wO 2007/149188 A1 |10 0 00O O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ‘1”1‘

) IO 0 OO OO

International Bureau

(43) International Publication Date
27 December 2007 (27.12.2007)

(10) International Publication Number

WO 2007/149188 Al

(51) International Patent Classification:

GOG6F 9/50 (2006.01)
(21) International Application Number:
PCT/US2007/012746
(22) International Filing Date: 29 May 2007 (29.05.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

11/471,466 19 June 2006 (19.06.2006) US
(71) Applicant (for all designated States except US):
DISKEEPER CORPORATION [US/US]; 7590 N.

Glenoaks Blvd., Burbank, California 91504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JENSEN, Craig
[US/US]; 4245 Mesa Vista Drive, La Canada, California
91011 (US). STAFFER, Andrew [CA/US]; 13270 Alta
Vista Way, Sylmar, California 91342 (US). THOMAS,
Basil [IN/US]; 14537 Willowgreen Lane, Sylmar, Califor-
nia 91342 (US).

(74) Agents: POMERENKE, Ronald M. et al.; 2055 Gateway
Place, Suite 550, San Jose, California 945110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(34)

[Continued on next page]

(54) Title: METHOD, SYSTEM, AND APPARATUS FOR SCHEDULING COMPUTER MICRO-JOBS TO EXECUTE AT NON-

DISRUPTIVE TIMES

application program is launched 301

!

application program has a computing job that is ready for
execution on the computer system 302

v

A

divide the computing job into micro-jobs 304

)
P

y

utilization of one or more needed

resources meets idieness criteria 306

no

yes
A 4

cause micro-job to execute 307

no

A4

application may continue to run consuming negligible

new

resources, awaiting events friggering next job 308

(57) Abstract: A method, system, and apparatus to
divide a computing job into micro-jobs and allocate
the execution of the micro-jobs to times when needed
resources comply with one or more idleness criteria
is provided. The micro-jobs are executed on an on-
going basis, but only when the resources needed by
the micro-jobs are not needed by other jobs. A soft-
ware program utilizing this methodology may be run
at all times while the computer is powered up with-
out impacting the performance of other software pro-
grams running on the same computer system.

job

WO 2007/149188 A1 NI DA 00 0T 000000 00000

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of

amendments

WO 2007/149188 PCT/US2007/012746

METHOD, SYSTEM, AND APPARATUS FOR SCHEDULING COMPUTER MICRO-JOBS
TO EXECUTE AT NON-DISRUPTIVE TIMES

FIELD OF THE INVENTION

[0001] The present invention relates to executing software applications in a
computing environment. In particular, embodiments of the present invention relate to
dividing a computing or input-output job of an application into micro-jobs and allocating
the execution of the micro-jobs to periods of low computer resource utilization, so that
execution of the micro-jobs does not significantly impact performance of other

applications and jobs.

BACKGROUND

[0002] In the early days of mainframe computers, the concept of running software
programs in batches of jobs was the norm. There were a limited number of computers, so
users had to schedule their job(s) to run on the computer when the computer was not
being used for some other, more important job. In such systems, each job was scheduled
to run to completion without interruption, followed by the next job and then the next. The
limited computer time available necessitated running lower-priority jobs “off-hours” so as
not to delay higher-priority applications.

[0003] More recently, multi-tasking computer systems have allowed the concurrent or
interleaved execution of two or more jobs by a single CPU. A multi-tasking computer
system allows many applications to execute in the same general time period. Typically,
multi-tasking systems have complex internal scheduling algorithms, wherein processes
are scheduled in accordance with assigned priorities. However, the applications still
contend for computing resources. To alleviate resource contention, an application in a
multi-tasking system may be run off “off-hours” on an operator-scheduled basis.

[0004] The applications that are run off-hours may include maintenance jobs, such as
backup, indexing, software updates, virus and malware scans and defragmentation.
Candidates for off-hours processing may also include software applications that run
reports, perform financial calculations, etc. However, some applications, such as indexers,
should be run during production time. Therefore, not all applications are good candidates
for off-hours execution.

[0005] Another problem with scheduling a job to run off-hours is that the computer
may be turned off at the time the job is scheduled to run. A further problem is that some

-1-

WO 2007/149188 PCT/US2007/012746

machines do not have clearly identified off-hours. For example, many computer systems
are used twenty-four hours a day for a computing activity that is considered significant
enough that the activity should not be interrupted for a substantial period. Therefore, there
are no “off-hours” in which to schedule jobs. A still further problem is that typically a
user has to determine when the job should be scheduled for off-hours computing. Thus,
setting the schedule takes up a user’s time and is subject to user error.

[0006] As previously mentioned, running the computing job can interfere with a
user’s ability to use the computer and can take resources away from other, possibly more
pressing applications and jobs. Throttling is a technique for minimizing these negative
impacts. Throttling prevents an application or job from using more than an allocated
amount of resources. Types of throttling include disk I/O throttling, CPU throttling and
network throttling. For example, CPU throttling can involve establishing a target CPU
utilization limit for an application and forcing the application to stop working if the
application exceeds the target limit. Throttling is sometimes applied to computer
resources for maintenance applications or less important computing jobs. While throttling
has benefits, the computing job’s resource use is not totally transparent to other jobs and
applications.

[0007] At the same time, it is observable that considerable computing resources go
unused, even during the processing of urgent, top-priority jobs. The wide differences in
the speeds of CPUs, memory, disk drives and networks typically cause one or more of
these components to sit idle while one of the other components is fully consumed. A
three-gigahertz CPU, for example, often sits idle while waiting for a disk drive to retrieve
data at an average access time measured in milliseconds.

[0008} To recover and utilize these otherwise lost resources, what is needed is a
technique that allows one or more jobs to execute in a computer system without
significantly impacting other jobs or applications. The technique should not consume a
user’s time in scheduling the job nor should it negatively impact the user’s interaction
with the computer system when the job is running. The technique should not require
scheduling the job to run off-hours. The technique should be utilizable by and beneficial
to a computer system that has no off-hours.

[0009] The approaches described in this section are approaches that could be pursued,
but not necessarily approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art merely by virtue of their inclusion

in this section.

WO 2007/149188 PCT/US2007/012746

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0011] FIG.lisa diagram of an architecture for executing micro-jobs, in accordance
with an embodiment of the present invention.

