

**(12) STANDARD PATENT  
(19) AUSTRALIAN PATENT OFFICE**

**(11) Application No. AU 2003244771 B2**

(54) Title  
**Therapeutic epitopes and uses thereof**

(51) International Patent Classification(s)  
**C07K 14/415** (2006.01)      **A61K 38/00** (2006.01)

(21) Application No: **2003244771**      (22) Date of Filing: **2003.06.05**

(87) WIPO No: **WO03/104273**

(30) Priority Data

(31) Number  
**0212885.8**      (32) Date  
**2002.06.05**      (33) Country  
**GB**

(43) Publication Date: **2003.12.22**  
(43) Publication Journal Date: **2004.02.19**  
(44) Accepted Journal Date: **2010.01.07**

(71) Applicant(s)  
**Isis Innovation Limited**

(72) Inventor(s)  
**Hill, Adrian Vivian Sinton;Anderson, Robert Paul;Jewell, Derek Parry**

(74) Agent / Attorney  
**Spruson & Ferguson, Level 35 St Martins Tower 31 Market Street, Sydney, NSW, 2000**

(56) Related Art  
**Anderson R.P. et al. (2000) Nature Medicine 6 (3): 337-342**  
**Vader L.W. et al. (2002) J. Exp. Med. 195 (5): 643-649**  
**EP 0 905 518 A1 (Academisch Ziekenhuis Leiden et al.), 31 March 1999**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau



(43) International Publication Date  
18 December 2003 (18.12.2003)

PCT

(10) International Publication Number  
WO 2003/104273 A3

(51) International Patent Classification<sup>7</sup>: C07K 14/415, A61K 39/35, G01N 33/68, C12N 15/82, A01H 5/10, A23L 1/025

(74) Agent: MARSHALL, Cameron, John; Carpmaels and Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).

(21) International Application Number:  
PCT/GB2003/002450

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 5 June 2003 (05.06.2003)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(30) Priority Data:  
0212885.8 5 June 2002 (05.06.2002) GB

(88) Date of publication of the international search report:  
23 September 2004

(71) Applicant (for all designated States except US): ISIS INNOVATION LIMITED [GB/GB]; Ewert House, Ewert Place, Summertown, Oxford OX2 7SG (GB).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): ANDERSON, Robert, Paul [GB/AU]; Autoimmunity and Transplantation Division, Walter & Eliza Hall Institute, c/o Royal Melbourne Hospital PO, Grattan Street, Parkville, VIC 3050 (AU). HILL, Adrian, Vivian, Sinton [IE/GB]; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (GB). JEWELL, Derek, Parry [GB/GB]; Gastroenterology Unit, Gibson Building, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE (GB).

WO 2003/104273 A3

(54) Title: THERAPEUTIC EPITOPES AND USES THEREOF

(57) Abstract: The invention herein disclosed is related to epitopes useful in methods of diagnosing, treating, and preventing coeliac disease. Therapeutic compositions which comprise at least one epitope are provided.

## THERAPEUTIC EPITOPES AND USES THEREOF

The invention relates to epitopes useful in the diagnosis and therapy of coeliac disease, including diagnostics, therapeutics, kits, and methods of using the foregoing.

5 An immune reaction to gliadin (a component of gluten) in the diet causes coeliac disease. It is known that immune responses in the intestinal tissue preferentially respond to gliadin which has been modified by an intestinal transglutaminase. Coeliac disease is diagnosed by detection of anti-endomysial antibodies, but this requires confirmation by the finding of a lymphocytic 10 inflammation in intestinal biopsies. The taking of such a biopsy is inconvenient for the patient.

Investigators have previously assumed that only intestinal T cell responses provide an accurate indication of the immune response against gliadins. Therefore they have concentrated on the investigation of T cell responses in intestinal tissue<sup>1</sup>. 15 Gliadin epitopes which require transglutaminase modification (before they are recognised by the immune system) are known<sup>2</sup>.

The inventors have found the immunodominant T cell A-gliadin epitope recognised by the immune system in coeliac disease, and have shown that this is recognised by T cells in the peripheral blood of individuals with coeliac disease (see 20 WO 01/25793). Such T cells were found to be present at high enough frequencies to be detectable without restimulation (i.e. a 'fresh response' detection system could be used). The epitope was identified using a non-T cell cloning based method which provided a more accurate reflection of the epitopes being recognised. The 25 immunodominant epitope requires transglutaminase modification (causing substitution of a particular glutamine to glutamate) before immune system recognition.

Based on this work the inventors have developed a test which can be used to diagnose coeliac disease at an early stage. The test may be carried out on a sample from peripheral blood and therefore an intestinal biopsy is not required. The test is 30 more sensitive than the antibody tests which are currently being used.

The invention thus provides a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising:

(a) contacting a sample from the host with an agent selected from (i) the epitope comprising sequence which is: SEQ ID NO:1 (PQPELPY) or SEQ ID NO:2 (QLQPFPQPELPYPQPQS), or an equivalent sequence from a naturally occurring homologue of the gliadin represented by SEQ ID NO:3, (ii) an epitope comprising sequence comprising: SEQ ID NO:1, or an equivalent sequence from a naturally occurring homologue of the gliadin represented by SEQ ID NO:3 (shown in Table 1), which epitope is an isolated oligopeptide derived from a gliadin protein, (iii) an analogue of (i) or (ii) which is capable of being recognised by a T cell receptor that recognises (i) or (ii), which in the case of a peptide analogue is not more than 50 amino acids in length, or (iv) a product comprising two or more agents as defined in (i), (ii) or (iii), and (b) determining *in vitro* whether T cells in the sample recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.

Through comprehensive mapping of wheat gliadin T cell epitopes (see Example 13), the inventors have also found epitopes bioactive in coeliac disease in HLA-DQ2+ patients in other wheat gliadins, having similar core sequences (e.g., SEQ ID NOS:18-22) and similar full length sequences (e.g., SEQ ID NOS:31-36), as well as in rye secalins and barley hordeins (e.g., SEQ ID NOS:39-41); see also Tables 20 and 21. Additionally, several epitopes bioactive in coeliac disease in HLA-DQ8+ patients have been identified (e.g., SEQ ID NOS:42-44, 46). This comprehensive mapping thus provides the dominant epitopes recognized by T cells in coeliac patients. Thus, the above-described method and other methods of the invention described herein may be performed using any of these additional identified epitopes, and analogues and equivalents thereof; (i) and (ii) herein include these additional epitopes. That is, the agents of the invention also include these novel epitopes.

The invention also provides use of the agent for the preparation of a diagnostic means for use in a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual, said method comprising determining whether T cells of the individual recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.

The finding of an immunodominant epitope which is modified by transglutaminase (as well as the additional other epitopes defined herein) also allows diagnosis of coeliac disease based on determining whether other types of immune response to this epitope are present. Thus the invention also provides a method of 5 diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising determining the presence of an antibody that binds to the epitope in a sample from the individual, the presence of the antibody indicating that the individual has, or is susceptible to, coeliac disease.

The invention additionally provides the agent, optionally in association with a 10 carrier, for use in a method of treating or preventing coeliac disease by tolerising T cells which recognise the agent. Also provided is an antagonist of a T cell which has a T cell receptor that recognises (i) or (ii), optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by antagonising such T cells. Additionally provided is the agent or an analogue that binds an antibody (that 15 binds the agent) for use in a method of treating or preventing coeliac disease in an individual by tolerising the individual to prevent the production of such an antibody.

The invention provides a method of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable 20 of being modified by a transglutaminase to an oligopeptide sequence as defined above is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease.

