wO 2007/144891 A1 |00 0 00O ORI 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 December 2007 (21.12.2007)

‘ﬂb' A0 0O

(10) International Publication Number

WO 2007/144891 Al

(51) International Patent Classification:

GOGF 9/44 (2006.01)
(21) International Application Number:
PCT/TL2007/000727
(22) International Filing Date: 14 June 2007 (14.06.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

176348 15 June 2006 (15.06.2006) IL

(71) Applicant (for all designated States except US):
XOREAX LTD. [ILAL]; 9 Shprintsak Street, 64738
Tel Aviv (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHAHAM, Uri
[IL/TL]; 54 Ben Gurion Street, 45200 Hod Hasharon (IL).
MISHOL, Uri [IL/IL]; 9 Shprintsak Street, 64738 Tel
Aviv (IL).

(74) Agents: LUZZATTO, Kfir et al.; P.O. Box 5352, 84152
Beer Sheva (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: A METHOD FOR THE DISTRIBUTION OF SOFTWARE PROCESSES TO A PLURALITY OF COMPUTERS

301 409

Makefle —— Make Tool

Interception | 449

!
0
i
{

\ \

100 200

302 Module

502

Make Task Proxy

501
A

Make Task Proxy

500
A

Make Task Proxy

Parallel Execution System 800

Task Queue
S task 1 »

Y task 2
) task 3

A / A

|-

610

A A 4

Remote
Node

10

700

(57) Abstract: Method for distributing tasks of a Make tool
to a plurality of interlinked computers, according to which
the Make tool is executed to operate in local parallel mode
and a request for a child process creation of the Make tool is
re-directed to a Parallel Execution System, for distribution.
At least one task listed in the Parallel Execution System is
distributed to one of the interlinked computers. At least one
indication of the task execution completion is received by the
Parallel Execution System, from at least one of the interlinked
computers and then control is returned back to the Make tool.

WO 2007/144891 A1 |00 000 0T 00000 0 0O

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

WO 2007/144891 PCT/IL2007/000727

-1-

A METHOD FOR THE DISTRIBUTION OF SOFTWARE

PROCESSES TO A PLURALITY OF COMPUTERS

Field of the Invention

The present invention relates to the field of distributed processes over a
plurality of computers, connected to a data network. More particularly,
the invention relates to a method for parallel execution of a complex
computer process such as building source code files into a program, data
file generation, complex data processing, QA script execution and other

examples, using a number of interlinked computers.

Background of the invention

In recent years, computing jobs related to the development of computer
software have grown drastically in size and complexity. Typical software
development environments demand, in addition to the ongoing coding
process, the ability to regularly execute complex computerized processes
for supporting the development process. These typically include
generation of various data files, quality assurance tests and “code builds”
which translate source code files into executable machine code. Many of
these processes can be time-consumir;g and, when performed regularly,

may become a major bottleneck in the software development process.

WO 2007/144891 PCT/IL2007/000727
-92.

Fortunately, these processes may be automated with software engineering
tools such as the “Make” tool. The Make tool works off a file called the
“Makefile” which lists in a structured manner the dependencies of the files
involved in the process. The Makefile may also define the commands
required to”build” these files. Each entry in the Makefile is a rule
expressing the dependencies and the commands needed to build or Make a
certain object. Several different “Make” tools exist today, and they differ in

the Makefile format they use, in their host platform and in the features

they offer.

One of the common examples of a complex software development process
is the "Code Build" process. Some of the programs used today are built
from numerous source code files, each compiled separately and “linked”
with other files to form a final executable or library file. In a typical
“build” process, the source code files are first compiled into object files and
the object files are then linked together with or without additional files,
forming executable files, otherwise known as an executable program.
Some files generated throughout the code build process "depend" on other
files, meaning that the dependant files include or use parts of other files.
In other words, if a file is modified (either manually or as a result of a
build process), all of its dependant files require re-building in order for

these files to be “up-to-date” on any changes made.