[0012] FIG. 2 illustrates a comparison of a conventional application memory footprint
compared to an application memory footprint in accordance with an embodiment of the
present invention.

[0013] FIG. 3 is a flowchart illustrating steps of a process of executing a micro-job
scheduler enabled application using micro-jobs, in accordance with an embodiment of the
present invention.

[0014] FIG. 4 illustrates steps of a process of defragmenting a storage medium using
micro-jobs, in accordance with an embodiment of the present invention.

[0015} FIG. 5 is a block diagram that illustrates a computer system upon which an

embodiment of the invention may be implemented.

DETAILED DESCRIPTION

[0016] In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, that the present invention may be practiced
without these specific details. In other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily obscuring the present

invention.

OVERVIEW
[0017] The majority of computers do not utilize all of their resource capacity 100% of
‘the time. This is typically true even of computers that seemingly are in high use twenty-
four hours a day, seven days a week; as well as computers that are only turned on for a
portion of each day. Therefore, computer time and resources are wasted. For example,
over a twenty-four hour period, a computer system that is used quite heavily, and which
may have brief spikes in activity, may on average use only about five to twenty percent of

its resources.

WO 2007/149188 PCT/US2007/012746

[0018] A method, system, and apparatus are disclosed herein to utilize these unused
computer resources by dividing a computing job into micro-jobs and executing the micro-
jobs when the required resources to run the micro-job are idle. As used herein, the term
micro-job is a portion of a computer process the execution of which can be delayed
without affecting the outcome of the rest of the process. As used herein, the term “idle
resource” “idle-time” or the like refers to a time when a resource is less than 100%
utilized, that is, a portion of the resource that is not being utilized is considered to be
“idle” even though some other portion of the resource is being utilized.

[0019] Thus, the micro-jobs are executed on an ongoing basis, but without an attempt
to get the computing job to complete as rapidly as possible. A software program utilizing
this methodology may be run at all times while the computer is powered up with
negligible impact on the performance of other software pro grams running at the same
time on the same computer, effectively resulting in considerably more useful work getting
done per unit of time.

[0020] In contrast to attempting to run the job as quickly as possible given current
resource constraints or to scheduling the job to run “off-hours™ to avoid significantly
impacting other jobs and applications, the job is run on the computer on an ongoing basis,
but in such minute pieces that it may be imperceptible to the user or other computer jobs.
Thus, the job may be completely transparent to the user and to other jobs and
applications. The user does not need to schedule the job; with this method it can be run at
any time, including during performance-critical times.

[0021] As used throughout this description, the term “transparent” with respect to
other jobs, processes, and applications means that other jobs and applications are able to
execute without suffering any significant negative performance impact due to execution
of the micro-jobs. A negative impact can be determined by comparing how long a test job
takes to run by itself and while a computing job that is divided into micro-jobs is
executing. There should be no significant difference in the run time of the test job for
these two cases.

[0022] A micro-job scheduler (MIS) determines when the micro-jobs should be
executed, in accordance with an embodiment of the present invention. The application
program divides its computing jobs into a plurality of micro-jobs, in one embodiment. As
used herein, the term plurality means any number greater than one. The MJS determines
when the micro-jobs should execute. Applications that are enabled to work with the MJS

are referred to herein as MJS-enabled applications.

WO 2007/149188 PCT/US2007/012746

[0023] In one embodiment, the MJS has a memory manager. An MJS-enabled
application requests memory from the MJS memory manager, as opposed to requesting
memory from the operating system. In one embodiment, the MJS-enabled application has
a very small in-memory footprint (meaning the amount of memory allocated to the MJS-
enabled application and from which the MJS-enabled application executes). In order to
achieve the small footprint, limits are placed on the amount of memory a program using
MIS utilizes.

[0024] In another embodiment, computer resource utilization is monitored and
analyzed to determine whether resource utilization complies with one or more idleness
criteria. The MJS causes micro-jobs to be executed when the one or more idleness criteria
are satisfied. Since the time required for a particular micro-job to execute is smaller than
the typical window of idle time for the resource used by the particular micro-job, the
resource is relinquished before the resource is needed by ano;cher job. Thus, resource
utilization by the micro-job may go unnoticed and the micro-job may be invisible to its
application’s environment.

[0025] An MJS-enabled application sends resource utilization threshold parameters to
the MJS in order to define conditions under which its resource utilization should be
yielded, in accordance with an embodiment of the present invention. These resources
include, but are not limited to, disk I/O, CPU and network utilization. For example the
MIJS-enabled application can request a micro-job to be executed pending minimum
threshold levels for any combination of the above three resources.

[0026] In one embodiment, the application is a storage medium defragmenter. A
defragmenter might take 12 minutes of wall clock time to complete a daily scheduled
defragmentation job. The MJS-enabled defragmenter divides the defragmentation job into
many micro-jobs, which can be executed a few milliseconds at a time, selecting times
when the resources needed by the defragmenter are not being used by any other job or
application. The MJS-enabled defragmenter can run whenever the computer system is on,
dividing the 12-minute job into micro-jobs that execute over a longer period.

[0027] As a particular example, the MJS-enabled defragmenter might execute a first
micro-job to determine whether a file is fragmented or not. Execution of the first micro-
job consumes only otherwise idle resources. That is, resources whose utilization complies
with one or more idleness criteria. As a result, execution of the micro-job is transparent to
other applications. Moreover, memory utilization is kept low and memory allocation
associated with the defragmenter need not be changed prior to or following execution of

the micro-job.

-5

WO 2007/149188 PCT/US2007/012746

[0028] Prior to executing each micro-job, the MJS-enabled defragmenter makes a
determination whether computer resource utilization complies with one or more idleness
criteria. Thus, the MJS-enabled defragmenter determined whether computer resource
utilization is currently sufficiently low to allow the micro-job to proceed. If resource
utilization is too high, execution of the micro-job is deferred. After the first micro-job
executes, the MJS-enabled defragmenter does not necessarily immediately execute a
second micro-job. Rather, the execution of subsequent micro-jobs may spread out over

time if other applications require the same resources.