The invention also provides a mutant gliadin protein whose wild-type sequence can be modified by a transglutaminase to a sequence that comprises an 25 epitope comprising sequence as defined above, but which mutant gliadin protein has been modified in such a way that it does not contain sequence which can be modified by a transglutaminase to a sequence that comprises such an epitope comprising sequence; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises sequence which has been modified in said way.

The invention also provides a protein that comprises a sequence which is able 30 to bind to a T cell receptor, which T cell receptor recognises the agent, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.

Additionally the invention provides a food that comprises the proteins defined above.

## SUMMARY OF THE INVENTION

Herein disclosed are methods of preventing or treating coeliac disease comprising  
5 administering to an individual at least one agent selected from: a) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of SEQ ID NOs:18-22, 31-36, 39-44, and 46, and equivalents thereof; and b) an analogue of a) which is capable of being recognised by a T cell receptor that recognises the peptide of a) and which is not more than 50 amino acids in length; and c) optionally, in addition to the  
10 agent selected from a) and b), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2. In some embodiments, the agent is HLA-DQ2-restricted, HLA-DQ8-restricted or one agent is HLA-DQ2-restricted and a second agent is HLA-DQ8-restricted. In some embodiments, the agent comprises a wheat epitope, a rye epitope, a barley epitope or any combination thereof either as a  
15 single agent or as multiple agents.

According to an embodiment of the invention, there is provided a method of preventing or treating coeliac disease comprising administering to an individual at least one agent selected from:

(a) a peptide comprising at least one epitope comprising transglutaminase-  
20 deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12); and

(b) a peptide analogue of (a) which is capable of being recognised by a T cell receptor that recognises the epitope of (a) and which is not more than 50 amino acids in length; and

25 optionally, in addition to the agent selected from (a) and (b), administering to said individual a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2.

According to another embodiment of the invention, there is provided the use of an agent for the preparation of a medicament for treating or preventing coeliac disease,  
30 wherein the agent comprises:

(a) a peptide comprising at least one epitope comprising transglutaminase-  
deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12); and

(b) a peptide analogue of (a) which is capable of being recognised by a T cell receptor that recognises the epitope of (a) and which is not more than 50 amino acids in length; and

(c) optionally, in addition to the agent selected from (a) and (b), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2.

The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an agent above and pharmaceutically acceptable carrier or diluent.

5 The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an antagonist of a T cell which has a T cell receptor as defined above, and a pharmaceutically acceptable carrier or diluent.

10 The present invention also provides methods of preventing or treating coeliac disease comprising administering to an individual a composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined above, which composition comprises an agent as defined above.

15 Also herein disclosed is a method of preventing or treating coeliac disease by 1) diagnosing coeliac disease in an individual by either: a) contacting a sample from the host with at least one agent selected from: i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NOS:18-22, 31-36, 39-44, and 46, and equivalents thereof; and ii) an analogue of i) which is capable of being recognised by a T cell receptor that recognises i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2 ; and determining *in vitro* whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease; or b) administering an agent as defined above and determining *in vivo* whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease; and 2) administering to an individual diagnosed as having, or being susceptible to, coeliac disease a therapeutic agent for preventing or treating coeliac disease.

20 According to another embodiment of the invention, there is provided a method of preventing or treating coeliac disease comprising:

25 diagnosing coeliac disease in an individual by either:

30 a) contacting a sample from the host with at least one agent selected from:  
i) a peptide comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12), and with the proviso that said peptide does not comprise transglutaminase-deamidated sequence  
35 QQPFPPQQPQQPYPQ, QQPYPPQQPQQPFPQ, QQPFPPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPPQQPQQPYPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ; and

- ii) a peptide analogue of i) which is capable of being recognised by a T cell receptor that recognises the epitope of i) and which is not more than 50 amino acids in length; and
- iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS: 1 and 2; and

5 determining *in vitro* whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease; or

b) administering an agent as defined in claim 1 and determining *in vivo*

10 whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease; and

15 administering to an individual diagnosed as having, or being susceptible to, coeliac disease a therapeutic agent for preventing or treating coeliac disease.

Also herein disclosed is an agent as defined above, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by tolerising T cells which recognise the agent.

Also herein disclosed is an antagonist of a T cell which has a T cell receptor as defined above, optionally in association with a carrier, for use in a method of treating or preventing coeliac disease by antagonising such T cells.

20 Also herein disclosed is a protein that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises an agent as defined above, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.

25 Thus, according to another embodiment of the invention, there is provided an isolated protein that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises an agent comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said epitope does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12), and with the proviso that said epitope does not comprise transglutaminase-deamidated sequence QQFPFPQQPQQPYFPQ, QQPYFPQQPQQPFPQ,

30 QQFPFPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQFPFPQQPQQPYFPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ; and

35 which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.

According to another embodiment of the invention, there is provided an agent comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said epitope does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12), and with the proviso

that said epitope does not comprise transglutaminase-deamidated sequence

QQPFPQQPQQPYQPQ, QQPYPPQQPQQPFPQ, QQPFPQQPQQPFPQ,

PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPQQPQQPYQPQ,

QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ,

5 PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ

or an antagonist of a T cell which has a T cell receptor that recognises said epitope, and which is not more than 50 amino acids in length.

The present invention also provides a pharmaceutical composition comprising an agent or antagonist as defined above and, a pharmaceutically acceptable carrier or diluent.

10 Also herein disclosed is a composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined above, which composition comprises an agent as defined above.

Thus, according to another embodiment of the invention, there is provided a composition for tolerising an individual to a gliadin protein to suppress the production of 15 a T cell or antibody response to an agent as defined above, which composition comprises an agent as defined above, with the proviso that said agent does not comprise an epitope comprising transglutaminase-deamidated sequence QQPFPQQPQQPYQPQ, QQPYPPQQPQQPFPQ, QQPFPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPQQPQQPYQPQ, QFPQTQQPQQPFPQ, 20 QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ.

Also herein disclosed are compositions for antagonising a T cell response to an agent as defined above, which compositions comprise an antagonist as defined above.

Thus, according to another embodiment of the invention, there is provided a 25 composition for antagonising a T cell response to an agent as defined above, which composition comprises an antagonist of a T cell which has a T cell receptor that recognises said epitope, and which is not more than 50 amino acids in length, with the proviso that said epitope does not comprise transglutaminase-deamidated sequence QQPFPQQPQQPYQPQ, QQPYPPQQPQQPFPQ, QQPFPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPQQPQQPYQPQ, QFPQTQQPQQPFPQ, 30 QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ.

Also herein disclosed is a mutant gliadin protein whose wild-type sequence can be modified by a transglutaminase to a sequence which is an agent as defined above, which 35 mutant gliadin protein comprises a mutation which prevents its modification by a transglutaminase to a sequence which is an agent as defined above; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises the mutation.

Thus, according to another embodiment of the invention, there is provided a mutant gliadin protein whose wild-type sequence can be modified by a transglutaminase to a sequence which is an agent as defined in claim 1, which wild-type sequence comprises an epitope comprising the amino acid sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said epitope does not comprise the amino acid sequence PQLPY (SEQ ID NO:12), and with the proviso that said epitope does not comprise the amino acid sequence QQPFPQQPQQPYPPQ, QQPYPPQQPQQPFPQ, QQPFPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPQQPQQPYPPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ, which mutant gliadin protein comprises a mutation which prevents its modification by a transglutaminase to a sequence which is an agent as defined above; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises the mutation.

The present invention also provides a polynucleotide that comprises a coding sequence that encodes a protein or fragment as defined above.

The present invention also provides a cell comprising a polynucleotide as defined above or which has been transformed with such a polynucleotide.

The present invention also provides a transgenic mammal that expresses a T cell receptor as defined above.