WO 2007/144891 PCT/IL2007/000727

-3-

For example, the file final.exe is dependent on an object file code.o and
code.o is dependant on a source code file code.cc, whereas code.cc has been
modified. During the build process, the Make tool detects that code.cc has
been modified and it will re-build code.o and final.exe accordingly as both
depend directly or indirectly on code.cc. Nevertheless, typical software
projects are far more complex than the representing example and even a
modest-size project can have multiple dependencies relating to thousands
of files, resulting in an extremely complex dependency structure. In
addition, Makefiles can be arranged in a hierarchical structure with
higher-level Makefiles invoking lower-level Makefiles to build pieces of the

program, adding additional complexity to the build process.

As mentioned before, Make can operate incrementally, only rebuilding
files that have changed and, consequently, files that depend on the rebuilt
files. Thus in principle it should be possible to build a very large program
relatively quickly if only a few files are changed, since most of the files will
be considered “up-to-date”. In practice, though, there are many times
when large portions of a program must be rebuilt, especially when a file,
that many other files depend on, has been changed. Integration points,
where developers update all the recent changes to the shared repository,
typically result in massive recompilation, as well. Furthermore, most
organizations support multiple platforms and versions, adding a

multiplicative factor to the above building times. Long build times have a

WO 2007/144891 PCT/IL2007/000727
-4-

high cost for companies where software development is time-critical. They
affect not only engineering productivity and release schedules, but also
software quality and overall corporate agility. When a developer makes a
change to a source code file it may take more than a full day before the

developer can tell whether the change caused a problem.

As mentioned before, Make tools may also be used for purposes other than

program building.

One of the solutions used today in order to improve the performance and
reduce the processing time of the Make tools is to take advantage of a
multiprocessor computer that can effectively perform several tasks in
parallel. Most Make tools feature a “paralle]” mode, which allows the
process of several files simultaneously, thus saving precious time.
However, multiprocessor computers typically have only 2-8 CPUs, which
limits the potential speedup, and larger-scale multiprocessor computers
having as many as 32 or 64 CPUs are quite expénéive. A few operating
systems allow “clustering” of several machines which act together as a
single multiprocessor machine, allowing additional speedup. However, this
option is limited to specific operating systems, and it usually requires

special configuration and additional expenses.

WO 2007/144891 PCT/IL2007/000727
-5-

A different approach used by some software tools is to execute a Make
process in parallel, over several independent computers connected to a
local network. With this method, the software tool parses the makefile
contents to determine the elements described in the makefile and the
dependencies between them, and then uses a distributed architecture to
execute these files on remote computers in parallel and collecting the
outputs from these computers. Although this approach is more effective
than others, the fact that it incorporates parsing of the Makefile contents
raises two major limitations- firstly, Makefile parsing is inherently prone
to software bugs and is intolerant to changes in the Makefile syntax.
Secondly, Makefile parsing requires separate implementations for every
Makefile format, making existing solutions unavailable to new or less
popular Make tools for which a parsing solution has not yet been

implemented.

WO 2004/088510 describes a method for analyzing the Makefile and
parsing its commands into individual components, where each component
is executed on a different machine. Thus the Makefile commands may be
run in parallel on a number of connected independent machines. However,
this approach is totally reliant on the ability of correctly analyzing the
Makefile. Any} change in the Makefile format, such as a new version

release, requires updating the present tools to cope with the new format.

WO 2007/144891 PCT/IL2007/000727
-6 -
It is an object of the present invention to provide a method for running
Make tools in parallel, using interlinked individual computers, in a

manner which is indifferent to the Make tool or to Makefile format used.

It is another object of the present invention to provide a method for
parallel building using interlinked individual computers, even where there

18 no native operating system or hardware support for parallel execution.

It is still another object of the present invention to provide a method for
parallel processing using individual machines, which is less expensive,
faster, more reliable, and more effective than the described previous prior

arts.

Other objects and advantages of the invention will become apparent as the

description proceeds.

Summary of the Invention

The present invention relates to a method for distributing tasks of a Make
tool to a plurality of interlinked computers. The Make tool is executed to
operate in local parallel mode and a request for a child process creation of
the Make tool is re-directed to a Parallel Execution System, for
distribution. At least one task listed in the Parallel Execution System is

distributed to one of the interlinked computers. At least cne indication of

WO 2007/144891 PCT/IL2007/000727

-7-

the task execution completion is received by the Parallel Execution
System, from at least one of the interlinked computers and then control is

returned back to the Make tool.

Preferably, the re-directing is performed automatically by pre-installed

software.

