特許協力条約に基づいて公開された国際出願

国際出願日：2012年1月12日 (12.01.2012)

国際公開日：2012年1月12日 (12.01.2012)

国際出願番号：PCT/JP2011/003793

国際公開番号：WO 2012/004962 A1

国際特許分類：C12K 21/00 (2006.01)

国際公開日: 2011年7月4日 (04.07.2011)

国際公開の言語：日本語

特許協力条約に基づいて公開された国際出願

世界知的所有権機関
国際事務局

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開 曰
2012年1月12日(12.01.2012)

(51) 国際特許分類: C12K 21/00 (2006.01)

(57) Abstract: Disclosed is a highly-adhesive agent for a solar-cell back-side protective sheet. Said highly-adhesive agent overcomes hitherto existing problems and exhibits excellent adhesiveness and adhesion durability. Also disclosed are a solar-cell back-side protective sheet and a solar cell module using said solar-cell back-side protective sheet. The disclosed highly-adhesive agent exhibits a specific glass transition temperature, number-average molecular weight, and hydroxyl number, and contains, in a specific ratio: a (meth)acrylic copolymer (A) that contains no (meth)acryloyl groups; a compound (B), that does contain (meth)acryloyl groups; and a polyisocyanate compound (C).

(54) Title: HIGHLY-ADHESIVE AGENT FOR A SOLAR-CELL BACK-SIDE PROTECTIVE SHEET, SOLAR-CELL BACK -SIDE PROTECTIVE SHEET, AND SOLAR CELL MODULE

(54) 発明の名称: 太陽電池裏面保護シート用易接着剤、及び太陽電池裏面保護シート、ならびに太陽電池モジュール

(55) 図1

(74) 代理人: 家入 健 (EIRI, Takeshi);

(71) 出願人 (米国を除く全ての指定期限): 東洋インキSCホールディングス株式会社 (TOYO INK SC HOLDINGS CO., LTD.) [JP/JP]; 〒1048377 東京都中央区京橋二丁目3番1号 東京 (JP).

(72) 発明者: および

(75) 発明者 / 出願人 (米国についてのみ): 山口 浩史 (YAMAGUCHI, Hiroshi) [JP/JP]; 〒1048377 東京都中央区京橋二丁目3番1号 東洋インキSCホールディングス株式会社内 東京 (JP).

(76) 梅沢 三雄 (MEZAWA, Mitsuo) [JP/JP]; 〒1048377 東京都中央区京橋二丁目3番1号 東洋インキSCホールディングス株式会社内 東京 (JP).

(52) 検索要旨

(84) 指定国 表示のない限り、全ての種類の広域保護が可成^: ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW)、Uラシア
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)、ヨーロッパ
(AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR)、OAPI

添付公開書類:
- 国際調査報告 (条約第21条(3))
明細書

発明の名称：
太陽電池裏面保護シート用易接着剤、及び太陽電池裏面保護シート、ならびに太陽電池モジュール

技術分野
[0001] 本発明は、太陽電池裏面保護シート用易接着剤に関し、詳しくは、接着性、接着耐久性に優れる太陽電池裏面保護シート用易接着剤に関する。さらに本発明は、前記太陽電池裏面保護シート易接着剤を用いてなる太陽電池裏面保護シート、さらには該シートを用いてなる太陽電池モジュールに関する。

背景技術
[0002] 近年、環境問題に対する意識の高まりから環境汚染がなくクリーンなエネルギー源として太陽電池が注目され、有用なエネルギー資源としての太陽エネルギー利用の面から銘意研究され実用化が進んでいる。

太陽電池素子には様々な形態があり、その代表的なものとして、結晶シリコン太陽電池素子、多結晶シリコン太陽電池素子、非晶質シリコン太陽電池素子、銅インジウムセレンナイト太陽電池素子、化合物半導体太陽電池素子が知られている。この中でも多結晶シリコン太陽電池素子や、非晶質シリコン太陽電池素子、化合物半導体太陽電池素子は、比較的低コストであり、大面积化が可能であるため、各方面で活発に研究開発が行われている。また、これらの太陽電池素子の中でも、導体金属基板上にシリコンを積層し、更にその上に透明導電層を形成した非晶質シリコン太陽電池素子に代表される薄膜太陽電池素子は、軽量であり、耐衝撃性やフレキシブル性に富んでいるので、太陽電池における将来の形態として有望視されている。

[0003] 太陽電池モジュールのうち、単純なものは、太陽電池素子の両面に封止剤、ガラス板を、順に積層した構成形態を呈する。ガラス板は、透明性、耐候性、耐摩擦性に優れることから、太陽の受光面側の保護材として、現在も一般的に用いられている。しかし、透明性を必要としない非受光面側において
は、コシトや安全性、加工性の面から、ガラス板以外の様々な太陽電池裏面
保護シート（以下 裏面保護シートとも称する）が提案され（例えば、特
許文献1）、ガラス板から裏面保護シートに置き換わったりある。また、封
止剤は、透明性が高く、耐湿性が優れているエチレン−酢酸ビニル共重合体
（Ethylene-Vinyl Acetate copolymer、以下「EVA」と称する）が通常用
いられている。

裏面保護シートとしては、（i）ポリエステルフィルム等の単層フィルム
や、（ii）ポリエステルフィルム等に金属酸化物や非金属酸化物の蒸着層
を設けたものや、（iii）ポリエステルフィルム、フッ素系フィルム、オ
レフインフィルム、アルミニウム箔などのフィルムを積層した多層フィルム
などが挙げられる。

多層構造の裏面保護シートは、その多層構造により、さまざまな性能を付
与することができる。例えば、ポリエステルフィルムを用いることで絶縁性
を、アルミニウム箔を用いることで水蒸気バリア性を付与することができる
（特許文献2〜4参照）。

どのような裏面保護シートを用いるかは、太陽電池モジュールが用いられ
る製品・用途によって、適宜選択され得る。

裏面保護シートに求められる種々の性能の中で、封止剤との接着性および
接着耐久性は基本的かつ重要な要求性能である。封止剤との接着性が不十分
であると、裏面保護シートが剥がれ、太陽電池を水分や外的要因から保護す
ることができなくなり、太陽電池の出力劣化を招くことになる。

封止剤との接着性を確保する方法として、（1）裏面保護シートの封止剤
と接する面に易接着処理を施す方法や、（2）裏面保護シートの封止剤と接
する面に、封止剤との接着性の高いフィルムを使用する方法が挙げられる。

上記（1）の方法としては、さらにコロナ処理などの表面処理や、易接着
剤を塗布する易接着コート処理がある。

しかし、前のコロナ処理などの表面処理は、初期の接着性は確保される
が、接着耐久性に劣ることが問題となっている。
後者の易接着コード処理の場合に用いられる易接着剤が特許文献1、5、6に開示されている。

特許文献5には、オキサゾリン基含有ポリマー、尿素樹脂、メラミン樹脂およびエポキシ樹脂からなる群より選ばれる架橋剤と、ガラス転移点が20～100℃のポリエステル樹脂またはアクリル樹脂から選ばれる架橋剤以外の樹脂成分とを含有する塗液が開示されている（同文献の請求項3、4参照）。より具体的には、エポキシ樹脂とアクリル樹脂とを含有する塗液を用いる例が記載されている（同文献の実施例5参照）。

しかしながら、この例におけるEVAシートとの接着力は、200m幅で10～20N（即ち、150m幅ならば7、5～15N）程度である（同文献の表2参照）。封止剤－裏面保護シート間の接着性は太陽電池の出力劣化に大きく影響するため、市場ではより高い接着性が求められ、より厳しい条件下における接着性能の信頼性が求められるようになってきており、200m幅で20N程度の接着力ではそのような市場の要求に応えられない。特許文献1においては、接着性は改善されるが、市場では、より高性能の易接着剤が求められている。

特許文献6には、ポリエステルフィルム上に、ポリエステル系樹脂およびポリエステルポリウレタン系樹脂からなる群より選ばれる少なくとも1種の樹脂がアルキル化メラミンポリイソシアネートの架橋剤により架橋されている接着剤改良層を裏面保護シートの封止剤と接する面に設ける構成が開示されている。

上記（2）の方法（裏面保護シートの封止剤と接する面に、封止剤との接着性の高いフィルムを使用する方法）としては、例えば、特許文献7にはポリブチレンテレフタレート（PBT）を使用する方法が記載されている。

しかし、このようなフィルムは一般的に数十μmの厚みがあるため、上記の易接着処理に比べてコストが高くなってしまう。

なお、優先権の基礎となる先の出願後に公開された特許文献であるが、特許文献8には、太陽電池モジュールを構成する充填材（封止剤）と貼り合わ
される面に、下記一般式（I）で表わされるモノマーを含有するモノマー成分を重合させてなるアクリル系ポリマーを含有するアクリル系接着剤からなる接着剤層が形成されている太陽電池モジュール用バックシートが開示されている。

< 化 1 > \[CH_2 = C (R') - CO - OZ \]

但し、R' は、水素原子またはメチル基、Z は炭素数 4 〜 25 の炭化水素基を示す。

また、特許文献 9 には、フッ素系共重合体、アクリル系共重合体、又はポリウレタン系共重合体（重合体 a）と、光硬化のためのエチレン性不飽和基を 1 個以上有する重合性モノマー及び／又はオレフィン（モノマー b）、及び／又は分子内に 1 個以上のエチレン性不飽和基と 2 個以上のイソシアネート基を含有する化合物（ポリイソシアネート c）からなるプライマー層を有する太陽電池素子の裏面保護シートが開示されている。

