
United States
US 20100325351A1

(19)

(12) Patent Application Publication (10) Pub. No.: US 2010/0325351A1
Bennett (43) Pub. Date: Dec. 23, 2010

(54) MEMORY SYSTEM HAVING PERSISTENT (52) U.S. C. .. 711/103: 711/114; 711/170; 711/E12.001;
GARBAGE COLLECTION 711/E12.002: 711/E12.008

(76) Inventor: Jon C. R. Bennett, Sudbury, MA
(US)

Correspondence Address: (57) ABSTRACT
BRINKSHOFER GILSON & LONE
P.O. BOX 10395 Non-volatile memory systems such as those using NAND
CHICAGO, IL 60610 (US) FLASH technology have a property that a memory location

can be written to only once prior to being erased, and a
(21) Appl. No.: 12/796,836 contiguous group of memory locations need to be erased

simultaneously. The process of recovering space that is no
(22) Filed: Jun. 9, 2010 longer being used for storage of current data, called garbage

collection, may interfere with the rapid access to data in other
Related U.S. Application Data memory locations of the memory system during the erase

period. The effects of garbage collection on system perfor
(60) Provisional application No. 61/186,626, filed on Jun. mance may be mitigated by performing portions of the pro

12, 2009. cess contemporaneously with the user initiated reading and
O O writing operations. The memory circuits and the data may

Publication Classification also be configured such that the data is stored in Stripes of a
(51) Int. Cl. RAID array and the scheduling of the erase operations may be

G06F 2/02 (2006.01) arranged so that the erase operations for garbage collection
G06F 12/00 (2006.01) are hidden from the user operations.

30

isis. it Faste is:
2.33 Eistic E-3 Saski, 3E-3 ixi

Sis

Page 0 || for
Page Page Page

all -
| H35 || || :

- I age

| Eas g

2 s

2. Page 1

| S. &

Page 83 g

US 2010/0325351A1 Dec. 23, 2010 Sheet 1 of 10 Patent Application Publication

09

(SAN) 96eJo?S

J?||OJ?uOO Á IOUueW
JO J??nduOO || 0 ||

90e?J??u||Jº??O JO Sng

^

US 2010/0325351A1 Dec. 23, 2010 Sheet 2 of 10 Patent Application Publication

Patent Application Publication Dec. 23, 2010 Sheet 3 of 10 US 2010/0325351A1

s
Sodoo N. co Lo Nico C - d es

S- w

<
cy

Patent Application Publication Dec. 23, 2010 Sheet 4 of 10 US 2010/0325351A1

BASE DYNAMIC
AREA AREA
(BA) (DA)

r -1 -YN-N-

OVER

EG-1 PASEs WPt/6A MAxt
AREA

END MAX PAGE FREE PAGES BUFFER

(EB)

% 2

| %2
DEAD WP= BA MAxt

% 22 2 | | | EEEE

|| ||
WP= BA MAX=it

% 22 2 % 2

%2%%| || 2
WP= MAX

3 s
GET . A

FIG. 4

Patent Application Publication Dec. 23, 2010 Sheet 5 of 10 US 2010/0325351A1

FREE
BLOCK
POOL

FFFFFFFFFFFFFF
FFFAFF AAA FAAFF
FFFMAAMMMMAMMM 3
FFAMMMMMMMXMMM 4
FFAMMMMMXM FMMM 5
FFFMMXMMMFAMMM 6
A = ACTIVE

FREE
FILLED FG 5
MARKED FOR ERASE

F
M
X

20

10

50 1OO
% OF MEMORY ALLOCATED TO USER

FIG. 7

US 2010/0325351A1 Dec. 23, 2010 Sheet 6 of 10 Patent Application Publication

|-?6ed p??03||OO ?6eques)

(WO) eeuw WO?I?AO
VO) eÐJV

US 2010/0325351A1 Dec. 23, 2010 Sheet 7 of 10 Patent Application Publication

WWIA LOO8D]

8 SSE HAXE |Oc]

>HETTO?-|_LNO O ÅRHOWEWN |SOH OL

W SSEHCHXE |Oc]

[22] 0/[69]

US 2010/0325351A1 Dec. 23, 2010 Sheet 8 of 10 Patent Application Publication

F= = F= =

|---------}() |66 |

| [º || K | E | F | R] ,

|| ||
|

|

|? ? ? ? ?| ····· ……. .…… ····· ·····

||

+---------|-----------------------------------} ? ??|||
||| #7 ||| + – – – – – – – – –|---------------------------------~) ? ? # It ||£

|| || ? ???

||Z ||(~– ?iç |? | IT?|0 Iº0[9] ||| ||)) +---------F() (T(n)(Tf)(?)(TT} | ?l | ?? D E . [][,] | 0

Patent Application Publication Dec. 23, 2010 Sheet 9 of 10 US 2010/0325351A1

3.

-

U

i

-

Patent Application Publication Dec. 23, 2010 Sheet 10 of 10 US 2010/0325351A1

US 2010/0325351 A1

MEMORY SYSTEMI HAVING PERSISTENT
GARBAGE COLLECTION

0001. The present application claims the benefit of priority
to U.S. provisional application No. 61/186,626 filed on Jun.
12, 2009, which is incorporated herein by reference.

TECHNICAL FIELD

0002 This application may relate to the storage of data or
instructions for use by a computer.

BACKGROUND

0003) Non-volatile storage devices (NVS), such as flash
memory, may be used for the storage of data in computing
system applications. There are currently two types of flash
memory in general use, with other types being developed.
NOR flash and NAND flash have differing write and read
speeds, differing lifetimes, and costs. NAND flash is pre
ferred at present for large memory systems. The architecture
of a NAND flash memory system is influenced, in part, by the
desire to replace rotating media (e.g., magnetic disks) or tape
as a bulk storage device. A characteristic of a flash memory
device is that the organization of the memory locations may
emulate a sector, page, and Volume of a disk. However, there
are certain differences in the implementing technology which
need to be accommodated. In particular, whereas a disk sector
may be written to multiple times in succession, a sector of
flash memory may be written to once. Prior to another write
operation, the sector must be erased. However, the minimum
size of the memory area that may be erased may be large when
compared with a sector or a page. This minimum sized area of
physical memory that is erasable is termed a “block', and is a
plurality of contiguous pages which may have a definite rela
tionship to the chip electrical construction.
0004 To perform an elemental write operation on a pre
viously unwritten page, the page of data may be written to
directly to the memory area. This is sometimes called pro
gramming, and selectively sets bits of the page to “0” from the
previous “1” state so as to record the data. When the data in
the page location needs to be modified, the modification
cannot be performed in place, unless all of the bits of the page
are first set all to “1” again, which is an operation termed
"erase'. But, erase operations cannot be performed on a
memory area Smaller thana block, which may be, for example
128 pages. So, in order to write one byte, the memory con
troller may have to read 128 pages, erase the block, and write
all of the data, including the modified byte, back to the
memory area. This is inefficient. As well, the number of erase
operations is high, and one aspect of flash product lifetime is
the number oferase operations which may be performed prior
to device wear out.
0005. A more efficient approach is to read the page to be
modified (a “live' or “active' page, containing valid current
data) make the data modification in local volatile memory,
and write the modified page data to a free page. A “free’ page
is one which has never been programmed, or has been erased
as part of a block erase operation. After the write operation,
the free page becomes an active page, and the page that has
been read from is now out-of-date, and is called a “dead”
page, or a 'stale page.
0006. Another limitation of currently used NAND flash is
that the pages of a block need are written in sequential order

Dec. 23, 2010

beginning with the first page, so as to minimize write-disturb
errors. Any blocks not written to in this order would remain
free until the block is again erased. As this wastes Storage
space, the usual policy is to write to each page of a block in
sequential order, although the writing need not be time con
tinuous. Data at the original location of the page being modi
fied is left in place in the memory, as pages cannot be indi
vidually erased. So, a dead or stale page of memory is out
of-date, and not longer of use, but still occupies memory
space. Eventually, the memory would become filled with a
combination of active and dead pages, and all of the free
pages would be exhausted.

SUMMARY

0007. A non-volatile data storage system is described, the
storage system having a memory module with a plurality of
non-volatile memory circuits (NVS) each NVS configurable
into a first memory area and a second memory area. Each of
the first and the second memory areas has storage locations
for data, and each of the storage locations is writable once
unless the locations are Subsequently erased.
0008. The memory module is configurable such that each
storage location has a status of one of active, dead, or free, and
when all of the storage locations of the first memory area of a
NVS of the plurality of NVS are eitheractive or dead, and data
stored in an active storage location of the first memory area is
modified, the memory module is configurable to move data
from at least one other active storage location of the memory
module to a free storage location not in the first memory area.
0009. In an aspect, a method of managing data in a flash
memory system, includes: allocating a block offlash memory
of a flash memory circuit to a first memory area and a second
memory area, each of the memory areas having a plurality of
pages for storing data. Data is written to a page of the first
memory area of a block. Data on a page is modified by writing
the modified data to a free page of the block, or to another
block having a free page; and, for the condition that the
plurality of pages of the first memory area are all either active
or dead: moving data of at least one additional active page
from the first memory area to a free page not in the first
memory area.
0010. In another aspect, a computer program product,
stored or distributed on or in a computer readable medium,
has instructions for configuring a processor in communica
tion with a flash memory circuit to perform a method of:
allocating free pages of a block of the flash memory circuit to
a first memory area and a second memory area; writing data to
a free page of the first memory area and designating the page
as an active page; moving the data of the active page to a free
page not in the first memory area, and designating the active
page as a dead page; determining whetherall pages of the first
memory area are designated as either active or dead pages;
and for each additional page designated as a dead page: mov
ing data of at least one additional active page from the first
memory area to a free page not in the first memory area.
0011. In yet another aspect, a non-volatile data storage
system includes a memory module having a plurality of non
volatile memory circuits (NVS) each NVS circuit config
urable into a first memory area and a second memory area,
each of the first and the second memory areas having a plu
rality storage locations for data. A memory circuit of the
plurality of memory circuits is further configurable such that
a storage location of the plurality of storage locations of the
memory circuit is characterized as having a status of one of

US 2010/0325351 A1

live, dead, or free and, prior to all of the storage locations of
the first memory area being characterized as being either live
or dead, a processor of the memory module is configurable to
move data from at least one active storage location in the first
memory area of the memory circuit to a free storage location
not in the first memory area.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 illustrates a data storage system having vola
tile and non-volatile storage circuits;
0013 FIG. 2 is an example of a memory circuit organized
as pages and blocks and representative of a chip of flash
memory;
0014 FIG.3 illustrates the relationship of a mapping table
between logical block addresses and physical block
addresses, and corresponding page locations in blocks of a
memory;
0015 FIG. 4 conceptually illustrates the organization of a
block of memory where: (A) the block is divided logically
into a base area and an dynamic area, and free blocks are
found in both areas; (B) the block has no free pages in the base
area; (C) the block has no free pages in the base area and some
of the pages in the dynamic area are active pages; and (D) the
block has no free pages;
0016 FIG. 5 conceptually illustrates a plurality of blocks
of a memory circuit having different fill status;
0017 FIG. 6 conceptually illustrates a plurality of blocks
where the base area and Sub-areas of the dynamic area are
managed to have differing sizes;
0018 FIG. 7 illustrates the dependence of the write ampli
fication factor on the percentage of a block allocated to the
user,
0019 FIG. 8 illustrates the organization of memory mod
ules in a memory system compatible with RAID:
0020 FIG. 9 is a schematic arrangement of the data in a
RAID memory; and
0021 FIG. 10A shows the time sequence of write opera
tions for a RAID stripe; and, B shows the relationship of write
and read operations for sequential time intervals of FIG. 10A.