Preferably, the automatic re-directing is done by copying aside assembly
instructions at the beginning of at least one function code in the Make tool
process, relevant to the request for child process creation, and replacing
them with a new instruction, for re-directing execution to a code generated

by the pre-installed software.

Alternatively, the automatic re-directing may be done by creating a
modified copy of the Make tool executable, where the modified copy
comprises at least one modified name of a system library relevant to the
request for child process creation in the Make tool import table, for loading

compatible libraries instead.

The automatic re-directing may also be done by adding to the local file
system at least one library having the same file name as a system library
relevant to the request of child process creation before the system

directories in the Make tool process search path.

WO 2007/144891 PCT/IL2007/000727

Preferably, the automatic re-directing is done by creating a modified copy
of the make-process executable before execution and adding new functions

that replace the system functions.

Preferably, the re-directing is performed by the Make tool as a result of

the Makefile(s) modification(s).

Preferably, the indication is an Exit code.

Preferably, the indication is an Output text(s) or output file(s) sent by the

interconnected computer.

Brief Description of the Drawings

In the drawings:

- Fig. 1 is a block diagram generally illustrating the method for
parallel processing, using a plurality of interlinked computers,
according to one of the embodiments;

- Fig. 2 is a block diagram generally illustrating another embodiment
of the invention for parallel processing using a number of
interlinked computers; and

- Fig. 3 is a block diagram generally illustrating the Parallel

Execution System according to an embodiment of the invention.

WO 2007/144891 PCT/IL2007/000727

Detailed Description of Preferred Embodiments
For the sake of brevity the following terms are defined explicitly:

- Task - a computational process, such as the compilation of a source

code file.

- Command line (Task command line) — text, string, comprising: a

command or executable path, and optionally additional arguments,

for interpretation and execution by an operating system.

- Make process - software process, for executing tasks in a controlled

order.

- Makefile - a file, or other forms of electronic storage record,
describing a Make process, or a part of it, listing for each task, in a
structured manner, one or more of the following: the Task’s
command line, its input/output files, its dependency relationship
with other tasks, and additional information.

- Make - a software tool for automating execution of Make processes.
Make parses command line and input/output file information stored
in one or more MakeFile(s), and uses this information to execute the
Tasks required to complete the software process in the correct
order.

- Make tool - a generic name used hereinafter for software tools
having the same essential function of Make, such as JAM, NANT,

ANT, Scons, omake, gmake and other similar tools.

WO 2007/144891 PCT/IL2007/000727
-10 -

- Local Parallel Mode - a Make tool execution mode, in which two or
more Tasks are executed in parallel in order to speed up the Make
tool execution process. Primarily used with multiprocessor
machines.

- Paralle]l Execution System (PES) - a software system capable of

managing task execution on a group of interlinked computers,
including: executing tasks on local or remote computers, returning
resulting outputs to requesting process, keeping track of remote
computers’ availability, handling task assignments, and handling
file and environment synchronization issues to ensure correct
execution based on the initiating machine’s environment and file
system.

- Request for child process creation - a request to the operating

system made by a software process for the purpose of creating a
new “child” software process that will execute a specified command

line.

Fig. 1 is a block diagram generally illustrating the method for parallel
processing, using a plurality of interlinked computers, according to one of
the embodiments. The Make tool 200 is run using local parallel mode, as if
running on a multiprocessor server. The Make tool 200 reads the Makefile
100, determines which Tasks need to be executed (either because one or

more of the Task’s output files is older than one or more of its input files,

WO 2007/144891 PCT/IL2007/000727

-11 -

or because a full rebuild instruction) and, assuming one or more tasks
require execution, attempts to execute tasks by sending requests 300-302
for child process creations addressed to the local Operating System (not
shown), where each request contains the task’s command line. Since the
Make tool 200 is running in the Local Parallel Mode, it may send several
requests in parallel for simultaneous execution. Hence, for the sake of
brevity, the description deals with an example of three requests 300-302.
The interception module 400 is installed on the local machine 10 which is
the computer that executes the Make Tool 200. The interception module
400 captures/intercepts child process creation attempts made by Make tool
200 in the local machine 10. Before the child processes are actually
created, and instead of creating the child process, it creates a Make Task
Proxy process (MTP) 500-502. In other words, the interception module 400
is capable, when required, of re-directing the Make tool 200 child process
creation instructions from their intended destination as opposed to the
prior art procedure, where the child process creation attempts results in
the creation of a child process for executing the task in the local operating
system. Each one of the MTP 500-502 corresponds to one of the tasks 300-
302 and stores that task’s command line accordingly. The MTP 500-502
add their stored command line to the task queue 610 of the Parallel
Execution System (PES) 600, and wait for the task to be executed by the
PES 600. The PES 600 analyzes the incoming command lines and decides