Also herein disclosed is a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising: a) contacting a sample from the host with at least one agent selected from i) a peptide comprising at least one epitope comprising a sequence selected from the group consisting of: SEQ ID NOS:18-22, 31-36, 39-44, and 46, and equivalents thereof; and ii) an analogue of i) which is capable of being recognised by a T cell receptor that recognises i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS:1 and 2 ; and b) determining *in vitro* whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.

Thus, according to another embodiment of the invention, there is provided a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising:

(a) contacting a sample from the host with at least one agent selected from  
(i) a peptide comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise the amino acid sequence

PQLPY (SEQ ID NO:12), and with the proviso that said epitope does not comprise transglutaminase-deamidated sequence QQPFPPQQPQQPYPPQ, QQPYPPQQPQQPFPQ, QQPFPPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPPQQPQQPYPPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ; and

5 (ii) a peptide analogue of (i) which is capable of being recognised by a T cell receptor that recognises the epitope of (i) and which is not more than 50 amino acids in length; and

10 (iii) optionally, in addition to the agent selected from (i) and (ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS: 1 and 2; and

15 (b) determining *in vitro* whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.

20 According to another embodiment of the invention, there is provided the use of an agent as defined above for the preparation of a diagnostic means for use in a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual, said method comprising determining whether T cells of the individual recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.

25 According to another embodiment of the invention, there is provided a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising determining the presence of an antibody that binds to an epitope comprising sequence as defined above in a sample from the individual, the presence of the antibody indicating that the individual has, or is susceptible to, coeliac disease.

30 According to another embodiment of the invention, there is provided a method of diagnosing coeliac disease, or susceptibility to coeliac disease in an individual comprising administering an agent as defined above and determining *in vivo* whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease.

35 The present invention also provides a method of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable of being modified by a transglutaminase to an oligopeptide sequence as defined above is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease.

The present invention also provides a method for identifying an analogue as defined above comprising determining whether a candidate substance is recognised by a T cell

receptor that recognises an epitope comprising sequence as defined above, recognition of the substance indicating that the substance is an analogue.

The present invention also provides a method of identifying an antagonist of a T cell, which T cell recognises an agent as defined above, comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response, the detecting of any such decrease in said ability indicating that the substance is an antagonist.

The present invention also provides kits for carrying out any of the diagnostic methods or uses described above comprising an agent as defined above and a means to detect the recognition of the peptide by the T cell.

The present invention also provides the use of an agent or antagonist as defined above or a wild type sequence as defined above to produce an antibody specific to the agent, antagonist or wild type sequence.

The present invention also provides the use of a mutation in an epitope of a gliadin protein, which epitope is as defined above, to decrease the ability of the gliadin protein to cause coeliac disease.

The present invention also provides methods of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a transgenic mammal as defined above which has, or which is susceptible to, coeliac disease and determining whether substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a therapeutic product.

The present invention also provides a process for the production of a protein encoded by a coding sequence as defined above which process comprises: a) cultivating a cell described above under conditions that allow the expression of the protein; and optionally b) recovering the expressed protein.

Also herein disclosed is a method of obtaining a transgenic plant cell comprising transforming a plant cell with a vector as described above to give a transgenic plant cell.

Also herein disclosed is a method of obtaining a first-generation transgenic plant comprising regenerating a transgenic plant cell transformed with a vector as described above to give a transgenic plant.

Also herein disclosed is a method of obtaining a transgenic plant seed comprising obtaining a transgenic seed from a transgenic plant obtainable as described above.

Also herein disclosed is a method of obtaining a transgenic progeny plant comprising obtaining a second-generation transgenic progeny plant from a first-generation transgenic plant obtainable by a method as described above, and optionally obtaining transgenic plants of one or more further generations from the second-generation progeny plant thus obtained.

Also herein disclosed is a transgenic plant cell, plant, plant seed or progeny plant obtainable by any of the methods described above.

Thus, the present invention also provides a transgenic plant cell, plant seed, progeny plant, plant part or plant product obtained from a plant as defined above.

5 The present invention also provides a transgenic plant or plant seed comprising plant cells as described above.

Also herein disclosed is a transgenic plant cell callus comprising a plant cell as described above obtainable from a transgenic plant cell, first-generation plant, plant seed or progeny as defined above.

10 Also herein disclosed is a method of obtaining a crop product comprising harvesting a crop product from a plant according to any method described above and optionally further processing the harvested product.

15 Thus, according to other embodiments of the invention, there are provided plant products and crop products obtained from or harvested from plants or plant seeds as defined above, such as grain, optionally further processed into flour or another grain product.

The present invention also provides food that comprises a protein as defined above.

## BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by the accompanying drawings in which:

20 Figure 1 shows freshly isolated PBMC (peripheral blood mononuclear cell) IFN $\gamma$  ELISPOT responses (vertical axis shows spot forming cells per  $10^6$  PBMC) to transglutaminase (tTG)-treated and untreated peptide pool 3 (each peptide 10 $\mu$ g/ml) including five overlapping 15mers spanning A-gliadin 51-85 (see Table 1) and a-chymotrypsin-digested gliadin (40 $\mu$ g/ml) in coeliac disease Subject 1, initially in  
25 remission following a gluten free diet then challenged with 200g bread daily for three days from day 1 (a). PBMC IFN $\gamma$  ELISPOT responses by Subject 2 to tTG-treated A-gliadin peptide pools 1-10 spanning the complete A-gliadin protein during ten day bread challenge (b). The horizontal axis shows days after commencing bread.

30 Figure 2 shows PBMC IFN $\gamma$  ELISPOT responses to tTG-treated peptide pool 3 (spanning A-gliadin 51-85) in 7 individual coeliac disease subjects (vertical axis shows spot forming cells per  $10^6$  PBMC), initially in remission on gluten free diet, challenged with bread for three days (days 1 to 3). The horizontal axis shows days after commencing bread. (a). PBMC IFN $\gamma$  ELISPOT responses to tTG-treated overlapping 15mer peptides included in pool 3; bars represent the mean ( $\pm$ SEM) response to individual peptides  
35 (10 $\mu$ g/ml) in 6 Coeliac disease subjects on day 6 or 7(b). (In individual subjects, ELISPOT responses to peptides were calculated as a % of response elicited by peptide 12 - as shown by the vertical axis.)

Figure 3 shows PBMC IFN $\gamma$  ELISPOT responses to tTG-treated truncations of A-gliadin 56-75 (0.1  $\mu$ M). Bars represent the mean ( $\pm$  SEM) in 5 Coeliac disease subjects. (In individual subjects, responses were calculated as the % of the maximal response elicited by any of the peptides tested.)

Figure 4 shows how the minimal structure of the dominant A-gliadin epitope was mapped using tTG-treated 7-17mer A-gliadin peptides (0.1  $\mu$ M) including the sequence, PQPQLPY (SEQ ID NO:4) (A-gliadin 62-68) (a), and the same peptides without tTG treatment but with the substitution Q $\rightarrow$ E65 (b). Each line represents PBMC IFN $\gamma$  ELISPOT responses in each of three Coeliac disease subjects on day 6 or 7 after bread was ingested on days 1-3. (In individual subjects, ELISPOT responses were calculated as a % of the response elicited by the 17mer, A-gliadin 57-73.)

Figure 5 shows the amino acids that were deamidated by tTG. A-gliadin 56-75 LQLQPFPQPQLPYPQPQSFP (SEQ ID NO:5) (0.1  $\mu$ M) was incubated with tTG (50  $\mu$ g/ml) at 37°C for 2 hours. A single product was identified and purified by reverse phase HPLC. Amino acid analysis allowed % deamidation (Q $\rightarrow$ E) of each Gln residue in A-gliadin 56-75 attributable to tTG to be calculated (vertical axis).

