgende Schritte mitwirkt: (i) Speicherung
mindestens eines Teils mindestens einer Manage-
menttabelle, deren Inhalte einen Status des Spei-
chersystems zu einem ersten Zeitpunkt anzeigen, im
ersten nicht volatilen Speicher; (ii) Speicherung einer
kinftigen Informationsdatenstruktur, einschlief3lich
einer Vielzahl von Datensatzen in Bezug auf Ereig-

nisse im Speichersystem, deren Eintritt nach Hinter-
legung der besagten Informationsdatenstruktur er-
wartet wird, in dem ersten nicht volatilen Speicher;
und (iii) zu einem zweiten Zeitpunkt nach Speiche-
rung der kiinftigen Informationsdatenstruktur Bear-
beiten eines Ereignisses gemal den Vorgaben der
kiinftigen Informationsdatenstruktur.

[0040] GemalR manchen Ausfuhrungsbeispielen
werden diese Schritte ausschliel3lich vom Hostrech-
ner ausgefuhrt. GemaR anderen Ausflhrungsbei-
spielen umfasst das Speichermodul auch eine Steu-
erung, die mit dem Hostrechner bei der Ausfihrung
der Schritte zusammenwirkt.

[0041] Vorliegend wird erstmals ein Speichermodul
offen gelegt, das Folgendes umfasst: (a) einen ersten
nicht volatilen Speicher; und (b) eine Steuerung des
nicht volatilen Speichers, der dazu dient, das Spei-
chermodul mittels folgender Schritte zu aktivieren: (i)
Auslesen aus dem ersten nicht volatilen Speicher
mindestens eines Teils mindestens einer Manage-
menttabelle, die einen Status des Speichermoduls zu
einem Zeitpunkt vor der Aktivierung beschreibt; (ii)
Auslesen aus dem nicht volatilen Speicher einer
kiinftigen Informationsdatenstruktur einschliellich ei-
ner Vielzahl von Datensatzen in Bezug auf Ereignis-
se, deren Eintritt nach diesem Zeitpunkt erwartet
wird; und (iii) Aktualisieren mindestens eines Teils der
mindestens einen Flashmanagementtabelle gemaf
mindestens eines Datensatzes der kunftigen Infor-
mationsdatenstruktur.

[0042] GemalR einigen Ausflihrungsbeispielen um-
fasst das Speichermodul des Weiteren einen zweiten
nicht volatilen Speicher, und die Steuerung dient da-
zu, die Schritte durch Ausflihrung eines im zweiten
nicht volatilen Speicher hinterlegten Codes umzuset-
zen.

[0043] Vorliegend wird erstmals ein Speichersystem
offen gelegt, das Folgendes umfasst: (a) ein Spei-
chermodul mit einem nicht volatilen Speicher; und (b)
einen Hostrechner des Speichermoduls, der an der
Verwaltung des nicht volatilen Speichers u. a. mittels
folgender Schritte mitwirkt: (i) Auslesen aus dem
nicht volatilen Speicher mindestens eines Teils min-
destens einer Managementtabelle, die einen Zustand
des Speichersystems zu einem Zeitpunkt vor der Ak-
tivierung beschreibt; (ii) Auslesen aus dem nicht vo-
latilen Speicher einer kinftigen Informationsdaten-
struktur, einschlief3lich einer Vielzahl von Datensat-
zen in Bezug auf Ereignisse, deren Eintritt nach Spei-
cherung der kinftigen Informationsdatenstruktur er-
wartet wird; und (iii) Aktualisierung der mindestens ei-
nen Managementtabelle gemal mindestens einem
Datensatz der kiinftigen Informationsdatenstruktur.

[0044] Gemal® manchen Ausfuhrungsbeispielen
werden die Schritte ausschlielich durch den Host-

6/26

DE 11 2008 000 180 TS 2009.12.03

rechner ausgefihrt. Gemal anderen Ausflihrungs-
beispielen umfasst das Speichermodul eine Steue-
rung, die mit dem Hostrechner bei der Umsetzung
der Schritte zusammenwirkt.

[0045] Vorliegend wird erstmals ein computerlesba-
res Speichermedium offen gelegt, das computerles-
baren Code fiir die Pflege der Datenstrukturen eines
Speichersystems gemal den Ereignissen im System
umfasst, wobei der computerlesbare Code Folgen-
des umfasst: (a) Programmcode fiir die Speicherung
mindestens eines Teils mindestens einer Manage-
menttabelle, deren Inhalte einen Status des Spei-
chersystems zu einem ersten Zeitpunkt anzeigen, in
einem nicht volatilen Speicher des Speichersystems;
(b) Programmcode fiir die Speicherung einer kiinfti-
gen Informationsdatenstruktur einschlielich einer
Vielzahl von Datenséatzen in Bezug auf Ereignisse im
Speichersystem, deren Eintritt nach Speicherung der
kiinftigen Informationsdatenstruktur erwartet wird, im
nicht volatilen Speicher; und (c) Programmcode flr
die Bearbeitung des Ereignisses gemafy der kunfti-
gen Informationsdatenstruktur zu einem zweiten Zeit-
punkt nach Speicherung derselben.

[0046] Vorliegend wird erstmals ein computerlesba-
res Speichermedium offen gelegt, das computerles-
baren Code flr die Aktivierung eines Speichersys-
tems umfasst, wobei der computerlesbare Code Fol-
gendes umfasst: (a) Programmcode fir das Ausle-
sen mindestens eines Teils mindestens einer Ma-
nagementtabelle, die einen Status des Speichersys-
tems zu einem Zeitpunkt vor der Aktivierung be-
schreibt, aus einem nicht volatilen Speicher des Spei-
chersystems; (b) Programmcode fiir das Auslesen ei-
ner kunftigen Informationsdatenstruktur, die eine
Vielzahl von Datensatzen bezliglich Ereignissen ent-
halt, deren Eintritt nach Speicherung der kinftigen In-
formationsdatenstruktur erwartet wird, aus dem nicht
volatilen Speicher; und (¢) Programmcode fir die Ak-
tualisierung mindestens eines Teils der mindestens
einen Managementtabelle gemal mindestens einem
Datensatz der kiinftigen Informationsdatenstruktur.

KURZBESCHREIBUNG DER ABBILDUNGEN

[0047] Abb. 1 ist ein Blockdiagramm eines Ausflh-
rungsbeispiels eines Flashspeichersystems gemaf
mancher Ausflihrungsbeispiele der vorliegenden Er-
findung;

[0048] Abb. 2A-Fig. 2B zeigen ein Beispiel einer
Translationstabelle gemal® mancher Ausfiihrungs-
beispiele vorliegender Erfindung;

[0049] Abb. 3 ist ein Flussdiagramm der Pflege ei-
ner Flashmanagementtabelle in einem Flashspeicher
sowie einer kinftigen Informationsdatenstruktur ge-
maR eines Ausfuhrungsbeispiels vorliegender Erfin-
dung;

[0050] Abb. 4 ist ein Flussdiagramm einer beispiel-
haften Routine fur die Aktivierung.

[0051] Abb.5 und Abb.5 sind Blockdiagramme
weiterer beispielhafter Flashspeichersysteme geman
mancher Ausfuhrungsbeispiele vorliegender Erfin-
dung.

BESCHREIBUNG DER BEVORZUGTEN AUSFUH-
RUNGSBEISPIELE

[0052] Die vorliegende Erfindung wird nun anhand
spezifischer Ausflihrungsbeispiele beschrieben. Es
sei darauf hingewiesen, dass die Erfindung sich nicht
auf die offen gelegten Ausfiihrungsbeispiele be-
schrankt. Es sei weiter darauf hingewiesen, dass
nicht jedes Merkmal der vorliegend offen gelegten
Verfahren, Vorrichtungen und computerlesbaren Co-
des fir die Pflege von Datenstrukturen auf Grundlage
der Ereignisse in einem Flashspeichersystem erfor-
derlich ist, um die Erfindung gemaf einem der nach-
stehend beigefligten Anspriiche umzusetzen. Ver-
schiedene Elemente und Merkmale von Vorrichtun-
gen werden beschrieben, um die vollstandige Umset-
zung der Erfindung zu ermdglichen. Es sei aulRerdem
darauf hingewiesen, dass die Schritte in vorliegender
Offenlegungsschrift gezeigter oder beschriebener
Verfahren oder Methoden in beliebiger Reihenfolge
oder gleichzeitig durchgefihrt werden kénnen, es sei
denn aus dem Zusammenhang ist klar, dass ein
Schritt die vorherige Ausfihrung eines anderen
Schrittes erfordert.

[0053] Die vorliegend offen gelegten Verfahren,
Systeme und computerlesbaren Codes fur die Pflege
von Datenstrukturen sind nitzlich fir die Umsetzung
eines ,raschen Wakeup” des Flashspeichersystems,
zum Beispiel in Umgebungen, in denen haufig
Stromausfalle auftreten. Das ist jedoch nicht als Be-
schrankung vorliegender Erfindung auszulegen und
wird lediglich als eine nicht beschrankende Anwen-
dung der vorliegend offen gelegten Techniken fur die
Pflege der Datenstrukturen von Flashspeichersyste-
men offen gelegt.

[0054] Die vorliegend offen gelegten Techniken die-
nen der Umsetzung eines ,raschen Wakeup” eines
Flashmanagementsystems ohne Beeintrachtigung
der Datenintegritat selbst unter Bedingungen, in de-
nen haufig unvorhersehbare Stromausfalle auftreten.