ARCHITECTURE OVERVIEW
[0029] FIG. 1 is a diagram of an architecture 100 for executing micro-jobs, in
accordance with an embodiment of the present invention. Each MJS-enabled application
115(1) — 115(n) divides its computing job (or jobs) into micro-jobs 125 to execute. For
example, an application programmer can place calls at appropriate locations in the
application code that request permission from the MJS 110 to execute a micro-job 125,
which, in effect, divides the computing job into micro-jobs 125. The micro-computing
jobs are substantially smaller (for example, the smallest) work units that can be completed
as a single unit while safely allowing for a pause in execution until the next micro-job 125
executes, in accordance with one embodiment. By safely allowing for a pause in
execution, it is meant that the execution of a particular micro-job can be delayed without
affecting the outcome which results from execution of the all of the micro-jobs. Keeping
the micro-jobs 125 small allows the MJS-enabled application 115 to use only a small
amount of computer resources at one time. Thus, execution of a micro-job 125 consumes
a sufficiently small amount of resources so as to not significantly impact performance of
other applications in the computer system, in accordance with one embodiment of the
present invention. As examples, the MJS-enabled applications 115(1) — 115(n) may
perform maintenance such as backup, indexing, software updates, virus and malware
scans, and defragmentation. However, the MJS-enabled applications 115(1) — 115(n) may
also be software other than maintenance.
[0030] The micro-job scheduler (MJS) 110 determines when micro-jobs 125 can be
executed. In this embodiment, the MJS 110 has an application program interface (API)
130 to allow a particular MJS-enabled application (e.g., 115(1)) to request that one or
more micro-jobs 125 be allowed to execute. The API 130 also allows an MJS-enabled

application 115 to specify by how much the micro-jobs 125 may be spread out, as will be

WO 2007/149188 PCT/US2007/012746

discussed more fully below. An example API is included herein below. However, the
architecture 100 is not limited to the example APL

[0031] The micro-job scheduler 110 maintains a micro-job queue, such that the MJS
110 can determine which micro-job 125 should be allowed to execute next. The execution
of micro-jobs is timed by the MJS 110 so as to have negligible impact on other
applications. In one embodiment, the MJS 110 schedules micro-jobs such that the micro-
jobs utilize only idle resources. The MJS 110 determines whether resource utilization
complies with one or more idleness criteria to make a scheduling decisions. In other
words, the MJS 1 10 is resource based, in this embodiment. The execution of the
microjobs can be specified by the MJS-enabled application in an APT call or other method
of communication between the application and the MJS. When the scheduler 105
determines that the next micro-job 125 may execute without impacting other jobs, the
MIJS 110 responds to the MJS-enabled application 115 by instructing the MJS-enabled
application 115(1) to execute the micro-job 125.The MJS bases its determination on when
to schedule jobs based on resource utilization, in one embodiment. As an example, the
MIJS may analyze disk activity. If an application other than the application with the
micro-job is using the disk, then the MJS waits until the other application is done to
schedule the micro-job. The MJS continues to monitor the disk I/O utilization, and allows
another micro-job to be scheduled if no other application is seeking access to disk I/O.
However, if another application seeks utilization of disk I/O, then the MIS will not allow
another micro-job to be scheduled, wherein the other application can utilize the disk I/O.
[0032] As another example, the MJS may analyze network activity. If network traffic
is too high, the MJS will not schedule any micro-jobs until traffic slows. If network traffic
is low enough, then the MJS schedules a micro job for execution. The MJS continues to
check to make sure that network traffic stays low enough. If network traffic stays low
enough, another micro-job may be scheduled. However, if traffic gets too high, no further
micro-jobs are scheduled to execute.

[0033] The MJS may make resource-based scheduling decisions based on any type of
computing resource and any combination of resources. In one embodiment, the MJS has
multiple queues of micro-jobs awaiting permission to execute. Each queue may
correspond to a particular resource. For example, there may be a queue for micro-jobs
that need to utilize disk I/O, a queue for micro-jobs that need to utilize a network, a queue
for micro-jobs that need to utilize a CPU, etc. There may also be one or more queues for
micro-jobs that utilize a combination of resources. The MJS deploys micro-jobs when the

particular resource or combination of resources is available. A particular micro-job might

-

WO 2007/149188 PCT/US2007/012746

require the use of two resources: For example, the particular micro-job might require use
of a network resource and disk resource. However, the particular micro-job does not need
CPU resource. Even if the CPU resource utilization is currently high, the particular
micro-job can still be scheduled and executed.

[0034] While the MJIS 110 is depicted in FIG. 1 as a separate program from the MJS-
enabled application 115, the MJS 110 may be integrated into the MJS-enabled application
115. Thus, the MJS 110 can cause the micro-jobs 125 to execute without sending a
response to the MJS-enabled application 115(1), in accordance with one embodiment.
Therefore, the API 130 is optional.

[0035] In one embodiment, the MJS 110 is part of an operating system. In another
embodiment, the MJS 100 executes outside from an operating system. If the MJS
executes outside of the operating system, the MJS self-limits in its own resource
utilization, in one embodiment. For example, the MJS 110 monitors its own resource
utilization and if its own resource utilization gets too high, the MJS 110 makes a request
to the operating system to stop scheduling the MJS 110 for a period of time.

[0036] The MJS-enabled application 115 sends parameters to the MJ S 110 to control
resource utilization, in accordance with an embodiment of the present invention. Control
of resource utilization includes, but is not limited to, disk I/O, CPU and network. For
example, the MJS-enabled application 115 can request a micro-job be executed pending
any combination of threshold levels of the above three resources. Moreover, the MJS-
enabled application 115 can specify different resource threshold levels for different
micro-jobs 125. For example, the MJS-enabled application 115 specifies different
resource threshold level with each micro-job 125, in accordance with one embodiment.
Therefore, fine-grained resource management is possible. When the MJS 110 calculates
resource utilization, it is the resource utilization of processes other than the MIS-enabled
application that is measured, in accordance with one embodiment of the present
invention. The following example in which the CPU utilization threshold is set to 20
percent is used to illustrate. If CPU utilization is below 20 percent prior to allowing the
MJS-enabled application to execute, CPU utilization may increase to over 20 percent
when the micro-job(s) execute. This increase beyond 20 percent is not considered a CPU
resource utilization violation, in this example. Similar principles apply to network and
disk I/O resources.