先行技術文献

特許文献

[0012] 特許文献 1 : 特開 2009 - 246360 号公報
特許文献 2 : 特開 2004 - 200322 号公報
特許文献 3 : 特開 2004 - 223925 号公報
特許文献 4 : 特開 2001 - 119051 号公報
特許文献 5 : 特開 2006 - 152013 号公報
特許文献 6 : 特開 2007 - 136911 号公報
特許文献 7 : 特開 2010 - 114154 号公報
特許文献 8 : 特開 2010 - 263193 号公報
特許文献 9 : 特開 2011 - 18872 号公報

発明の概要

発明が解決しようとする課題

[0013] 本発明の課題は、接着性、接着耐久性に優れる太陽電池裏面保護シート用
易接着剤、及び太陽電池裏面保護シート、ならびに該太陽電池裏面保護シートを用いてなる太陽電池モジュールを提供することである。

課題を解決するための手段

【0014】本発明は、ガラス転移温度が10〜60℃、数平均分子量が25,000〜250,000、水酸基価が2〜100（mg KOH/g）であり、（メタ）アクリロイル基を有しない（メタ）アクリル系共重合体（A）と、
（メタ）アクリロイル基を有する化合物（B）と、
前記アクリル系共重合体（A）中の水酸基1個に対して、イソシアネート基が0.1〜5個の範囲であるポリイソシアネート化合物（C）とを含有する太陽電池裏面保護シート用易接着剤に関する。

【0015】（メタ）アクリロイル基を有する化合物（B）の含有量は、（メタ）アクリロイル基を有しないアクリル系共重合体（A）100重量部に対して、0.1〜20重量部であることが好ましい。

【0016】また、ポリイソシアネート化合物（C）はブロック化ポリイソシアネート（C1）であることが好ましい。さらに、前記（メタ）アクリロイル基を有する化合物（B）は、分子中に2個以上の（メタ）アクリロイル基を有することが好ましい。

【0017】さらに、本発明は、上記太陽電池裏面保護シート用易接着剤によって形成される易接着剤層（D'）と、プラスチックフィルム（E）とを備える太陽電池裏面保護シート（V'）に関する。

【0018】さらに、本発明は、太陽電池の受光面側に位置する太陽電池表面保護材（I）、太陽電池の受光面側に位置する封止剤（I'I）、太陽電池セル（I'I'I）、太陽電池の非受光面側に位置し、有機過酸化物を含有する封止剤（I'I'V）、及び請求項4記載の太陽電池裏面保護シート（V'）から形成されてなる太陽電池裏面保護シート（V）を備えるなる太陽電池モジュールであって、
易接着剤層（D'）の硬化した易接着剤層（D）が、前記非受光面側封止剤（I'I'V）に接着していることを特徴とする太陽電池モジュールに関する。
また、非受光面側の封止剤（IV）は、有機過酸化物が含有されていることが好ましい。さらに、非受光面側の封止剤は、エチレン酢酸ビニル共重合体（EVA）を主成分とすることが好ましい。

発明の効果

本発明の太陽電池裏面保護シート用易着接剤を用いることによって、接着性、接着耐久性に優れる太陽電池裏面保護シート用易着接剤、及び太陽電池裏面保護シート、ならびに該太陽電池裏面保護シートを用いてなる太陽電池モジュールを提供することができるという優れた効果を有する。本発明の太陽電池裏面保護シートを用いることによって、高温高湿度環境に長時間曝されることで出力低下の小さい太陽電池モジュールを提供できる。

図面の簡単な説明

[図1]本発明の太陽電池用モジュールの断面を模式的に示す図である。

発明を実施するための形態

以下、本発明について詳細に説明する。なお、本発明の趣旨に合致する限り、他の实施形態も本発明の範囲に含まれることは言うまでもない。また、本明細書において「〜」を用いて特定される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値の範囲として含むものとする。また、本明細書において「フィルム」や「シート」は、厚さによって区別されないものとする。換言すると、本明細書の「シート」は、厚みの薄いフィルム状のものも含まれ、本明細書の「フィルム」は、厚みのあるシート状のものも含まれるものとする。

図1は、本発明に係る太陽電池用モジュールの模式的断面図である。太陽電池用モジュール100は、太陽電池表面保護材（I）、受光面側の封止剤（II）、太陽電池セル（III）、非受光面側の封止剤（IV）、太陽電池裏面保護シート（V）を少なくとも有する。太陽電池セル（III）の受光面側は、受光面側の封止剤（II）を介して太陽電池表面保護材（I）によって保護されている。一方、太陽電池セル（III）の非受光面側は、非受光面側の封止剤（IV）を介して太陽電池裏面保護シート（V）によって
保護されている。非受光面側の太陽電池裏面保護シート（V）と接する表層には、太陽電池裏面保護シート用易接着剤からなる易接着剤層が積層されている。

なお、本発明の太陽電池裏面保護シート用易接着剤によって形成される易接着剤層（D'）は、太陽電池モジュール100を形成するときの加熱圧着工程を利用して架橋反応する。本発明中において、加熱圧着工程前の易接着剤層を易接着剤層（D'）、加熱圧着工程後の架橋した易接着剤層を易接着剤層（D）として区別する。同様に、加熱圧着工程前の太陽電池裏面保護シートを太陽電池裏面保護シート（V'）、加熱圧着工程後のものを太陽電池裏面保護シート（V）として区別する。

本発明の太陽電池裏面保護シート用易接着剤に含まれる（メタ）アクリロイル基を有しない（メタ）アクリル系共重合体（A）について説明する。

（メタ）アクリル系共重合体（A）は、ガラス転移温度が10〜60℃、数平均分子量が25,000〜200,000、水酸基価が2〜100（mg KOH/g）である。

（メタ）アクリル系共重合体（A）のガラス転移温度が60℃を超える場合には、易接着剤の塗膜が硬くなり、封止剤への接着力が低下する。10℃未満の場合には、易接着剤の塗膜の表面にタックが生じるため、太陽電池裏面保護シートを製造後にロール状にした場合、プロッキングを起こしやすくなる。発明（メタ）アクリル系共重合体（A）のガラス転移温度は、20〜50℃であることがより好ましい。

なお、ここでガラス転移温度とは、（メタ）アクリル系共重合体（A）を乾燥させて固形分100%にした樹脂について、示差走査熱量分析（DSC）によって計測したガラス転移温度のことを示す。例えば、ガラス転移温度は、試料約10mgを秤量したサンプルを入れたアルミニウムバンと、試料を入れていないアルミニウムバンとをDSC装置にセットし、これを窒素気流中で、液体窒素を用いて-50℃まで急冷凍却し、その後、20℃/分で100℃まで昇温し、DSC曲線をプロットする。このDSC曲線の低温
側のベースライン（試験片に転移および反応を生じない温度領域のDSC曲線部分）を高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点から、補外ガラス転移開始温度（Tg）を求め、これをガラス転移開始温度として求めることができる。本発明のガラス転移温度は、上記の方法により測定した値を記載している。

（メタ）アクリル系共重合体（A）の数平均分子量が250、000を越える場合には、封止剤への接着力が低下し、25、000未満の場合には、易接着剤の塗膜の耐湿熱性が低下し、湿熱試験後に封止剤への接着力が低下する。（メタ）アクリル系共重合体（A）の数平均分子量は、25、000～150、000であることが好ましく、さらには25、000～100、000であることがより好ましく、25、000～80、000であることより好ましい。

なお、上記の数平均分子量は、（メタ）アクリル系共重合体（A）のゲルペーミーションクロマトグラフィ（GPC）によるポリスチレン換算の値である。例えば、カラム（昭和電工株）製KF-805L、KF-803L、及びKF-802）の温度を40℃として、溶媒液としてTHFを用い流速を0.2mL/minとし、検出をRI、試料濃度を0.02%とし、標準試料としてポリスチレンを用いて行ったものである。本発明の数平均分子量は、上記の方法により測定した値を記載している。

（メタ）アクリル系共重合体（A）の水酸基価は、固形分換算で2～100mg KOH/gであることが重要であり、好ましくは2～50mg KOH/g、さらには2～30mg KOH/gであることがより好ましい。（メタ）アクリル系共重合体（A）の水酸基価が100mg KOH/gを越える場合には、易接着剤の塗膜の架橋が密になり、プラスチックフィルム（E）への接着力が低下する。また、初期は接着していても、耐湿熱試験中に架橋反応が進行し、湿熱試験後に接着力が低下することもある。一方、2mg KOH/g未満の場合には、易接着剤の塗膜の架橋が密になり、塗膜の耐湿熱性が低下し、湿熱試験後に封止剤への接着力が低下する。
このような (メタ) アクリル系共重合体 (A) は、種々のモノマーを重合することによって得ることができる。モノマーとしては、例えば、アルキル基を有する (メタ) アクリル系モノマー、水酸基を有する (メタ) アクリル系モノマー、カルボキシル基を有する (メタ) アクリル系モノマー、グリシジル基を有する (メタ) アクリル系モノマーなどの他に、酢酸ビニル、無水マレイン酸、ビニルエーテル、プロピオン酸ビニル、ステレンなどが挙げられる。

アルキル基を有する (メタ) アクリル系モノマーとしては、メチル (メタ) アクリレート、エチル (メタ) アクリレート、ノルマルブチル (メタ) アクリレート、2-エチルヘキシル (メタ) アクリレート、オクチル (メタ) アクリレートなどが挙げられる。

水酸基を有する (メタ) アクリル系モノマーとしては、2-ヒドロキシエチル (メタ) アクリレート、2-ヒドロキシプロピル (メタ) アクリレート、4-ヒドロキシブチル (メタ) アクリレートなどが例示できる。

カルボキシル基を有する (メタ) アクリル系モノマーとしては、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、シトラコン酸などが挙げられる。