[0055] Bezug nehmend auf die Zeichnungen ist
Abb. 1 ein Blockdiagramm eines nicht beschranken-
den beispielhaften Flashspeichersystems 100 ge-
maflk manchen Ausfihrungsbeispielen vorliegender
Erfindung. Das beispielhafte System 100 umfasst ein
Speichermodul 120 fiir die Speicherung von Daten
und einen Hostrechner 110 (Beispiele des Hostrech-
ners 110: ein Mikrocomputer, ein Smartcard-Termi-
nal, eine digitale Kamera, ein Mobiltelefon, ein PDA

7/26

DE 11 2008 000 180 TS 2009.12.03

oder jedes andere Gerat), der mit dem Speichermo-
dul 120 Uber eine Hostschnittstelle 180 kommuni-
Ziert.

[0056] Das Speichermodul 120 umfasst einen
Flashspeicher 130 beliebigen Typs sowie eine Steu-
erung 140, die auf den Flashspeicher 130 gemaR den
Uber die Hostschnittstelle 180 empfangenen Lese-
und/oder Schreibbefehlen zugreift. Fur das in Abb. 1
gezeigte Beispiel umfasst die Steuerung 140 ein
CPU 150, eine ROM 160 (in der der von der CPU 150
ausgefuhrte Code hinterlegt ist) und ein RAM 170,
das von der CPU 150 verwendet wird, um die Ausfuh-
rung des Code durch die Steuerung 140 zu unterstut-
zen.

[0057] Dieses Blockdiagramm des nicht beschran-
kenden Beispiels gemafl Abb. 1 ist reprasentativ fur
typische nicht volatile Speichermodule wie SecureDi-
gital Flashspeicherkarten oder mobile USB Flas-
hlaufwerke.

[0058] Abb. 5 ist ein Blockdiagramm eines weiteren
nicht beschrankenden Flashspeichersystems 220
gemal manchen Ausfuhrungsbeispielen vorliegen-
der Erfindung. Das exemplarische Flashspeichersys-
tem 220 umfasst eine Standard-CPU 250, ein RAM
260, den Flashspeicher 280, eine Busschnittstelle
290 zum Flashspeicher 280, einen Boot-ROM 270,
eine Speichervorrichtung 300 und einen Bus 240, die
die verschiedenen anderen Komponenten miteinan-
der verbinden. Wenn das System 220 startet, ladt
das System aus dem ROM 270; dann werden der
Computercode und die Daten aus dem Speicherme-
dium 300 in die RAM 260 geladen. Auch Emulations-
code fir die Steuerung des Flashspeichers 280 wird
aus dem Speichermedium 300 geladen. Die
Bus-Schnittstelle 290 greift auf den Flashspeicher
280 gemal den vom CPU 250 empfangenen Lese-
und/oder Schreibbefehlen zu. Das Speichermedium
300 ist ein Beispiel eines computerlesbaren Spei-
chermediums, das Computercode fur die Umsetzung
der Verfahren gemafR vorliegender Erfindung tragt.
Typischerweise ist das Speichermedium 300 eine
Festplatte oder eine Flashspeichervorrichtung. Wei-
tere Beispiele solcher computerlesbarer Speicher-
medien sind unter anderen CDs, DVD, Disketten etc.
Im Unterschied zu dem Ausfluhrungsbeispiel des
Flashspeichersystems gemaR Abb. 1 hat dieses bei-
spielhafte Flashspeichersystem 220 keine Flashspei-
chersteuerung (die das Flashspeichersystem kontrol-
liert). Stattdessen ladt die CPU 250 den Steuerungs-
emulationscode aus dem Massenspeicher 300 auf
die RAM 260, und dann fuhrt die CPU 250 den Code
aus RAM 260 aus, um die Steuerung 140 gemaf
Abb. 1 zu emulieren. Die Speicherungen der Flash-
managementtabellen und deren Wiederherstellung
und Rekonstruktion nach dem Einschalten sowie
weitere Flashmanagementfunktionen werden alle
durch den von der CPU 250 ausgefiihrten Emulati-

onscode umgesetzt.

[0059] Abb. 6 ist ein Blockdiagramm eines weiteren
nicht beschrankenden Flashspeichersystems 320
gemal manchen Ausfihrungsbeispielen vorliegen-
der Erfindung. Das exemplarische System 320 um-
fasst eine Standard-CPU 350, ein RAM 360, ein
Flashspeichermodul 330, eine Flashspeichersteue-
rung 310, einen Flashspeicher 380, eine Bus-Schnitt-
stelle 390 zum Flashspeichermodul 330, eine
Boot-ROM 370, ein Speichermedium 400 und einen
Bus 340, die die verschiedenen anderen Komponen-
ten miteinander verbinden. Wenn das System 329
startet, 1&dt das System aus ROM 379; dann werden
der Computercode und die Daten aus dem Speicher-
medium 400 auf die RAM 360 geladen. Ebenfalls aus
dem Speichermedium 400 geladen wird der Emulati-
onscode, der das Flashspeichermodul 330 steuert.
Die Bus-Schnittstelle 390 greift auf den Flashspei-
cher 380 gemaf den von der CPU 350 empfangenen
Lese- und/oder Schreibbefehlen zu. Wie das Spei-
chermedium 300 ist auch das Speichermedium 400
ein Beispiel eines computerlesbaren Speichermedi-
ums, das Computercode fur die Ausfuihrung der Ver-
fahren gemaf vorliegender Erfindung vorhalt. Im Un-
terschied zum Flashspeichersystem gemafl Abb. 5
hat dieses beispielhafte Flashspeichersystem 320
auch in seinem Flashspeichermodul 330 eine Flash-
speichersteuerung 310, die mit CPU 350 zusammen-
wirkt, um das Flashspeichersystem 380 zu steuern.
Die CPU 350 ladt Steuerungsemulationscode aus
dem Speichermedium 400 auf RAM 360, und dann
fuhrt die CPU 350 den Code aus RAM 360 aus, um
einige der Funktionen der Steuerung 140 gemal
Abb. 1 zu emulieren. Die Speicherung der Flashma-
nagementtabellen sowie deren Wiederherstellung
und Rekonstruktion nach dem Einschalten und weite-
re Flashmanagementfunktionen werden gemeinsam
von der Steuerung 310 und CPU 350 ausgefuhrt.

Flashmanagementtabellen

[0060] Zu beachten ist, dass das Flashspeichersys-
tem 100 typischerweise eine oder mehrere Flashma-
nagementtabellen in einem volatilen Speicher hinter-
legt, zum Beispiel in RAM 170 des Speichermediums
120, in der RAM des Hostgerats 110 oder an einem
anderen geeigneten Ort. Ein nicht beschrankendes
Ausfuhrungsbeispiel einer solchen Flashmanage-
menttabelle ist eine Translationstabelle, die eine
Adressentranslation aus einer virtuellen Blocknum-
mer in eine physische Blocknummer vornimmt. Dies
ist ein Mapping, das in vielen Flashmanagementsys-
temen vorhanden ist, wie zum Beispiel im System ge-
maR US-Patent 5,937,425. Es ist zu beachten, dass
die gleichen Konzepte und Verfahren auch fir viele
andere Arten von Flashmanagementtabellen an-
wendbar sind, so zum Beispiel auf eine Tabelle zuge-
ordneter Blocke, die darstellt, welche Blocke zurzeit
zugeteilt und nicht frei fur die Verwendung verfligbar

8/26

DE 11 2008 000 180 TS 2009.12.03

sind und welche Blocke nicht zugeteilt sind, sowie auf
eine Tabelle, die ein Mapping aus einer virtuellen
Blocknummer in eine Gruppe einer oder mehrerer
physischer Blocknummern abbildet.

[0061] Die im Flashspeicher gespeicherten Daten
koénnen sich im Laufe der Zeit andern; und auch ver-
schiedene zugehorige Daten, die sich auf den Flash-
speicher beziehen, kénnen sich ebenfalls andern.
Der ,Status” des Flashspeichersystems andert sich
im Zeitverlauf, wenn verschiedene Ereignisse (zum
Beispiel Schreibbefehle, Verwaltungsoperationen
etc.) des Flashmanagementsystems eintreten.

[0062] Zu beachten ist, dass jede Flashmanage-
menttabelle einen oder mehrere Aspekte des gesam-
ten ,Status” des Flashmanagementsystems abbildet.
Folglich stellt eine gegebene Flashmanagementta-
belle oder ein Satz solcher Tabellen nicht unbedingt
den gesamten Status des Systems dar, sondern nur
einen oder mehrere Aspekte des Systems. Im Fall
der vorstehend erwahnten Tabelle freier Blocke, ist
das Wissen, welche Bloécke frei sind und welche
nicht, in jedem Fall nicht ausreichend, um den ge-
samten Status des Systems zu definieren. Ein nicht
freier Block kann eine einzige verwendete Seite um-
fassen, oder manche bzw. alle Seiten eines nicht frei-
en Blocks kénnen mit gultigen Daten gefillt sein. Das
wird von der Tabelle freier Blocke nicht abgebildet,
sondern entweder durch andere Flashmanagement-
tabellen oder sonstige Mittel. Dennoch bildet die ge-
nannte Tabelle einen Aspekt des Systemstatus ab
und erfillt daher die Definition einer Flashmanage-
menttabelle.

[0063] Werden bestimmte Flashspeichertabellen,
die einen ,aktuellen Status” oder einen ,friheren Sta-
tus” oder einen ,spateren Status” oder den ,jingsten
Status” des Flashspeichersystems abbilden, in ei-
nem volatilen oder nicht volatilen Speicher hinterlegt,
so wird damit folglich ein ,friherer” oder ,aktueller”
oder ,spaterer” oder ,jungster’ Status der Aspekte
des Flashspeichersystems abgebildet, der in der je-
weiligen Flashspeichertabelle abgebildet ist.