[0037] The MJS 110 also has a memory manager 140, in one embodiment. When the
MJS 110 initializes, it is allocated memory by the operating system, some of which it uses

for its own purposes and some of which it allocates to the MJS-enabled applications 115.

-8-

WO 2007/149188 PCT/US2007/012746

When an MJS-enabled application 115(1) launches, it requests a memory allocation from
the MJS 110. The MJS 110 may determine how much memory to allocate to the MJS-
enabled application 115(1) based on factors such as current computer system memory
utilization by all processes and the needs of the MJS-enabled application 115(1).
Memory requirements may be specific to each MJS-enabled application 115 and may be
programmed into the MJS-enabled application 115 by a computer software programmer.
[0038] FIG. 2 illustrates a comparison of a conventional application memory footprint
202 compared to an MJS-enabled application memory footprint 204(1) - 204(n), in
accordance with an embodiment of the present invention. Because the MJS-enabled
application 115(1) executes micro-jobs 125, the memory allocation 204(1) can be very
small. Moreover, because the memory allocation 204(1) is so small, it may not be
necessary for the MJS-enabled application 115(1) to ever relinquish its allocated memory
204(1). Thus, the MJS-enabled applications 115 do not cause frequent memory
allocations and de-allocations. This reduction in or elimination of memory allocations is
one reason why the MJS-enabled applications 115 have no significant impact on other
applications and jobs.

PROCESS FLOW
[0039] FIG. 3 is a flowchart illustrating steps of a process 300 for executing an MJS-
enabled application using micro-jobs, in accordance with an embodiment of the present
invention. In step 301, an MJS-enabled application program is launched. The MJS-
enabled application program is launched when the computer system is booted, in one
embodiment. If the MJS-enabled application does not have a job to perform, the MJS-
enabled application sits in an idle state until it has a job to run. In this idle state, the MJS-
enabled application may perform some functions such as occasional monitoring. In step
302, the MJS-enabled application has a job to perform, such as defragmenting a storage
medium, or scanning for viruses. The job could be to defragment a single disk and the
files stored on it, wherein the MJS-enabled application defragments that disk on an
ongoing basis.
[0040] A small amount of memory is allocated to the MJS-enabled application when
it is launched. The amount that is allocated can be very small because the MJS-enabled
application typically only attempts to execute a single micro-job at one time. However, in
some cases, the MJS-enabled application might attempt to execute multiple micro-jobs
without waiting for other processes to execute. For example, if the MJS determines that

the required computer system resources are idle, the MJS may allow the MJS-enabled

WO 2007/149188 PCT/US2007/012746

application to execute multiple micro-jobs in a row without another process utilizing the
resources that are utilized by the micro-jobs.

[0041] In step 304, the computing job is divided into micro-jobs. The micro-jobs are
of a size such that execution of the micro-jobs utilizes a sufficiently small amount of
resources so as to not significantly impact performance of other jobs in the computer
system, in accordance with an embodiment of the present invention. Dividing the
computing job into micro-jobs may be accomplished by instructions within an MJS-
enabled application. In general, these instructions are decision points in the MJS-enabled
application. For example, the instructions can be API calls to the MJS that request
permission to execute a micro-job. However, the MJS can be integrated with the MJS-
enabled application, in which case the instructions could be calls to a scheduling function
within the MJS-enabled application. Other techniques might be used to divide the
computing job into micro-jobs.

[0042] In step 306, a determination is made, for each of the micro-jobs, as to whether
utilization of one or more resources of the computer system to be used by the particular
micro-job satisfies one or more idleness criteria. Thus, the micro-jobs are only executed
at times when the resources of the computer system needed by the micro-jobs are
sufficiently idle. The idleness criteria is based on resource thresholds, in one embodiment.
For example, resource thresholds may be used, wherein a micro-job of the MJ S-enabled
application only executes if resource utilization by other processés is below a threshold
specified by the MJS-enabled application. The example API described below contains
one example of some resource threshold parameters. However, process 300 is not limited
to these resource threshold parameters. Step 306 spreads the execution of micro-jobs over
time subject to availability of the resources needed by each micro-job. Therefore,
execution of the micro-jobs does not significantly impact performance of the other jobs
and applications in the computer system.

[0043] The idleness criteria for a particular resource may be based on one or more
factors. For example, CPU utilization is used as an idleness criteria for CPU resource
utilization, in one embodiment.

[0044] In step 307, the micro-jobs are caused to be executed. In one embodiment, the
MIJS gives permission to the MJS-enabled application that a particular micro job can be
executed. If there are more micro-jobs to execute, then control passes to step 306 to
determine whether utilization of one or more resources of the computer system to be used

by the next micro-job satisfies one or more idleness criteria.

-10-

WO 2007/149188 PCT/US2007/012746

[0045] In a maintenance-type embodiment, the MJS-enabled application runs on an
on-going basis, continuing to run as long as the computer system remains booted. Thus,
even if the MJS-enabled application completes its job, it continues to run, as indicated in
step 308. Thus, the MJS-enabled application does not consume additional resources that
are typical of launching an application. When the MJS-enabled application determines
that it has another job to do, the MJS-enabled application divides the new computing job

into micro-jobs in step 304, and the micro-jobs are executed over time in step 306.

EXAMPLE API
[0046] An embodiment of the present invention is an API for allowing an MJS-
enabled application to interface with an MJS. The example API has the following
resource threshold parameters for CPU, disk, and network.
e CPU Utilization threshold
e Pending Disk I/O Count threshold
e Network Utilization threshold

[0047] The above parameters can be specified for each micro-job. In other words,
different micro-jobs can be assigned different resource threshold parameters. For
example, for a micro-job that uses the network, a network threshold may be used.
However, the network threshold could be zero for micro-jobs that do not use the network.
Thus, fine-grained resource management is provided for, in accordance with an
embodiment of the present invention.
[0048] As a particular example, the MJS-enabled application can request that a .
particular micro-job be executed only if the CPU utilization is below 50%, and the I/O
Disk Utilization is below 40%, and network traffic is below 60%. Any combination of
the resource threshold factors can be used, including none at all. The CPU utilization
threshold differentiates between MJS’s use of the CPU as opposed to that of any other
job, in accordance with an embodiment of the present iﬁvention.
[0049] The following two parameters are used to specify how frequently resource
utilization should be measured.

e CPU Utilization Window

e Network Utilization Window

-11-

WO 2007/149188 PCT/US2007/012746

[0050] The CPU Utilization Window parameter defines a time window over which
CPU utilization is calculated. For example, CPU utilization over the last #» milliseconds is
averaged. The network utilization window defines a time window over which network
utilization is calculated. These parameters may be internal to the MJS. However, an MJS-
enabled application may override these parameters. The pending disk I/O is absolute at
any point in time and thus it does not have to be calculated.