DETAILED DESCRIPTION

0022 Exemplary embodiments may be better understood
with reference to the drawings, but these embodiments are not
intended to be of a limiting nature. Like numbered elements
in the same or different drawings perform equivalent func
tions. Elements may be either numbered or designated by
acronyms, or both, and the choice between the representation
is made merely for clarity, so that an element designated by a
numeral, and the same element designated by an acronym or
alphanumeric indicator should not be distinguished on that
basis.
0023 Reference may be made in this application to sys
tems, apparatus, components, or techniques that are known,
so as to enable a person of ordinary skill in the art to be able
to comprehend the examples disclosed in the specification.
The examples are intended to enable aperson of ordinary skill
in the art to practice the inventive concepts as claimed herein,
using systems, apparatus, components, or techniques that
may be known, disclosed herein, or hereafter developed, or
combinations thereof. Where a comparison of performance is
made between the examples disclosed herein and any known
system, apparatus, component, or technique. Such compari
son is made solely to permita person of skill in the art to more

Dec. 23, 2010

conveniently understand the present novel system, apparatus,
component, or technique, and it should be understood that, in
complex systems, various configurations and conditions may
exist where the comparisons made may be better, worse, or
Substantially the same, without implying that such results are
invariably obtained or constitute a limitation on the perfor
mance which may be obtained.
0024. It will be appreciated that the methods described and
the apparatus shown in the figures may be configured or
embodied in machine-executable instructions, e.g., software,
or in hardware, or in a combination of both. The instructions
can be used to cause a general-purpose computer, a micro
processor, a special-purpose processor, Such as a DSP or array
processor, or the like, that is programmed with the instruc
tions to perform the operations described. Alternatively, the
operations might be performed by specific hardware compo
nents that contain hardwired logic or firmware instructions
for performing the operations described, or by any combina
tion of programmed computer components and custom hard
ware components, which may include analog circuits. Such
hardware components may include field programmable gate
arrays (FPGA), application specific integrated circuits
(ASIC), mixed logic and analog circuits, and the like. Where
a computing device is described herein, the device is pre
Sumed to have any memory for the data and programs that are
being used, or access to Such memory.
0025. The methods may be provided, at least in part, as a
computer program product that may include a machine-read
able medium having stored thereon instructions which may
be used to cause a computer (or other electronic device) to
perform the methods. For the purposes of this specification,
the terms “machine-readable medium’ shall be taken to
include any medium that is capable of storing or encoding a
sequence of instructions or data for execution by a computing
machine or special-purpose hardware and that cause the
machine or special purpose hardware to perform any one of
the methodologies or functions of the present invention. The
term “machine-readable medium’ shall accordingly be taken
include, but not be limited to, Solid-state memories, optical
and magnetic disks, magnetic memories, and optical memo
1S

0026. For example, but not by way of limitation, a
machine readable medium may include read-only memory
(ROM); random access memory (RAM) of all types (e.g.,
S-RAM, D-RAM, P-RAM, M-RAM); programmable read
only memory (PROM); electronically alterable read only
memory (EPROM); magnetic random access memory; mag
netic disk storage media; and, flash memory.
0027. The machine readable medium may be a memory
circuit that is an electronic product capable of storing data in
Volatile or non-volatile form depending on the technology
employed. Such circuits may include a plurality of semicon
ductor chips, and include both analog and digital circuit com
ponents to perform the basic operations needed for storage
and retrieval of data, status determination, and the like, and
may have additional circuits performing Supporting or related
functions.

0028. Furthermore, it is common in the art to speak of
Software, in one form or another (e.g., program, procedure,
process, application, module, algorithm or logic), as taking an
action or causing a result. Such expressions are merely a
convenient way of saying that execution of the Software by a
computer or equivalent device causes the processor of the
computer or the equivalent device to perform an action or a

US 2010/0325351 A1

produce a result, a representation of which may be stored in a
memory location or be used to act on an external device or
system, either locally or over a network, as is well known by
persons skilled in the art.
0029 When describing a particular example, the example
may include a particular feature, structure, or characteristic,
but every example may not necessarily include the particular
feature, structure or characteristic. This should not be taken as
a Suggestion or implication that the features, structure or
characteristics of two or more examples, or aspects of the
examples, should not or could not be combined, except when
such a combination is explicitly excluded. When a particular
aspect, feature, structure, or characteristic is described in
connection with an example, a person skilled in the art may
give effect to Such feature, structure or characteristic in con
nection with other examples, whether or not explicitly set
forth herein.
0030. For the purposes of a first example, a memory sys
tem or memory module 1 may include the functional areas
shown in FIG. 1, where the non-volatile storage (NVS) 30 is,
for example, a flash memory, which may be a multi-chip
device, the volatile memory 20, for example, is DRAM, and
the computer 10 is a microprocessor, field-programmable
gate-array (FPGA), state machine or the like, which itself
may include local memory, which may include Volatile and
non-volatile memory, including memory for local storage of
program data. Alternatively, such program data may be
loaded from another memory. The computer 10 may also
include the circuitry for interfacing with a data bus, or have
another form of interface to the remainder of the system. The
hardware may be located on a single circuit board or Sub
strate, or a plurality of the same.
0031. An example of a non volatile storage device (NVS)
device 30 is one or more 1 GBtye (GB) flash memory pack
ages, Samsung part number K9W8G08U1M, having two 512
MByte (MB) dies or chips in the same physical package. The
device has a shared 8-bit I/O bus, and a number of shared
control signals. The two dies have separate chip enable and
ready/busy signals. The extension to memory devices of
larger or Smaller capacities and to multiple chip packages
would be understood by a person of skill in the art. Multiple
chips may be combined, stacked or otherwise arranged in an
electronic package or assembly.
0032. In another example, and not by way of any limita

tion, a non-volatile storage module may include from 8 to 16
flash package, each package having, for example, 8 flash
chips or devices. A flash chip may have a capacity of 4GB, so
that 8 flash circuits (a package) would have a capacity of 64
GB and 16 flash packages would have a capacity of 128GB.
FIG. 2 shows a logical layout of two flash chips. The flash
memory device may be characterized as having a program
ming time (write time) of 200 usec typical and 700 usec
maximum, a page read time of 125us, and an erase time of 1.5
ms typical and 2 msec maximum. When the device has been
commanded to perform an erase operation on a block, the
device is in a “busy state and is not capable of receiving or
executing other operational commands, except for a reset or
read status command. The devices are organized to commu
nicate with the memory controller 10 over local busses having
a capacity of 20 Mbytes/s for a total capacity of 160 Mbytes/s.
The volatile memory may be DRAM, organized as 8bits wide
with a clock rate of 125 MHz.

0033 Some of the limitations of the NAND FLASH chips
presently in production are due to, for example, the use of

Dec. 23, 2010

multiplexed data busses, while others arise from the desire for
backwards compatibility with existing chips circuit board
layouts and computer software as the density of the memory
on each chip increases as a matter of technological evolution.
However, one may apply the principles herein to any memory
technology or arrangement where there is an asymmetry
between the read time and the write time or the erase time.

0034 Each die of an example flash chip may contain 4096
blocks; each block may contain sixty four (64)2 Kbyte pages
with an organization of pages, for example, as shown in FIG.
2. That is, each die may have a capacity of 512 Mbytes (MB)
and a package of two dies (which may be a chip) has a
capacity of 1 Gbyte (GB). Each page may also be comprised
of four (4) 512 byte sectors. Each page may further include a
64 byte region used to hold local metadata, which may be
termed auxiliary data or spare data for the sectors. The data
and metadata of a page may be arranged in various manners,
with metadata for the entire page contained in one 64 byte
region or allocated to sectors of the page.
0035. In an example, stored data may be read by transfer
ring an image of an entire page from the non-volatile memory
into a 2 Kbyte--64 byte volatile data register. The data thus
read may be accessed from the register as random data, or the
entire page shifted out over a data bus. A Subset of the page
may also be shifted out, since a read pointer may be posi
tioned at any byte location in the page. Where the reading of
a sector is described, the local metadata may also have also
been read, should the metadata have been needed. The meta
data may then be accessed without transferring the remaining
data of the sector or page. Alternatively, where the reading of
the sector metadata is described, the sector data may also have
been read. For convenience in the explanation of the
examples, the minimum size of a memory region to be read
will be considered to be the page, as a person of skill in the art
would understand the present description as being applicable,
for example, to the reading or writing of a sector. However,
Some comments on the reading of sectors are made herein,
where timing considerations may be of interest.
0036 Reading a page from the non-volatile memory cir
cuits into the data register may take 25usec, and the data may
be shifted out to the chip data bus at a rate of 20 MB/s. Shifting
an entire page to the chip data bus requires about 100 usec.
Where only the auxiliary data is needed, the read time may be
reduced to approximately the 25 usec needed to read the data
for a page into the data register. Before new or modified data
can be written to a previously used location of a block, the
block must be erased, a process which may take about 2 m.sec.
Erasing sets all bits in the block to “1, and subsequent write
(programming) operations selectively clearbits to “0”. Once
a bit is “0”, the bit may be again setto “1” by erasing the entire
block.
0037. Writing (also called programming) may be carried
out by shifting data into the chip data register and then execut
ing a command that writes the data into the non-volatile
memory circuit; writes take about 200 usec or more. The write
time and the erase times of a FLASH memory circuit may
depend on the state of wear of the device. That is, while a new
memory device may have a write time of 200 usec, as the
memory circuit experiences data write operations and block
erase operations, the time needed to Successfully perform an
erase operation tends to increase and the time to perform a
write tends to decrease. For convenience, the typical perfor
mance of a new device is used, but the actual times taken for
the operations would be understood as the achieved perfor

US 2010/0325351 A1

mance. Where a write or erase interval is discussed herein, a
fixed value accommodating the maximum time of a write or
erase operation may be chosen for convenience. This should
not preclude the use of variable values for these times based
on measured data.
0038. Using presently available production NAND
FLASH memory packages, the data and metadata area of a
page can each be written up to four times between erasures for
single level cell (SLC) flash memory, while for multi-level
cell (MLC) flash memory a page can only be written once
between erase operations. That is, each of the sectors of the
page may be separately written in increasing sequence order
for SLC FLASH, while for the present generation of MLC
FLASH all the sectors of a page must be written at the same
time. This aspect of SLC permits the page to be divided into
four independent 512 byte sectors, and each sector may have
an associated ECC, or other local metadata. The pages of SLC
or MLC in a block are written sequentially, from low page
addresses to high page addresses. A memory address of a
page may be described by the sequential page number in the
block, the sector number in the block, and may include the
location of a byte within a sector, if needed. Once a page has
been written, earlier pages in the block may no longer be
written (programmed) until after the next erasure of the entire
block.