Figure 6 shows the effect of substituting Q $\rightarrow$ E in A-gliadin 57-73 at other positions in addition to Q65 using the 17mers: ELQPFPQPELPYPQPQS (SEQ ID NO:6) (E57,65), QLQPFPQPELPYPQPES (SEQ ID NO:7) (E65,72), ELQPFPQPELPYPQPES (SEQ ID NO:8) (E57, 65, 72), and QLQPFPQPELPYPQPQS (SEQ ID NO:2) (E65) in three Coeliac disease subjects on day 6 or 7 after bread was ingested on days 1-3. Vertical axis shows % of the E65 response.

Figure 7 shows that tTG treated A-gliadin 56-75 (0.1  $\mu$ M) elicited IFN- $\gamma$  ELISPOT responses in (a) CD4 and CD8 magnetic bead depleted PBMC. (Bars represent CD4 depleted PBMC responses as a % of CD8 depleted PBMC responses; spot forming cells per million CD8 depleted PBMC were: Subject 4: 29, and Subject 6: 535). (b) PBMC IFN $\gamma$  ELISPOT responses (spot forming cells/million PBMC) after incubation with monoclonal antibodies to HLA-DR (L243), -DQ (L2) and -DP (B7.21) (10  $\mu$ g/ml) 1h prior to tTG-treated 56-75 (0.1  $\mu$ M) in two coeliac disease subjects homozygous for HLA-DQ a1\*0501, b1\*0201.

Figure 8 shows the effect of substituting Glu at position 65 for other amino acids in the immunodominant epitope. The vertical axis shows the % response in the 3 subjects in relation to the immunodominant epitope.

Figure 9 shows the immunoreactivity of naturally occurring gliadin peptides (measuring responses from 3 subjects) which contain the sequence PQLPY (SEQ ID NO:12) with (shaded) and without (clear) transglutaminase treatment.

Figure 10 shows CD8, CD4,  $\beta_7$ , and  $\alpha^E$ -specific immunomagnetic bead depletion of peripheral blood mononuclear cells from two coeliac subjects 6 days after commencing gluten challenge followed by interferon gamma ELISpot. A-gliadin 57-73 QE65 (25mcg/ml), tTG-treated chymotrypsin-digested gliadin (100 mcg/ml) or PPD (10 mcg/ml) were used as antigen.

Figure 11 shows the optimal T cell epitope length.

Figure 12 shows a comparison of A-gliadin 57-73 QE65 with other peptides in a dose response study.

Figure 13 shows a comparison of gliadin and A-gliadin 57-73 QE65 specific responses.

Figure 14 shows the bioactivity of gliadin polymorphisms in coeliac subjects.

Figures 15 and 16 show the defining of the core epitope sequence.

Figures 17 to 27 show the agonist activity of A-gliadin 57-73 QE65 variants.

Figure 28 shows responses in different patient groups.

Figure 29 shows bioactivity of prolamin homologues of A-gliadin 57-73.

Figure 30 shows, for healthy HLA-DQ2 subjects, the change in IFN-gamma ELISpot responses to tTG-deamidated gliadin peptide pools.

Figure 31 shows, for coeliac HLA-DQ2 subjects, the change in IFN-gamma ELISpot responses to tTG-deamidated gliadin peptide pools.

Figure 32 shows individual peptide contributions to "summed" gliadin peptide response.

Figure 33 shows, for coeliac HLA-DQ2/8 subject C08, gluten challenge induced IFN $\gamma$  ELISpot responses to tTG-deamidated gliadin peptide pools.

Figure 34 shows, for coeliac HLA-DQ2/8 subject C07, gluten challenge induced IFN $\gamma$  ELISpot responses to tTG-deamidated gliadin peptide pools.

Figure 35 shows, for coeliac HLA-DQ8/7 subject C12, gluten challenge induced IFN $\gamma$  ELISpot responses to tTG-deamidated gliadin peptide pools.

Figure 36 shows, for coeliac HLA-DQ6/8 subject C11, gluten challenge induced IFN $\gamma$  ELISpot responses to tTG-deamidated gliadin peptide pools.

5

### **Detailed Description of the Invention**

The term "coeliac disease" encompasses a spectrum of conditions caused by varying degrees of gluten sensitivity, including a severe form characterised by a flat small intestinal mucosa (hyperplastic villous atrophy) and other forms characterised 10 by milder symptoms.

The individual mentioned above (in the context of diagnosis or therapy) is human. They may have coeliac disease (symptomatic or asymptomatic) or be suspected of having it. They may be on a gluten free diet. They may be in an acute phase response (for example they may have coeliac disease, but have only ingested 15 gluten in the last 24 hours before which they had been on a gluten free diet for 14 to 28 days).

The individual may be susceptible to coeliac disease, such as a genetic susceptibility (determined for example by the individual having relatives with coeliac disease or possessing genes which cause predisposition to coeliac disease).

20

### **The agent**

The agent is typically a peptide, for example of length 7 to 50 amino acids, such as 10 to 40, or 15 to 30 amino acids in length.

SEQ ID NO:1 is PQPELPY. SEQ ID NO:2 is QLQPFPQPELPYPQPQS. 25 SEQ ID NO:3 is shown in Table 1 and is the sequence of a whole A-gliadin. The glutamate at position 4 of SEQ ID NO:1 (equivalent to position 9 of SEQ ID NO:2) is generated by transglutaminase treatment of A-gliadin.

The agent may be the peptide represented by SEQ ID NO:1 or 2 or an epitope comprising sequence that comprises SEQ ID NO:1 which is an isolated oligopeptide 30 derived from a gliadin protein; or an equivalent of these sequences from a naturally occurring gliadin protein which is a homologue of SEQ ID NO:3. Thus the epitope may be a derivative of the protein represented by SEQ ID NO:3. Such a derivative is

typically a fragment of the gliadin, or a mutated derivative of the whole protein or fragment. Therefore the epitope of the invention does not include this naturally occurring whole gliadin protein, and does not include other whole naturally occurring gliadins.

5 The epitope may thus be a fragment of A-gliadin (e.g. SEQ ID NO:3), which comprises the sequence of SEQ ID NO:1, obtainable by treating (fully or partially) with transglutaminase, i.e. with 1, 2, 3 or more glutamines substituted to glutamates (including the substitution within SEQ ID NO:1).

Such fragments may be or may include the sequences represented by  
10 positions 55 to 70, 58 to 73, 61 to 77 of SEQ ID NO:3 shown in Table 1. Typically such fragments will be recognised by T cells to at least the same extent that the peptides represented by SEQ ID NO:1 or 2 are recognised in any of the assays described herein using samples from coeliac disease patients.

Additionally, the agent may be the peptide represented by any of SEQ ID  
15 NOS:18-22, 31-36, 39-44, and 46 or a protein comprising a sequence corresponding to any of SEQ ID NOS:18-22, 31-36, 39-44, and 46 (such as fragments of a gliadin comprising any of SEQ ID NOS:18-22, 31-36, 39-44, and 46, for example after the gliadin has been treated with transglutaminase). Bioactive fragments of such sequences are also agents of the invention. Sequences equivalent to any of SEQ ID  
20 NOS:18-22, 31-36, 39-44, and 46 or analogues of these sequences are also agents of the invention.

In the case where the epitope comprises a sequence equivalent to the above epitopes (including fragments) from another gliadin protein (e.g. any of the gliadin proteins mentioned herein or any gliadins which cause coeliac disease), such  
25 equivalent sequences will correspond to a fragment of a gliadin protein typically treated (partially or fully) with transglutaminase. Such equivalent peptides can be determined by aligning the sequences of other gliadin proteins with the gliadin from which the original epitope derives, such as with SEQ ID NO:3 (for example using any of the programs mentioned herein). Transglutaminase is commercially available  
30 (e.g. Sigma T-5398). Table 4 provides a few examples of suitable equivalent sequences.