グリシジル基を有する (メタ) アクリル系モノマーとしては、アクリル酸グリシジル、メタクリル酸グリシジル、4-ヒドロキシブチルアクリレートグリシジルエーテルなどが例示できる。

上記のモノマーの重合には、通常のラジカル重合を用いることができる。反応方法に何ら制限はなく、溶液重合、塊状重合、乳化重合などの公知の重合法で行うことができるが、反応のコントロールが容易であることや直接次の操作に移ることから溶液重合が好ましい。用いるモノマーは、1種類であっても複数種類を混合して用いてもよい。

溶剤としては、メチルエチルケトン、メチルイソプロピルケトン、トルエン、セロソルブ、酢酸エチル、酢酸ブチルなど、本発明で樹脂が溶解するものであれば何ら制限は無く、単独でも、複数の溶媒を混合しても良い。また、
重合反応の際に使用される重合開始剤もベンゾイル・オキサイド、アセチルバーオキサイド、メチルエチルケトンバーオキサイド、ラウロイルバーオキサイドなどの有機過酸化物、アゾビスイソプチロニトリルなどのアゾ系開始剤など公知のものを用いることができ、特に制限は無い。

次に、（メタ）アクリロイル基を有する化合物（B）について説明する。

本発明で使用される（メタ）アクリロイル基を有する化合物（B）は、分子中に少なくとも1個以上の（メタ）アクリロイル基を有していればどのようなものでも良く、例えば、トリメチロールプロパントリ（メタ）アクリレート、ジトリメチロールプロパンテトラ（メタ）アクリレート、ベンタエリスリトールテトラ（メタ）アクリレート、ジベンタエリスリトールヘキサ（メタ）アクリレートなどの多価アルコールの（メタ）アクリレート、ビスフエノールAジグリシジルエーテルのジ（メタ）アクリレート、ポリエチレングリコレジグリシジルエーテルのジ（メタ）アクリレートなどのエポキシ（メタ）アクリレートなどが挙げられる。

これらの中でも、反応性の観点から、（メタ）アクリロイル基を有する化合物（B）は分子中に2個以上の（メタ）アクリロイル基を有することが好ましく、さらには分子中に3個以上有することが好ましい。

また、（メタ）アクリロイル基を有する化合物（B）としては、（メタ）アクリロイル基を有しないアクリル系共重合体（A）とポリイソシアネート化合物（C）との架橋を阻害しない程度にヒドロキシル基や他の官能基を含んでいても良い。

太陽電池の受光面側に位置する封止剤（I1）及び非受光面側に位置する封止剤（I V）は、特に限定されず、公知の材料を好適に適用できる。好適な材料として、EVA（エチレン-酢酸ビニル共重合体）や、ポリビニルブチラール、ポリウレタン、ポリオレフィンなどが挙げられる。このうち、コストの点からEVAが主に用いられる。封止剤（I1）、（I V）は、シート（フィルム状のもも含む）のもののが簡便であるが、ベースト状のものなどでもよい。
受光面側に位置する封止剤 (I I) 及び非受光面側に位置する封止剤 (I V) には、有機過酸化物が含まれてもよい。有機過酸化物を含有させることによって、封止剤 (I I) 及び (I V) で太陽電池セル (I I I) を挟み、加熱する際、ラジカル反応により封止剤 (I I) を架橋させたり、封止剤 (I I) と封止剤 (I V) とを架橋させたり、封止剤 (I V) を架橋させたりすることを高効率に行うことができる。

非受光面側の封止剤 (I V) 中に有機過酸化物を含有させることによって、加熱封止の際、硬化処理前の易接着剤層 (D') 中の (メタ) アクリロイル基合にも有機過酸化物が作用し、ラジカル重合が生起され、非受光面側の封止剤 (I V) と硬化処理前の易接着剤層 (D') とを架橋させたり、硬化処理前の易接着剤層 (D') を架橋させたりするので、接着力が向上するものと考察される。なお、本明細書における「硬化処理」は、封止剤 (I V) と太陽電池裏面保護シート (V) とを重ね合わせた後に、これらを接着するための処理を含む。

[0037] 封止剤中に含有する有機過酸化物は、封止剤の樹脂 100 重量部に対して、0.05 〜3.0 重量部用いるのが好ましい。有機過酸化物の具体例としては、tert- ブチルペーキシソブロビルカーポネート、tert- ブチルペーキシ 2 エチルヘキシルイソプロピルカーポネート、tert- ブチルペーキシシアセテート、tert- ブチルクミルペーキサイド、2, 5-ジメチル-2, 5-ジ (tert- ブチルペーキシ) ヘキサン、ジ-tert- ブチルペーキサイド、2, 5-ジメチル-2, 5-ジ (tert- ブチルペーキシ) ヘキシン_3, 2, 5-ジメチル-2, 5-ジ (tert- ブチルペーキシ) ヘキシン、1, 1-ジ (tert- ヘキシルペーキシ)_3, 3, 5-トリメチルシクロヘキサン、1, 1-ジ (tert- ヘキシルペーキシ)_シクロヘキサン、1, 1-ジ (tert- エキシルペーキシ)_シクロヘキサン、2, 2-ジ (tert- ブチルペーキシ) ブタン、メチルエチルケトンペーキサイド、2, 5-ジメチルヘキシル-2, 5
ジパーオキシベンゾエート、tert—プチルハイドロパーオキサイド、ジベンゾイルパーオキサイド、p_クロルベンゾイルパーオキサイド、tert—プチルオキシシソプチレート、n_プチル−4，4—ジ（tert−プチルパーオキシ）バレレート、エチル−3，3—ジ（tert−プチルパーオキシ）バレレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサンノンパーオキサイド、1，1—ジ（tert−プチルパーオキシ）3，3，5—トリメチルシクロヘキサン、n_プチル−4，4—ジ（tert−プチルパーオキシ）バレレート、2，2—ジ（tert−プチルパーオキシ）ブタン等が挙げられる。これらの有機過酸化物は、例えば、封止剤の樹脂をシート加工する際に添加して、溶融混練することによって、封止剤中に含有させることができる。

（メタ）アクリロイル基を有する化合物（B）は、（メタ）アクリロイル基を有しないアクリル系共重合体（A）100重量部に対して、0，1～20重量部の割合で含まれることが好ましく、さらには0，5～15重量部の割合であることが好ましく、1～10重量部の割合であることが特に好ましい。割合が0，1重量部よりも少ないと、充分な接着力向上効果が期待できず、20重量部よりも大きいと、（メタ）アクリロイル基を有する化合物（B）同士の架橋が密になり、基材や封止剤への接着力が低下する。

次に、ポリイソシアネート化合物（C）について説明する。

ポリイソシアネート化合物（C）は、（メタ）アクリル系共重合体（A）の水酸基と反応し、共重合体同士を架橋させることがで、塗膜に耐温熱性を付与すると共に、裏面保護シートを構成するプラスチックフィルム（E）や非受光面側の封止剤（ⅠV）であるEVA等の封止剤との密着性を向上させることができる。そのため、ポリイソシアネート化合物（C）は、一分子中に2つ以上のイソシアネート基を有することが重要であり、例えば、芳香族ポリイソシアネート、鎖式脂肪族ポリイソシアネート、脂環族ポリイソシアネート等が挙げられる。ポリイソシアネート化合物（C）は、1種類でも2種類以上の化合物を併用してもよい。
芳香族ポリイソシアネートとしては、1, 3-フエニレンジイソシアネート、4, 4'-ジフエニルメタンジイソシアネート、1, 4-フエニレンジイソシアネート、4, 4'-ジフエニルメタンジイソシアネート、2, 4-トリレンジイソシアネート、2, 6-トリレンジイソシアネート、4, 4'-トルイジンジイソシアネート、2, 4, 6-トリイソシアネートトルエン、1, 3, 5-トリイソシアネートベンゼン、ジアニシンジイソシアネート、4, 4'-ジフエニルエーテルジイソシアネート、4, 4', 4''-トリフエニルメタントリイソシアネート等を挙げることができる。

鎮式脂肪族ポリイソシアネートとしては、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート（HDI）、ペンタメチレンジイソシアネート、1, 2-プロピレンジイソシアネート、2, 3-ブチレンジイソシアネート、1, 3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2, 4, 4-トリメチルヘキサメチレンジイソシアネート等を挙げることができる。

脂環族ポリイソシアネートとしては、3-イソシアネートメチル-3, 5, 5-トリメチルシクロヘキシルイソシアネート（IPDI）、1, 3-シクロペンタンジイソシアネート、1, 3-シクロヘキサンジイソシアネート、1, 4-シクロヘキサンジイソシアネート、メチル-2, 4-シクロヘキサンジイソシアネート、メチル-2, 6-シクロヘキサンジイソシアネート、4, 4'-メチレンビス（シクロヘキシルイソシアネート）、1, 4-ビス（イソシアネートメチル）シクロヘキサン等を挙げることができる。

また、上記ポリイソシアネートに加え、上記ポリイソシアネートとトリメチロールプロパン等のポリオール化合物とのアダクト体、上記ポリイソシアネートのピュレット体やイソシアネート体、更には上記ポリイソシアネートと公知のポリエーテルポリオールやポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、ポリイソブレンポリオール等とのアダクト体等が挙げられる。

これらポリイソシアネート化合物（C）の中でも、意匠性の観点から、低
黄変型の脂肪族または脂環族のポリイソシアネートが好ましく、耐湿熱性の観点からは、イソシアヌレート体が好ましい。より具体的には、ヘキサメチレンジイソシアネート（HDI）のイソシアヌレート体、3-イソシアヌレートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート（IPDI）のイソシアヌレート体が好ましい。