0039. Before a block containing data that is valid or “live”
can be erased, the valid data must first be moved to a location
that is not going to be erased by the erase operation to be
performed. When an entire block comprising 64 pages is read
out so as to be moved to another memory location, about
64x100 usec=6.4 msec is needed to read the pages of block to
the external bus, and about 12.8 msec to write the block to
another location. The originating block may then be erased,
taking about an additional 2 mSec, for a total of about 20.2
msec. If the originating and target blocks are on different flash
dies of a package, or the flash die is capable of reading and
writing to different blocks at the same time, then the reading,
writing and erasing operations can be overlapped to some
degree. Since the block may be comprised of a mixture of live
and dead pages rather than all pages being live, the time to
erase a block so the block can be placed in a pool of free
(erased) blocks is not a constant. If only one page in the block
is live, then about 100 usec+200 usec.+2 msec=2.3 msec
would be the minimum time to perform this operation. Con
versely, if there is only one dead sector in the block, reclaim
ing a block takes approximately 19.9 m.sec. Either action
would result in only one additional free page being created in
the overall user memory. So, the percentage of "dead' pages
in a block affects at least the temporal efficiency of the gar
bage collection operation.
0040. The use of the terms sector, page, and block in the
previous discussion reflects the current commonly accepted
terminology for flash memory circuits, and resulted from the
adoption of several terms from rotating disk memory tech
nology. Where data structures are described herein, the term
block may have a different meaning, which is made clear in
the Subsequent discussion. The terms page and sector may be
replaced by other terminology that is used when referring to
data and the location thereof. This should be clear from the
context. A person of skill in the art will understand when other
equivalent terms are used.
0041. With the continued evolution of non-volatile
memory technology, changes in the organization and opera
tion of memory circuits may occur, and new terminology may

Dec. 23, 2010

be employed to describe the situation; however, a person of
skill in the art will be able to apply the concepts and teachings
of this application to analogous problems in the use of Such
evolving technology.
0042. The terms 'garbage collection' and “wear leveling
are used to generically describe housekeeping operations that
are performed in flash memory systems.
0043 Garbage collection may relate to the processes of
reclaiming "dead memory locations created by the writing
or re-writing of data to the FLASH memory. The old data
location, representing a value of stored data that has been
changed and stored in a new location, or relocated for other
reasons, is out-of-date and represents wasted space which
needs to be reclaimed so that an appropriate amount of free
memory is maintained to permit continued write operations.
Write operations continue to occur whenever the data in the
memory is being modified by the user, or where additional
data is being stored.
0044) To prevent the memory from being filled (that is, to
be in a state where there are no free pages) as a consequence
of lost space associated with writing or modifying the data
contents of FLASH memory locations, a housekeeping
operation of “garbage collection” may be performed. The
garbage collection process identifies the dead blocks, and in
accordance with a pre-established policy, which may be in the
form of machine readable instructions and parameters, the
remaining live pages of the block are relocated from the
block, so that the block is comprised entirely of dead pages,
and the block may be erased and returned to a pool of free
blocks.
0045 Wear leveling generally relates to the processes of
moving data in the FLASH memory so as to attempt to keep
the number of block-erase operations approximately equal
over the blocks of the memory, so as to avoid premature wear
out of the FLASH memory. Presently, FLASH memory cir
cuits are rated by manufacturers as having a lifetime which
may be measured in the number of erase operations before
failure. This is in addition to any conventional time-related
failure-rate specification which may also be given. A failure
may be a hard error, or a failure to perform within published
or established operational characteristics, which may include
write and erase times, or excessive bit errors, as examples.
0046. So, in addition to garbage collection, the relative
number of erase operations that have been performed on each
block of the memory device may be another factor in deter
mining the policies for managing the FLASH memory. Since
the wear-out of a flash memory device may be measurable in
the number of erase operations performed thereon, with cur
rent typical lifetimes being specified as from between 100,
000 and 1,000,000 erase operations for single-level-cell
(SLC) NAND flash technology and 10,000 erase operations
for multi-level-cell (MLC) NAND flash technology. The
repetitive writing and erasing of a particular block of memory
of the memory circuit, while other blocks may contain data
that is infrequently modified and have few erase operations
performed, may lead to premature wear-out unless the usage
pattern is adjusted so as to Substantially equalize the number
of erase operations on the blocks of the physical memory
circuit. This housekeeping process is called “wear leveling.
and results in the selective movement of data pages which are
not being frequently accessed by the user or the system pro
CCSSCS.

0047 Such non-user-related processes as garbage collec
tion and wear leveling are often called housekeeping or "over

US 2010/0325351 A1

head operations. The overhead may be manifest in a variety
of ways such as, a reduction in the memory capacity available
to the user, a reduction in the rate of reading of data, a
reduction of the rate of writing of data, an increase in the
latency between a read or a write request and the execution
thereof, and the like. The variability of these performance
indicators may be high, and unpredictable by the user appli
cation, and result in impaired user system performance.
0048. The examples herein have generally been simplified
by ignoring housekeeping and data protection operations
Such as wear leveling, bad-block detection and handling,
error correction, and the like, which may be performed con
temporaneously. In some instances, the interaction between
the housekeeping operations, and the housekeeping opera
tions and user-related operations is described for clarity, but
this is not meant to be a limitation.
0049 Many of the housekeeping operations are manifest
as movement of data to new sectors, erasing of blocks, chang
ing a bad block table, maintenance of metadata such as the
mapping tables, and the like. Some of these operations. Such
as wear leveling may be subsumed in the persistent garbage
collection described herein by establishing suitable policies
for the writing or relocation of pages when, for example, a
modify operation is performed.
0050. The term “block” is term used in computer technol
ogy having a variety of meanings, depending on the contextin
which it is used. In computer storage it is not uncommon to
refer to data being stored or accessed in “blocks” which,
while generally being of a fixed size, may not be the same as
the “blocks” in FLASH memory. It is also not uncommon for
the size, in bytes or some other measure, of the “block” of data
being accessed or manipulated to be different for different
entities operating on the same data. That is, the meaning of the
term may depend on the perspective of the writer. For
example, many operating systems manage the allocation of
memory in DRAM in 4 KB blocks, which are often called
“pages, but DRAM is a different technology and this concept
does not generally describe the organization of pages in
FLASH memory. When data is written to a disk drive for
storage, the block size may be 512 bytes, resulting in the 4KB
block of data being stored in 8 different 512-byte memory
blocks on disk. The disk blocks are also commonly termed
sectors, which is different from a FLASH memory sector.
Such re-use of terminology is often found as the technology
evolves, and a person of skill in the art would be able to
understand the action, or phenomenon being described based
on the context in which the terms are used.
0051. When referring to the location in a memory system
of a block of data one may refer to its Logical Block Address
(LBA), which is how the location may be referred to in the
context of a file management system, or its Physical Block
Address (PBA) which is its actual storage location in the
electronic memory system such as the FLASH memory. As
with block sizes, different entities may use different types of
addressing nomenclature and values to refer to the same piece
of data. For example, an operating system may have a 4KB
block of data with logical address 5, assuming each address
holds 4KB of data, which it stores in DRAM at physical
address 100. The operating system functions to maintain a
mapping table which tracks the physical memory location
address in which each logical address is stored. When the
operating system acts to store that same data on a disk, the
operating system may act to identify, for example, 8 unused
512 byte physical addresses, e.g., 8-15, in which to write the

Dec. 23, 2010

data. However, the disk drive controller itself may act store
the data in the locations 8-15 on the disk, but may treat the
addresses provided by the operating system file management
Software, for example, as logical addresses at the disk device
level, and store the data in different physical addresses on the
disks, which are tracked using a local mapping table. So the
same piece of data, or a portion of a piece of data, or collection
of pieces of data, may simultaneously be thought of as a block
or a sector or a page, with addresses that may be thought of as
being a physical address to which a logical address is mapped
to by one entity, say the operating system, while actually
being a logical address which is mapped to a physical address
by yet another mapping table of a different entity, such as disk
drive, FLASH memory module, or the like.
0052. As a result we may speak of the user data having a
logical block address (LBA), which a mapping table (MT)
maps to a physical block address (PBA). However, the
“block” may represent the data from a user viewpoint where
the user, for example, writes data in 4 KB blocks but each
FLASH device stores data in groups of data of 2 KBytes in
length. One may say that, in this circumstance, the mapping
table is really mapping logical “half block” addresses, to
physical page addresses. In another aspect, if the FLASH was
organized to store data in 1 KByte sequential chunks, this may
constitute mapping logical “quarter block addresses to
physical “double sector addresses; if 512 byte chunks, then
/s logical block to a single sector physical block. One appre
ciates that when the size of the user blocks is changed or the
length of a FLASH page, or the like, is changed all the names
ofterms would have to correspondingly change. To avoid this,
which is confusing, in presenting the concepts herein we use
the terms LBA and PBA as the logical and physical locations
of a piece of data, whose size is and location is context
dependent.
0053. In an example, when a given LBA is written to the
FLASH, say LBA3, the data may be written to a free location,
in this case at page 8 of block 2, as shown in FIG. 3. For
simplicity we may treat the MT as a table in volatile memory,
such as DRAM, large enough to store all the LBA to PBA
mappings which can be directly referenced and updated.
Many FLASH memory systems keep the LBA to PBA map
pings in data structures other than flat tables, which may not
be stored in volatile memory, so the form and location of the
MT as described should not be taken as a limitation.