The agent which is an analogue is capable of being recognised by a TCR which recognises (i) or (ii). Therefore generally when the analogue is added to T cells in the presence of (i) or (ii), typically also in the presence of an antigen presenting cell (APC) (such as any of the APCs mentioned herein), the analogue 5 inhibits the recognition of (i) or (ii), i.e. the analogue is able to compete with (i) or (ii) in such a system.

The analogue may be one which is capable of binding the TCR which recognises (i) or (ii). Such binding can be tested by standard techniques. Such TCRs can be isolated from T cells which have been shown to recognise (i) or (ii) (e.g. using 10 the method of the invention). Demonstration of the binding of the analogue to the TCRs can then be shown by determining whether the TCRs inhibit the binding of the analogue to a substance that binds the analogue, e.g. an antibody to the analogue. Typically the analogue is bound to a class II MHC molecule (e.g. HLA-DQ2) in such an inhibition of binding assay.

15 Typically the analogue inhibits the binding of (i) or (ii) to a TCR. In this case the amount of (i) or (ii) which can bind the TCR in the presence of the analogue is decreased. This is because the analogue is able to bind the TCR and therefore competes with (i) or (ii) for binding to the TCR.

20 T cells for use in the above binding experiments can be isolated from patients with coeliac disease, for example with the aid of the method of the invention.

Other binding characteristics of the analogue may also be the same as (i) or (ii), and thus typically the analogue binds to the same MHC class II molecule to which the peptide binds (HLA-DQ2 or -DQ8). The analogue typically binds to 25 antibodies specific for (i) or (ii), and thus inhibits binding of (i) or (ii) to such antibodies.

The analogue is typically a peptide. It may have homology with (i) or (ii), typically at least 70% homology, preferably at least 80, 90%, 95%, 97% or 99% homology with (i) or (ii), for example over a region of at least 15 more (such as the 30 entire length of the analogue and/or (i) or (ii), or across the region which contacts the TCR or binds the MHC molecule) contiguous amino acids. Methods of measuring protein homology are well known in the art and it will be understood by those of skill

in the art that in the present context, homology is calculated on the basis of amino acid identity (sometimes referred to as "hard homology").

For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux *et al* (1984) *Nucleic Acids Research* 12, p387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul S. F. (1993) *J Mol Evol* 36:290-300; Altschul, S, F *et al* (1990) *J Mol Biol* 215:403-10.

Software for performing BLAST analyses is publicly available through the 10 National Center for Biotechnology Information on the world wide web through the internet at, for example, "www.ncbi.nlm.nih.gov/". This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is 15 referred to as the neighbourhood word score threshold (Altschul *et al*, *supra*). These initial neighbourhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extensions for the word hits in each direction are halted when: the cumulative alignment score falls off 20 by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring 25 matrix (see Henikoff and Henikoff (1992) *Proc. Natl. Acad. Sci. USA* 89: 10915-10919) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

The BLAST algorithm performs a statistical analysis of the similarity 30 between two sequences; see e.g., Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA* 90: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences

would occur by chance. For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

5 The homologous peptide analogues typically differ from (i) or (ii) by 1, 2, 3, 4, 5, 6, 7, 8 or more mutations (which may be substitutions, deletions or insertions). These mutations may be measured across any of the regions mentioned above in relation to calculating homology. The substitutions are preferably 'conservative'. These are defined according to the following Table. Amino acids in the same block  
10 in the second column and preferably in the same line in the third column may be substituted for each other:

|           |                   |         |
|-----------|-------------------|---------|
| ALIPHATIC | Non-polar         | G A P   |
|           |                   | I L V   |
|           | Polar – uncharged | C S T M |
|           |                   | N Q     |
|           | Polar – charged   | D E     |
|           |                   | K R     |
| AROMATIC  |                   | H F W Y |

15 Typically the amino acids in the analogue at the equivalent positions to amino acids in (i) or (ii) that contribute to binding the MHC molecule or are responsible for the recognition by the TCR, are the same or are conserved.

Typically the analogue peptide comprises one or more modifications, which may be natural post-translation modifications or artificial modifications. The modification may provide a chemical moiety (typically by substitution of a hydrogen, e.g. of a C-H bond), such as an amino, acetyl, hydroxy or halogen (e.g. fluorine) group or carbohydrate group. Typically the modification is present on the N or C terminus.

The analogue may comprise one or more non-natural amino acids, for example amino acids with a side chain different from natural amino acids.

Generally, the non-natural amino acid will have an N terminus and/or a C terminus. The non-natural amino acid may be an L- or a D- amino acid.

The analogue typically has a shape, size, flexibility or electronic configuration that is substantially similar to (i) or (ii). It is typically a derivative of 5 (i) or (ii). In one embodiment the analogue is a fusion protein comprising the sequence of SEQ ID NO:1 or 2, or any of the other peptides mentioned herein; and non-gliadin sequence.

In one embodiment the analogue is or mimics (i) or (ii) bound to a MHC class II molecule. 2, 3, 4 or more of such complexes may be associated or bound to each 10 other, for example using a biotin/streptavidin based system, in which typically 2, 3 or 4 biotin labelled MHC molecules bind to a streptavidin moiety. This analogue typically inhibits the binding of the (i) or (ii)/MHC Class II complex to a TCR or antibody which is specific for the complex.

The analogue is typically an antibody or a fragment of an antibody, such as a 15 Fab or (Fab)<sub>2</sub> fragment. The analogue may be immobilised on a solid support, particularly an analogue that mimics peptide bound to a MHC molecule.

The analogue is typically designed by computational means and then 20 synthesised using methods known in the art. Alternatively the analogue can be selected from a library of compounds. The library may be a combinatorial library or a display library, such as a phage display library. The library of compounds may be expressed in the display library in the form of being bound to a MHC class II molecule, such as HLA-DQ2 or -DQ8. Analogues are generally selected from the 25 library based on their ability to mimic the binding characteristics (i) or (ii). Thus they may be selected based on ability to bind a TCR or antibody which recognises (i) or (ii).

Typically analogues will be recognised by T cells to at least the same extent 30 as any of the agents (i) or (ii), for example at least to the same extent as the equivalent epitope and preferably to the same extent as the peptide represented by SEQ ID NO:2, is recognised in any of the assays described herein, typically using T cells from coeliac disease patients. Analogues may be recognised to these extents *in vivo* and thus may be able to induce coeliac disease symptoms to at least the same

extent as any of the agents mentioned herein (e.g. in a human patient or animal model).

Analogues may be identified in a method comprising determining whether a candidate substance is recognised by a T cell receptor that recognises an epitope of 5 the invention, recognition of the substance indicating that the substance is an analogue. Such TCRs may be any of the TCRs mentioned herein, and may be present on T cells. Any suitable assay mentioned herein can be used to identify the analogue. In one embodiment this method is carried out *in vivo*. As mentioned above preferred analogues are recognised to at least the same extent as the peptide 10 SEQ ID NO:2, and so the method may be used to identify analogues which are recognised to this extent.

In one embodiment the method comprises determining whether a candidate substance is able to inhibit the recognition of an epitope of the invention, inhibition of recognition indicating that the substance is an analogue.

15 The agent may be a product comprising at least 2, 5, 10 or 20 agents as defined by (i), (ii) or (iii). Typically the composition comprises epitopes of the invention (or equivalent analogues) from different gliadins, such as any of the species or variety of or types of gliadin mentioned herein. Preferred compositions comprise at least one epitope of the invention, or equivalent analogue, from all of the 20 gliadins present in any of the species or variety mentioned herein, or from 2, 3, 4 or more of the species mentioned herein (such as from the panel of species consisting of wheat, rye, barley, oats and triticale). Thus, the agent may be monovalent or multivalent.