[0051] A mandatory idle time parameter may be passed from the MJS-enabled
application to the MJS engine to control how the micro-jobs are spread out over time. The
mandatory idle time parameter is optional. Furthermore, when used, the mandatory idle
parameter may have a value of zero.

e Mandatory Idle Time

[0052] The MJS keeps track of “idle time,” which is defined as system idle time after
all micro-jobs have executed. As previously mentioned, MJS-enabled application(s) can
queue up micro-jobs with the MJS. When there are no micro-jobs on the MJS queue, the
MIJS waits for the specified Mandatory Idle Time and then wakes up and authorizes the
MJS-enabled application(s) to perform additional work. For example, an MJS-enabled
defragmenter might first execute a number of micro-jobs to defragment a disk drive, then
be paused by the MJS micro-job scheduler. After the specified Mandatory Idle Time, the
MIS calls the MJS-enabled defragmenter to authorize additional work. For example, the
MJS-enabled defragmenter might execute a clean-up job, such as releasing memory.
Mandatory Idle Time can be a default parameter that can be adjusted by an MJS-enabled
application. _ 4

[0053] The following parameters relate to waiting to execute a micro-job when

resource utilization is above a threshold.

e Wait Time

e Maximum Wait Time

[0054) If the MJS determines that resource utilization is currently too high to execute
a micro-job, the MJS waits for the specified Wait Time and then re-checks resource
utilization. The Wait Time parameter can be increased each time the MJS determines that
resource utilization is too high. For example, the MJS can increase the Wait Time

parameter until the Max Wait Time is reached. These parameters can be specified by the

-12-

WO 2007/149188 PCT/US2007/012746

MJS-enabled application when it is first started. An MJS-enabled application can adjust

these parameters during its run time.

DEFRAGMENTER EMBODIMENT
[0055] The MJS-enabled application is a defragmenter, in accordance wfth one
embodiment. FIG. 4 illustrates steps.of a process 400 of an MJS defragmenter using
micro-jobs, in accordance with an embodiment of the present invention. Process 400 is an
example of one way in which at least a portion of a defragmenter can make use of the
micro-job concepts. In this example, the MJS-enabled application interfaces with the MJS
via an APL However, as previously mentioned, the MJS may be integrated into the MJS-
enabled application, wherein the API is not necessary.
[0056] The process of defragmenting includes scanning a disk drive for fragmented
files. The scanning can be broken down into separate micro-jobs of getting a file record
and determining whether the file is fragmented. Scanning the disk drive is depicted in
steps 402 — 408 of F1G. 4.
[0057] In step 402, the MJS-enabled defragmenter calls the micro-job API to request
permission from the MJS to execute a micro-job. The API call can specify resource
utilization threshold parameters for this micro-job. Alternatively, previously defined
parameters can be applied for this micro-job. In response to receiving the request, the
MIJS determines when the micro-job can be executed. This determination can be based on
the resource utilization threshold parameters.
{0058] In step 404, after the MJS-enabled application receives permission, the MJS
defragmenter executes a micro-job, which in this case is to get the next file record. In step
406, the MJS-enabled application again calls the micro-job AP1. When the MJ S-enabled
application receives permission to execute from the MJS, the MJ S-enabled application
determihes whether the file from step 404 is fragmented. If the file is not fragmented,
process 400 returns to step 402.
[0059] If the file is fragmented, the MJS-enabled defragmenter can defragment the
file, as depicted in steps 410 —416. Step 410 is a call to the micro-job APIL Step 412 is to
find free disk space for the file and obtain an allocation of the free space.
[0060] Step 414 of calling the micro-job API and step 416 of moving a piece of the
file are repeated until the entire file is moved. For example, the file to be moved could be
moved in pieces small enough to cause no significant impact on the performance of other

applications.

-13-

WO 2007/149188 PCT/US2007/012746

[0061] Thus, the micro-job concept provides for a dynamic defragmenter that
monitors fragmentation on an on-going basis and defragments files as soon as
fragmentation occurs. This results in an MJS-enabled defragmenter that defragments
fragmented files immediately upon the occurrence of fragmentation, without waiting for a
scheduled defragmentation run time. Thus, an MJS-enabled defragmenter is a real-time

defragmenter, in accordance with an embodiment of the present invention.

SHELL MICRO-JOB SCHEDULER
[0062] In one embodiment, the MJS automatically divides a computing job into
micro-jobs. For example, the MJS works as a shell wrapped around application programs
that are not MJS-enabled. Thus, the shell MJS is a complete software application through
which any executable can be run. The shell MJS automatically divides the computing job
from the executable into micro-jobs. In other words, the application programmer does not
need to divides the application into micro-jobs, in this embodiment.
[0063] The shell MJS divides the computing job from the executable into micro-jobs
based on resource utilization, in one embodiment. The shell MJS may analyze the
application and how the application runs to see what resources the application uses. For
example, the MJS analyzes what resources the application uses and to what degree the
application uses the resources. For example, when a disk defragmenter runs, the shell
MIJS can determine what resources the applications use (e.g., CPU, network, disk /O).
The shell MJS automatically determines how to divide the application in into micro-jobs
based on this analysis, in one embodiment. The shell MJS may also determine how to
schedule the micro-jobs, based on this analyéis.
[0064] The shell MJS may use various parameters to determine how to divide the
computing job into micro-jobs and/or determine how to schedule the micro-jobs for
execution. These parameters may be based on user input or established by the shell MJS.

For example, the user may specify that a particular application has a high priority.