0054 If LBA 3 is written to again, for example so as to
update a value of data therein, then an available location in the
FLASH memory device will be found to store the data and the
mapping table MT will be updated to refer to the new storage
location. The physical location at which LBA 3 was previ
ously located is now considered “dead; that is, the physical
location cannot be used to store new data in that physical
location, which may be, for example, a page until the block in
which the page is located, in this example block 2, is erased.
However, before block 2 can be erased any “live' data, in the
form of LBAs that are mapped to PBAs located in block 2.
Such as LBA 2 which is mapped to the page 4 of block 2, must
be relocated to a memory location in a different block so the
live data is not lost when the block is erased. The processes of
garbage collection and wear leveling may interact to some
extent. Some of the policies associated with garbage collec
tion may be adapted to perform some or all of the wear
leveling functions as well.
0055 For simplicity in discussion, the memory circuit
may be a chip, such as the Samsung part described above. The

US 2010/0325351 A1

interface of the memory module on which the memory circuit
is contained, with the remainder of a computing system, may
be over a bus. The details of the management of user data,
Such as by a file management system, a block oriented Storage
system, or the like, are considered to be performed at a higher
level in the system, so that, at Some conceptual level of the
memory module, principal function to be performed by the
memory and the immediate interface to the memory is the
reading of data or the writing of data. The modification of data
in a memory location is considered to be a combination of
read, modify and write operations.
0056. The minimum-sized data element that is being con
sidered in this example is a page, although the actual result of
the operation to be performed may be intended to modify only
one byte of the data stored in a 2 Kbyte page of a physical
memory block having 64 pages in the block. Pages may be
free, live (“active') or dead, depending on whether the bits
therein have been erased and not yet programmed, pro
grammed (written), or read for the purpose of modification
and the modified data having been written to another free
physical location while leaving the original data in place,
respectively. Where the pages of a block are written using a
policy of writing pages in increasing order, a free page is one
which has a higher page number in the block than the highest
page already programmed (live or dead) page. A free block is
one in which all of the pages are free pages.
0057 Of the entire available memory, a portion of the
memory is available to the user, a portion is reserved for
system housekeeping, and a portion may be unusable. The
unusable memory area may be comprised of bad (defective)
pages or badblocks that have been identified, for example, by
the manufacturer, or by the operating system. The criteria for
determining a page or block to be “bad”, may be different for
each manufacturer or use, but the result of declaring a page or
block “bad” is to remove the page block from the category of
those blocks that are considered suitable for the reliable stor
age of data. Ultimately the number of bad blocks may grow
sufficiently that insufficient memory is available for the user
data and housekeeping activities and, effectively, the memory
circuit device has failed or worn out.

0058 For purposes of discussion, bad blocks are not con
sidered, as they are not used or otherwise operated upon. They
merely reduce the size of the memory available for use. Meta
data, which is used to describe the location of the data and
data properties on the physical memory, may also result in a
reduction of the total memory available to the user. Such
metadata may be about 2-5% of the size of the user data being
stored. Herein, the metadata and the stored data are consid
ered together as “data'. The actual user data area would be
reduced by the space needed to store the metadata, howeveras
the storage of the data and metadata data may be managed by
similar operations, discussion is simplified so as to consider
that the operations performed on the user data and the local
metadata would be the same or similar. As such, the “user'
may be considered as the combination of commands and data
provided to the memory controller by a user program, wher
ever located, and metadata maintenance related to the user
metadata and housekeeping.
0059 For this example, the user data, including user meta
data, may be considered to be grouped in logical data blocks
of 2. Kbytes, each Such block having a logical block address
(LBA). The LBAs may be considered to be numbered from
LBA=0 to LBA=LBA MAX, where LBA MAX is the
amount of user data memory available in a device, so that 2

Dec. 23, 2010

KBxLBA MAX is the user data memory size of a block. The
user data area may be distributed over a plurality of physical
memory blocks of the memory module, each memory block
being, for example 256 Kbytes, and a memory module having
many GB of memory.
0060 For simplification we describe the case where the
range of LBAs is limited to the size of available memory.
Systems with address ranges larger or Smaller than the size of
available physical memory are not precluded.
0061. A mapping table (MT), which may be part of the
metadata, expresses the current association of an LBA with a
physical memory location (PBL). An example of a MT is
shown in FIG.3. The PBL is the mapping of the LBA to a PBA
(physical block address), which is the actual location of a
page in the memory circuit. The number of PBL table entries
may the same as the number of LBA table entries. This arises
from the allocation, in this example, of an LBA to each logical
page of the full extent of the available user memory.
0062 Each LBA is an index to the array of PBAs, com
prising a block number (i), and a page index () in the block (i).
Not all of the LBAs are associated with live pages in the
FLASH memory system. The table therefore associates each
LBA with a specific physical location in a block of the
FLASH memory where the page of data associated with the
LBA is stored, or may associate the LBA with no physical
location where data has not as yet been stored using the LBA,
such as LBA 5 in FIG. 3, or has been de-allocated after being
used.

0063 Another attribute, which is shown conceptually at
the left-hand side of the memory blocks, is the status of each
page of the block. The pages may be free, live, or dead, as has
been previously described. Note that it is typical for all pages
below the first free page to be either live or dead, as a bypassed
free page should not be written to unless the entire block is
erased. This is a property of currently available NAND flash
memory devices, and is not otherwise intended as a limita
tion. The status of the pages may be stored as S(i,j). Further
information on a block itself, may be stored in a variable B(i)
(not shown) and include information such as the number of
times that the block has been erased, whether the block is free,
active, full or available for erase.
0064. The available user memory may be smaller than the
total amount of physical memory of the module. In particular,
the additional physical memory may be used for housekeep
ing operations (and the other operations that are considered to
be subsumed in the term housekeeping, as they may not
available to the user). So, for a memory module, having a total
amount of physical memory (PM), and assuming that there is
no provision for bad blocks, may be allocated as Ubytes of
user memory and H bytes of housekeeping memory where
U+H=PM. That is, the PM represents 2 KbytesXPBA MAX.
Sometimes, for convenience, the values of U and H are
expressed as a percentage of the PM.
0065. Initially, the memory module has no user data stored
therein, when first used or completely erased. As the memory
system is used to store, retrieve and modify data, the logical
LBA are associated with user data to be stored having PBAs
allocated in the MT, and the operations are performed
thereon.
0066. When a live data page described by an LBA is read,
the operation is performed in place, as the data is not modi
fied, and thus no write operation need be performed. The
association of the LBA and PBA does not change in the MT.
When a data page, described by a LBA is written, a new PBA

US 2010/0325351 A1

is selected from the pool of memory pages that are “free”
where the data can be written to, and the MT entry for the
LBA is updated with the new value of the PBA at which the
data has been stored. This PBA now becomes a “live' page,
and the status of the new live page is changed so that it is
deleted from the pool of free pages. Concomitantly, the old
PBA is now out of date, and is considered as a “dead' page.
The page status is changed to be "dead or “stale'. The data of
the dead page has not been modified, but the data is now of no
current use (So long as the transaction has been properly
accounted for. Such as having the transaction operation Suc
cessfully copied, by the system software).
0067. An example of a data management system which
may be suitable for this purpose is found in U.S. Ser. No.
12/273.410, Method and System for Storage of Data in Non
Volatile Media, by the present inventor, filed on Nov. 18.
2009, which is incorporated herein by reference. The meta
data associated with the user data and the maintenance
thereofmay be considered as part of the user data for purposes
of this discussion.
0068 FIG. 4 shows a simplified view of the storage area of
a FLASH memory block (excluding spare data, bad pages,
non-user-related housekeeping storage, and the like). FIG.
4A shows the data layout of a single memory block compris
ing MAX PAGE pages of user memory. The value MAX
PAGE may vary from block-to-block, in practice, due to the
number of bad blocks, and the like; however, the total amount
of user memory for the memory module is U of the total
memory U+II.
0069. In FIG. 3A, starting at the lowest PBA (0), data
pages may be written to incrementally in sequential order up
to a value of WP-PBA (i, MAX), which represents the results
of MAX page write operations, and WP is the value of a write
pointer. Above PBA (i, MAX), which is the current value of
WP, the memory pages have not as yet been writtento, and are
“free.” The free pages have all been previously erased or
pages that have never been written to are still all “1”. All of the
pages less than or equal to PBA (i, MAX) are live pages
(except for one page in this example, which is presumed to
have already been modified, and thus moved to another loca
tion, and is shown as dead). The locations of the correspond
ing live pages are found in the MT.
0070 For convenience in discussion, two contiguous
memory areas are defined: the base area (BA), and the
dynamic area (DA). The dynamic area is further divided into
an overflow area (OA) and an end buffer (EB). The value of
the base area is U and the value of the dynamic area is H.
0071. The proportion of memory used as base area (BA)
with respect to the dynamic area (DA) has an effect on system
performance, which will be discussed later. For this example,
the BA is 80% and the DA is 20%; the OA is 5% and the EB
is 15%, where the percentages are of the total user memory of
a physical memory block. The physical memory block is the
smallest unit of memory that can be erased for the currently
available NAND FLASH memories.
0072. When the memory is first used, there is no data in
any of the PBAs, and the PBAs become populated with data
by writing each PBA with data associated with a LBA and
related to the LBA through the MT. A write pointer WP (i,j)
for each memory block is maintained. As shown in FIG.3B,
when the write pointer WP (i,j)=BA MAX, the base area BA
is full, and writing of further LBA page data to the memory
module may continue in another memory block. During the
operation of the user system, contemporaneously with the