[0064] Im Zeitverlauf bewegt sich eine Flashma-
nagementtabelle durch eine Folge von Zustanden,
von denen jeder zu einem gegebenen Zeitpunkt ei-
nen oder mehrere Aspekte des Flashmanagement-
systems zu diesem Zeitpunkt abbildet. Der Aspekt
des Systemstatus, der von der Tabelle modelliert ist,
wechselt zwischen diskreten Zustanden mit eindeuti-
gen Ubergangspunkten, die den Ereignissen des
Flashspeichersystems entsprechen.

Beispiel einer Flashmanagementtabelle
[0065] Abb. 2A zeigt den Inhalt einer exemplari-

schen Flashmanagementtabelle, die zu einem ersten
Zeitpunkt (t = t,) virtuelle Blocknummern auf physi-

sche Blocknummern mappiert. Die Tabelle ist nach
virtuellen Blocknummern indexiert und fihrt die phy-
sische Blocknummer auf, die zu diesem Zeitpunkt die
Daten des entsprechenden virtuellen Blocks enthalt.
In praktischen Implementierungen besteht oft keine
Notwendigkeit, Raum fiir die Speicherung der virtuel-
len Blocknummern zuzuteilen, da die Tabelle durch
diese virtuellen Blocknummern geordnet ist und sich
daher direkt auf den richtigen Eintrag indexieren
lasst. Doch zwecks besserer Ubersicht ist die Tabelle
so dargestellt, als seien beide Spalten physisch ab-
gebildet.

[0066] Derin Abb. 2A dargestellte Status des Map-
ping virtuell-auf-physisch ist so, dass wenn auf den
virtuellen Block Nummer 2 zugegriffen werden muss,
die Tabelle uns mitteilt, dass die entsprechende Num-
mer des physischen Blocks 172 lautet. Zu einem be-
stimmten Zeitpunkt kénnen an das Flashmanage-
mentsystem Ubermittelte Befehle (oder interne Ver-
waltungsfunktionen des Systems, die ohne externe
Befehle erfolgen, wie das Einsammeln redundanter
Daten) Anderungen des Mapping auslésen. Zum Bei-
spiel kann ein Befehl, der neue Daten in den virtuel-
len Block Nummer 2 schreibt und daher die vorheri-
gen Daten des Blocks Nummer 2 berschreibt, das
Flashmanagementsystem veranlassen, dem virtuel-
len Block Nummer 2 einen anderen physischen Block
zuzuordnen, in dem die neuen Daten dann gespei-
chert werden.

[0067] Abb. 2B zeigt die Inhalte der Flashmanage-
menttabelle virtuell-auf-physisch zu einem spateren
Zeitpunkt (t = t,) nach Eintritt dieser Anderung. Jetzt
entspricht der virtuelle Block Nummer 2 in der Tabelle
dem physischen Block Nummer 777 und nicht mehr
dem physischen Block 172. Die Tabelle ist also von
einem ersten in einen zweiten Status gewechselt.
Jede Anderung der Inhalte einer Flashmanagement-
tabelle ist definiert als Anderung des Status der Ta-
belle.

[0068] Zu beachten ist, dass nicht jede Schreibope-
ration im Flashmanagementsystem eine Statusande-
rung in allen Flashmanagementtabellen des Flash-
managementsystems nach sich zieht. Sind zum Bei-
spiel im physischen Block Nummer 172 einige Seiten
unbelegt und ergeht ein Schreibbefehl an den virtuel-
len Block Nummer 2, so dass gemal den Algorith-
men des Flashmanagementsystems die neuen Da-
ten in diesen unbelegten Seiten des physischen
Blocks 172 gespeichert werden, erfolgt keine Ande-
rung des Mapping virtuell-auf-physisch, und die Ta-
belle bleibt nach dieser Schreiboperation unveran-
dert. Folglich ist die Rate der Anderungen des Status
einer Flashmanagementtabelle generell langsamer
als die Rate der im System ausgefiihrten Vorgange.
Hinzu kommt: werden im gleichen Flashmanage-
mentsystem mehrere Flashmanagementtabellen vor-
gehalten (von denen jede einen anderen Aspekt des

9/26

DE 11 2008 000 180 TS 2009.12.03

Systemstatus abbildet), kann jede dieser Tabellen ih-
ren Status zu unterschiedlichen Zeitpunkten andern.

Speichern kiinftiger Informationsdatenstrukturen, die
beim Wakeup nutzlich sind

[0069] Wie bereits erklart, ist es bei der Initialisie-
rung des Systems nach dem Einschalten oft erforder-
lich, dass die Steuerungssoftware im RAM (z. B.
RAM 170) eine vollstandig aktualisierte Kopie jeder
Flashmanagementtabelle erstellt, die die Steue-
rungssoftware verwendet. Um ein schnelles Hoch-
fahren des Systems zu gewahrleisten, ist es generell
nicht angemessen, die Inhalte der Tabellen lediglich
aus Uber die Blécke des Speichersystems verstreu-
ten Daten wiederherzustellen, da das zu langsam ist.
Auch die umgekehrte Option, jedes Mal, wenn sich
der Tabellenstatus andert, eine Kopie der Tabelle im
Flashspeicher abzuspeichern, ist nicht angemessen,
da das Speichern einer Kopie einer Tabelle im Flash-
speicher jedes Mal, wenn der Tabellenstatus sich an-
dert, viel Kapazitat beansprucht und die Systemleis-
tung mindert.

[0070] Die Techniken der verschiedenen Ausfih-
rungsbeispiele vorliegender Erfindung bieten einen
Kompromiss zwischen diesen beiden Vorgehenswei-
sen des Standes der Technik. So wird eine Flashma-
nagementtabelle generell nur bei manchen Statusan-
derungen im Flashspeicher hinterlegt, und nicht je-
des Mal, wenn eine Statusdnderung eintritt.

[0071] Das zeigt Abb. 2, ein Flussdiagramm einer
beispielhaften Routine fur die Pflege von Datenstruk-
turen des Flashmanagementsystems im Flashspei-
cher gemaly einigen Ausflhrungsbeispielen vorlie-
gender Erfindung. Fur die vorliegenden Zwecke um-
fasst der Ausdruck ,Pflege im Flashspeicher’ auch
das Speichern im Flashspeicher. Die Pflege im Flash-
speicher umfasst generell die Pflege der Tabelle
und/oder der relevanten Daten fur die Befillung der
Tabelle im volatilen Speicher/RAM und, zu verschie-
denen Zeitpunkten, das Speichern einer aktualisier-
ten Version der Tabelle (d. h. einer Tabelle, die auf ei-
nen aktuellen Status des Flashspeichersystem syn-
chronisiert ist) im Flashspeicher.

[0072] Gemal dem nicht beschrankenden Ausfih-
rungsbeispiel der Abb. 3 ist zu beachten, dass in
nicht beschrankenden Ausfiihrungsbeispielen das
System zu manchen Zeitpunkten inaktiv ist und 206
auf ein nachstes Ereignis wartet. Nach Bearbeitung
210 eines Ereignisses des Flashmanagementsys-
tems, werden generell je nach eingetretenem Ereig-
nis eine oder mehrere Tabellen im volatilen Speicher
aktualisiert 214. Diese Tabelle(n) kdnnen nach einem
gegebenen Ereignis im Flashspeicher aktualisiert
werden oder nicht.

Beschreibung einer beispielhaften kiinftigen Informa-
tionsdatenstruktur

[0073] In Situationen, in denen die Flashmanage-
menttabelle nach Eintritt einiger, aber nicht aller Er-
eignisse gespeichert wird, ist es nutzlich, auch im
Flashspeicher eine Datenstruktur zu pflegen, die In-
formationen enthalt, die die Handhabung kiinftiger
Ereignisse in Bezug auf die Tabelle beeinflussen. In
Ausfuhrungsbeispielen enthalt diese kiinftige Infor-
mationsdatenstruktur eine Vielzahl von Datensatzen,
wobei jeder Datensatz Daten umfasst, die ein kinfti-
ges Ereignis im Flashmanagementsystem beeinflus-
sen. Obgleich dies keine Beschrankung vorliegender
Erfindung begrindet, ist anzumerken, dass diese
kiinftigen Informationen generell nicht nach jedem
Ereignis im Flashspeicher aktualisiert werden. Die
kiinftige Informationsdatenstruktur ist natzlich fir den
Erhalt der Datenintegritat in Situationen, in denen (ei-
ne) aktualisierte Tabelle(n) (d. h. aktualisiert gemaf
dem letzten Ereignis im Flashspeichersystem) nicht
immer im Flashspeicher hinterlegt wird/werden.

[0074] Fur Ausfihrungsbeispiele, in denen Datenin-
tegritat gesichert wird (d. h. selbst im Falle eines
Stromausfalls), ist generell zu jedem beliebigen Zeit-
punkt einer der folgenden Zustande gegeben: a) eine
gemal einem jingsten Ereignis aktualisierte Tabelle
ist im Flashspeicher hinterlegt, b) eine gemaf einem
frheren Zustand aktualisierte Tabelle (d. h. friher als
ein jingstes Ereignis, so dass andere Ereignisse seit
dem ,friheren” Ereignis im Flashspeichersystem ein-
getreten sind) wird im Flashspeicher hinterlegt, und
die im Flashspeicher gespeicherte kiinftige Informati-
onsdatenstruktur enthalt Informationen bezuglich al-
ler Ereignisse, die seit dem ,friheren Ereignis” einge-
treten sind.