HARDWARE OVERVIEW
[0065] FIG. 5 is a block diagram that illustrates a computer system 500 upon which
an embodiment of the invention may be implemented. Steps of process 300 and process
400 are stored as instructions one or more of the computer-readable media of system 500
and executed on the processor of computer system 500. Computer system 500 includes a
bus 502 or other communication mechanism for communicating information, and a

processor 504 coupled with bus 502 for processing information. Computer system 500

-14-

WO 2007/149188 PCT/US2007/012746

also includes a main memory 506, such as a random access memory (RAM) or other
dynamic storage device, coupled to bus 502 for storing information and instructions to be
executed by processor 504. Main memory 506 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be
executed by processor 504, Computer system 500 further includes a read only memory
(ROM) 508 or other static storage device coupled to bus 502 for storing static information
and instructions for processor 504. A storage device 510, such as a magnetic disk or
optical disk, is provided and coupled to bus 502 for storing information and instructions.
The computer system 500 can have any number of processors 504. For example,
computer system 500 is a multi-processor system, in one embodiment. The processor 504
can have any number of cores. In one embodiment, the processor 504 is a multi-core
processor 504. Computer system 500 can be used in a hyper threaded machine.

[0066] Computer system 500 may be coupled via bus 502 to a display 512, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
514, including alphanumeric and other keys, is coupled to bus 502 for communicating
information and command selections to processor 504. Another type of user input device
is cursor control 516, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 504 and for
controlling cursor movement on display 512. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0067] The invention is related to the use of computer system 500 for implementing
the techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 500 in response to processor 504 executing
one or more sequences of one or more instructions contained in main memory 506. Such
instructions may be read into main memory 506 from another machine-readable medium,
such as storage device 510. Execution of the sequenceé of instructions contained in main
memory 506 causes processor 504 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hardware circuitry and software.
[0068] The term “machine-readable medium”™ as used herein refers to any medium
that participates in providing data that causes a machine to operate in a specific fashion.
In an embodiment implemented using computer system 500, various machine-readable

media are involved, for example, in providing instructions to processor 504 for execution.

-15-

WO 2007/149188 PCT/US2007/012746

Such a medium may take many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 510. Volatile media includes dynamic
memory, such as main memory 506. Transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus 502. Transmission media can
also take the form of acoustic or light waves, such as those generated during radio-wave

~ and infrared data communications. All such media must be tangible to enable the
instructions carried by the media to be detected by a physical mechanism that reads the
instructions into a machine.

[0069] Common forms of machine-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinafter, or any other medium from
which a computer can read.

[0070] Various forms of machine-readable media may be involved in carrying one or
more sequences of one or more instructions to processor 504 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
500 can receive the data on the telephone line and use an infrared transmitter to convert
the data to an infrared signal. An infrared detector can receive the data carried in the
infrared signal and appropriate circuitry can place the data on bus 502. Bus 502 carries
the data to main memory 506, from which processor 504 retrieves and executes the
iﬁstructions. The instructions received by main memory 506 may optionally be stored on
storage device 510 either before or after execution by processor 504.

[0071] Computer system 500 also includes a communication interface 518 coupled to
bus 502. Communication interface 518 provides a two-way data communication coupling
to a network link 520 that is connected to a local network 522. For example,
communication interface 518 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 518 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.

Wireless links may also be implemented. In any such implementation, communication

-16-

WO 2007/149188 PCT/US2007/012746

interface 518 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0072] Network link 520 typically provides data communication through one or more
networks to other data devices. For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data equipment operated by an
Internet Service Provider (ISP) 526. ISP 526 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet” 528. Local network 522 and Internet 528 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 520 and through communication
interface 518, which carry the digital data to and from computer system 500, are
exemplary forms of carrier waves transporting the information.

[0073] Computer system 500 can send messages and receive data, including program
code, through the network(s), network link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requestéd code for an application program
through Internet 528, ISP 526, local network 522 and communication interface 518.
[0074] The received code may be executed by processor 504 as it is received, and/or
stored in storage device 510, or other non-volatile storage for later execution. In this
manner, computer system 500 may obtain application code in the form of a carrier wave.
[0075] In the foregoing specification, embodiments of the invention have been
described with reference to numerous specific details that may vary from implementation
to implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

-17-

WO 2007/149188 PCT/US2007/012746

CLAIMS

What is claimed is:

1. A machine-implemented method comprising the steps:
for each of a plurality of micro-jobs;

determining when utilization of one or more resources required to run a
particular micro-job complies with one or more idleness criteria;
and

causing the particular micro-job to be executed based, at least in part, on a
determination that the utilization of one or more resources required
to run the particular micro-job complies with one or more idleness

criteria.

2. The method of Claim 1, further comprising dividing a computing job into the

plurality of micro-jobs.

3. The method of Claim 2, wherein dividing a computing job into the plurality of

micro-jobs is performed by an application program that initiates the computing job.

4. The method of Claim 2, wherein dividing a computing job into a plurality of
micro-jobs is performed by a software process other than an application program that

initiates the computing job.

5. The method of Claim 1, wherein determining when utilization of one or more
resources required to run a particular micro-job complies with one or more idleness

criteria is performed by an operating system.

6. The method of Claim 1, wherein determining when utilization of one or more
resources required to run a particular micro-job complies with one or more idleness

criteria is performed by a micro-job scheduler outside of an operating system.

7. The method of Claim 1, further comprising deferring execution of at least one of
the micro-jobs based on a wait time that specifies a minimum amount of time to wait

between execution of each micro-job.

-18-

WO 2007/149188 PCT/US2007/012746

8. The method of Claim 7, further comprising an application program specifying the
wait time.
9. The method of Claim 8, wherein the specifying the wait time comprises

specifying a different minimum amount of time for different ones of the micro-jobs.

10. The method of Claim 1, wherein the one or more idleness criteria is based on one

or more resource utilization thresholds.

11. The method of Claim 10, further comprising specifying the one or more resource

utilization thresholds.

12. The method of Claim 10, further comprising specifying a different resource

utilization threshold for different ones of the micro-jobs.

13. The method of Claim 1, wherein causing the particular micro-job to be executed
based, at least in part, on a determination that the utilization of one or more resources
required to run the particular micro-job complies with one or more idleness criteria is
further based on limiting the number of micro-jobs allowed to execute before allowing

other jobs to utilize computer resources.

14. The method of Claim 13, wherein limiting the number of micro-jobs allowed to
execute is determined by examining computer resource utilization by processes other than

the application program.