さらに、これらポリイソシアネート化合物（C）のイソシアヌレート基のほぼ全量とブロック化剤とを反応させることで、ブロック化ポリイソシアネート化合物（B1）を得ることができる。本発明における太陽電池裏面シート保護用易接着剤を塗布して得られる硬化処理前の易接着剤層（D'）は、封止剤（IV）と貼り合わせて太陽電池モジュールを製造するまでは未架橋にあらることが好ましく、そのため、ポリイソシアネート化合物（C）は、ブロック化ポリイソシアネート化合物（C1）であることが好ましい。

ブロック化剤としては、例えばエチエノール、チオエチオエノール、メチルチオエノール、キシレノール、クレジール、レゾルシノール、ニトロフエノール、クロロフエノール等のフェノール類、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム等のオキシム類、セタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、t−ブチルアルコール、t−ベンタノール、エチレンジリコールモノエチルエーテル、エチレンジリコールモノブチルエーテル、ジエチレンジリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ペンジアルコールなどのアルコール類、3,5−ジメチルピラゾール、1,2−ピラゾール等のピラゾール類、1,2,4−トリアゾール等のトリアゾール類、エチレンクロルヒドリン、1,3−ジクロロ−2−プロパノール等のハロゲン置換アルコール類、ピーカプロラクタム、§−パレロラクタム、γ−プチロラクタム、β−プロピルラクタム等のラクタム類、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン、マロン酸メチル、マロン酸エチル等の活性メチレン化合物類が挙げられる。その他にもアミン類、イミド類、メルカプタン類、イミン類、尿素類、
ジアリール類も挙げられる。ブロック化剤は、1種類を用いてもよいし、2種類以上を併用して用いてもよい。

これらのブロック剤の中でも、ブロック剤の解離温度が80℃〜150℃のものが好ましい。解離温度が80℃未満であると、易接着剤を塗布し、溶剤を揮散させる際に、硬化反応が進んで、充填剤との密着性が低下してしまう恐れがある。解離温度が150℃を超えると、太陽電池モジュールを構成する際の真空熱圧着の工程で、硬化反応が充分に進行せず、充填剤との密着性が低下してしまう。

解離温度が80℃〜150℃のブロック剤としては、メチルエチルケトンオキシム（解離温度：140℃、以下同様）、3、5ジメチルピラゾール（120℃）、ジイソプロピルアミン（120℃）などが例示できる。

本発明の易接着剤におけるポリイソシアネート化合物（C）の量は、（メタ）アクリル系共重合体（A）に水酸基1個に対して、イソシアネート基が0.1〜5個の範囲で存在するような量であることが必要であり、さらには0.5〜4個の範囲であることが好ましい。0.1個より少なく、架橋密度が低すぎて、耐湿熱性が十分でなく、5個より多いと、過剰のイソシアネートが湿熱試験中に空気中の水分と反応して、塗膜が硬くなり、裏面保護シートを構成するプラスチックフィルム（E）や非受光面側の封止剤（IV）であるEVA等との封止剤との接着力低下の原因となる。

本発明の易接着剤は、図形分100重量部に対して、後述する有機系粒子、又は無機系粒子を0.01〜30重量部含有することができ、より好ましくは0.1〜10重量部含有することができる。これらの粒子を含有することによって、硬化処理前の易接着剤層（D')表面のタックを低減することが可能。含有量が0.01重量部より少ないと、硬化処理前の易接着剤層（D')表面のタックを充分に低減することができない。一方、上記各種粒子が多くなると、硬化処理前の易接着剤層（D')と封止剤との密着を阻害し、接着力の低下を招く可能性がある。

特に、有機系粒子においては、融点もしくは転化点が150℃以上のもの
を好ましく用いることができる。有機系粒子の融点もしくは軟化点が150°Cよりも低いと、太陽電池モジュールを構成する際の真空熱圧着の工程で粒子が軟化し、封止剤との接着を妨げる恐れがある。

[0052]有機系粒子の具体例としては、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、ナイロン（登録商標）樹脂、メラミン樹脂、グアナミン樹脂、フェノール樹脂、ウレア樹脂、シリコン樹脂、メタクリレート樹脂、アクリレート樹脂などのポリマー粒子、あるいは、セルロースパウダー、ニトロセルロースパウダー、木粉、古紙粉、粉殻粉、澱粉などが挙げられる。有機系粒子は、1種類を用いてもよいし、2種類以上を併用して用いてもよい。

[0053]前記ポリマー粒子は、乳化重合法、懸濁重合法、分散重合法、ソープフリー重合法、シート重合法、マイクロサスペション重合法などの重合法によく得ることができる。また、前記有機系粒子は、その特性を損なわない程度に不純物を含んでいてもよい。また、粒子の形状は、粉末状、粒状、顆粒状、平板状、繊維状など、どのような形状であってもよい。

[0054]無機粒子の具体例としては、マグネシウム、カルシウム、バリウム、亜鉛、ジルコニウム、モリブデン、ケイ素、アンチモン、チタン、などの金属の酸化物、水酸化物、硫酸塩、炭酸塩、ケイ酸塩、などを含有する無機系粒子が挙げられる。さらに詳細な具体例としては、シリカゲル、酸化アルミニウム、水酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化亜鉛、鉛酸化物、珪藻土、ゼオライト、アルミノシリケート、タルク、ホワイトカーボン、マイカ、ガラス繊維、ガラス粉末、ガラスビーズ、クレー、ワラスナイト、酸化鉄、酸化アンチモン、酸化チタン、リトボン、軽石粉、硫酸アルミニウム、ケイ酸ジルコニウム、炭酸バリウム、ドロマイト、ニフシ酸モリブデン、砂鉄、カーボンプラックなどを含有する無機系粒子が挙げられる。無機粒子は、1種類を用いてもよいし、2種類以上を併用して用いてもよい。

[0055]また、前記無機系粒子は、その特性を損なわない程度に不純物を含んでいてもよい。また、粒子の形状は、粉末状、粒状、顆粒状、平板状、繊維状な
ど、どのような形状であってもよい。

また、本発明における易接着剤には、必要に応じて、本発明による効果を妨げない範囲で、架橋促進剤を添加してもよい。架橋促進剤は（メタ）アクリル系共重合体（A）の水酸基とポリイソシアネート化合物（C）のイソシアネートによるウレタン結合反応を促進する触媒としての役割を果たす。架橋促進剤としては、スズ化合物、金属塩、塩基などが挙げられ、具体的にはオクチル酸スズ、ジブチルスジアセテート、ジブチルスジラウレート、ジオクチルスジラウレート、塩化スズ、オクチル酸鉄、オクチル酸コバルト、ナフテン酸亜鉛、トリエチルアミン、トリエチレンジアミンなどが挙げられる。これらは、単独または組み合わせて用いることができる。

また、本発明における易接着剤には、必要に応じて、本発明による効果を妨げない範囲で、充填剤、チクソトロピー付与剤、老化防止剤、酸化防止剤、帯電防止剤、難燃剤、熱伝導性改良剤、可塑剤、ダレ防止剤、防汚剤、防菌剤、消泡剤、レベリング剤、硬化剤、増粘剤、顔料分散剤、シランカップリング剤等の各種の添加剤を添加してもよい。

本発明に用いられる易接着剤には、溶剤が含まれる。

溶剤としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテル等のアルコール類、アセトン、メチルエチルケトン、メチルイソプロチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、ヘキサン、ヘプタン、オクタン等の炭化水素類、ベンゼン、トルエン、キシレン、クメン等の芳香族類、酢酸エチル、酢酸ブチル等のエステル類、などの内から樹脂組成物の組成に応じ適当なものを使用できるが、沸点が50℃～200℃のものを好ましく用いることができる。沸点が50℃よりも低いと、易接着剤を塗布する際に
溶剤が揮発するため、固形分が高くなって均一な膜厚で塗布することが難しくなる。沸点が200°Cよりも高いと、溶剤を乾燥しづらくなる。なお、溶剤は2種以上用いてもよい。

[0059] 本発明の易接着着は、プラスチックフィルム（E）に塗工して易接着剤層（D'）を形成することで、封止剤（IV）との接着性が良好な太陽電池裏面保護シート（V'）を作製することができる。

[0060] 本発明の易接着着を、プラスチックフィルム（E）に塗工する方法としては、従来公知の方法を用いることができる。具体的には、コンマコーティング、グラビアコーティング、リバースコーティング、ロールコーティング、リップコーティング、スプレーコーティングなどが例示できる。これらの方 法で易接着着を塗布し、加熱乾燥により溶剤を揮散させることで、硬化処理前の易接着剤層（D'）を形成することができる。

硬化処理前の易接着剤層（D'）の厚みは、0.01〜30μmであること好ましく、0.1〜10μmであることより好ましい。

[0061] プラスチックフィルム（E）としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリナフタレンテレフタレートなどのポリエステル系樹脂フィルム、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデンフィルム、ポリテトラフルオロエチレンフィルム、エチレン-テトラフルオロエチレン共重合体フィルムなどのフッ素系フィルム、アクリルフィルム、トリオセルセルロースフィルム、を用いることができる。フィルム剛性、コストの観点からポリエステル系樹脂フィルムであることが好ましく、この中でもポリエチレンテレフタレートフィルムであることが好ましい。プラスチックフィルム（E）は、1層または2層以上の複層構造でも構わないと、さらには、プラスチックフィルム（E）には、金属酸化物や非金属無機酸化物を蒸着した蒸着フィルム等が積層されているも良い。

[0062] 蒸着される金属酸化物もしくは非金属無機酸化物としては、例えば、ケイ素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウ
ム、ホウ素、チタン、鉛、ジルコニウム、イットリウムなどの酸化物が使用できる。また、アルカリ金属、アルカリ土類金属のフッ化物なども使用することができ、これらは単独もしくは組み合わせて使用することができる。