[0075] Ein Ausfiihrungsbeispiel der kinftigen Infor-
mationsdatenstruktur ist eine geordnete Liste, die In-
formationen fiir die Handhabung der nachsten paar
Ereignisse enthalt, die den Status des Systems be-
einflussen (d. h. den Status des ,mindestens einen
Aspekts des Systems”, der in der einen oder mehre-
ren Flashmanagementtabelle(n) gespeichert ist), sei
es ein externer Schreibbefehl, ein interner Verwal-
tungsvorgang oder ein sonstiges Ereignis, das den
Status des Systems beeinflusst.

[0076] Zu beachten ist, dass eine kiinftige Informa-
tionsdatenstruktur an jedem Ort im Flashspeicher
hinterlegt werden kann, und nicht unbedingt in physi-
scher Nachbarschaft zu der Flashmanagementtabel-
le, auf die sich die kinftige Informationsdatenstruktur
bezieht.

[0077] Wie in Abb. 3 dargestellt, wird/werden 230
die Flashmanagementtabelle(n) fir manche, aber
nicht alle Ereignisse im Flashmanagementsystem (d.
h. nur Ereignisse, fiur die eine Bedingung fiir ,Tabelle

10/26

DE 11 2008 000 180 TS 2009.12.03

speichern” erflllt ist 226 — diese Bedingung wird
nachstehend eroértert) im Flashspeicher gespeichert.
In manchen Ausfiihrungsbeispielen wird jedes Mal,
wenn (a) eine/mehrere Flashmanagementtabelle(n)
im Flashspeicher hinterlegt werden, auch eine aktua-
lisierte kunftige Informationsdatenstruktur gespei-
chert 234. Zu diesem Zeitpunkt gilt/gelten die im
Flashspeicher gespeicherten Flashmanagementta-
belle(n) als ,auf den neusten Stand” oder ,das jlings-
te Ereignis” synchronisiert. Obgleich nicht ausdriick-
lich in Abb. 3 dargestellt, ist zu beachten, dass es rat-
sam ist (jedoch fur den Einsatz vorliegender Erfin-
dung nicht wesentlich), eine Kopie der zuletzt gespei-
cherten kuinftigen Informationsdatenstruktur im
RAM-Speicher zu hinterlegen, damit die Bearbeitung
kinftiger Ereignisse erfolgen kann, ohne dass Zu-
gang zum nicht volatilen Speicher nétig ist, um die
kinftige Informationsdatenstruktur abzurufen.

[0078] In Bezug auf Schritt 230 ist anzumerken: wird
eine den aktuellen Status des Flashspeichersystems
abbildende Tabelle im Flashspeicher gespeichert, ist
dies vorliegend definiert als ,Synchronisieren der Ta-
belle im Flashspeicher auf einen aktuellen Status”.

[0079] Insgesamt wird der Prozess, in dem die
Flashmanagementtabelle(n) nach diversen Ereignis-
sen (aber nicht notwendigerweise allen Ereignissen)
im Flashspeicher gespeichert wird/werden vorlie-
gend als ,Pflege der Tabelle im Flashspeicher” defi-
niert. Zu verschiedenen Zeitpunkten wird somit eine
unterschiedliche Version der Flashmanagementta-
belle(n) im Flashspeicher hinterlegt (wobei generell
jede folgende Version einen spateren Zustand des
Flashspeichersystems abbildet). Es ist fur die ,Pflege
der Tabelle im Flashspeicher” daher nicht erforder-
lich, fir einen gegebenen Zeitpunkt die zuletzt im
Flashspeicher hinterlegte Tabelle aus den aktuellen
Status des Flashspeichersystems zu synchronisie-
ren. Abb. 3 zeigt, dass es generell Zeitraume gibt, in
denen die zuletzt gespeicherte(n) Flashspeicherta-
belle(n) einen friiheren Zustand des Flashspeicher-
systems abbilden (d. h. einen Status des Systems vor
Eintritt jungerer Ereignisse im Flashspeichersystem).

[0080] Es ist zu beachten, dass die kiinftige Infor-
mationsdatenstruktur spater aus dem Flashspeicher
abgerufen werden kann, zum Beispiel nach dem Ein-
schalten des Flashsystems. Durch Priifung der Da-
tenstruktur (wie nachstehend beschrieben) wird zu
jedem gegebenen Zeitpunkt festgestellt, ob die hin-
terlegte(n) Flashmanagementtabelle(n) den jingsten
Status des Systems (d. h. den in der Tabelle abgebil-
deten Aspekt des Status) abbildet/n.

[0081] Wir wenden uns nun der beispielhaften
Flashmanagementtabelle gemalRR Abb.2A und
Abb. 2B zu, um das nicht beschrankende Ausfih-
rungsbeispiel einer kinftigen Informationsdaten-
struktur zu beschreiben. Die Flashmanagementtabel-

le gemal Abb. 2A und Abb. 2B bietet ein Mapping
von virtuellen Blocknummern zu korrespondierenden
physischen Blocknummern. Wahrend des Systembe-
triebs andert sich der Status der Tabelle jedes Mal,
wenn die Flashmanagementsoftware einen freien
physischen Block einem gegebenen virtuellen Block
zuordnet, wobei gleichzeitig der zuvor diesem virtuel-
len Block zugeordnete physische Block frei gestellt
wird.

[0082] Die der Tabelle gemaf einem Ausfuhrungs-
beispiel vorliegender Erfindung zugeordnete kiinftige
Informationsdatenstruktur ist eine geordnete Liste
der aktuell freien Blécke. Die Liste definiert die exakte
Reihenfolge, in der die freien Blocke kinftig zugeteilt
werden. Anders gesagt: das nachste Mal, wenn die
Flashmanagementsoftware einen freien Block zuteilt,
ist garantiert, dass die Flashmanagementsoftware
den Block an erster Stelle in der Liste auswahlen
wird. Das zweite Mal, wenn die Flashmanagement-
software einen freien Block zuteilt, ist garantiert, dass
die Flashmanagementsoftware den Block an zweiter
Stelle in der Liste zuteilen wird, usw.

[0083] Es ist zu beachten, dass jeder physische
Block generell in sich die Nummer des virtuellen
Blocks enthalt, dem der betreffende physische Block
aktuell zugeordnet ist. Dies ermdglicht der Flashma-
nagementsoftware, den aktuellen Status der Tabelle
aus der hinterlegten (und nicht aktuellen) Version der
Tabelle und ihrer diesbezuglichen Liste kunftiger In-
formationen zu rekonstruieren, wie nachstehend in
der Beschreibung des Wakeup-Prozesses des Sys-
tems erortert wird.

Regeln fur die Bestimmung des Zeitpunkts der Spei-
cherung (einer) aktualisierter/n Flashmanagementta-
belle(n) im Flashspeicher

[0084] Jede Regel fir die Bestimmung eines Ereig-
nisses, fur das die aktualisierte Tabelle im Flashspei-
cher gespeichert wird — d. h. die ,Speicherbedingung”
gemal Schritt 226 —, ist im Schutzumfang vorliegen-
der Erfindung inbegriffen.

[0085] Der Schutzumfang vorliegender Erfindung
umfasst eine Reihe von Regeln fur die Bestimmung,
wann (eine) aktualisierte Flashmanagementtabel-
le(n) gemaR bestimmten Ausfiihrungsbeispielen vor-
liegender Erfindung im Flashspeicher zu speichern
ist.

[0086] In einem ersten Ausfiihrungsbeispiel wird
eine Tabelle bei jeder Nten Anderung des Status der
Tabelle gespeichert, wobei N vorgegeben ist. N kann
so klein wie 2 sein, wenn die Datensicherungsbelas-
tung niedrig ist, oder so gro® wie 100 oder sogar
mehr, zum Beispiel, wenn die Datensicherungsbelas-
tung hoch ist. Daher wird eine Zahlervariable auf Null
gesetzt. Nach jedem Ereignis wird die Zahlervariable

11/26

DE 11 2008 000 180 TS 2009.12.03

erhoht. Uberschreitet die Zahlervariable den vorge-
gebenen Wert N, werden eine oder mehrere Tabellen
im Flashspeicher gespeichert, und die diesen Tabel-
len zugeordnete kunftige Informationsdatenstruktur
wird neu berechnet und zusammen mit der/den Ta-
belle(n) im Flashspeicher hinterlegt.

[0087] In einem zweiten Ausflhrungsbeispiel wird
die Bedingung fir ,Tabelle speichern” gemafly der
durch ein jingstes Ereignis ausgeldsten Anderung
des Status bestimmt. Fir diesen Zweck werden Sta-
tusanderungen als ,geringfligige” oder ,bedeutende”
Anderungen klassifiziert. Anderungen im Tabellen-
status, die geringfligig sind, l16sen kein sofortiges (d.
h. vor Bearbeitung 210 des nachsten Ereignisses)
Speichern der Tabelle aus (d. h. den Zweig ,NO”
nach Schritt 226), wahrend bedeutende Anderungen
sofortiges Speichern auslésen. Ein nicht beschran-
kendes Beispiel einer Klassifizierung von Anderun-
gen in geringfligig und bedeutend im Falle einer
Flashmanagementtabelle eines freien Blocks ist,
dass eine Anderung, die einen nicht freien Block in ei-
nen freien Block verwandelt, als bedeutend gilt.