15. The method of Claim 1, further comprising determining an amount of memory to
allocate to an application that initiates the computing job, wherein determining an amount
of memory is based on a much smaller amount of memory required for executing micro-
jobs of the application rather than on a memory requirement for the application as a

whole.

16. The method of Claim 15, wherein determining an amount of memory is further

based on the amount of memory available in the computer system.

-19-

WO 2007/149188 PCT/US2007/012746

17. The method of Claim 1; wherein the micro-jobs are portion of a computer process,
and wherein the execution of each micro-job can be delayed without affecting the

outcome of the rest of the computer process .

18. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, cause the one or more processors to
carry out the steps of:
for each of a plurality of micro-jobs;
determining when utilization of one or more resources required to run a
particular micro-job complies with one or more idleness criteria;
and
causing the particular micro-job to be executed based, at least in part, on a
determination that the utilization of one or more resources required
to run the particular micro-job complies with one or more idleness

criteria.

19. A computer-readable medium as recited in Claim 18, further comprising
instructions which, when executed by the one or more processors, cause the one or more

processors to perform dividing a computing job into the plurality of micro-jobs.

20. A computer-readable medium as recited in Claim 18, further com\prising
instructions which, when executed by the one or more processors, cause the one or more
processors to perform deferring execution of at least one of the micro-jobs based on a
wait time that specifies a minimum amount of time to wait between execution of each

micro-job.

21. A computer-readable medium as recited in Claim 20, wherein the instructions for
deferring execution of at least one of the micro-jobs based on a wait time that specifies a
minimum amount of time to wait between execution of each micro-job comprise
instructions for performing specifying a different minimum amount of time for different

ones of the micro-jobs.

-20-

WO 2007/149188 PCT/US2007/012746

22. A computer-readable medium as recited in Claim 18, wherein the instructions for
performing determining when utilization of one or more resources required to run a
particular micro-job complies with one or more idleness criteria comprise instructions for
performing determining when utilization of one or more resources required to run a
particular micro-job complies with one or more idleness criteria based on one or more

resource utilization thresholds.

23. A computer-readable medium as recited in Claim 22, further comprising
instructions which, when executed by the one or more processors, cause the one or more

processors to perform specifying the one or more resource utilization thresholds.

24. A computer-readable medium as recited in Claim 22, further comprising
instructions which, when execuied by the one or more processors, cause the one or more
processors to perform specifying a different resource utilization threshold for different

ones of the micro-jobs.

25. A computer-readable medium as recited in Claim 18, wherein the instructions for
performing causing the particular micro-job to be executed based, at least in part, on a
determination that the utilization of one or more resources required to run the particular
micro-job complies with one or more idleness criteria comprise instructions for
performing causing the particular micro-job to be executed further based on limiting the
number of micro-jobs allowed to execute before allowing other jobs to utilize computer

resources.

26. A computer-readable medium as recited in Claim 25, further comprising
instructions which, when executed by the one or more processors, cause the one or more
processors to perform limiting the number of micro-jobs allowed to execute before
allowing other jobs to utilize computer resources by examining computer resource

utilization by processes other than the application.

27. A computer-readable medium as recited in Claim 18, further comprising
instructions which, when executed by the one or more processors, cause the one or more
processors to perform determining an amount of memory to allocate to the application,
wherein determining an amount of memory is based on a minimum memory requirement

for executing micro-jobs of the application.

21-

WO 2007/149188 PCT/US2007/012746

28. A computer-readable medium as recited in Claim 27, wherein the instructions for
performing the determining of an amount of memory further comprise instructions for
performing the determining of an amount of memory based on the amount of memory

available in the computer system.

29. A computer-readable medium as recited in Claim 18, wherein the micro-jobs are
portion of a computer process, and wherein the execution of each micro-job can be

delayed without affecting the outcome of the rest of the computer process .

30. A system, comprising:
one or more processors; and;
computer-readable medium communicatively coupled to the one or more
processors; wherein the computeér-readable medium has stored thereon one
or more stored sequences of instructions which, when executed by the one
or more processors, cause the one or more processors to perform:
for each of a plurality of micro-jobs;
determining when utilization of one or more resources required to run a
particular micro-job complies with one or more idleness criteria;
and
causing the particular micro-job to be executed based, at least in part, on a
determination that the utilization of one or more resources required
to run the particular micro-job complies with one or more idleness

criteria.

31. A system as recited in Claim 30, wherein the computer readable medium further
comprises instructions which, when executed by the one or more processors, cause the
one or more processors to perform dividing a computing job into the plurality of micro-

jobs.

32. A system as recited in Claim 30, wherein the computer readable medium further
comprises instructions which, when executed by the one or more processors, cause the

one or more processors to perform deferring execution of at least one of the micro-jobs

22

WO 2007/149188 PCT/US2007/012746

based on a wait time that specifies a minimum amount of time to wait between execution

of each micro-job.

33. A system as recited in Claim 32, wherein the instructions for deferring execution
of at least one of the micro-jobs based on a wait time that specifies a minimum amount of
time to wait between execution of each micro-job comprise instructions for performing

specifying a different minimum amount of time for different ones of the micro-jobs.

34, A system as recited in Claim 30, wherein the instructions for performing
determining when utilization of one or more resources required to run a particular micro-
job complies with one or more idleness criteria comprise instructions for performing
determining when utilization of one or more resources required to run a particular micro-
job complies with one or more idleness criteria based on one or more resource utilization
thresholds.

35. A system as recited in Claim 34, wherein the computer readable medium further
comprises instructions which, when executed by the one or more processors, cause the

one or more processors to perform specifying the one or more resource utilization
thresholds.

36. A system as recited in Claim 34, wherein the computer readable medium further
comprises instructions which, when executed by the one or more processors, cause the
one or more processors to perform specifying a different resource utilization threshold for

different ones of the micro-jobs.

37. A system as recited in Claim 30, wherein the instructions for performing causing
the particular micro-job to be executed based, at least in part, on a determination that the
utilization of one or more resources required to run the particular micro-job complies with
one or more idleness criteria comprise instructions for performing causing the particular
micro-job to be executed further based on limiting the number of micro-jobs allowed to

execute before allowing other jobs to utilize computer resources.