これらの金属酸化物もしくは非金属無機酸化物は、従来公知の真空蒸着、イオンプレーティング、スパッタリングなどのPVD方式や、プラズマCVD、マイクロウエーブCVDなどのCVD方式を用いて蒸着することができる。

次に太陽電池モジュールについて説明する。

太陽電池モジュール 100 は、太陽電池セル (III) に対し、太陽電池
セルの受光面側に位置する太陽電池表面保護材（I）を太陽電池セルの受光面側に位置する硬化処理前の封止剤（I'）を介して積層し、硬化処理前の太陽電池裏面保護シート（V'）を太陽電池セルの非受光面側に位置する硬化処理前の封止剤（I V）を介して積層し、減圧下で高温加熱压着することによって得ることができる。

[0068] 太陽電池表面保護材（I）としては、特に限定されないが、好適な例としては、ガラス板、ポリカーポネートやポリアクリレートのプラスチック板などを挙げることができる。透明性、耐候性、強粘性などの点からは、ガラス板が好ましい。さらには、ガラス板の中でも透明性の高い白板ガラスが好ましい。

[0069] 封止剤（I I）、（I V）として使用されるEVA等の封止剤には、耐候性向上のための紫外線吸収剤、光安定剤や、EVA自身を架橋させるための有機過酸化合物などの添加剤が含まれていも良い。

[0070] 本発明の易接着剤層（D')は、太陽電池モジュールを形成するときの高温加熱压着工程において、（メタ）アクリロイル基を有する化合物（B）の（メタ）アクリロイル基がラジカル反応により封止剤（I V）と架橋したり、（メタ）アクリロイル基を有する化合物（B）同士で架橋したりすることにより封止剤（I V）との接着力が向上する。また、封止剤（I V）の中に有機過酸化合物が含まれていると、この架橋反応が促進されるため、本発明の効果が最大限に発揮される。従って、非受光面側に位置する封止剤（I V）は、有機過酸化合物を含有することが好ましい。

[0071] 太陽電池セル（I I I）としては、結晶シリコン、アモルファスシリコン、銅インジウムセレナイドに代表される化合物半導体などの光電変換層に電極を設けたもの、さらにはそれらをガラス等の基板上に積層したもの等が示示できる。

実施例

[0072] 以下、実施例により、本発明をさらに詳細に説明するが、本発明は、以下の実施例によって限定されるものではない。なお、実施例中、部は重量部を
、％は重量％をそれぞれ示す。表1に（メタ）アクリル系共重合体の物性を示す。

[0073] <（メタ）アクリル系共重合体A1溶液>

冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコに、メチルメタクリレート88部、n_プチルメタクリレート80部、2—ヒドロキシエチルメタクリレート2部、トルエン100部を仕込み、窒素雰囲気下で撹拌しながら100℃まで昇温した。次いで、アソビスイソブチロニトリルを0.15部加えて2時間重合反応を行った。続いて、アソビスイソブチロニトリルを0.07部加えてさらに2時間重合反応を行い、更に0.07部のアソビスイソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が36,000、水酸基価が90（mg KOH/g）、Tgカット1℃、固形分50％の（メタ）アクリル系共重合体A1溶液を得た。

[0074] なお、数平均分子量、ガラス転移温度、酸価、水酸基価は、下記に記述するようにして測定した。

[0075] <数平均分子量（Mn）の測定>

Mnの測定は、前述したGPC（ゲルペーミエーショングラマトラフィー）によって求めた

[0076] <ガラス転移温度（Tg）の測定>

ガラス転移温度の測定は、前述した示差走査熱量測定（DSC）法により求める。なお、Tg測定用の試料は、上記のアクリル樹脂溶液を150℃で約15分、加熱し、乾固させたものを用いた。

[0077] <酸価（AV）の測定>

共栓三角フラスコ中に試料（樹脂の溶液：約50％）約1gを精密に量り探り、トルエン／エタノール（容量比：トルエン／エタノール＝2／1）混合液100mlを加えて溶解する。これに、フエノールフタレイン試液を指示薬として加え、30秒間保持する。その後、溶液が淡赤色を呈するまで0
1 N アルコール性水酸化カリウム溶液で滴定する。酸価は次式により求めた。酸価は樹脂の乾燥状態の数値とした（単位：mg KOH/g）。

酸価（mg KOH/g） = \[\frac{(5.611 \times a \times F)}{S} \] / (不揮発分濃度 / 100)

ただし、S : 試料の採取量（g）
a : 0.1 N アルコール性水酸化カリウム溶液の消費量（m L）
F : 0.1 N アルコール性水酸化カリウム溶液の力価

<水酸基価（OHV）の測定>

共栓三角フラスコ中に試料（樹脂の溶液：約50%）約1 g を精密に量り採り、トルエン/エタノール（容量比：トルエン/エタノール=2/1）混合液 100 mL を加えて溶解する。更にアセチル化剤（無水酢酸25 g をピリジンで溶解し、容量 100 mL とした溶液）を正確に 5 mL 加え、約 1 時間攪拌した。これにフエノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで 0.1 N アルコール性水酸化カリウム溶液で滴定する。

水酸基価は次式により求めた。水酸基価は樹脂の乾燥状態の数値とした（単位：mg KOH/g）。

水酸基価（mg KOH/g）
= \[\frac{[(b - a) \times F \times 2.25]}{S} \] / (不揮発分濃度 / 100) + D

ただし、S : 試料の採取量（g）
a : 0.1 N アルコール性水酸化カリウム溶液の消費量（m L）
b : 空実験の 0.1 N アルコール性水酸化カリウム溶液の消費量（m L）
F : 0.1 N アルコール性水酸化カリウム溶液の力価
D : 酸価（mg KOH/g）

<（メタ）アクリル系共重合体 A 2 溶液>

冷却管、攪拌装置、温度計、窒素導入管を備えた 4 つロフラスコに、メチルメタクリレート18部、n_ブチルメタクリレート80部、2_ヒドロキ
シェチルメタクリレート2部、トルエン100部を仕込み、窒素雰囲気下で
撹拌しながら100℃まで昇温し、アソビスイソブチロニトリルを0.3部
加えて2時間重合反応を行った。続いて、アソビスイソブチロニトリルを0.
.07部加えてさらに2時間重合反応を行い、更に0.07部のアソビスイ
ソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均
分子量が25,000、水酸基価が8.2 (mg KOH/g)、Tgが70℃、固形分50%の
(メタ)アクリル系共重合体A4溶液を得た。

[0080] < (メタ)アクリル系共重合体A3溶液>

冷却管、撹拌装置、温度計、窒素導入管を備えた4つロプラスコに、メチ
ルメタクリレート18部、n-ブチルメタクリレート80部、2—ヒドロキシ
シェチルメタクリレート2部、トルエン100部を仕込み、窒素雰囲気下で
撹拌しながら80℃まで昇温し、アソビスイソブチロニトリルを0.075
部加えて2時間重合反応を行った。続いて、アソビスイソブチロニトリルを
0.07部加えてさらに2時間重合反応を行い、更に0.07部のアソビスイ
ソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平
均分子量が76,000、水酸基価が8.0 (mg KOH/g)、Tgが70℃、固形分50%の
(メタ)アクリル系共重合体A3溶液を得た。

[0081] < (メタ)アクリル系共重合体A4溶液>

冷却管、撹拌装置、温度計、窒素導入管を備えた4つロプラスコに、n-
ブチルメタクリレート98部、2—ヒドロキシエチルメタクリレート2部
、トルエン100部を仕込み、窒素雰囲気下で撹拌しながら100℃まで昇
温し、アソビスイソブチロニトリルを0.15部加えて2時間重合反応を行
った。続いて、アソビスイソブチロニトリルを0.07部加えてさらに2時
間重合反応を行い、更に0.07部のアソビスイソブチロニトリルを加えて
さらに2時間重合反応を行うことにより、数平均分子量が35,000、水
酸基価が8.8 (mg KOH/g)、Tgが71℃、固形分50%の(メタ)
アクリル系共重合体A4溶液を得た。

[0082] < (メタ)アクリル系共重合体A5溶液>
冷却管、攪拌装置、温度計、窒素導入管を備えた4つ口フラスコに、メチルメタクリレート41部、n-ブチルメタクリレート57部、2-ヒドロキシルエチルメタクリレート2部、トルエン100部を仕込み、窒素雰囲気下で攪拌しながら100℃まで昇温し、アゾピスイソブチロニトリルを0.15部加えて2時間重合反応を行った。続いて、アゾピスイソブチロニトリルを0.07部加えてさらに2時間重合反応を行い、更に0.07部のアゾピスイソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が4000、水酸基価が7.9（mgKOH/g）、Tgが51℃、固形分50%の（メタ）アクリル系共重合体A5溶液を得た。

<（メタ）アクリル系共重合体A6溶液>

冷却管、攪拌装置、温度計、窒素導入管を備えた4つ口フラスコに、メチルメタクリレート20部、n-ブチルメタクリレート65部、2-ヒドロキシルエチルメタクリレート15部、トルエン100部を仕込み、窒素雰囲気下で攪拌しながら100℃まで昇温し、アゾピスイソブチロニトリルを0.15部加えて2時間重合反応を行った。続いて、アゾピスイソブチロニトリルを0.07部加えてさらに2時間重合反応を行い、更に0.07部のアゾピスイソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が45000、水酸基価が62.1（mgKOH/g）、Tgが40℃、固形分50%の（メタ）アクリル系共重合体A6溶液を得た。