[0088] In einem dritten Ausflihrungsbeispiel
wird/werden die Tabelle(n) periodisch gespeichert,
sobald ein vorgegebenes Zeitintervall abgelaufen ist.
Generell besteht ein Kompromiss zwischen der Hau-
figkeit der Tabellenaktualisierung und dem Umfang
der verfigbaren Systemkapazitat, der durch das
Speichern der Flashmanagementtabelle(n) im Flash-
speicher beansprucht wird. Andererseits bedeutet
das Speichern der Managementtabelle(n) ofter, dass
im Durchschnitt eine beim Wakeup aus dem Flash-
speicher abgerufene Tabelle voraussichtlich aktuali-
sierter sein wird, so dass der Wakeup-Vorgang
schneller erfolgt. Zu beachten ist, dass jedes Zeitin-
tervall im Schutzumfang der vorliegenden Erfindung
inbegriffen ist. In nicht beschrankenden Ausfih-
rungsbeispielen betragt das Zeitintervall zwischen ei-
ner Zehntelsekunde und funf oder mehr Minuten.

[0089] In einem vierten Ausflihrungsbeispiel wird
die Haufigkeit der Tabellenaktualisierung gemaf der
Verflugbarkeit von Systemkapazitat bestimmt. In ei-
nem Beispiel, in dem die Steuerung 140 viele Le-
se-/Schreib-/Léschbefehle bearbeitet, oder in einer
Zeit, in der viele Verwaltungsablaufe erfolgen,
wird/werden die Flashmanagementtabelle(n) weni-
ger haufig im Flashspeicher gesichert, um Systemka-
pazitat zu sparen. In Zeiten ,geringer Beanspru-
chung”, wenn das System ansonsten ruht oder gerin-
ger Beanspruchung unterliegt, ist es generell mog-
lich, die Flashmanagementtabelle(n) haufiger ohne
bedeutende Auswirkungen auf die Leistung des
Flashsystems im Flashspeicher zu speichern.

[0090] Weitere Ausflihrungsbeispiele der Regeln
zur Bestimmung der Zeitpunkte, an denen eine Spei-
cherung einer Flashmanagementtabelle im Flash-

speicher erfolgt, sind ebenfalls mdglich.

[0091] Wird/werden (eine) Flashmanagementtabel-
le(n) im Flashspeicher gesichert, sollte die zugehdri-
ge kunftige Informationsdatenstruktur vorzugsweise
ausreichend Information enthalten, um die Bearbei-
tung aller kiinftigen Ereignisse zu gewabhrleisten, bis
die nachste Speicherung erfolgt. Es ist ratsam, eine
Sicherheitsmarge vorzusehen und fir mehr Ereignis-
se Vorsorge zu treffen als bis zum nachsten Spei-
chervorgang erwartet werden. Im Kontext des aktuel-
len Ausfihrungsbeispiels kénnen wir eine Liste der
freien Blocke erstellen, die als nachstes zu verwen-
den sind, die mehr freie Blocke enthalt, als bis zum
nachstes Speichervorgang als erforderlich erachtet.
Doch die Erfindung hangt nicht davon ab, dass so
verfahren wird, und bearbeitet alle Ereignisse kor-
rekt, selbst wenn sich schlieRlich herausstellt, dass
alle gespeicherten kunftigen Informationen bereits
verbraucht worden sind und ein zuséatzliches Ereignis
empfangen wird. In diesem Fall fihren wir einfach,
als sei eine ,Speicherbedingung” erfillt, eine umge-
hende Synchronisierung der Tabelle auf den Flash
durch. Aus Griinden der Ubersichtlichkeit ist dieser
Fall des Verbrauchs Kkunftiger Informationen in
Abb. 3 nicht dargestellt.

[0092] Da nicht jeder Status eine Speicherung der
Tabelle auslost, entsteht schlieRlich eine Lucke oder
Fehlanpassung zwischen der letzten gespeicherten
Kopie einer Tabelle und der zuletzt aktualisierten Ko-
pie der Tabelle im RAM. Bei jedem Speichern der Ta-
belle wird die Licke eliminiert, und die beiden Kopien
(d. h. die Kopie im volatilen RAM-Speicher und die im
Flashspeicher gesicherte Kopie) werden identisch,
doch darauf folgende neue Statusdnderungen, die
keine Speicherung der Tabelle auslésen, erzeugen
wieder eine Lucke.

Wakeup

[0093] In manchen Ausfuhrungsbeispielen
wird/werden, wenn eine Anwendung ordnungsge-
mal beendet wird, aktualisierte Flashmanagement-
tabelle(n) (d. h. (a) Flashmanagementtabelle(n), die
gemal’ den jlingsten Ereignissen im Flashspeicher-
system aktualisiert wurde(n)) im Flashspeicher ge-
speichert. Fahrt das Flashspeichersystem hoch,
wird/werden diese Flashmanagementtabelle(n) aus
dem Flashspeicher abgerufen.

[0094] Erfolgt kein ordnungsgemales Beenden, ist
es beim Hochfahren moglich, die ,veraltete(n)” Flash-
managementtabelle(n) aus dem Flashspeicher in
den volatilen Speicher zu laden und dann gemaR in
der kiunftigen Informationsdatenstruktur gespeicher-
ten Informationen die veraltete Flashmanagementta-
belle im volatilen Speicher zu aktualisieren.

[0095] Ausfiihrungsbeispiele der vorliegenden Er-

12/26

DE 11 2008 000 180 TS 2009.12.03

findung machen daher die Invalidierung veralteter Ta-
bellen wie in Lasser US 6,510,488 vorgesehen Uber-
flissig.

[0096] Abb. 4 ist ein Flussdiagramm einer beispiel-
haften Wakeup-Routine gemal einigen Ausfih-
rungsbeispielen vorliegender Erfindung. Abb. 4 zeigt
eine beispielhafte Wakeup-Routine im Kontext des
vorstehenden Beispiels der Tabelle in Abb. 2A und
Abb. 2B, wobei die kinftige Informationsdatenstruk-
tur eine geordnete Liste freier Blocke ist, die als
nachste zugeteilt werden. Nach Einschalten von 410
ruft das Flashmanagementsystem 414 die gespei-
cherte Kopie einer Flashmanagementtabelle auf.
Dann ruft das Flashmanagementsystem 418 die zu-
gehdrige Liste kinftiger Informationen auf, die zum
gleichen Zeitpunkt gespeichert wurde, als die Flash-
managementtabelle im Flashspeicher hinterlegt wur-
de.

[0097] Als nachstes ruft 422 das System die erste
physische Blocknummer in der Liste auf und setzt ei-
nen Marker 426 auf den ersten Eintrag in der Liste.

[0098] Wurde das System sofort nach der letzten
Speicherung der Flashmanagementtabelle und vor
Eintritt einer weiteren Anderung des Status der Tabel-
le abgeschaltet (zum Beispiel nach ,ordnungsgema-
Rem Herunterfahren” oder in jeder anderen Situati-
on), sollte der erste Block in der Liste noch frei sein.
Sind jedoch nach der letzten Speicherung der Tabelle
und vor dem Abschalten des Systems eine oder meh-
rere Statusanderungen der Flashmanagementtabel-
le(n) eingetreten, sollte der erste Block in der Liste
jetzt belegt sein.

[0099] Das Einschalten der Flashmanagementsoft-
ware kann feststellen, ob ein physischer Block aktuell
belegt ist oder nicht. Dies lasst sich unabhangig von
jeder Flashmanagementtabelle durch Prifung der In-
halte eines oder mehrerer Kontrollfelder innerhalb
des Blocks bestimmen. In manchen Flashmanage-
mentsystemen reicht es aus, das Kontrollfeld ,korre-
spondierende virtuelle Blocknummer” zu suchen. Ist
dort eine glltige virtuelle Blocknummer eingetragen,
ist der Block belegt; enthalt das Feld keine gultige vir-
tuelle Blocknummer, ist der Block nicht belegt. In an-
deren Flashmanagementsystemen erfordert die Be-
stimmung, ob ein physischer Block zurzeit frei ist
oder nicht, die Priifung von mehr als einem Kontroll-
feld, doch die Bestimmung ist in jedem Fall relativ
leicht und rasch umsetzbar.

[0100] Durch Anwendung der beschriebenen Tech-
niken zur Bestimmung des ,freien” Status des ersten
physischen Blocks in der Liste kinftiger Informatio-
nen kann die Flashmanagementsoftware daher be-
stimmen, ob eine Diskrepanz zwischen der empfan-
genen Tabelle und der ,wahren” Tabelle besteht, die
den aktuellen Status des Systems abbilden wiirde.

[0101] Stellt sich heraus, dass der erste Block in der
Liste belegt ist, wissen wir, dass die aufgerufene Ta-
belle aktualisiert werden sollte. Wir rufen dann 434,
die aktuelle korrespondierende virtuelle Blocknum-
mer des Blocks, aus dem ersten Block auf. Dies ge-
stattet uns, die Tabelle in RAM 438 zu aktualisieren,
um die aktuelle Korrespondenz zwischen den virtuel-
len und physischen Blocknummern abzubilden. Der
in der aufgerufenen Tabelle als dem virtuellen Block
(von dem jetzt bekannt ist, dass er durch den ersten
Block in der Liste ersetzt worden ist) korrespondie-
rend angezeigte physische Block wird von der Tabel-
le nicht mehr angezeigt, da dieser physische Block
aktuell nicht belegt ist.

[0102] Als nachstes wird der Zeiger in der Liste wei-
ter geschoben 442, und der gleiche Ablauf wird fir
den nachsten physischen Block in der Liste wieder-
holt. So lange der gesichtete Block sich als belegt er-
weist, wird die Tabelle im RAM aktualisiert, um das
Ereignis der Zuteilung des betreffenden Blocks abzu-
bilden.