Dec. 23, 2010

writing of data of LBAs to the memory for the first time,
additional operations may occur, which have the effect of
modifying an already written page of the block. A first Such
modified page was one where the data has been moved, as was
shown in FIG. 3A, and is a dead page. The status of this page
would be marked as S(i, j)=D. Further dead pages may be
seen in FIG. 3B.
0073. After sufficient operations to write or modify pages
in the physical memory, all of the pages in of the BA of the
blocks may either have been written to, and are “live', or may
have been modified and are "dead or some mixture of the
states. There may be no free PBA in the BA of the blocks to
accommodate the next write or modify data or housekeeping
operation.
0074 At thisjuncture, as shown in FIG. 4C, writing of user
data to the dynamic area DA may occur (although there is no
bar to beginning this portion of the process at an earlier time).
This is described for a single block of the plurality of blocks
and chips of a memory module. FIG. 4C shows the first write
operation to the dynamic area DA which is made to PBA (i.
WP)=BA MAX-1, which is the lowest value physical
memory page in the dynamic area DA. The writing of a page
to the OA of the DA may also initiate a move of page of data
from the BA to another memory page location. Necessarily,
this memory location is outside of the base area BA, as the
base area is already filled and, in this instance, the page data
may have been moved to the OA, or to another block. The
location from which the page data was moved is now a dead
page, as the data therein has been modified, or relocated, and
is thus out-of-date. For each live page modified and written to
the OA of the DA, an additional dead page may thus be
created in the BA of the block. Live pages may be written to
the DA as a result of modification of the data of the page, or
as the result of housekeeping operations. In either circum
stance, the Source page is now considered to be a dead page.
0075. Each time the data of an LBA is written to the OA,
the WP is incremented by 1, and another page of data of the
BA is moved elsewhere. Data from other pages in the BA, and
pages in the OA may be moved as required by user and system
needs, and each of these moves results in at least one dead
page, increasing the percentage of dead pages in each block.
At this juncture, the number of data move operations to the
OA is at least equal to the number of write operations. The
housekeeping load may be relatively small and distributed in
time and with respect to the physical memory blocks.
(0076. By the time 5% of the memory in the OA block has
been filled by moves related to data modification, another 5%
of the data in the BA has also been relocated by the one-page
move-for-each-page-written policy, so that at least 10% of the
overall user memory may be dead pages. Any other opera
tions which modify stored data pages will also have also
resulted in dead blocks, so that 10% dead blocks is a mini
mum value.
0077. The data management operation may distribute the
LBA writes to a plurality of blocks; however, here it is easier
to explain the concept of operation if the LBA writes (includ
ing data modifies) are considered to be written sequentially to
the present memory module. When the OA has been filled,
PBA (i, WP)=OA MAX, the first page PBA (i, WP)=OA
MAX-1 of the end buffer (EB) is written. Depending on the
policy adopted, more than one additional page from the BA or
the OA may now be relocated for each write of a LBA to the
EB. For example, two pages of data in any of the BA or OA
may be relocated for every LBA write. In this instance the

US 2010/0325351 A1

additional pages may be have been relocated to the EB. In
general, they could have been relocated to other blocks or
chips having free pages. This would include a free block. By
the time that the free pages of the EB have been filled with
physically relocated LBA page data, another 10% of the
overall user memory on the memory block will have been
converted from live pages to dead pages and the data relo
cated elsewhere. At this juncture, the block is effectively full
and no more write operations can be performed to the block.
However, if the additional, non-modified pages had been
moved to another block, a total of at least 40% of the pages in
the source memory block may be dead by the time that all of
the pages in the source block are either live or dead.
0078 A full block may be marked as a candidate for gar
bage collection (reclamation, erasure) or otherhousekeeping
operations inaccordance with a variety of policies which may
be pursued. The percentage of dead pages, the number of
times the block has been erased, and the like may be consid
ered.
0079 At the chip or module level, the memory occupancy
and management may be viewed somewhat differently, where
the characteristics of blocks of memory are considered. As
shown in FIG. 5, the blocks of memory on a chip, for example,
may be thought of as an array of memory blocks, each having
a size equal to the amount of memory available on the block.
For convenience in discussion, this example presumes that
the same number of memory pages is available on each block.
However, as previously discussed, this may not always be
true, and is not intended to be a limitation.
0080 Blocks of memory, such as shown in FIG. 5, may
have attributes of never been writtento, or having been erased
(free blocks) F; currently capable being written to and still
having free pages available (active) A; and, having no free
pages (full) M. In the latter case, each page of the block is one
of live or dead. Full blocks M have no more free page space
available and cannot accept further writes without being
reclaimed (erased). As described above, each full block may
have at least about 40% or more dead pages. If the block is
selected to be reclaimed (garbage collected), or marked for
block erase X, in accordance with a policy, the remaining live
pages in the marked block are first moved to other active
blocks or free blocks prior to marking the full block Fas being
available for an erase operation. The number of live pages
may be less than 50 percent of the capacity of the block, as
described above, and may be even less depending on dynamic
system use. So, when a block is selected to be erased, the
amount of data that needs to be moved may less than 50
percent of the situation which would have obtained if the
block had been filled up without any corresponding in-pro
cess page relocation. However, this is not a limitation,
0081 Furthermore, the data may be moved during inter
stices in the remaining operational actions rather than in a
large group of pages immediately prior to the erasure of the
block. That is, the number of page moves may be essentially
the same; however, the page moves are made individually,
and may be made interspersed with the user or housekeeping
operations. As such, large and unpredictable interruptions in
the user data flow may be avoided.
0082 Reclamation of physical memory blocks may be
gated by the size of a free block pool. Where a sufficient
number of free blocks are available, full blocks may not need
to be explicitly reclaimed immediately. Such reclamation
may be deferred until the number of free blocks in the free
block pool is reduced to some threshold value. Where full

Dec. 23, 2010

blocks may not as yet been reclaimed, a background opera
tion may be performed so as to move pages from full blocks
to active or free blocks on an incremental basis, further
increasing the number of dead blocks in the full block. In the
limit, all of the pages may be dead, and the block may be
erased or at least marked for erase when needed, without
further page relocation.
0083. The selection of full blocks from which to incre
mentally move pages may be governed by a policy where the
number of erase operations previously experienced by the
block is considered, and pages on blocks having lower erase
counts may preferentially re-located. This is a form of wear
leveling.
I0084. In another aspect, the example presented above may
have the filling procedure of the OA modified. For example,
the number of pages moved for each page written may be two.
By the time that the OA becomes full, 30% of the pages would
have been moved. By the time that the block becomes full, at
least 20+30%–50% of the block would comprise dead pages.
If the number of pages moved were 3 for each LBA write, then
at least 20-40%-60% of the pages would be dead by the time
the block was full.
I0085. In yet another aspect, the dynamic area DA may be
comprised of both the OA and the EB having the same relo
cation policy, so that the entire DA is treated as using the same
policy. For example, two pages may be relocated when a page
is written to the DA for the purpose of a page data modifica
tion.
I0086. In still another aspect, the relocation policy may be
variable, depending on factors such as the number of blocks
available in the free block pool, the number of dead pages in
a block, the block erase count, the instantaneous read or write
rate, or the like.
I0087. The policy for determining the number of pages to
be moved for each LBA write operation to the DA may be
dependent on the number of dead pages in the block, where
the lower the number of dead pages, the more pages are
relocated for each write. The balance of relocations for each
write, and the speed of background relocations from full
blocks may be moderated by a wear-leveling policy so that
frequently erased blocks are relocated less frequently. This
may serve to promote wear leveling at the same time as
garbage collecting.
I0088. When the pool of free blocks declines to a predeter
mined value, one or more blocks may be reclaimed, so that
sufficient free space in the active blocks and the free blocks is
available to keep up with a write speed specification. In addi
tion, the amount of live data permitted in a full block may be
limited so that, when the block is erased, the amount of time
needed to relocate the remaining live data pages is compatible
with a read rate or latency specification.
I0089. Where the module is part of a larger memory sys
tem, other Volatile or non-volatile memory areas may also be
provided for the temporary storage of program instructions
and data for operation on by another computer, processor, or
the like. Volatile RAM communicating with, or part of a
memory module may be used as an intermediary storage
between the NVS devices and any other storage medium,
including NVS and may be a part of a memory module. The
term memory module is a convenience for conceptualizing a
group of NVS memory elements or packages, which may
include associated Volatile memory, and a computing device.
It may also include a bus interface for communicating with
other portions of a system. A module need not have all com

US 2010/0325351 A1

ponents physically resident on a single circuit board or Sub
strate. Alternatively, more than one module may be resident
on a single board or Substrate.
0090 Earlier, the number of live and dead pages expected
when the block has been filled was discussed. However, since
once all of the LBA address have been associated with a
physical memory location through the mapping table (MT),
and the memory system is in a quasi-steady state of being
logically filled, except for housekeeping operations, the num
ber of user write operations (except for metadata) is equal to
the number of times the user has commanded a write opera
tion, the result of which is a modification of the stored data for
a logical page. Since this occurs by reading a page, modifying
the data in a scratch memory, which may be non-volatile
memory, and writing the data to a free memory page, the
Source page is now dead, and the destination page is now a
live page, being deleted from the free page pool.
0091. As each read or write operation to flash memory
may be the read or write of a single page, there may be a
temporal conflict between a housekeeping operation Such
garbage collection (or, the read of a page to enable the write of
a modified page, or writing a modified data page) and a read
operation initiated by the user
0092. In this example, there are occasions when the block

is being erased. If a read request is directed to a chip of a block
when it is being erased, then the read operation would be
blocked for about 2 mSec, unless the erase operation was
interrupted. However, as described in U.S. Ser. No. 12/079,
737, Memory Management System and Method, by the
present inventor, filed on Mar. 26, 2008, and incorporated
herein by reference, when memory is organized in a RAID
configuration, the read blockages due to erasing blocks of
FLASH memory in the memory modules may be scheduled
so that a RAID group data may be reconstructed without all of
the data, and the module read latency due to erasing a block
may not be apparent to the user. Housekeeping operations
may be effectively performed on other blocks during the erase
period.
0093. Where the data processing in this example is shown
as being performed by a computer, the computer may be a
memory controller or memory management circuit located on
a circuit board that is a module containing the memory, or be
connected to Such a module by a bus, so that the data may be
processed in another component of a larger system. The bus
used for communication with other aspects of the system may
be any of the varieties of bus architecture now known or
which may be developed that is compatible with the product
with which the memory system is designed to interface. Such
busses may, for example but not by way of limitation, emulate
the hardware and software interface characteristics of rotat
ing magnetic disk storage systems, or be extensions or
improvements thereon.
0094. The size of the BA and DA need not be fixed (as in
FIG. 4), and need not be constant across all blocks, as shown
in FIG. 6. Based on system load or occupancy or other per
formance metrics the size for the BA, DA=(OA+EB), and
both OA and EB, may be varied for different blocks. For
example a goal of having blocks in differing stages of utili
zation may be achieved as shown in FIG. 6 by having some of
the blocks of a group of blocks A-F, represented by blocks A
and B, with a BA of blocks A and B sized below the average
value of BA over all the blocks A-F. The evolution of blocks
between different degrees of utilization, for example to cause
the distribution of data over a block of the blocks to conform