which of the command lines should be executed locally and which of the

WO 2007/144891 PCT/IL2007/000727

-12.-

command lines may be executed remotely. The command lines selected for
local execution are executed on the local machine 10. The command lines
selected for remote execution are thus sent by PES 600 to one of the
available interlinked computers 700-702, referred to hereinafter as remote
nodes, for execution. After one of the remote nodes 700-702 executes a task
corresponding to the received command line, it sends back the exit code
returned by the task and/or any textual output produced by the task to the
PES 600. For example, when remote node 700 executes task 1, it sends
back an exit code and/or any textual output produced by task 1. The PES
600 returns the exit code and/or textual output to the MTP 502, which had
added the command line to the list, where the MTP 502 returns the exit
code and/or textual output to the Make tool 200. Furthermore, the PES
600 may transfer any output files created on the remote node as a result of
the task execution to the local machine 10, before returning control to the
corresponding MTP 500-502. The Make tool 200 continues creating
parallel child process creation attempts using the local parallel mode.
Each one of the child process creation attempts is intercepted, sent to PES
600, and its corresponding task is executed either locally or remotely,
obliviously of the Make tool 200 version, the Makefile 100 syntax, or its
format. All through the software process the Make tool 200 continues
executing as if there are multiple processors which are execuﬁng the tasks
simultaneously, although in truth the tasks are actually executed by a

number of computers.

WO 2007/144891 PCT/IL2007/000727

- 13-

In a multiprocessor server the Make tool’s local parallel mode is typically
configured to run a maximal number of parallel processes that
corresponds with the number of processors on the server. However in one
of the embodiments of the system the local parallel mode may be
configured to use a number of parallel processes that corresponds to the
maximum number of nodes available to PES 600 or higher, as the
processes may be queued in the task queue obliviously of the real number

of computers or processors processing in parallel.

Several methods exist for allowing the interception module 400 to
capture/intercept child process creation attempts made by Make tool 200.
However, for the sake of enablement, 3 methods are described herein
which are not intended to limit the scope of the invention in any way. The
first method requires modification of the make-process address space after
it is loaded into memory and before its execution starts. Several assembly
instructions at the beginning of every function code relevant to the
creation of a child process are copied aside, and replaced with an
instruction that redirects execution to code generated by the interception
module. This generated code allows the interception module to intercept
the child process creation attempts and replace them with Interception
Module logic. To resume execution of the original code, the copied

assembly instructions are executed elsewhere in memory, and then

WO 2007/144891 PCT/IL2007/000727

-14 -

execution flow is redirected back to the original function. The second
method involves creating a modified copy of the Make tool executable
before execution of the make-process. Mainly, import tables of the
modified executable are patched, modifying the names of system libraries
relevant to the creation of child processes, so compatible interception
module libraries are loaded instead. Similarly, placing interception
module libraries having the same file name as the system libraries ahead
of system directories in the search path is also possible. As a result, the
make-process would load the interception module libraries, which enable
the Interception Module logic, instead of loading the system libraries. The
third method involves creating a modified copy of the make-process
executable before execution and adding imported functions from an
mterception module dynamic-link library that replace imported functions
from system dynamic link libraries. Calls related to the creation of child
processes, made by the make-process, are consequently handled by the
interception module dynamic-link library, which will perform the
necessary interception actions, and if necessary, redirect execution back to

the original calls.