## 25 Diagnosis

As mentioned above the method of diagnosis of the invention may be based on the detection of T cells that bind the agent or on the detection of antibodies that recognise the agent.

30 The T cells that recognise the agent in the method (which includes the use mentioned above) are generally T cells that have been pre-sensitised *in vivo* to gliadin. As mentioned above such antigen-experienced T cells have been found to be present in the peripheral blood.

In the method the T cells can be contacted with the agent *in vitro* or *in vivo*, and determining whether the T cells recognise the agent can be performed *in vitro* or *in vivo*. Thus the invention provides the agent for use in a method of diagnosis practiced on the human body. Different agents are provided for simultaneous, 5 separate or sequential use in such a method.

The *in vitro* method is typically carried out in aqueous solution into which the agent is added. The solution will also comprise the T cells (and in certain embodiments the APCs discussed below). The term 'contacting' as used herein includes adding the particular substance to the solution.

10 Determination of whether the T cells recognise the agent is generally accomplished by detecting a change in the state of the T cells in the presence of the agent or determining whether the T cells bind the agent. The change in state is generally caused by antigen specific functional activity of the T cell after the TCR binds the agent. The change of state may be measured inside (e.g. change in 15 intracellular expression of proteins) or outside (e.g. detection of secreted substances) the T cells.

The change in state of the T cell may be the start of or increase in secretion of a substance from the T cell, such as a cytokine, especially IFN- $\gamma$ , IL-2 or TNF- $\alpha$ . Determination of IFN- $\gamma$  secretion is particularly preferred. The substance can 20 typically be detected by allowing it to bind to a specific binding agent and then measuring the presence of the specific binding agent/substance complex. The specific binding agent is typically an antibody, such as polyclonal or monoclonal antibodies. Antibodies to cytokines are commercially available, or can be made using standard techniques.

25 Typically the specific binding agent is immobilised on a solid support. After the substance is allowed to bind the solid support can optionally be washed to remove material which is not specifically bound to the agent. The agent/substance complex may be detected by using a second binding agent that will bind the complex. Typically the second agent binds the substance at a site which is different 30 from the site which binds the first agent. The second agent is preferably an antibody and is labelled directly or indirectly by a detectable label.

Thus the second agent may be detected by a third agent that is typically labelled directly or indirectly by a detectable label. For example the second agent may comprise a biotin moiety, allowing detection by a third agent which comprises a streptavidin moiety and typically alkaline phosphatase as a detectable label.

5 In one embodiment the detection system which is used is the *ex-vivo* ELISPOT assay described in WO 98/23960. In that assay IFN- $\gamma$  secreted from the T cell is bound by a first IFN- $\gamma$  specific antibody that is immobilised on a solid support. The bound IFN- $\gamma$  is then detected using a second IFN- $\gamma$  specific antibody which is labelled with a detectable label. Such a labelled antibody can be obtained from  
10 MABTECH (Stockholm, Sweden). Other detectable labels which can be used are discussed below.

15 The change in state of the T cell that can be measured may be the increase in the uptake of substances by the T cell, such as the uptake of thymidine. The change in state may be an increase in the size of the T cells, or proliferation of the T cells, or  
a change in cell surface markers on the T cell.

20 In one embodiment the change of state is detected by measuring the change in the intracellular expression of proteins, for example the increase in intracellular expression of any of the cytokines mentioned above. Such intracellular changes may be detected by contacting the inside of the T cell with a moiety that binds the expressed proteins in a specific manner and which allows sorting of the T cells by flow cytometry.

25 In one embodiment when binding the TCR the agent is bound to an MHC class II molecule (typically HLA-DQ2 or -DQ8), which is typically present on the surface of an antigen presenting cell (APC). However as mentioned herein other agents can bind a TCR without the need to also bind an MHC molecule.

30 Generally the T cells which are contacted in the method are taken from the individual in a blood sample, although other types of samples which contain T cells can be used. The sample may be added directly to the assay or may be processed first. Typically the processing may comprise diluting of the sample, for example with water or buffer. Typically the sample is diluted from 1.5 to 100 fold, for example 2 to 50 or 5 to 10 fold.

The processing may comprise separation of components of the sample.

Typically mononuclear cells (MCs) are separated from the samples. The MCs will comprise the T cells and APCs. Thus in the method the APCs present in the separated MCs can present the peptide to the T cells. In another embodiment only T

5 cells, such as only CD4 T cells, can be purified from the sample. PBMCs, MCs and T cells can be separated from the sample using techniques known in the art, such as those described in Lalvani *et al* (1997) *J. Exp. Med.* **186**, p859-865.

In one embodiment, the T cells used in the assay are in the form of unprocessed or diluted samples, or are freshly isolated T cells (such as in the form of

10 freshly isolated MCs or PBMCs) which are used directly *ex vivo*, i.e. they are not cultured before being used in the method. Thus the T cells have not been restimulated in an antigen specific manner *in vitro*. However the T cells can be cultured before use, for example in the presence of one or more of the agents, and generally also exogenous growth promoting cytokines. During culturing the agent(s)

15 are typically present on the surface of APCs, such as the APC used in the method. Pre-culturing of the T cells may lead to an increase in the sensitivity of the method. Thus the T cells can be converted into cell lines, such as short term cell lines (for example as described in Ota *et al* (1990) *Nature* **346**, p183-187).

The APC that is typically present in the method may be from the same

20 individual as the T cell or from a different host. The APC may be a naturally occurring APC or an artificial APC. The APC is a cell that is capable of presenting the peptide to a T cell. It is typically a B cell, dendritic cell or macrophage. It is typically separated from the same sample as the T cell and is typically co-purified with the T cell. Thus the APC may be present in MCs or PBMCs. The APC is

25 typically a freshly isolated *ex vivo* cell or a cultured cell. It may be in the form of a cell line, such as a short term or immortalised cell line. The APC may express empty MHC class II molecules on its surface.

In the method one or more (different) agents may be used. Typically the T cells derived from the sample can be placed into an assay with all the agents which it

30 is intended to test or the T cells can be divided and placed into separate assays each of which contain one or more of the agents.

The invention also provides the agents such as two or more of any of the agents mentioned herein (e.g. the combinations of agents which are present in the composition agent discussed above) for simultaneous separate or sequential use (eg. for *in vivo* use).

5 In one embodiment agent *per se* is added directly to an assay comprising T cells and APCs. As discussed above the T cells and APCs in such an assay could be in the form of MCs. When agents that can be recognised by the T cell without the need for presentation by APCs are used then APCs are not required. Analogues which mimic the original (i) or (ii) bound to a MHC molecule are an example of such 10 an agent.

In one embodiment the agent is provided to the APC in the absence of the T cell. The APC is then provided to the T cell, typically after being allowed to present the agent on its surface. The peptide may have been taken up inside the APC and presented, or simply be taken up onto the surface without entering inside the APC.

15 The duration for which the agent is contacted with the T cells will vary depending on the method used for determining recognition of the peptide. Typically  $10^5$  to  $10^7$ , preferably  $5 \times 10^5$  to  $10^6$  PBMCs are added to each assay. In the case where agent is added directly to the assay its concentration is from  $10^{-1}$  to  $10^3 \mu\text{g/ml}$ , preferably 0.5 to  $50 \mu\text{g/ml}$  or 1 to  $10 \mu\text{g/ml}$ .

20 Typically the length of time for which the T cells are incubated with the agent is from 4 to 24 hours, preferably 6 to 16 hours. When using *ex vivo* PBMCs it has been found that  $0.3 \times 10^6$  PBMCs can be incubated in  $10 \mu\text{g/ml}$  of peptide for 12 hours at  $37^\circ\text{C}$ .