Dec. 23, 2010

to a given policy governing the distribution of the data, could
be controlled as shown for block C whose OA is temporarily
of size 0, and cannot be writtento. At another time, the size of
the OA of block C could be made >0 and writing to block C
may resume, and perhaps evolve into block D. In Such a
dynamic system, prior to a predetermined or adjustable level
of utilization, a block may also have pages reserved for gar
bage collection, or wear leveling. Upon reaching a block fill
level (in the case of blockD), where the total of the data in live
and dead blocks is BA+OA, garbage collection could begin
on the block. In the case of block E, where the total is greater
than BA+OA but less than BA+OA+EB, garbage collection
could be performed at an accelerated rate. In the case of block
F where the total is BA+OA+EB, the block has been com
pletely filled and is now Subject to reclamation for garbage
collection purposes.
(0095. The BA and DA of a block of memory may have
different sizes from that of this example, as a percentage of
the available user memory, and the sizes used in the example,
and the specific policies applied, are merely illustrative and
not intended to be limiting. In an example, 80% of a block of
physical memory may be allocated to the user data LBAS and
the remaining 20% of the memory may be allocated to house
keeping (garbage collection) operations. A number of free
blocks may be allocated to a free block pool as a part of the
management of the data transfers. The total number of write
operations, including garbage collection, needed to accom
modate a user-commanded write operation influences the
efficiency of use of both the memory storage capacity and the
operational time line. The latter may relate to the number of
input/output (I/O) operations and the throughput in writing
user data to memory.
0096. The selection of values for BA and DA for each of
the blocks may be, for example, a random variable uniformly
distributed in a range of values about the target average value
of the design. Adjustments to the values may be made based
on monitoring the distribution of the percentage of live pages
in a block. The free page level for a block may be compared
with other blocks of a chip, a module, or a system and
adjusted so as to achieve a continuing quasi-steady state dis
tribution of percentage free pages for a plurality of blocks.
The mix of user read and write operations, and the need for
both garbage collection and wear leveling, results in a
dynamic load situation, and adjustment of the BA and DA,
and the garbage collection protocols in response to the load
may be used to control variability in the response times as
experienced by the user.
0097. The data to be stored in the memory may be said to
be comprised of Spages of data, where (Sxpage size (KB)) is
the total amount of all user data to be stored in the memory.
Each of the LBA pages of data may be associated with one
page of physical memory. The relationship between each
LBA and a PBA is found in the MT. The specific PBA asso
ciated with the LBA may be changed whenever the data is
physically moved in the memory for any reason. However the
total number of pages of data S is neither increased nor
decreased in this process. That is, the size of the logical data
array is unchanged.
0098. If the total amount of physical memory of a memory
block is PM and the memory is allocated as a sum of user
memory U and housekeeping memory H. PM=U+H. Here,
the term housekeeping memory is meant to identify the
amount of memory in a block that remains available when the
amount of user memory U is filled with user data. One may

US 2010/0325351 A1

interpret the memory allocations of FIG. 4 as having the user
memory U equal to the base area BA, and the dynamic area
DAbeing a component of the housekeeping data. That is, only
a BA number of sectors of the block are available for user
data. H=PM-U. Moreover, H may include any memory
reserved for actual housekeeping information that is not part
of either BA or DA. As before, however, the concept that there
is “user memory and "housekeeping memory is taken in the
aggregate. That is, each sector of a block, for example, may
hold either user data or housekeeping data. The nature of the
data in each sector may be identified through a mapping table,
whether the mapping table performs this identification to the
byte, sector, page, or block level is a matter of design choice.
Generally data is initially written to a free block sequentially
by physical sector location due to the constraints on current
NAND FLASH technology; however, the type of data written
to each sector, for example, may be determined by the oper
ating software of the memory system or the data management
system. Therefore U and H may be considered to refer to the
amount of type of data in pages of a block, and not necessarily
to a physical page location in the block.
0099. When the LBAs are first allocated to PBAs, all of the
pages in the Uportion of memory may be allocated to LBAS.
In a naively managed memory system, when user data is
subsequently modified by writing the modified data to free
pages, pages in the H portion of the memory are used until the
PM of a block is filled up with live and dead pages; there are
no more free pages. A corresponding number of pages H in
the Uportion of the memory will have been marked as dead,
as the data stored therein has been modified and moved to a
location in the H portion of the memory (as well as additional
pages that have been moved as part of the housekeeping). So,
when the block of physical memory PM is filled, there are H
dead memory pages in the Uportion of the memory. Since
there is no further space for writing to free pages, the dead
pages will need to be reclaimed by erasing the block. Prior to
doing this, any remaining live pages in the PM, including the
data in the H portion of the memory need to be relocated to
another memory location so that valid data is not erased.
0100. This description is a simplification for purposes of
explanation and is not intended to be limiting. In a memory
system, data that is being modified may be written to a dif
ferent free page of same block or to another block. So, for
example, data that has been modified once may be moved to
the H category of the same block, or the U or H category of
another block. Thus, a full block may also have less than H
live pages, if greater than PM-U pages have been modified
prior to filling of the block.
0101 Write amplification is the number of write opera
tions performed to the NAND flash system for a single write
request from the user application. The amount of write ampli
fication may be related to the percentage of available memory
that is allocated to the user, with respect to the total amount of
memory used to service the user needs, including all house
keeping functions, and any defective memory that is not avail
able for any purpose.
0102 For example, consider a memory block (a “source'
block) having 64 pages divided as U-32 pages and H=32
pages. That is, the user appears to have 50% of the physical
memory available for use. Initially, when the source block has
been filled, all of the pages in the U memory area of the source
will have been marked as dead, and have been moved into the
H memory area. When the block is reclaimed by erasing, in
order to free up the dead memory of the full block, the 32 live

Dec. 23, 2010

pages in memory area H may be relocated to another memory
block (a “destination’ block). The source memory block may
then be erased and all of the source block PM becomes once
again available for a writing operation. In the process, the
destination memory block has the memory area U filled with
live data from the source block. This may have been the
situation that obtained at the beginning of process, except that
the data is now stored in a different memory block. Of course
once the block has been erased, the user data that was in the
block could have been restored thereto, having been stored in
either RAM or FLASH during the erasing process.
0103) The writing of data described herein is again for the
purposes of illustration. The same result would have been
obtained if a single LBA was modified continuously so that
the H area was filled with successive versions of the data in
the LBA until the block was filled. The same number of live
and dead sectors would have resulted by the time the block
was filled.
0104. The total number of write operations W may be the
sum of the user write (modify data) operations UW, and the
number of data transfer DT writes needed to clear all of the
remaining live data from the Source memory block prior to
erasure. W=UW+DT. In this case UR was 32 and DT was also
32 as 50% of the physical memory in a block was allocated to
each of U and H. In general, the number of user writes UW
prior to filling the memory block would be H, which is the
amount of initially free memory H at the beginning of the
process. When the block has been filled up, Hpages have been
moved from the user memory U, and the number of live pages
remaining is (U-H), excluding housekeeping data moves.
This means that the number of data transfers DT is H+(U-H)
=UWe can express a write amplification factor A as the ratio
of the total number of writes W to the number of writes
needed to fill up the block. So A=W/H=(UW+DT)/H=(H+
U)/H=1+U/H. In the limit, when only one of the pages of the
block is allocated to user data, the average amplification
factor A=1 + 1/63s 1, while the situation which would obtain
when all but one of the pages was allocated to user data would
be A=1 +63/1=64.

0105 Thus, the write amplification factor A is seen to be a
function of the proportion of the actual physical memory that
is allocated to the user data. The case described in this
example had U=50% and H=50%, or H=32 and U=32 for
A=1+32/32–2. In the first example, U=80% (51) and H=20%
(13) so that A=1 +51/13, or approximately 4. This function is
shown in FIG. 7 and may serve to guide the design of a system
where the percentage of the memory allocated to housekeep
ing memory housekeeping memory H may be traded against,
for example, the write amplification factor A and the cost of
the physical memory. Since the write amplification factor A
has implication for both writing speed and wear out (the
number of erases), each of these factors may enter into the
design, depending on the application. For a fixed writing rate,
the number of erases is proportional to the write amplification
factor. So allocating too little memory may result in both
excessive housekeeping overhead and faster wear out. The
same physical memory may be configured at an initialization
time to have a particular allocation of U and H, and thus the
characteristics may be “tuned to particular user needs.
0106. It should be apparent that this example has been
simplified by focusing on a single memory block, whereas a
memory chip may have, for example, 4096 blocks and a
memory module may have a plurality of chips, which may be
organized so that a LBA may be written to any of the chips of

US 2010/0325351 A1

the module having a free page. So, when a write operation is
needed to either modify the data stored for a LBA or to
relocate data for the purposes of marking all of the pages in a
memory block as dead so that the memory block may be
marked for erase, or erased, the page being written or relo
cated may be moved to the lowest free page in any block, in
any selected chip of the module. The choice of a block to
which the write operation (where write here is meant to be
understood as including data-modify writes and data reloca
tion writes) is to be performed may be the subject of a system
policy. For example, successive writes may be organized so
that they are distributed to the chips so as to limit the time that
any chip is busy performing a write. Where a module is used
in a naive mode, this may mean that the maximum blockage
of a read operation would be a write time interval. Erase
operations may be similarly treated, or hidden, using a RAID
architecture, as previously mentioned herein.
0107 The choice of destination for each written page may
be made in accordance with a wide variety of system policies,
which may also include the use of predictors of LBA behavior
that may be learned by the memory controller, so that groups
of pages may be written to contiguous areas, or dispersed, as
needed. Distribution of the writes over the internal memory
busses may contribute to a high read and write rate. At
present, the relatively slow read and write times of FLASH
memory when compared with, for example, DRAM, makes
Sophisticated memory management policies feasible, as the
computational overhead is Small when compared with the
current NAND FLASH memory process execution times.
When allocating a write operation to a block, consideration
may be given to the erase count of each block and to each chip,
so that the garbage collection process may also facilitate the
wear leveling process.
0108. The write amplification factor Ameasures the num
ber of actual write operations associated with any write action
(including the writes associated with relocation of data in a
garbage collection operation, but not including, at least
explicitly, wear leveling data relocation operations). As such,
the user experience in writing a random page data would be
better when A=1 and may decrease as the actual number of
writes required for each user page write increased. Thus,
when the highest continuous random write speed is estimated,
the speed may be approximately proportional to the inverse of
the write amplification factor A.
0109 The operation of the memory at the block level of a
chip may be visualized by reference to FIG. 5. Here, the
combination of blocks 0 through N has enough pages to
accommodate all of the pages of the LBA, which represents
the portion of the memory system allocated to the user. When
the system has been initialized, and no data has been as yet
stored in the memory (state 1), all of the blocks are free, and
there exists an additional pool of free blocks. Three such pool
blocks are shown as being representative.
0110. As data is written to the memory, which may include
modification of data already written to the memory, some of
the blocks become active, as pages of data are written, corre
sponding to LBAs (state 2). The status of each of the free
pages in a block is adjusted accordingly. The status would first
change from free to live, and when the data is modified and
moved to a new address, the old physical address would be
changed to dead, so that the data of any valid LBA is associ
ated with only one physical page in the memory.
0111. As operation of the system proceeds, some of the
blocks become filled with a combination of live and dead