Prior to applying the first method, interception module code has to be
"injected" into the make-process address space, in order to establish the
correct locations in the memory of the relevant functions. Although

"injection" may be done in many ways, for the sake of brevity 3 alternative

WO 2007/144891 PCT/IL2007/000727
- 15 -

methods are described: (a) Injecting additional code into the make-process -
This is done by executing the make-process in suspended mode, which
effectively means loading the executable into memory without starting
actual program execution. Once the process is loaded, a memory block is
alldcated in its address space by the interception module, and filled with
all the additional interception module code that's required to run within
the make-process address space ("added code"). The entry point of the
make-process is then determined, and its entry code is patched with an
instruction that redirects execution to the added code. Execution of the
make-process is then resumed, resulting in the patched entry code
redirecting execution to the added code. The added code patches, as
described, restore the original make-process entry code, and redirect
execution back to the entry point. (b) Adding additional code to the
executable code section - Executable files typically contain several sections,
such as code, data, or resources. This method involves creating a modified
copy of the make-process executable, while adding additional code to its
code section, and modifying its entry point, so execution starts at the
newly added code. The newly added code patches the function assembly
instructions, as described in the first method, and redirects execution to
the original entry point of the make-process. (¢) Injecting a dynamic Link
library into the make-process - This is done by executing the make-process
in suspended mode, which effectively means loading the executable into

memory without starting actual program execution. Once the process 1s

WO 2007/144891 PCT/IL2007/000727

- 16 -

loaded, a memory block is allocated in its address space by the
interception module, and filled with a piece of code ("interception
initialization code") that loads a dynamic library that is part of the
interception module (“injected library"). The entry point of the make-
process is then determined, and its entry code patched with an instruction
that redirects execution to the interception initialization code. Execution
of the make-process is then resumed, resulting in the patched entry code
redirecting execution to the interception initialization code. The
initialization code loads the injected library, restores the original make-
process entry code, and redirects execution back to the entry point. During
loading of the injected library, system functions assembly instructions are
patched, as described in the first method. Any combination of the

described methods may be used as well.

Fig. 2 is a block diagram generally illustrating another embodiment of the
invention for parallel processing using a number of interlinked computers.
In this embodiment the Makefile 100 is edited manually before starting
the process. The command lines of tasks in the Makefile 100 are manually
modified to execute a MTP instead of directly executing the specified

command line. For example, the command line:

"Calcdata.exe a.dat/p 40"

WO 2007/144891 PCT/IL2007/000727

217 -

is modified to:

"MakeTaskProxy.exe CalcData.exe a.dat/p 40"

(Where “MakeTaskProxy.exe” represents the executable filename of the
MTP) thus ensuring that a MTP is created for handling the task.
Fortunately, many Makefiles use symbol translation that can simplify the
manual modification. The file system path for each executable used to
execute tasks is often defined in one location in the Makefile and is given a
symbolic name. Changing the path in this single location will cause the
change to apply to all Make Tasks using that executable in the Makefile.
Similarly to the first embodiment, the Make tool 200 is configured to run
using Local Parallel Mode. However, since the command lines in the
Makefile 100 direct to the MTP executable file, the Make tool 200 requests
for child process creation are actually requests for the creation of a MTP
process. MTP's 500-502 are thus created, where each MTP stores a
command line corresponding to the original command line before
modification. In the example, "Calcdata.exe a.dat/p 40" is the original
command line. For the sake of brevity the description deals with an
example of only three requests 500-502, although in practice many more
requests may be present. Each of the MTP's 500-502, once created, adds
its command line to the task queue 610 of PES 600. The PES 600 analyzes

the incoming command lines and decides which of the command lines

WO 2007/144891 PCT/IL2007/000727

- 18 -

should be executed locally and which of the command lines may be
executed remotely. The command lines selected for local execution are
executed on the local machine 10. The command lines selected for remote
execution are thus sent by PES 600 to one of the available remote nodes
700-702, for execution. After one of the remote nodes 700-702 executes a
task corresponding to the received command line, it sends back the exit
code returned by the task and/or as any textual output produced by the
task to the PES 600. For example, when remote node 700 executes task 1,
it sends back an exit code and/or any textual output produced by task 1.
The PES 600 returns the exit code and/or textual output to the MTP 502,
which had added the command line to the list, where the MTP 502 returns
the exit code and/or textual output to the Make tool 200. Furthermore, the
PES 600 may transfer any output files created on the remote node as a
result of the task execution, to the local machine 10, before returning
control to the corresponding MTP 500-502. The Make tool 200 continues
creating parallel MTP using the local parallel mode. All through the
software process the Make tool 200 continues executing as if there are
multiple processors which are executing the tasks simultaneously,
although in truth the tasks are actually executed by a number of

computers.