<（メタ）アクリル系共重合体A7溶液>

冷却管、攪拌装置、温度計、窒素導入管を備えた4つ口フラスコに、メチルメタクリレート18部、n-ブチルメタクリレート78部、2-ヒドロキシルエチルメタクリレート4部、酢酸エチル100部を仕込み、窒素雰囲気下で攪拌しながら77℃まで昇温し、アゾピスイソブチロニトリルを0.05部加えて2時間重合反応を行った。次に、酢酸エチル22部、および0.05部のアゾピスイソブチロニトリルを加えて2時間重合反応を行い、更に酢酸エチル22部、および0.05部のアゾピスイソブチロニトリルを加えて2時間重合反応を行った。その後、酢酸エチル36部および0.05部
のアゾピスイソブチロニトリルを加えて2時間重合反応を行い、さらに0.05部のアゾピスイソブチロニトリルを加えて2時間重合反応を行い、数平均分子量が244,000、水酸基価が16.0（mg KOH/g）、Tgが35℃、固形分35％の（メタ）アクリル系共重合体溶液A7を得た。

【0085】<（メタ）アクリル系共重合体A8溶液>
冷却管、攪拌装置、温度計、窒素導入管を備えた4つロフラスコに、メチルメタクリレート20部、n_ブチルメタクリレート57部、2—ヒドロキシルエチルメタクリレート23部、トルエン100部を仕込み、窒素雰囲気下で攪拌しながら100℃まで昇温し、アゾピスイソブチロニトリルを0.13部加えて2時間重合反応を行い、次に、アゾピスイソブチロニトリルを0.07部加えてさらに2時間重合反応を行った。更に0.07部のアゾピスイソブチロニトリルを加えてさらに2時間重合反応を行い、数平均分子量が42,000、水酸基価が97.5（mg KOH/g）、Tgが44℃、固形分50％のアクリル樹脂溶液A8を得た。

【0086】<（メタ）アクリル系共重合体A9溶液>
冷却管、攪拌装置、温度計、窒素導入管を備えた4つロフラスコに、メチルメタクリレート18部、n_ブチルメタクリレート82部、トルエン100部を仕込み、窒素雰囲気下で攪拌しながら100℃まで昇温し、アゾピスイソブチロニトリルを0.15部加えて2時間重合反応を行った。続いて、アゾピスイソブチロニトリルを0.07部加えてさらに2時間重合反応を行い、更に0.07部のアゾピスイソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が42,000、水酸基価が0（mg KOH/g）、Tgが36℃、固形分50％の（メタ）アクリル系共重合体A7溶液を得た。

【0087】<（メタ）アクリル系共重合体A10溶液>
冷却管、攪拌装置、温度計、窒素導入管を備えた4つロフラスコに、メチルメタクリレート18部、n_ブチルメタクリレート80部、2—ヒドロキシルエチルメタクリレート2部、トルエン100部を仕込み、窒素雰囲気下で
撹拌しながら100℃まで昇温し、アゾビスイソブチロニトリルを0.6部加えて2時間重合反応を行った。続いて、アゾビスイソブチロニトリルを0.05部加えてさらに2時間重合反応を行い、更に0.05部のアゾビスイソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が12,000、水酸基価が8.6 (mg KOH/g)、Tg力が3℃、固形分50%の（メタ）アクリル系共重合体A8溶液を得た。

<（メタ）アクリル系共重合体A11溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つロフラスコに、n_ブチルメタクリレート63部、2—エチルヘキシルメタクリレート66部、2—ヒドロキシエチルメタクリレート2部、トルエン100部を仕込み、窒素雰囲気下で撹拌しながら100℃まで昇温し、アゾビスイソブチロニトリルを0.15部加えて2時間重合反応を行った。続いて、アゾビスイソブチロニトリルを0.07部加えてさらに2時間重合反応を行い、更に0.307部のアゾビスイソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が36,000、水酸基価が9.2 (mg KOH/g)、Tg が2℃、固形分50%の（メタ）アクリル系共重合体A9溶液を得た。

<（メタ）アクリル系共重合体A12溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つロフラスコに、メチルメタクリレート64部、n_ブチルメタクリレート34部、2—ヒドロキシエチルメタクリレート2部、トルエン100部を仕込み、窒素雰囲気下で撹拌しながら100℃まで昇温し、アゾビスイソブチロニトリルを0.15部加えて2時間重合反応を行った。続いて、アゾビスイソブチロニトリルを0.07部加えてさらに2時間重合反応を行い、更に0.07部のアゾビスイソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が38,000、水酸基価が8.2 (mg KOH/g)、Tg力が9℃、固形分50%の（メタ）アクリル系共重合体A10溶液を得た。

<（メタ）アクリル系共重合体A13溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコに、メチルメタクリレート20部、n-ブチルメタクリレート55部、2-ヒドロキシエチルメタクリレート25部、トルエン100部を仕込み、窒素雰囲気下で撹拌しながら100℃まで昇温し、アゾビシソブチロニトリルを0.15部加えて2時間重合反応を行った。続いて、アゾビシソブチロニトリルを0.07部加えてさらに2時間重合反応を行い、更に0.07部のアゾビシソブチロニトリルを加えてさらに2時間重合反応を行うことにより、数平均分子量が37,000、水酸基価が109（mgKOH/g）、Tgが44℃、固形分50%の（メタ）アクリル系共重合体A11溶液を得た。

[0091] <（メタ）アクリロイル基を有する化合物B1→B6>

（メタ）アクリロイル基を有する化合物B1→B6には、表2に記載した化合物をそのまま用いた。

[0092] <アリル基含有化合物H1→H4>

アリル基含有化合物H1→H4には、表2に記載した化合物をそのまま用いた。

[0093] <ポリイソシアネート化合物（C）溶液>

3,5ジメチルビラゾールでブロックされた、ヘキサメチレンジイソシアネートのイソシアヌレート体を、酢酸エチルで75%に希釈し、ポリイソシアネート化合物（C）溶液を得た。

[0094] <易接着力溶液の調整>

（メタ）アクリル系共重合体（A）溶液、（メタ）アクリロイル基を有する化合物（B）、アリル基含有化合物（H）、ポリイソシアネート化合物（C）溶液を表2に示す組合せて混合し、さらに（メタ）アクリル系共重合体（A）溶液の固形分100重量部に対して、いずれも触媒としてジオクチル錫ラウレートを0.01重量部配合し、易接着力溶液1→3を1を得た。

[0095] <太陽電池裏面保護シートの作製>

ポリエステルフィルム（帝人デュポンフィルム株製、テトロン（登録商標）S、厚み188μm、）の両面にコロナ処理し、一方の面にポリエス
テル接着剤「ダイナレオVA－3020／HD－701」（トーヨーケム（株）製、配合比100/7、以下同）をグラビアコーティングによって塗布し、溶剤を乾燥させ、塗布量：10g/平方メートルの接着剤層を設け、該接着剤層に、下記の蒸着PET（三菱樹脂（株）製、テックバリアルX、厚み12μm）の蒸着面を重ね合わせた。その後、50℃、4日間、エージング処理し、接着剤層を硬化させ、ポリエステルフィルム—蒸着PET積層体を作製した。

さらに、ポリエステルフィルム—蒸着PET積層体の蒸着PET側の表面に、ポリエステル接着剤「ダイナレオVA－3020／HD－701」（トーヨーケム（株）製、配合比100/7、以下同）をグラビアコーティングによって塗布し、溶剤を乾燥させ、塗布量：10g/平方メートルの接着剤層を設け、該接着剤層に、ポリフッ化ビニルフィルム（デュポン（株）製、テトラーチ、厚さ50μm）を重ね合わせた。その後、50℃、4日間、エージング処理し、接着剤層を硬化させ、ポリエステルフィルム—蒸着PET—ポリフッ化ビニルフィルム積層体を作製した。

さらに、ポリエステルフィルム—蒸着PET—ポリフッ化ビニルフィルム積層体のポリエステルフィルム面に、易接着剤溶液1をグラビアコーティングによって塗布し、溶剤を乾燥させ、塗布量：1g/平方メートルの易接着剤層を設け、太陽電池裏面保護シート1を作製した。

太陽電池裏面保護シート1と同様にして、易接着剤溶液2～3を用いて、太陽電池裏面保護シート2～3を作製した。

太陽電池裏面保護シート1と同様の作製方法で、易接着剤層を設けない、ポリエステルフィルム—蒸着PET—ポリフッ化ビニルフィルムの層構成となる太陽電池裏面保護シート32を作製した。

＜接着力評価用サンプルの作製＞
白板ガラス、酢酸ビニルエチレン共重合体フィルム（サンビック（株）製、スタンダードキュアタイプ、以下EVAフィルム）、太陽電池裏面保護シート1を、太陽電池裏面保護シート1の易接着剤層がEVAフィルムに接す
るように順に重ねた。その後、この畳層体を真空ラミネーターに入れ、1 Torr程度に真空排気して、プレス圧力0.1 MPaで、150℃30分間加熱後、さらに150℃で30分間加熱し、10cm×10cm角の接着力評価用サンプル1を作製した。

[0101] 接着力評価用サンプル1と同様にして、太陽電池裏面保護シート2〜31を用いて、接着力評価用サンプル2〜31を作製した。

[0102] 白板ガラス、EVAフィルム、太陽電池裏面保護シート32を、太陽電池裏面保護シート32のポリイミドフィルム側の表面がEVAフィルムに接着するように順に重ね、接着力評価用サンプル1と同様にして、接着力評価用サンプル32を作製した。

[0103] [実施例1]