38. A system as recited in Claim 37, wherein the computer readable medium further

comprises instructions which, when executed by the one or more processors, cause the

23-

WO 2007/149188 PCT/US2007/012746

one or more processors to perform limiting the number of micro-jobs allowed to execute
before allowing other jobs to utilize computer resources by examining computer resource

utilization by processes other than the application.

39. A system as recited in Claim 30, wherein the computer readable medium further
comprises instructions which, when executed by the one or more processors, cause the
one or more processors to perform determining an amount of memory to allocate to the
application, wherein determining an amount of memory is based on a minimum memory

requirement for executing micro-jobs of the application.

40. A system as recited in Claim 39, wherein the instructions for performing the
determining of an amount of memory further comprise instructions for performing the
determining of an amount of memory based on the amount of memory available in the

computer system.

41. A system as recited in Claim 30, wherein the micro-jobs are portion of a computer
process, and wherein the execution of each micro-job can be delayed without affecting

the outcome of the rest of the computer process .

-24-

WO 2007/149188 PCT/US2007/012746

1/5
100
MJS Enabled
Application
s
Micro-Jobs
125(1)
Micro-Job Scheduler 110 -
MJS Enabled AP
|Application 115(2) [> oz |
Micro-Jobs
125(2)
Memory Manager
140
MJS Enabled -
Application 115(n)

Micro-Jobs

125(n)

FIG. 1

WO 2007/149188

2/5

PCT/US2007/012746

"|CPU Memory 210

Conventional Application Memory
Footprint

202

MJS Application

MJS Memory

Memory Footprint
204(2)
MJS Application | |=
Memory Footprint ~———3| |

204(1)

Footprint
214

MJS Application
. Memory Footprint

204(n)

FIG. 2

WO 2007/149188 PCT/US2007/012746

3/5

application program is launched 301

!

application program has a computing job that is ready for
execution on the computer system 302

:

divide the computing job into micro-jobs 304 ——

no

utilization of one or more needed
resources meets idleness criteria 306

yes
h 4

new job

.cause micro-job to execute 307

yes more micro-jobs?

no

\J

application may continue to run consuming negligible
resources, awaiting events triggering next job 308

FIG. 3

WO 2007/149188 PCT/US2007/012746
4/5
400
—» Call MJS Micro-Job API 402 - ———
Get the Next File Record 404
Call MJS Micro-job AP 406
Check whether File is Fragmented 408
f:c Fragmented?
Yes
Call MJS Micro-job API 410
Find Free Disk Space and Obtain
Allocation 412
e Cail MJS Micro-job APl 414
Move First/Next Piece of File 416

. FIG. 4

PCT/US2007/012746

WO 2007/149188

5/5

92s

|

I
N
w0

1SOH

775
WUOMLIN
._SQ U0

=\

JINY3LNI

MLIN

0gs
EIN-ERS

9I¢
TOYINOD
¥0suN)

" 005

[—

: JOV4H3LNI {1

_ NOILYIINNWINOD ¥0SSII0¥d

|

|

]

f

J

| —

_ 205

_ sng

|

|

|

|

|

_ 0lg 808 350G

_ 391A3d AMOWIW
” JOVYO0IS noy NIVIN

¥15
30IA30 LNdNI

1454
AV1dSId

6 O

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/012746

CLASSIFICATION OF SUBJECT MATTER
G06F9/50

A.
INV.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

ISBN: 3-540-60153-8
the whole document :

~JOB SCHEDULING STRATEGIES FOR PARALLEL
PROCESSING. IPPS’95 WORKSHOP. PROCEEDINGS
SPRINGER-VERLAG BERLIN, GERMANY, 1995,
pages 295-303, XP002456555

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X . LIFKA D A: "The ANL/IBM SP scheduling : 1,18,30
system"

2-17,
19-29,
31-41

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

A" document defining the general state of the art which is not

' considered to be of particular relevance

'E* earlier document but published on or after the international
filing date)

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
m?trllts, such combination being obvious to a person skilled
in the art. .

document member of the same patent family

%

Date of the actual completion of the international search

26 October 2007

Date of malling of the intemational search report

21/11/2007

Name and mailing address of the 1ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized offic;ef

Skomorowski,,Markus

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/012746

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

KUHN N ET AL: "Task decomposition in
dynamic agent societies"

PROCEEDINGS ISADS 93. INTERNATIONAL
SYMPOSIUM ON AUTONOMOUS DECENTRALIZED
SYSTEMS (CAT. NO.93TH0502-5) IEEE COMPUT.
SOC. PRESS LOS ALAMITOS, CA, USA, 1993,
pages 165-171, XP002456556

ISBN: 0-8186-3125-2

abstract

page 165, left-hand column, paragraph 1 -
right- hand column, paragraph 2.

page 168, Teft- hand column, line 1 — page
170, r1ght —-hand column, paragraph 7.

WO 00/70455 ‘A (HONEYWELL INC [UST; BINNS
PAMELA A [US]; VESTAL STEPHEN C [US])

23 November 2000 (2000-11-23)

abstract

page 3, line b - page 4, Tine 16

page 7, line 8 - 1ine 25

DAS R ET AL: "Towards Commercialization
of Utility-based Resource Allocation"
AUTONOMIC COMPUTING, 2006. ICAC ’06. IEEE
INTERNATIONAL CONFERENCE ON DUBLIN,
IRELAND 13-16 JUNE 2006, PISCATAWAY NJ,
USA,IEEE, 13 June 2006 (2006 06-13), pages
287-290,- XP010932299

ISBN: 1-4244-0175-5

abstract

page 287, right-hand column, T1ine 30 -
page 288, Teft-hand column, 1line 30

page 289 left-hand column, paragraph D.
page 290 right-hand co]umn paragraph V

2-17,
19-29,
- 31-41

2-17,
19-29,
31-41

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2007/012746
Patent document Publication Patent family Publication
cited in search report date member(s) date -
WO 0070455 A 23-11-2000 AT 253751 T 15-11-2003
AU 769245 B2 22-01-2004
AU 4851700 A 05-12-2000
CA 2371340 Al 23-11-2000
DE 60006422 D1 11-12-2003
DE 60006422 T2 09-09-2004
EP 1244963 A2 02-10-2002
JP 2002544621 T 24-12-2002
N 6567840 Bl 20-05-2003

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report