Dec. 23, 2010

pages; this is designated M in FIG. 5 (state 3). This may
represent a situation where actual data has been written to
substantially all of the LBAs, and there have been some data
modify operations as well. Garbage collection may have been
performed internally to the individual blocks so that the per
centage of live data pages has been reduced. If there are no
live pages remaining in a block, the block may be marked X.
indicating that it may be erased opportunistically as needed or
to replenish the free blocks in the free block pool. Alterna
tively, if there are no blocks marked X, and free page space is
needed, one or more of the blocks marked M may be prepared
for erasure by moving the remaining live pages to another
block so that the block may be erased and a free block created.
The choice of a partially dead block on which this operation
may be performed may be a policy which, for example may
take into consideration the percentage of the pages which are
dead, the number of previous block erasures, the data type, or
the like (state 4). When a block has been reclaimed (erased),
it may be added to the block pool so as to keep the block pool
at or above a minimum size. The numbering and location of
the blocks is meant to be conceptual, and may be considered
as a logical notation, so that any block on the chip may be
either in the user data area or the free block pool.
0112 The number of blocks in the pool of free blocks is a
design choice, and depends on the amount of over-provision
ing of memory in a module with respect to the amount of
memory made available to the user.
0113. As a write operation may be made to any block
having a free page, and a module may have a plurality of
chips, the interference between read and write operations may
be mitigated by distributing the data pages amongst the total
ity of available blocks, taking advantage of the principles of
spatial and temporal locality. In NAND FLASH, the write
operation may be performed to a memory location one greater
than the current value of a pointer, in order to avoid leaving
unwritten memory locations interspersed with valid data. The
pointer is incremented with each write operation so as to point
to the lowest block in memory that is currently a free memory
location.

0114. In another example, shown in FIG. 8, the memory
system may be organized as an array of modules connected by
abus system. A bus-connected array of memory modules has
been described in U.S. Ser. No. 11/405,083, Interconnection
System, filed on Apr. 17, 2006, which is commonly owned
and which is incorporated herein by reference. A module,
which may be the module of FIG. 1 may have the volatile
storage 20 and the non-volatile storage 30, and may have abus
interface or local memory controller 10.
0115 Memory systems may have additional protection
against data loss by the use of RAID data storage techniques,
as described in U.S. Ser. No. 12/079,737, Memory Manage
ment System and Method, filed on Mar. 26, 2008, which is
commonly owned, and is incorporated herein by reference.
0116. In an example, a memory system was described
including, including a plurality of memory modules, where
each module may have a capability for writing and reading
data. M bytes of data may be stored in a group of N memory
modules of the plurality of memory modules. An error cor
recting code for the M bytes of data stored in the group of N
memory modules may be stored in another one of memory
module of the plurality of modules, or distributed amongst the
modules. When the stored data is retrieved from any N-1
modules of the group of N memory modules and includes the

US 2010/0325351 A1

error correcting data, the M bytes of data stored in the group
of N memory modules may be recovered.
0117. In a particular embodiment of the RAID concept
data may be stored on different memory modules, or memory
circuits, so as to realize a RAID 5 organization with 4 data
modules and 1 parity module. Each LBA may be divided into
a group of four Smaller LBA ranges (for example, sectors) and
stored on four different memory modules. A parity value for
each group of LBA ranges is computed and stored on a fifth
memory module. Such an organization of the data storage
permits the recovery of data when a memory module fails.
0118. However, as disclosed, the memory system may be
configured to operate Such that only 4 of the 5 modules in a
RAID group need to have reported data that has been read in
response to a read request. The data for the late module may
recovered, if needed, by using the data in the modules that
have already reported data. The late module may be perform
ing an erase or a write operation. In particular, the modules in
a RAID group may be configured Such that only one module
is enabled to performan erase operation at a particular epoch.
So, four modules of the five modules will be in a condition
where read operations may be performed promptly, and
where the data of the fifth module is data and not parity
information, the parity information, being promptly returned
from one of the modules not in the erase state at the time, is
used to reconstruct the data. Alternatively, the first four mod
ules may return data, and not the parity information. In this
circumstance, the parity data is not needed to recover the data.
0119 Depending on the system configuration and the
operational policy employed, write operations, which cause
Smaller delays than erase operations, may be permitted to
occur during read epochs of a module, may be restricted to the
erase epoch, or be governed by the dynamic write and read
data loads and the desired performance characteristics of the
system. Physical or logical portions of the memory system
may be subject to different operational policies.
0120 FIG. 5 shows an example of the management of a
two dimensional array of data. When the RAID-5 system was
operated such that only one of the five memory modules
A1-Ap was permitted to be in a write mode at any time, the
four remaining of the memory modules promptly return data
so that the latency for a read operation is not compromised,
for a combined write and erase load, for this configuration, of
20 percent or less. This situation contrasts with a system not
having this constraint on the sequence of write or erase opera
tions, where the interference between read and write opera
tions begins at a very low write load. Such interference is
often observed as spikes in the latency time to respond to a
particular read request. The number of data pages represented
by a parity page is a matter of design choice.
0121. In order to avoid unnecessary repetition of the words
write and erase, the remaining discussion will use the word
erase to describe the epoch or the operation of erasing a block
of memory. Write operations may be performed in the erase
epoch when erase operations are not being performed. Write
operations may also be performed during read epochs if per
mitted by the operational policy in effect at the time write
operation is pending. Since a write operation may be com
pleted in a shorter time than an erase operation, for currently
available FLASH memory circuits, a plurality of write opera
tions may be performed during the time that a single erase
operation would performed. Alternatively, if an erase opera
tion is not scheduled, or both the pending erase and write
operations are performed before completion of an erase

Dec. 23, 2010

epoch, the memory management policy may place the mod
ule back into a read state, or both place the module in a read
state, and enable another module to begin the erase state early.
0.122 The memory data in FIG. 5 is shown as organized in
stripes, and a 0” stripe 410 comprises memory modules 310
(or, for example, chips) A0, B0 C0. D0 and P0, arranged in
columns A, B, C, D, and Prespectively. The remaining stripes
of the system, 2-9, are similar, so as to form a memory system
of 50 modules.

I0123. The physical and logical arrangement of the mod
ules or addresses may be any such arrangement where the
memory where the data is stored may be accessed in the
manner described; that is, that less than all of the modules
return data promptly, but that the data returned from the
memory system permits the recovery of data that may be
delayed, prior to the receipt of the delayed or absent data.
0.124 For purposes of explanation, a timing circuit on each
memory module is considered to be initialized at the same
time as on the other memory circuits, and marks time in
intervals of 1 mSec, which corresponds to time sufficient to
complete an erase operation. A longer time interval may
permit the performance of multiple erase operations or erase
and write operations.
0.125 Erase operations are performed one column at a
time insuccessive time intervals. FIG. 6A shows columns 514
of the memory modules being enabled for writing operation
in Successive time intervals t t . . . to and which repeat,
modulo 10. As shown in FIG. 6B, where a time history of
stripe 0 is shown, it may be seen that a single memory module
is enabled for a write operation at any time period. This
satisfies the criterion that 4 of the 5 memory modules in a
stripe be available for a read operation at any time. This
results in a latency dependent only of the read latency with no
write-load influence, until the system experiences a Substan
tial write load: in this case 20 percent of the time line.
0.126 The allocation of time periods in which memory
modules may perform the erase operations may be done in
any number of ways: for example, allocating time periods
with respect to a global reference time so that modules oper
ate with local determination of the period of time, by the
transmission of a control messages from a global controller,
by token passing from module-to-module, by command
buses or wires between the modules, or the like. A combina
tion of approaches may be used: for example, in a system
where when the desired programming data rate was greater
than could be satisfied by having a single column of the RAID
group performing erasing at one time, and if there were mul
tiple RAID groups, then one module of some or all RAID
groups may be erasing while, at the same time for some
number of RAID groups, more than one or all modules are
erasing as shown in FIG. 5. In such a system, for example, the
column which may perform an erase or program may be
determined by a fixed allocation of time periods, while the
determination of when an entire row or RAID group may
perform an erase operation may be determined by one of the
modules in a RAID group sending a command to the next
RAID group indicating the next RAID group can start, a form
of token passing, and the module may have determined that
all modules in its RAID group had completed their erase
operation by use of a second token passing scheme, or a pull
down wire that all modules hold until they are done, or a
command bus the other modules use to indicate they are done,
or a similar method or configuration.