25 The determination of the recognition of the agent by the T cells may be done by measuring the binding of the agent to the T cells (this can be carried out using any suitable binding assay format discussed herein). Typically T cells which bind the agent can be sorted based on this binding, for example using a FACS machine. The presence of T cells that recognise the agent will be deemed to occur if the frequency of cells sorted using the agent is above a "control" value. The frequency of antigen-experienced T cells is generally 1 in  $10^6$  to 1 in  $10^3$ , and therefore whether or not the 30 sorted cells are antigen-experienced T cells can be determined.

The determination of the recognition of the agent by the T cells may be measured *in vivo*. Typically the agent is administered to the host and then a response which indicates recognition of the agent may be measured. The agent is typically administered intradermally or epidermally. The agent is typically administered by

5 contacting with the outside of the skin, and may be retained at the site with the aid of a plaster or dressing. Alternatively the agent may be administered by needle, such as by injection, but can also be administered by other methods such as ballistics (e.g. the ballistics techniques which have been used to deliver nucleic acids). EP-A-0693119 describes techniques that can typically be used to administer the agent.

10 Typically from 0.001 to 1000 µg, for example from 0.01 to 100 µg or 0.1 to 10 µg of agent is administered.

In one embodiment a product can be administered which is capable of providing the agent *in vivo*. Thus a polynucleotide capable of expressing the agent can be administered, typically in any of the ways described above for the

15 administration of the agent. The polynucleotide typically has any of the characteristics of the polynucleotide provided by the invention which is discussed below. The agent is expressed from the polynucleotide *in vivo*. Typically from 0.001 to 1000 µg, for example from 0.01 to 100 µg or 0.1 to 10 µg of polynucleotide is administered.

20 Recognition of the agent administered to the skin is typically indicated by the occurrence of inflammation (e.g. induration, erythema or oedema) at the site of administration. This is generally measured by visual examination of the site.

The method of diagnosis based on the detection of an antibody that binds the agent is typically carried out by contacting a sample from the individual (such as any

25 of the samples mentioned here, optionally processed in any manner mentioned herein) with the agent and determining whether an antibody in the sample binds the agent, such a binding indicating that the individual has, or is susceptible to coeliac disease. Any suitable format of binding assay may be used, such as any such format mentioned herein.

30

## Therapy

The identification of the immunodominant epitope and other epitopes described herein allows therapeutic products to be made which target the T cells which recognise this epitope (such T cells being ones which participate in the immune response against gliadin). These findings also allow the prevention or 5 treatment of coeliac disease by suppressing (by tolerisation) an antibody or T cell response to the epitope(s).

Certain agents of the invention bind the TCR that recognises the epitope of the invention (as measured using any of the binding assays discussed above) and cause tolerisation of the T cell that carries the TCR. Such agents, optionally in 10 association with a carrier, can therefore be used to prevent or treat coeliac disease.

Generally tolerisation can be caused by the same peptides which can (after being recognised by the TCR) cause antigen specific functional activity of the T cell (such as any such activity mentioned herein, e.g. secretion of cytokines). Such agents cause tolerisation when they are presented to the immune system in a 15 'tolerising' context.

Tolerisation leads to a decrease in the recognition of a T cell or antibody epitope by the immune system. In the case of a T cell epitope this can be caused by the deletion or anergising of T cells that recognise the epitope. Thus T cell activity (for example as measured in suitable assays mentioned herein) in response to the 20 epitope is decreased. Tolerisation of an antibody response means that a decreased amount of specific antibody to the epitope is produced when the epitope is administered.

Methods of presenting antigens to the immune system in such a context are known and are described for example in Yoshida et al. *Clin. Immunol.* 25 *Immunopathol.* 82, 207-215 (1997), Thurau et al. *Clin. Exp. Immunol.* 109, 370-6 (1997), and Weiner et al. *Res. Immunol.* 148, 528-33 (1997). In particular certain routes of administration can cause tolerisation, such as oral, nasal or intraperitoneal. Tolerisation may also be accomplished via dendritic cells and tetramers presenting peptide. Particular products which cause tolerisation may be administered (e.g. in a 30 composition that also comprises the agent) to the individual. Such products include cytokines, such as cytokines that favour a Th2 response (e.g. IL-4, TGF- $\beta$  or IL-10). Products or agent may be administered at a dose that causes tolerisation.

The invention provides a protein that comprises a sequence able to act as an antagonist of the T cell (which T cell recognises the agent). Such proteins and such antagonists can also be used to prevent or treat coeliac disease. The antagonist will cause a decrease in the T cell response. In one embodiment, the antagonist binds the 5 TCR of the T cell (generally in the form of a complex with HLA-DQ2 or -DQ8) but instead of causing normal functional activation causing an abnormal signal to be passed through the TCR intracellular signalling cascade, which causes the T cell to have decreased function activity (e.g. in response to recognition of an epitope, typically as measured by any suitable assay mentioned herein).

10 In one embodiment the antagonist competes with epitope to bind a component of MHC processing and presentation pathway, such as an MHC molecule (typically HLA-DQ2 or -DQ8). Thus the antagonist may bind HLA-DQ2 or -DQ8 (and thus be a peptide presented by this MHC molecule), such as peptide TP (Table 10) or a homologue thereof.

15 Methods of causing antagonism are known in the art. In one embodiment the antagonist is a homologue of the epitopes mentioned above and may have any of the sequence, binding or other properties of the agent (particularly analogues). The antagonists typically differ from any of the above epitopes (which are capable of causing a normal antigen specific function in the T cell) by 1, 2, 3, 4 or more 20 mutations (each of which may be a substitution, insertion or deletion). Such antagonists are termed "altered peptide ligands" or "APL" in the art. The mutations are typically at the amino acid positions that contact the TCR.

25 The antagonist may differ from the epitope by a substitution within the sequence that is equivalent to the sequence represented by amino acids 65 to 67 of A-gliadin (such antagonists are shown in Table 9). Thus preferably the antagonist has a substitution at the equivalent of position 64, 65 or 67. Preferably the substitution is 64W, 67W, 67M or 65T.

30 Since the T cell immune response to the epitope of the invention in an individual is polyclonal, more than one antagonist may need to be administered to cause antagonism of T cells of the response which have different TCRs. Therefore the antagonists may be administered in a composition which comprises at least 2, 4, 6 or more different antagonists, which each antagonise different T cells.

The invention also provides a method of identifying an antagonist of a T cell (which recognises the agent), comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response (e.g. using any suitable assay mentioned 5 herein), the detecting of any such decrease in said ability indicating that the substance is an antagonist.

In one embodiment, the antagonists (including combinations of antagonists to a particular epitope) or tolerising (T cell and antibody tolerising) agents are present in a composition comprising at least 2, 4, 6 or more antagonists or agents which 10 antagonise or tolerise to different epitopes of the invention, for example to the combinations of epitopes discussed above in relation to the agents which are a product comprising more than one substance.

#### **Testing whether a composition is capable of causing coeliac disease**

15 As mentioned above the invention provides a method of determining whether a composition is capable of causing coeliac disease comprising detecting the presence of a protein sequence which is capable of being modified by a transglutaminase to a sequence comprising the agent or epitope of the invention (such transglutaminase activity may be a human intestinal transglutaminase activity). 20 Typically this is performed by using a binding assay in which a moiety which binds to the sequence in a specific manner is contacted with the composition and the formation of sequence/moiety complex is detected and used to ascertain the presence of the agent. Such a moiety may be any suitable substance (or type of substance) mentioned herein, and is typically a specific antibody. Any suitable format of 25 binding assay can be used (such as those mentioned herein).