For the sake of brevity, an embodiment of a PES is described and

illustrated in Fig. 3, although many PES embodiments are possible for

WO 2007/144891 PCT/IL2007/000727
-19 -

carrying out the invention. As described, PES 600 has a task queue 610
containing parallel tasks for execution. New command lines may be added
to the task queue 610, as described above. PES 600 may use the
configuration file 620 to determine which of the incoming command lines
should be executed locally and which of the command lines may be
executed remotely. For example, one of the rules of configuration file 620
may suggest that any command line describing a task that requires use of
a hardware component only available on the local machine should always
be processed locally. Once PES 600 decides that a command line should be
executed locally, the task described by that command line is executed on
the local machine as indicated in Local Task Execution 650. The Local
Task Execution 650 may use the File system 630 to read and write files
accessed by the task. After executing the local task, the Local Task
Execution 650 returns an exit code and/or textual output, which are
returned to the MTP which added the task to the task queue 610. In
addition, the Local Task Execution 650 may store the output files created
by the task execution process on the File system 630. When PES 600
decides that a task may be executed remotely, it sends the task through
interface 640 to one of the available remote nodes 700-702. For example, if
remote node 700 is available, the task is sent to remote node 700 where
the task is received by Client PES 710, which executes the task using
Client Task Execution 750. If the sent task requires input files from the

File system 630, PES 600 may also transfer the input files from File

WO 2007/144891 PCT/IL2007/000727
-20 -

system 630 to the client PES 710 of remote node 700 for executing the
task. After remote node 700 completes the task execution, the exit code
and/or output text are sent back to PES 600. If any output files were
generated, they too are sent to PES 600, which will store the output file in
the local File system 630. The exit code and possibly output text are
finally sent to the MTP that added the task to the list 610. As understood,

the other Remote nodes 701-702 function in a similar manner.

As understood, other PES embodiments are possible. For example in one
of the embodiments the remote nodes have direct access to the local File
system, whereas the remote nodes may read or write a file in the File
system during task execution. In another embodiment the File system is

held on a remote computer accessible to all participating computers.

While some embodiments of the invention have been described by way of
illustration, it will be apparent that the invention can be carried into
practice with many modifications, variations and adaptations, and with
the use of numerous equivalents or alternative solutions that are within
the scope of persons skilled in the art, without departing from the spirit of

the invention or exceeding the scope of the claims.

WO 2007/144891 PCT/IL2007/000727
-271 -

CLAIMS

1. A method for distributing tasks of a Make tool to a plurality of
interlinked computers comprising the steps of:

a. executing said Make tool to operate in local parallel mode;

b. re-directing at least one request for a child process creation of said
Make tool to a Parallel Execution System, for distribution;

c. distributing at least one task listed in said Parallel Execution System
to one of said interlinked computers;

d. receiving, by said Parallel Execution System, at least one indication
of said task execution completion from at least one of said interlinked
computers; and

e. returning control to said Make tool.

2. A method according to claim 1, where the re-directing is performed

automatically by pre-installed software.

3. A method according to claim 2, where the automatic re-directing is
done by copying aside assembly instructions at the beginning of at least
one function code in the Make tool process, relevant to the request for
‘child process creation, and replacing them with a new instruction, for re-

directing execution to a code generated by the pre-installed software.

WO 2007/144891 PCT/IL2007/000727

-99.

4. A method according to claim 2, where the automatic re-directing is
done by creating a modified copy of the Make tool executable, where said
modified copy comprises at least one modified name of a system library
relevant to the request for child process creation in the Make tool import

table, for loading compatible libraries instead.

5. A method according to claim 2, where the automatic re-directing is
done by adding to the local file system at least one library having the
same file name as a system library relevant to the request of child process
creation before the system diréctories in the Make tool process search

path.
6. A method according to claim 2, where the automatic re-directing is
done by creating a modified copy of the make-process executable before

execution and adding new functions that replace the system functions.

7. A method according to claim 1, where the re-directing is performed by

the Make tool as a result of the Makefile(s) modification(s).
8. A method according to claim 1, where the indication is an Exit code.