[0103] SchlieBlich erreichen wir einen Punkt, an
dem der gesichtete physische Block sich als frei er-
weist. Dies impliziert, dass keine weiteren Aktualisie-
rungen der Tabelle im RAM erforderlich sind und
dass die Tabelle den Systemstatus jetzt zutreffend
abbildet. Jetzt wird die aktualisierte Tabelle im Flash-
speicher 446 gespeichert. Gleichzeitig wird auch eine
neu berechnete Liste kunftiger Informationen (die die
nachsten zuzuteilenden freien Blocke anzeigt) im
Flashspeicher hinterlegt, so dass nach erneutem Ab-
schalten des Systems die gleiche Wakeup-Routine
wieder den korrekten Status der Tabelle wiederher-
stellt. Zu beachten ist, dass Schritt 446 des Spei-
cherns der Tabelle im Flashspeicher nicht wirklich er-
forderlich ist, wenn festgestellt wird, dass kein Block
aus der Liste kinftiger Informationen zugeteilt wor-
denist, da in diesem Fall die gespeicherte Tabelle be-
reits aktualisiert ist. Aus Griinden der besseren Uber-
sicht ist dies in Abb. 4 nicht dargestellt.

[0104] Nachdem festgestellt ist, dass die Flashspei-
chertabelle(n) im volatilen und im nicht volatilen Spei-
cher aktualisiert ist/sind, kann 450 mit dem regularen
Betrieb des Flashspeichersystems fortgefahren wer-
den.

[0105] Interessant ist die Beobachtung, dass die
Verfahren gemaf vorliegender Erfindung in gewisser
Weise das genaue Gegenteil der Verfahren von Las-
ser '056 sind. Beide Verfahren haben viele Gemein-
samkeiten — sie aktualisieren beide die Flashma-
nagementtabellen im Flashspeicher nur gelegentlich
und gestatten dadurch die Entstehung einer Licke
zwischen dem gespeicherten Status und dem aktuel-
len Status. Beide behandeln diese Lucke mittels
.Playback” eines iterativen Aktualisierungsprozesses
zum Zeitpunkt des Einschaltens auf Grundlage der

13/26

DE 11 2008 000 180 TS 2009.12.03

im Flash gespeicherten Informationen, die eindeutig
die Ereignisse definieren, die zur Entstehung der LU-
cke geflihrt haben. Doch besteht ein grundlegender
Unterschied zwischen den Verfahren beziiglich die-
ser Informationen. Lasser '056 bearbeitet die einge-
henden Ereignisse auf Grundlage der spezifischen
Algorithmen des Flashmanagementsystems, welche
auch immer diese sein mdgen, und hinterlegt dann
diese Ereignisse im Flash in einer Weise, die abbil-
det, wie diese Ereignisse bearbeitet worden sind. Die
vorliegende Erfindung hinterlegt erst im Flash, wie
eingehende Ereignisse kulnftig bearbeitet werden sol-
len (wieder auf Grundlage der Algorithmen des
Flashmanagementsystems, aber vor Eintritt der Er-
eignisse), und bearbeitet die Ereignisse dann, wenn
sie tatsachlich eintreten, gemaR den hinterlegten Be-
arbeitungsentscheidungen.

Allgemeine Erérterung zur Leistung

[0106] Ein Vorteil bestimmter Ausfihrungsbeispiele
vorliegender Erfindung besteht darin, dass das Le-
sen der gespeicherten Kopie einer Flashmanage-
menttabelle und die Aktualisierung der Tabelle in Be-
zug auf die Ereignisse, die noch nicht in der gespei-
cherten Tabelle abgebildet sind, sehr viel weniger
Zeit bendtigt als die Neuerstellung der Tabelle durch
Scannen der vielen Blécke des Speichersystems.
Wurde das System nach Speicherung der Tabelle vor
Eintritt weiterer Statusanderungen abgeschaltet
(zum Beispiel im Falle ordnungsgemafen Herunter-
fahrens oder wenn wir das ,Glick” hatten, anzuschal-
ten bevor neue Ereignisse eingetreten waren), erfolgt
das Wakeup in manchen Ausfihrungsbeispielen
schnell, so wie bei Lasser '488 im Fall des ordnungs-
gemalen Herunterfahrens. Doch selbst wenn nach
dem letzten Speichern der Tabelle einige Statusan-
derungen eingetreten sind, ist die fir das Wakeup be-
noétigte Zeit unter Umstanden nicht so lang wie beim
Verfahren gemaf Lasser '488, wenn kein ordnungs-
gemalies Herunterfahren stattgefunden hat. In vielen
Situationen mussen nur wenige Ereignisse entdeckt
und ihre Folgen fir den Status der Tabellen wieder-
hergestellt werden. Die genaue Zeit, die daflir gene-
rell bendtigt wird, hangt von der Anzahl der Eintrage
ab, die mit der kinftigen Informationsdatenstruktur
bearbeitet werden missen. Dies wiederum kann von
der Haufigkeit abhangen, mit der die Tabelle im nicht
volatilen Speicher hinterlegt wird. Je héher die Hau-
figkeit, desto weniger Eintrage sind im Durchschnitt
zu bearbeiten und desto schneller ist durchschnittlich
der Wakeup-Vorgang. Andererseits: je hoher die
Haufigkeit des Speicherns, desto langer ist die fir die
Berechnung und Vorbereitung der kinftigen Informa-
tionsdatenstruktur aufgewendete Zeit.

[0107] Die vorliegende Erfindung ahnelt in dieser
Hinsicht in ihrer Leistung den Verfahren von Lasser
'056. Doch dies gilt nur, wenn die fur das Schreiben
des Ereignisprotokolls in Lasser '056 aufgewendete

Kapazitatsbelastung keine zusatzliche Kapazitatsbe-
lastung bedingt, wie beispielsweise, wenn das Proto-
koll aus anderen Gruinden ohnehin vorgehalten wird.
Ist dies nicht der Fall, bieten die Verfahren geman
vorliegender Erfindung eine bessere Gesamtleistung
als Lasser '056, da das aufwandige Vorhalten des
Protokolls nicht mehr erforderlich ist.

[0108] Wahrend die vorstehenden Erdrterungen
sich im Wesentlichen auf eine einzelne Flashma-
nagementtabelle im Flashmanagementsystem bezie-
hen, ist die Erfindung gleichermalfien auf viele Flash-
managementtabellen anwendbar, von denen jede ei-
nen unterschiedlichen Aspekt des Systemstatus ab-
bildet. Sind viele Tabellen gegeben, wird jede Tabelle
auf Grundlage der jeweils eigenen Speicherregeln
der Tabelle gespeichert, und nicht unbedingt zu den
gleichen Zeitpunkten. Bei Einschalten wird jede
Flashmanagementtabelle mittels der beschriebenen
Verfahren auf Grundlage der spezifischen Informati-
onsdaten jeder Flashmanagementtabelle rekonstru-
iert. Es ist ebenfalls mdglich, dass zwei oder mehr Ta-
bellen eine gemeinsame kunftige Informationsdaten-
struktur besitzen, die zur Steuerung der Bearbeitung
eingehender Ereignisse flir diese multiplen Tabellen
verwendet wird.

[0109] Es ist zu beachten, dass die vorliegende Er-
findung sich nicht auf die vorstehend beschriebenen
Ausflihrungsbeispiele beschrankt, die der Erklarung
der Verfahren der Erfindung dienen. Die Erfindung ist
gleichermalRen auch auf viele andere Typen von
Flashmanagementtabellen und kinftiger Informati-
onsdatenstrukturen anwendbar, die alle im Schutz-
umfang der beanspruchten Erfindung liegen.

Zusatzliche Erérterung der vorliegend beschriebenen
Systeme

[0110] Die vorliegend offen gelegten Techniken las-
sen sich mit jeder Kombination von Hardware, Firm-
ware und Software umsetzen.

[0111] In einem nicht beschrankenden Ausflh-
rungsbeispiel werden das Speichern der Flashma-
nagementtabellen und deren Wiederherstellung und
Rekonstruktion nach dem Einschalten alle durch die
Steuerung 140 durchgefiihrt, oder genauer gesagt
durch das Ausfihren von in ROM 160 hinterlegtem
Code durch CPU 150. Dies ist jedoch nicht die einzi-
ge mogliche Systemarchitektur fir den Einsatz vorlie-
gender Erfindung. Es ist zum Beispiel auch moglich,
die Verfahren der Erfindung durch im Hostrechner
110 ausgefuhrten Code umzusetzen, was der Fall ist,
wenn das Speichermodul eine On-board-NAND Flas-
hvorrichtung ist und keine selbstandig operierende
Steuerung vorhanden ist. Eine weitere Mdglichkeit
ist, dass die erfindungsgemafRen Verfahren wenigs-
tens zum Teil durch den Hostrechner 110 und zum
Teil durch die Steuerung 140 umgesetzt werden. Alle

14/26

DE 11 2008 000 180 TS 2009.12.03

diese Architekturen und viele weitere sind im Schutz-
umfang vorliegender Erfindung umfasst.

[0112] In der Beschreibung und den Ansprichen
vorliegender Anmeldung werden jedes der Verben
L,umfassen”, ,einschlielen” und ,haben” sowie deren
Konjugate verwendet, um anzuzeigen, dass das oder
die Objekte des Verbs nicht unbedingt eine vollstan-
dige Auflistung der Glieder, Komponenten, Elemente
oder Teile des Subjekts oder der Subjekte des Verbs
sind.

[0113] Alle vorliegend zitierten Veréffentlichungen
sind durch Hinweis vollstandig in vorliegende Offen-
legung aufgenommen. Das Zitieren einer Veroffentli-
chung beinhaltet kein Eingestandnis, dass sie zum
Stand der Technik zahlt.