US 2010/0325351 A1

0127. Where the term memory module is used, the
memory module may be, for example, a pluggable circuit
card with a plurality of memory circuits thereon, or the
memory module may be each one of, or a group of memory
circuits on the circuit card, or what is known as a Solid State
Disk (SSD). SSDs come in many form factors, from indi
vidual cards to packages that may conform to the size and
shape of a mechanical disk drive. The scale size of the logical
address range that may be associated with a memory module
or storage location is not intended to be limited by the descrip
tion herein, and a memory module may thus encompass both
larger and Smaller data storage devices or data structures.
0128. Where the FLASH memory is organized into mod
ules of memory and a module of memory is assigned to a
particular RAID stripe, generally some modules are in a
read-enabled State and some modules are in an erase-enabled
state at the same time. Which module are in a specific state at
a particular time thus varies as the modules are sequenced
through the read and erase states, while maintaining the prop
erty that the data can be reconstructed from using data that is
returned from the modules in the read State. Again, it should
be emphasized that the actual memory organization may dif
fer from that described, so long as the data recovery property
is maintained.
0129. In a large memory system, not all of the RAID
groups may have the same data read or erase loads. Some
locations may be more heavily used than others, and this may
be dependent on the evolution of the processing load and type
supported by the memory system. At times, all of the needed
erase operations may have already been completed when the
memory module is schedule for a write state. Here, a write
state includes the erase operation; however, erase and write
states may be scheduled separately. During the periods of the
write state where no erase or write operations are pending, the
FLASH memory busses are effectively idle. Similarly both
local computational resources and Scratch memory may also
be lightly loaded.
0130. The time period where a module or circuit of
memory is in the write or erase state is well suited for per
forming local operations, such as housekeeping, including
garbage collection and wear leveling, particularly where
erase operations are used to recovera block of memory. These
operations are more often performed on a bank of FLASH
memory and may not extend across chip boundaries, although
Such a span is not precluded. In any event, when a chip of a
module is not engaged in an erase operation, read and write
operations may also be performed for housekeeping purposes
(wear leveling, garbage collection and the like), and the time
interval where Such operations are performed may not affect
the response time of the RAID array, since the operations
occur during a period of time where data is not expected to be
available from the memory module, and since the module
itself is in an erase state from a user perspective.
0131 By performing the pending erase operations for gar
bage collection during the erase epoch, the erase load for
garbage collection is subsumed in the erase interval of the
RAID group. Moreover, read operations, for any purpose,
may have been performed at any time since the preceding
erase epoch and stored in non-volatile memory. Such data
may be written to new locations promptly, or deferred for
writing during the erase epoch, where writes may be per
formed to other chips in a package that are not scheduled for
an erase operation. So, a plurality of pending write operations
associated with either the user storage of data, or the house

Dec. 23, 2010

keeping data previously read for relocation may be per
formed, thus Subsuming the associate write operations in the
erase epoch and being hidden to the user by the RAID recon
struction process as previously described.
0.132. While a particular schema for garbage collection
has been described in detail in this application, a variety of
garbage collection algorithms may be used, as all Such algo
rithms need to erase at least a block of data locations so as to
reclaim the block for writing of data. The size of a block to be
erased is dependent on the specific type of FLASH memory
used.
0.133 Since the on-module read and write operations can
be performed during the erase epoch with almost full use of
the read and write bandwidths of the FLASH memory circuits
on the module, this may permit almost 20 percent of the time
line to be used for housekeeping operations in the present
example, without a noticeable effect on user system perfor
mance, since erase, write and read operations are not per
ceived by the user at a memory system level.
0.134. In any event, performing the pending garbage col
lection operations during the erase interval at least reduces the
number of housekeeping operations which may remain to be
performed during periods when the user is accessing data in
the RAID group. As housekeeping operations may generally
be temporarily Suspended in whole or in part during high
system transient loads, the hidden housekeeping operations
may be scheduled during lulls in user activity.
0.135 The scheduling of housekeeping erase operations
during a scheduled erase epoch effectively subsumes, or
hides, the erase operations in a scheduled epoch where the
user may not need immediate access to the particular chip or
module where data in the RAID group is stored. Thus a
memory system may be configured so as to Subsume house
keeping operations in the periods where the user need not
immediately access data in the particular memory circuit in
order to experience Sustained performance at high data rates,
for both reading and writing.
0.136. It is therefore intended that the foregoing detailed
description be regarded as illustrative rather than limiting,
and that it be understood that it is the following claims,
including all equivalents, that are intended to define the spirit
and scope of this invention.

What is claimed is:
1. A non-volatile data storage system, comprising:
a memory module having a plurality of non-volatile
memory circuits (NVS) each NVS circuit configurable
into a first memory area and a second memory area, each
of the first and the second memory areas having a plu
rality storage locations for data,

wherein the a memory circuit of the plurality of memory
circuits is further configurable Such that a storage loca
tion of the plurality of storage locations of the memory
circuit is characterized as having a status of one of live,
dead, or free, and prior to all of the storage locations of
the first memory area being characterized as being either
live or dead, a processor of the memory module is con
figurable to move data from at least one active storage
location in the first memory area of the memory circuit to
a free storage location not in the first memory area.

2. The data storage system of claim 1, wherein the first
memory area and the second memory area comprise a
memory block of the memory circuit and when none of the

US 2010/0325351 A1

storage locations in the memory is free, the processor is
configurable to move the data in the live storage locations to
another memory block.

3. The data storage system of claim 1, wherein when none
storage areas of a memory block is live, the block is scheduled
to be erased.

4. The data storage system of claim3, wherein a plurality of
memory blocks are configured as a RAID stripe where an
erase operation is scheduled Such that the data stored in the
RAID stripe is recoverable prior to the completion of an erase
operation in progress at the time a read request is made.

5. A data storage system comprising:
a memory module having a plurality of non-volatile
memory circuits (NVS) each NVS configurable into a
first memory area and a second memory area, each of the
first and the second memory areas having storage loca
tions for data, and each of the storage locations once
Writable unless Subsequently erased,

wherein the memory module is further configurable such
that each storage location has a status of one of active,
dead, or free, and when all of the storage locations of the
first memory area of a NVS of the plurality of NVS are
either active or dead, and data stored in an active storage
location of the first memory area is modified, the
memory module is configurable to move data from at
least one other active storage location of the memory
module to a free storage location not in the first memory
aca.

6. The system of claim 5, wherein the storage locations the
first memory area and the second memory area are logical
memory locations.

7. The system of claim 5, wherein when less than a prede
termined percentage of the second memory area is one of
active or dead storage locations, the data from the least one
other active storage location of the first memory area is moved
to a free storage location in the second memory area or to a
free storage location of another NVS.

8. The system of claim 5, wherein when greater than a
predetermined percentage of the second memory area is one
of active or dead storage locations, data from least two other
active storage locations of the first memory area is moved to
a free storage location of the second memory area or to a free
storage location of another NVS.

9. The system of claim 5, wherein when data in an active
storage location of the second memory area is modified, the
memory module is configured to move data from at least one
other active storage location of the first memory area to a free
storage location not in the first memory area.

10. The system of claim 5, wherein the storage locations
comprise a first storage location and a second storage loca
tion, and modification of data of the first storage location is
performed by writing modified data to the second location,
the second location being a free storage location.

11. The system of claim 10, wherein, where each of the first
storage location and the second storage location are a plural
ity of storage locations, and a storage location of the plurality
of first storage locations having data that has been written to
the second storage location has a status of dead, and a storage
location of the plurality of first storage locations having data
that has not been written to second storage locations has a
status of active, and data of active storage locations is writable
to a free first or second storage location on any of a plurality
of NVS.

Dec. 23, 2010

12. The system of claim 5, wherein a number of storage
locations of the second memory area is about 20 percent of
Sum of the number of storage locations of the first memory
area and the second memory area.

13. The system of claim 5, wherein the first memory area
and the second memory area comprise a block of the NVS; the
block is a minimum erasable area of memory, and each Stor
age location of the block has a status of free after the block is
erased.

14. The system of claim 13, wherein the NVS comprises a
plurality of blocks of memory.

15. The system of claim 5, where the NVS comprises a
flash memory circuit.

16. The system of claim 15, wherein the flash memory
circuit is one of a single level cell or a multiple level cell
technology.

17. The system of claim 5, wherein the number of storage
locations in the first memory area and the second memory
area is determined by a system policy.

18. A method of managing data in a flash memory system,
the method comprising:

allocating a block of flash memory of a flash memory
circuit to a first memory area and a second memory area,
each memory area having a plurality of pages for storing
data;

writing data to a page of the first memory area of a block;
modifying the data of the page by writing modified data to

a free page of the block, or to another block having a free
page, and

for the condition that the plurality of pages of the first
memory area are all either active or dead:

moving data of at least one additional active page from the
first memory area to a free page not in the first memory
aca.

19. The method of claim 18, wherein each page has a status
of free, active or dead, and data is writable to free pages.

20. The method of claim 19, further comprising designat
ing a page having data as an active page.

21. The method of claim 20, further comprising designat
ing an active page having data that has been read and modi
fied, modified by writing modified data to another page, or
moved, as a dead page.

22. The method of claim 18, further comprising designat
ing all valid pages as free pages after erasing a block of
memory.

23. The method of claim 18, wherein for the condition that
a predetermined percentage the plurality of pages of the sec
ond memory area are either active or dead:
moving data of at least two additional active pages from the

first memory area to a free page not in the first memory
aca.

24. The method of claim 18, further comprising:
determining that no free pages remain in the second
memory area and:

moving data of at least one of the active pages in the first or
second data areas, to a free page not in the first or the
second memory areas until the data of all of the pages of
the block are dead, in accordance with a policy.

25. The method of claim 21, further comprising marking
the block having all dead pages as being available for an erase
operation.

26. The method of claim 25, further comprising erasing a
marked block, in accordance with a policy.

US 2010/0325351 A1

27. The method of claim 26, wherein the policy is that a
marked block of a plurality of marked blocks having the
lowest number of previous erases is the marked block selected
to be erased.

28. A computer program product, stored or distributed on
or in a computer readable medium, the product comprising:

instructions for configuring a processor in communication
with a flash memory circuit to perform a method of:

allocating free pages of a block of the flash memory circuit
to a first memory area and a second memory area;

writing data to a free page of the first memory area and
designating the page as an active page:

moving the data of the active page to a free page not in the
first memory area, and designating the active page as a
dead page;

determining whether all pages of the first memory area are
designated as either active or dead pages; and

for each additional page designated as a dead page:
moving data of at least one additional active page from the

first memory area to a free page not in the first memory
aca.

29. The computer program product of claim 28, further
comprising: erasing the pages of the block and designating
the erased pages as free pages.

30. The computer program product of claim 29, wherein
the free page not in the first memory area is a free page in the
second memory area, or a free page in a second block of a
plurality of blocks of the flash memory circuit.

31. The computer program product of claim 29, wherein,
when there are no free pages in the block, data of active pages

Dec. 23, 2010

in the first memory area and the second memory area are
moved to the second block, in accordance with a policy.

32. The computer program product of claim 31, wherein
when none of the pages of the block are live or free pages, the
block is marked for an erase operation.

33. The computer program product of claim 32, wherein a
block having a status of being available for an erase operation
is erased in accordance with a policy.

34. The computer program product of claim 33, wherein
the policy is to erase the block having lowest number of
previous erases.

35. The computer program product of claim 33, wherein a
pointer having a value equal to that of a free page of the block
having the lowest page number is maintained, and performing
the steps of writing or moving by writing data to the free page
corresponding to the value of the pointer.

36. A computer memory system, comprising:
a plurality of non-volatile memory circuits (NVS), wherein

a block of data is stored such that the block of data is
allocated to a plurality of memory areas of the memory
circuits, and a parity block of the block of data is allo
cated to another of the plurality of memory areas,

wherein erase operations of a garbage collection process
for the memory areas are scheduled such that the block
of data can be recovered from the memory system by
either of reading the block of parity data and less than all
of the plurality of memory areas to which the block of
data is stored; or reading the block of data from the
plurality of memory areas.

c c c c c