9. A method according to claim 1, where the indication is an Output

text(s) or output file(s) sent by the interconnected computer.

WO 2007/144891

PCT/IL2007/000727

\

100

Makefile ——

Make Tool

502

\ 302

200

Interception | 49

Module

Make Task Proxy

501

Make Task Proxy

500
\

Make Task Proxy

o

Parallel

Execution System

Task Queue

A task 1
T task 2

| task3

/

/

/

610

Remote
Node

600

Remote
Node

ra
700

Remote
Node

/
701

Fig. 1

/
702

PCT/IL2007/000727

WO 2007/144891

2/3

s
\
L
502

501

200
Make Task Proxy
Make Task Proxy

—— Make Tool

501
\

Makefile

ll

J

L2,
) O
_ y o)
ui-E
m o
Q m
o !
© :
\ v m
= : ._alue
" Q 5
o 52
y "
W N % " (a'ed
o o) Aauuu_..ln/_oo m
< E=] i “
& S %%S//O“
f— O XM @ @ @© bl
4 > a\ !
[1Ll - ») !
= | 2
— 1 O
_ o
m < > mo
© o =
@ (Al (2’
o3l J ﬁ\/

702

701

700

Fig. 2

WO 2007/144891 PCT/IL2007/000727
3/3
Local Task |~ ©°0 §
Execution |
600
\ 630 |
| 4 i
: Parallel Execution System §
§ <— File system ;
j‘\\ Task Queue: 540
| Toatask 1 5
N A / !
= T) @
j"/ \ i Interface |
f — ;
610 ;
Configuration
File ?
/\ ___
620 750 710

10 \\ // v v

Client | Client Remote Remote
| Task Execution | | PES Node Node .
700 Remote Node / /
701 702

Fig. 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/1L2007/000727

A.
INV.

CLASSIFICATION OF SUBJECT MATTER
GO6F9/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

EP 0 859 314 A (SUN MICROSYSTEMS INC [US]) 1-9
19 August 1998 (1998-08-19)

column 2, 1ine 9 - line 27

column 4, line 20 - line 45

column 6, line 30 - Tine 41

column 7, line 3 - column 8, line 16
column 9, line 37 - line 55

US 2004/194060 A1 (OUSTERHOUT JOHN [US] ET 1-9
AL OUSTERHOUT JOHN [US] ET AL)

30 September. 2004 (2004-09-30)

page 2, paragraph 18

page 3, paragraph 46 - page 4, paragraph
51 .
US 2004/194075 Al (MOLCHANOV NIKOLAY [US] 1-9
ET AL) 30 September 2004 (2004-09-30)
the whole document

-/

m Further documents are listed in the continuation of Box C. E See patent family annex.

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another
citation or other special reason (as specified)

* Special categories of cited documents :

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but inthe an.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search repornt
28 September 2007 08/10/2007
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo n, .
Fax: (+31-70) 340-3016 Dewyn, Torkild

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/IL2007/000727

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

FLECKENSTEIN C J ET AL: "USING A GLOBAL
NAME SPACE FOR PARALLEL EXECUTION OF UNIX
TOOLS"

COMMUNICATIONS OF THE ASSOCIATION FOR
COMPUTING MACHINERY, ACM, NEW YORK, NY,
us,

vol. 32, no. 9,

1 September 1989 (1989-09-01), pages
1085-1090, XP000070421

ISSN: 0001-0782

the whole document

US 2002/147855 A1 (LU YEN [CA])

10 October 2002 (2002-10-10)

the whole document

US 2005/268309 Al (KRISHNASWAMY RAJA [US]
ET AL) 1 December 2005 (2005-12-01)

the whole document

US 2004/172626 All(JALAN ABHINAV [IN] ET
AL) 2 September 2004 (2004-09-02)

the whole document

1-9

1-9

1-9

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1L2007/000727
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0859314 A 19-08-1998 NONE
US 2004194060 Al 30-09-2004 EP 1623320 A2 08-02-2006
WO 2004088510 A2 14-10-2004
US 2004194075 Al 30-09-2004 WO 2004095271 A2 04-11-2004
US 2002147855 Al 10-10-2002 CA 2343437 Al 06-10-2002
US 2005268309 Al 01-12-2005 NONE
US 2004172626 Al 02-09-2004 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report