[0114] Die Artikel ,der”, ,die”, ,das” dienen vorlie-
gend dem Hinweis auf eines oder mehrere (d. h. min-
destens eines) der grammatischen Objekte des Arti-
kels. Zum Beispiel bezeichnet ,ein Element” ein Ele-
ment oder mehr als ein Element.

[0115] Der Ausdruck ,einschlieRlich” bedeutet vor-
liegend ,einschlieBlich, doch ohne Beschrankung
hierauf’ und wird mit dieser Formulierung austausch-
bar verwendet.

[0116] Der Ausdruck ,oder” bedeutet vorliegend
Lund/oder” und wird damit austauschbar verwendet,
es sei denn aus dem Zusammenhang geht klar eine
andere Bedeutung hervor.

[0117] Der Ausdruck ,wie beispielsweise” bedeutet
und wird vorliegend austauschbar verwendet mit der
Formulierung ,wie beispielsweise, aber nicht be-
schrankt auf”.

[0118] Die vorliegende Erfindung wurde vorstehend
unter Verwendung detaillierter Beschreibungen von
Ausfuhrungsbeispielen derselben beschrieben, die
als Beispiele vorgesehen sind und nicht dazu dienen,
den Schutzumfang der Erfindung zu beschranken.
Die beschriebenen Ausfiihrungsbeispiele umfassen
unterschiedliche Merkmale, von denen nicht jedes in
allen Ausfuhrungsbeispielen der Erfindung erforder-
lich ist. Manche Ausflihrungsbeispiele vorliegender
Erfindung verwenden nur manche dieser Merkmale
oder mdglicher Merkmalskombinationen. Abwand-
lungen der Ausflhrungsbeispiele vorliegender Erfin-
dung, die andere Kombinationen der in den beschrie-
benen Ausflihrungsbeispielen genannten Merkmale
umfassen, werden dem Fachmann einfallen.

[0119] Die Erfindung wurde zwar in Hinblick auf eine
begrenzte Anzahl von Ausfihrungsbeispielen be-
schrieben, doch lassen sich viele Abwandlungen,
Modifikationen und sonstige Anwendungen der Erfin-
dung vornehmen.

Zusammenfassung

Verfahren und System fiir die Umsetzung eines
Fast-Wakeup eines Flashspeichersystems

[0120] Verfahren und Systeme fir die Pflege von
Datenstrukturen auf Grundlage der Ereignisse in ei-
nem nicht volatilen Speichersystem. Mindestens ein
Teil einer oder mehrerer Managementtabellen sowie
eine kinftige Informationsdatenstruktur sind in einem
nicht volatilen Speicher hinterlegt. Die kinftige Infor-
mationsdatenstruktur umfasst Datensatze zu Ereig-
nissen, deren Eintritt nach dem Speichern der kinfti-
gen Informationsdatenstruktur erwartet wird. Treten
Ereignisse im Flashspeicher ein, werden sie auf
Grundlage der kinftigen Informationsdatenstruktur
bearbeitet. Beim Hochfahren des Speichersystems
wird/werden die Managementtabelle(n) geladen und
die Datensatze der kunftigen Informationsdatenstruk-
tur mit dem Status der Tabelle(n) verglichen. Die Ta-
belle(n) wird/werden auf Grundlage der kunftigen In-
formationsdatenstruktur aktualisiert.

15/26

DE 11 2008 000 180 T5
ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgefiihrten Doku-
mente wurde automatisiert erzeugt und ist aus-
schlieSlich zur besseren Information des Lesers auf-
genommen. Die Liste ist nicht Bestandfeil der deut-
schen Pafent- bzw. Gebrauchsmusteranmeldung.
Das DPMA dbernimmt keinerlei Hafiung fir etwaige
Fehler oder Auslassungen.

Zitierte Patentliteratur
- US 6510488 [0002, 0095]

- US 5937425 [0004, 0060]
- US 6678785 [0004]

16/26

2009.12.03

DE 11 2008 000 180 TS 2009.12.03

Patentanspriiche

1. Speichermodul, gekennzeichnet durch:
(a) einen ersten nicht volatilen Speicher; und
(b) eine Steuerung des genannten ersten nicht vola-
tilen Speichers, die dazu dient, den ersten nicht vola-
tilen Speicher durch Schritte zu steuern, die folgende
Schritte umfassen
(i) Speichern im genannten ersten nicht volatilen
Speicher mindestens eines Teils einer Management-
tabelle, deren Inhalte einen Status des Speichersys-
tems zu einem ersten Zeitpunkt abbilden,
(i) Speichern im genannten ersten nicht volatilen
Speicher einer kinftigen Informationsdatenstruktur,
die eine Mehrzahl von Datenséatzen in Bezug auf Er-
eignisse im Speichersystem umfasst, deren Eintritt
nach dem Speichern der genannten kinftigen Infor-
mationsdatenstruktur erwartet wird, und
(iii) zu einem zweiten Zeitpunkt, der auf das Spei-
chern der genannten kunftigen Informationsdaten-
struktur folgt, Bearbeitung des genannten Ereignis-
ses gemal der kinftigen Informationsdatenstruktur.

2. Speichermodul gemafl Anspruch 1, gekenn-
zeichnet durch:
(c) einen zweiten nicht volatilen Speicher;
wobei die genannte Steuerung dazu dient, die ge-
nannten Schritte mittels Ausfihren von im zweiten
nicht volatilen Speicher hinterlegtem Code umzuset-
zen.

3. Speichersystem, gekennzeichnet durch:
(a) ein Speichermodul einschlieRlich eines nicht vola-
tilen Speichers; und
(b) einen Hostrechner des genannten Speichermo-
duls, der bei der Steuerung des nicht volatilen Spei-
chers durch Schritte mitwirkt, die folgende Schritte
umfassen:
(i) Speichern im genannten ersten nicht volatilen
Speicher mindestens eines Teils einer Management-
tabelle, deren Inhalte einen Status des Speichersys-
tems zu einem ersten Zeitpunkt abbilden,
(i) Speichern im genannten ersten nicht volatilen
Speicher einer kinftigen Informationsdatenstruktur,
die eine Mehrzahl von Datenséatzen in Bezug auf Er-
eignisse im Speichersystem umfasst, deren Eintritt
nach dem genannten Speichern der genannten kinf-
tigen Informationsdatenstruktur erwartet wird, und
(iii) zu einem zweiten Zeitpunkt nach dem genannten
Speichern der kinftigen Informationsdatenstruktur
Bearbeiten eines Ereignisses auf Grundlage der ge-
nannten kinftigen Informationsdatenstruktur.

4. Speichersystem gemaf Anspruch 3, dadurch
gekennzeichnet, dass die genannten Schritte aus-
schliellich durch den genannten Hostrechner ausge-
fuhrt werden.

5. Speichersystem gemafR Anspruch 3, dadurch
gekennzeichnet, dass das genannte Speichermodul

eine Steuerung umfasst, die mit dem genannten
Hostrechner zusammenwirkt, um die genannten
Schritte auszufuhren.

6. Speichermodul, gekennzeichnet durch:
(a) einen ersten nicht volatilen Speicher; und
(b) eine Steuerung des nicht volatilen Speichers, die
dazu dient, das Speichermodul durch Schritte hoch-
zufahren, die folgende Schritte umfassen
(i) Auslesen aus dem genannten ersten nicht volati-
len Speicher mindestens eines Teils einer Manage-
menttabelle, die einen Status des Speichermoduls zu
einem Zeitpunkt vor dem Hochfahren abbildet;
(ii) Auslesen aus dem genannten nicht volatilen Spei-
cher einer kunftigen Informationsdatenstruktur, die
eine Mehrzahl von Datensatzen in Bezug auf Ereig-
nisse umfasst, deren Eintritt nach dem Speichern der
genannten kunftigen Informationsdatenstruktur er-
wartet wird; und
(iii) Aktualisieren der genannten Managementtabelle
auf Grundlage mindestens eines Datensatzes der
genannten kunftigen Informationsdatenstruktur.

7. Das Speichermodul gemaR Anspruch 6, ge-
kennzeichnet durch:
(c) einen zweiten nicht volatilen Speicher;
wobei die genannte Steuerung dazu dient, die ge-
nannten Schritte durch das Ausfuhren von Code
durchzufiihren, der im genannten zweiten nicht vola-
tilen Speicher hinterlegt ist.

8. Speichersystem, gekennzeichnet durch:
(a) ein Speichermodul, das einen nicht volatilen Spei-
cher umfasst; und
(b) einen Hostrechner des genannten Speichermo-
duls, der bei der Steuerung des genannten nicht vo-
latilen Speichers durch Schritte mitwirkt, die folgende
Schritte umfassen:
(i) Auslesen aus dem genannten nicht volatilen Spei-
cher mindestens eines Teils einer Managementtabel-
le, die einen Status des Speichersystems zu einem
Zeitpunkt vor dem Hochfahren abbildet;
(ii) Auslesen aus dem genannten nicht volatilen Spei-
cher einer kunftigen Informationsdatenstruktur, die
eine Mehrzahl von Datensatzen umfasst, die sich auf
Ereignisse beziehen, deren Eintritt nach einem Spei-
chern der genannten kinftigen Informationsdaten-
struktur erwartet wird; und
(iii) Aktualisieren der genannten Managementtabelle
auf Grundlage mindestens eines Datensatzes der
genannten kunftigen Informationsdatenstruktur.

9. Speichersystem gemal Anspruch 8, dadurch
gekennzeichnet, dass die genannten Schritte aus-
schlief3lich vom Hostrechner ausgefuhrt werden.

10. Speichersystem gemaf Anspruch 8, dadurch
gekennzeichnet, dass das genannte Speichermodul
eine Steuerung umfasst, die mit dem genannten
Hostrechner bei der Umsetzung der genannten

17/26

DE 11 2008 000 180 TS 2009.12.03

Schritte zusammenwirkt.