接着力評価用サンプル1を用い、後述する方法で、易接着剤層のEVAフィルムへの接着性、耐湿熱試験後（1000時間後、2000時間後）接着性の評価を行った。

[0104] <接着性測定>

接着力評価用サンプル1の太陽電池裏面保護シート1面をカッターで15mm幅に切り、太陽電池裏面保護シート1に形成された易接着剤層と封止剤であるEVAフィルムとの接着力を測定した。測定には、引っ張り試験機を用い、荷重速度100m/minで180度剥離試験を行った。得られた測定値に対して、以下のように評価した。

○：50N/15mm以上
〇：30N/15mm以上〜50N/15mm未満
△：10N/15mm以上〜30N/15mm未満
×：10N/15mm未満

[0105] <耐湿熱試験後接着性>

接着力評価用サンプル1を、温度85℃、相対湿度85％RHの環境条件で1000時間、2000時間静置した後、接着性測定と同様にして、耐湿熱試験後接着性の評価を行った。
実施例1と同様にして、接着力評価用サンプル2〜19を用い、易接着剤層のEVAフィルムへの接着性、耐湿熱試験後接着性の評価を行い、実施例2〜19とした。

実施例1と同様にして、接着力評価用サンプル20〜31を用い、易接着剤層のEVAフィルムへの接着性、耐湿熱試験後接着性の評価を行い、比較例1〜12とした。

実施例1と同様にして、接着力評価用サンプル32を用い、ポリエステルフィルム表面とEVAフィルムとの接着性、耐湿熱試験後接着性の評価を行い、比較例13とした。

以上の結果を表2、又は表3に示す。

[表1]

<table>
<thead>
<tr>
<th>組成</th>
<th>Tg</th>
<th>数平均分子量</th>
<th>OH価</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 MMA/n-BMA/HEMA=18/80/2</td>
<td>31</td>
<td>36000</td>
<td>9.0</td>
</tr>
<tr>
<td>A2 MMA/n-BMA/HEMA=18/80/2</td>
<td>33</td>
<td>25000</td>
<td>8.2</td>
</tr>
<tr>
<td>A3 MMA/n-BMA/HEMA=18/80/2</td>
<td>34</td>
<td>76000</td>
<td>8.0</td>
</tr>
<tr>
<td>A4 n-BMA/HEMA=98/2</td>
<td>19</td>
<td>35000</td>
<td>8.8</td>
</tr>
<tr>
<td>A5 MMA/n-BMA/HEMA=41/57/2</td>
<td>51</td>
<td>40000</td>
<td>7.9</td>
</tr>
<tr>
<td>A6 MMA/n-BMA/HEMA=20/65/15</td>
<td>40</td>
<td>45000</td>
<td>62.1</td>
</tr>
<tr>
<td>A7 MMA/n-BMA/HEMA/HEMA=18/78/4</td>
<td>35</td>
<td>244000</td>
<td>16.0</td>
</tr>
<tr>
<td>A8 MMA/n-BMA/HEMA=20/57/23</td>
<td>44</td>
<td>42000</td>
<td>97.5</td>
</tr>
<tr>
<td>A9 MMA/n-BMA=18/82</td>
<td>36</td>
<td>42000</td>
<td>0</td>
</tr>
<tr>
<td>A10 MMA/n-BMA/HEMA=18/80/2</td>
<td>33</td>
<td>12000</td>
<td>8.6</td>
</tr>
<tr>
<td>A11 n-BMA/2-EHMA/HEMA=32/66/2</td>
<td>2</td>
<td>36000</td>
<td>9.2</td>
</tr>
<tr>
<td>A12 MMA/n-BMA/HEMA=64/34/2</td>
<td>69</td>
<td>38000</td>
<td>8.2</td>
</tr>
<tr>
<td>A13 MMA/n-BMA/HEMA=20/55/25</td>
<td>44</td>
<td>37000</td>
<td>109</td>
</tr>
<tr>
<td>実効数</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0HM</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

アクリル共重合体（A）

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>31</th>
<th>36000</th>
<th>9</th>
<th>100</th>
<th>100</th>
<th>100</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A2</td>
<td>33</td>
<td>25000</td>
<td>8.2</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>34</td>
<td>7600</td>
<td>8</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>19</td>
<td>35200</td>
<td>8.8</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A5</td>
<td>51</td>
<td>40000</td>
<td>7.9</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A6</td>
<td>40</td>
<td>45000</td>
<td>62.1</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A7</td>
<td>35</td>
<td>44000</td>
<td>16</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A8</td>
<td>44</td>
<td>42000</td>
<td>97.5</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A9</td>
<td>36</td>
<td>42000</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A10</td>
<td>33</td>
<td>12000</td>
<td>8.6</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A11</td>
<td>2</td>
<td>36000</td>
<td>9.2</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A12</td>
<td>69</td>
<td>38000</td>
<td>8.2</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A13</td>
<td>44</td>
<td>70000</td>
<td>109</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

アクリル共重合体（B）

<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>アロニックス M-215</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B2</td>
<td>アロニックス M-315</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>エポキシエチル トポ</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>KAYARA PET-30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>TMPTA</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>アロニックス M-402</td>
<td>5</td>
</tr>
</tbody>
</table>

ポリソシアネート化合物（C）

<table>
<thead>
<tr>
<th></th>
<th>H1</th>
<th>TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2</td>
<td>ポリオキシエチル E-10</td>
</tr>
<tr>
<td></td>
<td>H3</td>
<td>ポリオキシ T-20</td>
</tr>
<tr>
<td></td>
<td>H4</td>
<td>ポリオキシ P-30M</td>
</tr>
</tbody>
</table>

触媒

<table>
<thead>
<tr>
<th></th>
<th>ジン酸塩ジラウレート</th>
<th>0.01</th>
</tr>
</thead>
</table>

密着性

<table>
<thead>
<tr>
<th></th>
<th>初期</th>
<th>10000後</th>
<th>20000後</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@</td>
<td>@</td>
<td>@</td>
</tr>
</tbody>
</table>

* 表中の配合比は、高塗膜帯装の固形成分成
比較例

<table>
<thead>
<tr>
<th>アクリル共重合体 (A)</th>
<th>比較例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tg (℃)</td>
<td></td>
<td>31</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Mn (g/mol)</td>
<td></td>
<td>36000</td>
<td>28000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>OH値</td>
<td></td>
<td>9</td>
<td>8.2</td>
<td></td>
<td></td>
<td>6.5</td>
<td></td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アクリル基含有化合物 (B)</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>アロニックス M-215</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>アロニックス M-315</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td>エポキシエステル T0PA</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td>KAYARAD PET-30</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td></td>
<td>TMPTA</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td></td>
<td>アロニックス M-402</td>
<td>5 5 5 5 5 5 5 5</td>
<td></td>
</tr>
<tr>
<td>ポリイソシアネート化合物 (C)</td>
<td></td>
</tr>
<tr>
<td>配合量</td>
<td></td>
</tr>
<tr>
<td>NCO/ON比</td>
<td></td>
<td>-2</td>
<td>3 2 2 2 2 2 2 2 2 0 0</td>
<td></td>
</tr>
<tr>
<td>耐塩熱試験</td>
<td></td>
<td>1000時間後</td>
<td></td>
</tr>
<tr>
<td>密着性</td>
<td></td>
<td>△ △ △ △ △ △ △ △ △ △ △ △ △</td>
<td></td>
</tr>
<tr>
<td>耐塩熱試験</td>
<td></td>
<td>2000時間後</td>
<td></td>
</tr>
</tbody>
</table>

*1 〜 6 は、表2と同様
*7 TAC : トリメチルイソシアネート（日本化成 株式会社）
*8 エポジシE-10：エポキシモノメタクリル酸エチル（ダイソーレ・ダイソーレ（株））
*9 エポジシT-20：トドメテールプロパンジアクリレート（ダイソーレ（株））
*10 エポジシP-30M：ペンタエリスリートールドリアルエーテル（ダイソーレ・ダイソーレ（株））

** 表中の配合比は、易着剤溶液の固形分組成

[0111] 表2に示されるように、実施例1〜19は、本発明の易着剤を使用した太陽電池用裏面保護シートがEVAフィルムに対して十分な接着性、耐温熱試験後接着性を有する。

[0112] これに対して、比較例1は、（メタ）アクリル系共重合体（A）のOH値が2より小さいために架橋が十分でなく接着性に劣る。

比較例2は、（メタ）アクリル系共重合体（A）の分子量が低すぎて耐湿
熱試験後接着性に劣る。

比較例3は、(メタ)アクリル系共重合体(A)のTgが低すぎて凝集力
が小さいために接着性に劣り、比較例4は(メタ)アクリル系共重合体
(A)のTgが高すぎて易接着剤層(D')が硬くなるために接着性に劣る。

また、比較例5は、(メタ)アクリル系共重合体(A)のOH値が100
より大きいために架橋が過剰になって接着性に劣る。

[01] 3 比較例7-10は、(メタ)アクリロイル基を有する化合物
(B)の代わりにアクリル含有化合物(H)を添加しているが、アクリル基は
(メタ)アクリロイル基に比べて反応性が低いため、充分な接着力向上効果が得られない。

[01] 4 比較例11は、ポリイソシアネート化合物(C)を用いず、硬化剤とアクリ
リル系共重合体(A)のNCO/OH比が0であるため架橋反応が起こらず
耐湿熱試験後接着性に劣り、比較例12は、NCO/OH比が10であるた
め架橋が過剰になって接着性、耐湿熱試験後接着性に劣る。

[実施例20]

<太陽電池モジュールの作製>

白板ガラス・・・太陽電池表面封止剤(I)

EVAフィルム・・・受光面側の封止剤(I I)

多結晶シリコン太陽電池素子・・・太陽電池セル(I I I)

E VAフィルム・・・非受光面側の封止剤(I V)