11. Computerlesbares Speichermedium mit darin
integriertem computerlesbaren Code fir die Pflege
der Datenstrukturen eines Speichersystems auf
Grundlage von Systemereignissen, wobei der com-
puterlesbare Code gekennzeichnet ist durch:

(a) Programmcode fiir das Speichern mindestens ei-
nes Teils einer Managementtabelle, deren Inhalte ei-
nen Status des Systems zu einem ersten Zeitpunkt
abbilden, in einem nicht volatilen Speicher des Spei-
chersystems;

(b) Programmcode flir das Speichern einer kiinftigen
Informationsdatenstruktur, die eine Mehrzahl von Da-
tensatzen umfasst, die sich auf Ereignisse im Spei-
chersystem beziehen, deren Eintritt nach dem ge-
nannten Speichern der genannten Informationsda-
tenstruktur erwartet wird, im genannten nicht volati-
len Speicher; und

(c) Programmcode fir die Bearbeitung eines Ereig-
nisses auf Grundlage der kiinftigen Informationsda-
tenstruktur zu einem zweiten Zeitpunkt nach dem ge-
nannten Speichern der genannten kuinftigen Informa-
tionsdatenstruktur.

12. Computerlesbares Speichermedium, ge-
kennzeichnet durch darin integrierten computerles-
baren Code flir das Hochfahren eines Speichersys-
tems, wobei der computerlesbare Code Folgendes
umfasst:

(a) Programmcode fiir das Auslesen aus einem nicht
volatilen Speicher des Speichersystems mindestens
eines Teils einer Managementtabelle, die einen Sta-
tus des Speichersystems zu einem Zeitpunkt vor dem
Hochfahren abbildet;

(b) Programmcode fiir das Auslesen aus dem ge-
nannten nicht volatilen Speicher einer kunftigen Infor-
mationsdatenstruktur, die eine Mehrzahl von Daten-
satzen umfasst, die sich auf Ereignisse beziehen, de-
ren Eintritt nach einem Speichern der genannten
kinftigen Informationsdatenstruktur erwartet wird;
und

(c) Programmcode fiir das Aktualisieren der genann-
ten Managementtabelle auf Grundlage mindestens
eines Datensatzes der genannten kunftigen Informa-
tionsdatenstruktur.

13. Verfahren fir die Pflege von Datenstrukturen
eines Speichersystems auf Grundlage der Ereignisse
im System, gekennzeichnet durch folgende Schritte:
(a) Speichern in einem nicht volatilen Speicher des
Speichersystems mindestens eines Teils einer Ma-
nagementtabelle, deren Inhalte einen Status des
Speichersystems zu einem ersten Zeitpunkt abbil-
den;

(b) Speichern im genannten nicht volatilen Speicher
einer kunftigen Informationsdatenstruktur, die eine
Mehrzahl von Datensatzen umfasst, die sich auf Er-
eignisse im Speichersystem beziehen, deren Eintritt
nach dem genannten Speichern der genannten Infor-

mationsdatenstruktur erwartet wird; und

(c) zu einem zweiten Zeitpunkt nach dem genannten
Speichern der kunftigen Informationsdatenstruktur
Bearbeitung eines Ereignisses auf Grundlage der ge-
nannten kinftigen Informationsdatenstruktur.

14. Verfahren gemaf Anspruch 13, dadurch ge-
kennzeichnet, dass der genannte nicht volatile Spei-
cher ein Flashspeicher ist.

15. Verfahren gemaf Anspruch 13, dadurch ge-
kennzeichnet, dass das genannte Speichern des ge-
nannten mindestens einen Teils der genannten Ma-
nagementtabelle das Aktualisieren des genannten
mindestens einen Teils der genannten Management-
tabelle im genannten nicht volatilen Speicher um-
fasst.

16. Verfahren gemaf Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Speichern des ge-
nannten mindestens einen Teils der Managementta-
belle, deren Inhalte einen Zustand des Speichersys-
tem zu einem ersten Zeitpunkt abbilden, auch das
Speichern mindestens eines Teils der genannten Ma-
nagementtabelle in einem volatilen Speicher um-
fasst, sowie dadurch gekennzeichnet, dass das ge-
nannte Aktualisieren jedes N > 1 Mal erfolgt, das die
Managementtabelle im genannten volatilen Speicher
geandert wird.

17. Verfahren gemaf Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren in
Reaktion auf den Eintritt ausgewahlter Ereignisse
folgt.

18. Verfahren gemaf Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren peri-
odisch erfolgt.

19. Verfahren gemaf Anspruch 15, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren auf
Grundlage der Verfugbarkeit von Kapazitat im Spei-
chersystem erfolgt.

20. Verfahren gemafl Anspruch 13, dadurch ge-
kennzeichnet, dass die genannte kinftige Informati-
onsdatenstruktur eine Auflistung von Blécken des ge-
nannten nicht volatilen Speichers umfasst, die zum
genannten ersten Zeitpunkt unbelegt sind.

21. Verfahren zum Hochfahren eines Speicher-
systems, gekennzeichnet durch folgende Schritte:
(a) Auslesen aus einem nicht volatilen Speicher des
Speichersystems mindestens eines Teils einer Ma-
nagementtabelle, die einen Status des Speichersys-
tems zu einem Zeitpunkt vor dem Hochfahren abbil-
det;

(b) Auslesen aus dem genannten nicht volatilen Spei-
cher einer kunftigen Informationsdatenstruktur, die
eine Mehrzahl von Datensatzen umfasst, die sich auf

18/26

DE 11 2008 000 180 TS 2009.12.03

Ereignisse beziehen, deren Eintritt nach einem Spei-
chern der genannten kinftigen Informationsdaten-
struktur erwartet wird; und

(c) Aktualisieren der genannten Managementtabelle
auf Grundlage mindestens eines Datensatzes der
genannten kunftigen Informationsdatenstruktur.

22. Verfahren gemal Anspruch 21, dadurch ge-
kennzeichnet, dass der genannte nicht volatile Spei-
cher ein Flashspeicher ist.

23. Verfahren gemal Anspruch 21, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren die
genannte Managementtabelle andert, um einen aktu-
ellen Status des Speichersystems abzubilden.

24. Verfahren gemafl Anspruch 21, dadurch ge-
kennzeichnet, dass das genannte Aktualisieren be-
dingt erfolgt.

25. Verfahren gemaf Anspruch 24, gekennzeich-
net durch folgenden weiteren Schritt:
(d) Prufung der genannten Datensatze, um zu be-
stimmen, ob der Status des Speichersystems sich
seit dem genannten Zeitpunkt geandert hat,
wobei das Aktualisieren voraussetzt, dass der Status
des Speichersystems sich seit diesem Zeitpunkt ge-
andert hat.

Es folgen 7 Blatt Zeichnungen

19/26

DE 11 2008 000 180 TS 2009.12.03

Anhangende Zeichnungen

CPU
150
Host
Schnittstelle
Host Flash-

RAM RO speicher

Rechner

110 180
Steuerung _1__‘1'__‘_)_
Speichermodul -1_29-
Flashspeichersystem lg‘_)_
FIG.1

20/26

DE 11 2008 000 180 TS 2009.12.03

Fur t=t, Translation stabetie 200
viruetler Block |Physischer Block

0 893
1 485
) 172

1022 1

1023 985

FIG.2A

21/26

DE 11 2008 000 180 TS 2009.12.03

FUr t=t, wenn t,>t; Translationstabene 200

Virtueller Block | Physischer [, .1
0 893
1 485
) 777
1022 1
1023 985

FI1G.2B

22/26

DE 11 2008 000 180 TS 2009.12.03

+

Ereignis auf Grundiage
kiinftiger Informationen 2]_ 0
fiir die Tabelle bearbeiten

\

Tabelle im volatilen Speicher 21 4
aktualisieren (z. B. RAM)

l

ist eine

"Speicherbedingung”
erfiilit?

1 Eroignis warten 206 l“——"

Tabelle im Flash- Aktualisierte kiinftige

speicher hinterlegen 230 __J Informationen berechnen und

im Flashspeicher hinterlegen

234

)

FIG.3

23/26

DE 11 2008 000 180 TS 2009.12.03

| Hochfahren _4_1_0_

v

Tabelle aus dem Flashspeicher laden 414

v

Liste kiinftiger Informationen aus dem
Flash laden 418

v

Ersten Eintrag in der Liste ansteuern 422

v

Zeiger auf ersten Eintrag setzen 4'_2’.9

>y

Bezieht sich der
Eintrag auf einen
zugeteilten Block?

JA NEIN

Die korrespondierende

virtuelle Blocknummer laden Tabelle im Flashspeicher
zusammen mit der neu

434 berechneten Liste kiinftiger
T Informationen speichern

4
Tabelle im RAM aktualisieren 446
. 446

7 v

Den reguléren Betrieb wieder
Zeiger weiter-

aufnebhmen 450
fiihren

442 FIG.4

24/26

DE 11 2008 000 180 TS 2009.12.03

Speicher-
BUS CPU ‘medium
240 250
HE 300
v I
l
BUS-

Schnittstelle
RAM ROM 290
260 | | 270

Flash-
speicher
280

Flashspeichersystem 220

FI1G.5

25/26

DE 11 2008 000 180 TS 2009.12.03

Speicher-
BUS CPU medium
340 350
400
r l
RAM | ROM BUS-
360 Schnittstelle
22211 370 390

Flashspeicher-

steuerung 310

Flash-
speicher

380

Flashspeichermodul

330

Flashspeichersystem 320

FIG.6

26/26

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