上記(I)〜(IV)及び太陽電池裏面保護シート1を、太陽電池裏面保
護シート1の易接着層が非受光面側の封止剤(I V)に接するように順に重
ねた後、真空ラミネーターに入れ、1 Torr程度に真空排気して、プレス
圧力としては大気圧の圧力をかけた状態で、150℃30分間加熱後、さら
に150℃で30分間加熱し、10cm×10cm角の光電変換効率評価用

太陽電池モジュール1を作製した。

[01] 6 <光電変換効率の測定>

得られた太陽電池モジュール1の太陽電池出力を測定し、J I S
C 89
12に従って、ソーラーシュミレーター(英弘精機製、SS—100×1 L
を用いて光電変換効率を測定した。
さらに、温度 85℃、相対湿度 85% R H の環境条件で 500 時間、1000 時間、1500 時間、2000 時間静置した後の耐湿熱試験後の光電変換効率を、同様にして測定した。初期の光電変換効率に対する、耐湿熱試験後の光電変換効率の低下の割合を計算し、以下のように評価した。
〇 : 出力の低下が 10% 未満
△ : 出力の低下が 10% 以上〜15% 未満
× : 出力の低下が 20% 以上

実施例 20 と同様にして、太陽電池裏面保護シート 2 〜11 を用いて太陽電池モジュール 2 〜11 (実施例 21 〜30)、太陽電池裏面保護シート 2 0 〜26 を用いて太陽電池モジュール 12 〜18 (比較例 14 〜20) を作製し、光電変換効率 (初期、耐湿熱試験後) を測定した。

太陽電池裏面保護シートの代わりに太陽電池裏面保護シート 3 2 を用い、太陽電池裏面保護シート 3 2 のポリエステルフィルムの表面が非受光面側の封止剤 (IV) に接するように積層した以外は、実施例 20 と同様にして、太陽電池モジュール 19 を作製し、光電変換効率 (初期、耐湿熱試験後) を測定した。これを比較例 21 とした。
以上の結果を表 4 に示す。
表4. 太陽電池モジュール

<table>
<thead>
<tr>
<th>実施例</th>
<th>太陽電池モジュール</th>
<th>太陽電池裏面保護シート</th>
<th>耐湿熱試験後の出力低下</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1 1</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2 2</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3 3</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4 4</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5 5</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6 6</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>7 7</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8 8</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>9 9</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>10 10</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>11 11</td>
<td>0 0 0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12 20</td>
<td>△ × ×</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13 21</td>
<td>△ △ ×</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14 22</td>
<td>△ × ×</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15 23</td>
<td>△ × ×</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>16 24</td>
<td>△ × ×</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>17 25</td>
<td>△ △ ×</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>18 26</td>
<td>△ × ×</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>19 32</td>
<td>△ × ×</td>
<td></td>
</tr>
</tbody>
</table>

[0120] 表4 に示されるように、実施例20〜30は出力の低下は見られないが、比較例14〜21はEVAフィルムと、太陽電池裏面保護シートの接着性が十分でないため、水分の侵入により太陽電池素子の劣化を招き、光電変換効率が低下する。

[0121] この出願は、2010年7月7日に出願された日本出願特願2010_154393を基礎とする優先権を主張し、その開示の全てをここに取り込む。

符号の説明

[0122] 1 太陽電池セルの受光面側に位置する太陽電池表面保護材
1.1 太陽電池セルの受光面側に位置する封止剤
太陽電池セル
太陽電池セルの非受光面側に位置する封止剤
太陽電池裏面保護シート
請求の範囲

[請求項1] ガラス転移温度が 10 〜 60 °C、数平均分子量が 25000 〜 250000、水酸基価が 2 〜 100 (mg KOH/g) であり、(メタ)アクリロイル基を有しないアクリル系共重合体 (A) と、(メタ)アクリロイル基を有する化合物 (B) と、

前記 (メタ)アクリル系共重合体 (A) 中の水酸基 1 個に対して、イソシアネート基が 0.1 〜 5 個の範囲であるポリイソシアネート化合物 (C) を含有する太陽電池裏面保護シート用易接着剤。

[請求項2] 前記 (メタ)アクリロイル基を有しないアクリル系共重合体 (A) 100 重量部に対して、(メタ)アクリロイル基を有する化合物 (B) を 0.1 〜 20 重量部含有する、請求項 1 に記載の太陽電池裏面保護シート用易接着剤。

[請求項3] 前記ポリイソシアネート化合物 (C) がブロック化ポリイソシアネート (C1) である、請求項 1 又は 2 に記載の太陽電池裏面保護シート用易接着剤。

[請求項4] 前記 (メタ)アクリロイル基を有する化合物 (B) は、分子中に 2 個以上の (メタ)アクリロイル基を有することを特徴とする請求項 1 〜 3 いずれか 1 項に記載の太陽電池裏面保護シート用易接着剤。

[請求項5] 請求項 1 〜 4 いずれか 1 項に記載の太陽電池裏面保護シート用易接着剤によって形成される硬化処理前の易接着剤層と、プラスチックフィルムを具備する太陽電池裏面保護シート。

[請求項6] 太陽電池セルと、

受光面側に配設され、受光面側の封止剤を介して前記太陽電池セルを保護する太陽電池表面保護材と、

非受光面側に配設され、非受光面側の封止剤を介して前記太陽電池セルを保護する太陽電池裏面保護シートとを具備し、

前記太陽電池裏面保護シートは、プラスチックフィルムと、請求項 1 〜 4 のいずれか 1 項に記載の太陽電池裏面保護シート用易接着剤か
ら形成された硬化処理前の易接着剤層とを具備する太陽電池裏面保護シートを、前記易接着剤層が、前記非受光面側の封止剤と接するように配置して、前記太陽電池裏面保護シート用易接着剤層を硬化することにより得たものである太陽電池モジュール。

[請求項7] 前記非受光面側の封止剤は、有機過酸化物が含有されていることを特徴とする請求項6に記載の太陽電池モジュール。

[請求項8] 前記非受光面側の封止剤は、エチレン—酢酸ビニル共重合体（EVA）を主成分とするることを特徴とする請求項6又は7に記載の太陽電池モジュール。
[图1]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C09J 33/0 (2006.01) i, C09D 4/02 (2006.01) i, C09D1 33/0 (2006.01) i,
C09D1 75/04 (2006.01) i, C09J 4/02 (2006.01) i, C09J/02 (2006.01) i, H01 L31/04
(2006.01) i.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C 09 J1 00 - 20 / 1 0, C 09 D1 / 00 - 20 / 1 0, H 01 L 31 / 04 0 - 31 / 0 6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2011

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2006-152013 A (Teijin DuPont Flims Japan Ltd.)</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>15 June 2006 (15.06.2006), claims : paragraph s [0059] to [0062], [0081] to [0084]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& CN 101065849 A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-356644 A (Kansai Paint Co., Ltd.)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search 28 September r, 2011 (28.09.11)

Date of mailing of the international search report 11 October r, 2011 (11.10.11)

Name and mailing address of the ISA/ Japane se Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.A</td>
<td>JP 2010-263193 A (Nippon Sho kubai Co., Ltd.), 18 November 2010 (18.11.2010),</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>claims; paragraphs [0033], [0034], [0093] to [0108] (Family: none)</td>
<td></td>
</tr>
<tr>
<td>P.A</td>
<td>JP 2011-105819 A (Toyo Ink Manufacturing Co., Ltd.), 02 June 2011 (02.06.2011),</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>claims; paragraphs [0021] to [0028], [0069] to [0070] (Family: none)</td>
<td></td>
</tr>
</tbody>
</table>
国際調査報告
国際出願番号 PCT/JP2011/003793

A． 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C09J133/04 (2006. 01) i , C09D4/02 (2006. 01) i , C09D133/04 (2006. 01) i , C09D175/04 (2006. 01) i , C09J4/02 (2006. 01) i , C09J7/02 (2006. 01) i , H01L31/04 (2006. 01) i

B． 調査を行った分野
調査を行った最小区資料（国際特許分類（IPC））
Int.Cl. C09J100- 201/10 , C09D1/00- 201/10 , H01L31/04- 31/06

C． 関連すると認められる文献
引用文献のカテゴリー

<table>
<thead>
<tr>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>引用文献のカテゴリー</td>
<td></td>
</tr>
<tr>
<td>IA 特に関連のある文献ではなく、一般的な技術水準を示すもの</td>
<td></td>
</tr>
<tr>
<td>TE 国際出願 日前の出願または特許であるが、国際出願日期後に公表されたもの</td>
<td></td>
</tr>
<tr>
<td>IE 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用される文献（理由を付す）</td>
<td></td>
</tr>
<tr>
<td>IB 口頭による開示、使用、展示等に言及する文献</td>
<td></td>
</tr>
<tr>
<td>IP 国際出願日以前で、かつ優先権の主張の基礎となる出願</td>
<td></td>
</tr>
</tbody>
</table>

I? C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

国際調査を完了した日 28.09.2011
国際調査報告の発送日 11.10.2011

特許庁審査官（権限のある職員） 4V 9158
藤村 茂実
電話番号 03-3581-1101 内線 3483

様式 PCT／ISA／210 (第2ページ) (2009年7月)
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するときの関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.A</td>
<td>JP 2010-263193 A (株式会社日本触媒) 2010.11.18.</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>特許請求の範囲、【0033】-【0034】-【0093】-【0108】 (ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>P.A</td>
<td>JP 2011-105819 A (東洋インキ製造株式会社) 2011.06.02.</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>特許請求の範囲、【0021】-【0028】-【0069】-【0070】 (ファミリーなし)</td>
<td></td>
</tr>
</tbody>
</table>