In one embodiment, the composition is contacted with at least 2, 5, 10 or more antibodies which are specific for epitopes of the invention from different gliadins, for example a panel of antibodies capable of recognising the combinations of epitopes discussed above in relation to agents of the invention which are a product 30 comprising more than one substance.

The composition typically comprises material from a plant that expresses a gliadin which is capable of causing coeliac disease (for example any of the gliadins

or plants mentioned herein). Such material may be a plant part, such as a harvested product (e.g. seed). The material may be processed products of the plant material (e.g. any such product mentioned herein), such as a flour or food that comprises the gliadin. The processing of food material and testing in suitable binding assays is 5 routine, for example as mentioned in Kricka LJ, J. Biolumin. Chemilumin. 13, 189-93 (1998).

### Binding assays

10 The determination of binding between any two substances mentioned herein may be done by measuring a characteristic of either or both substances that changes upon binding, such as a spectroscopic change.

The binding assay format may be a 'band shift' system. This involves determining whether the presence of one substance (such as a candidate substance) advances or retards the progress of the other substance during gel electrophoresis.

15 The format may be a competitive binding method which determines whether the one substance is able to inhibit the binding of the other substance to an agent which is known to bind the other substance, such as a specific antibody.

### Mutant gliadin proteins

20 The invention provides a gliadin protein in which an epitope sequence of the invention, or sequence which can be modified by a transglutaminase to provide such a sequence has been mutated so that it no longer causes, or is recognised by, a T cell response that recognises the epitope. In this context the term recognition refers to the TCR binding the epitope in such a way that normal (not antagonistic) antigen-specific functional activity of the T cell occurs.

25 Methods of identifying equivalent epitopes in other gliadins are discussed above. The wild type of the mutated gliadin is one which causes coeliac disease. Such a gliadin may have homology with SEQ ID NO:3, for example to the degree mentioned above (in relation to the analogue) across all of SEQ ID NO:3 or across 30 15, 30, 60, 100 or 200 contiguous amino acids of SEQ ID NO:3. Likewise, for other non-A-gliadins, homology will be present between the mutant and the native form of that gliadin. The sequences of other natural gliadin proteins are known in the art.

The mutated gliadin will not cause coeliac disease or will cause decreased symptoms of coeliac disease. Typically the mutation decreases the ability of the epitope to induce a T cell response. The mutated epitope may have a decreased binding to HLA-DQ2 or -DQ8, a decreased ability to be presented by an APC or a 5 decreased ability to bind to or to be recognised (i.e. cause antigen-specific functional activity) by T cells that recognise the agent. The mutated gliadin or epitope will therefore show no or reduced recognition in any of the assays mentioned herein in relation to the diagnostic aspects of the invention.

The mutation may be one or more deletions, additions or substitutions of 10 length 1 to 3, 4 to 6, 6 to 10, 11 to 15 or more in the epitope, for example across sequence SEQ ID NO:2 or across any of SEQ ID NOS: 18-22, 31-36, 39-44, and 46; or across equivalents thereof. Preferably the mutant gliadin has at least one mutation in the sequence SEQ ID NO:1. A preferred mutation is at position 65 in A-gliadin (or in an equivalent position in other gliadins). Typically the naturally occurring 15 glutamine at this position is substituted to any of the amino acids shown in Table 3, preferably to histidine, tyrosine, tryptophan, lysine, proline, or arginine.

The invention thus also provides use of a mutation (such any of the mutations in any of the sequences discussed herein) in an epitope of a gliadin protein, which epitope is an epitope of the invention, to decrease the ability of the gliadin protein to 20 cause coeliac disease.

In one embodiment the mutated sequence is able to act as an antagonist. Thus the invention provides a protein that comprises a sequence which is able to bind 25 to a T cell receptor, which T cell receptor recognises an agent of the invention, and which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.

The invention also provides proteins which are fragments of the above mutant gliadin proteins, which are at least 15 amino acids long (e.g. at least 30, 60, 100, 150, 200, or 250 amino acids long) and which comprise the mutations discussed above which decrease the ability of the gliadin to be recognised. Any of the mutant 30 proteins (including fragments) mentioned herein may also be present in the form of fusion proteins, for example with other gliadins or with non-gliadin proteins.

The equivalent wild type protein to the mutated gliadin protein is typically from a graminaceous monocotyledon, such as a plant of genus *Triticum*, e.g. wheat, rye, barley, oats or triticale. The protein is typically an  $\alpha$ ,  $\alpha\beta$ ,  $\beta$ ,  $\gamma$  or  $\omega$  gliadin. The gliadin may be an A-gliadin.

5

### Kits

The invention also provides a kit for carrying out the method comprising one or more agents and optionally a means to detect the recognition of the agent by the T cell. Typically the different agents are provided for simultaneous, separate or 10 sequential use. Typically the means to detect recognition allows or aids detection based on the techniques discussed above.

Thus the means may allow detection of a substance secreted by the T cells after recognition. The kit may thus additionally include a specific binding moiety for the substance, such as an antibody. The moiety is typically specific for IFN- $\gamma$ . The 15 moiety is typically immobilised on a solid support. This means that after binding the moiety the substance will remain in the vicinity of the T cell which secreted it. Thus “spots” of substance/moiety complex are formed on the support, each spot representing a T cell which is secreting the substance. Quantifying the spots, and typically comparing against a control, allows determination of recognition of the 20 agent.

The kit may also comprise a means to detect the substance/moiety complex. A detectable change may occur in the moiety itself after binding the substance, such as a colour change. Alternatively a second moiety directly or indirectly labelled for 25 detection may be allowed to bind the substance/moiety complex to allow the determination of the spots. As discussed above the second moiety may be specific for the substance, but binds a different site on the substance than the first moiety.

The immobilised support may be a plate with wells, such as a microtitre plate. Each assay can therefore be carried out in a separate well in the plate.

The kit may additionally comprise medium for the T cells, detection moieties 30 or washing buffers to be used in the detection steps. The kit may additionally comprise reagents suitable for the separation from the sample, such as the separation of PBMCs or T cells from the sample. The kit may be designed to allow detection of

the T cells directly in the sample without requiring any separation of the components of the sample.

The kit may comprise an instrument which allows administration of the agent, such as intradermal or epidermal administration. Typically such an instrument 5 comprises plaster, dressing or one or more needles. The instrument may allow ballistic delivery of the agent. The agent in the kit may be in the form of a pharmaceutical composition.

The kit may also comprise controls, such as positive or negative controls. The positive control may allow the detection system to be tested. Thus the positive 10 control typically mimics recognition of the agent in any of the above methods. Typically in the kits designed to determine recognition *in vitro* the positive control is a cytokine. In the kit designed to detect *in vivo* recognition of the agent the positive control may be antigen to which most individuals should response.

The kit may also comprise a means to take a sample containing T cells from 15 the host, such as a blood sample. The kit may comprise a means to separate mononuclear cells or T cells from a sample from the host.

#### **Polynucleotides, cells, transgenic mammals and antibodies**

The invention also provides a polynucleotide which is capable of expression 20 to provide the agent or mutant gliadin proteins. Typically the polynucleotide is DNA or RNA, and is single or double stranded. The polynucleotide will preferably comprise at least 50 bases or base pairs, for example 50 to 100, 100 to 500, 500 to 1000 or 1000 to 2000 or more bases or base pairs. The polynucleotide therefore 25 comprises a sequence which encodes the sequence of SEQ ID NO: 1 or 2 or any of the other agents mentioned herein. To the 5' and 3' of this coding sequence the polynucleotide of the invention has sequence or codons which are different from the sequence or codons 5' and 3' to these sequences in the corresponding gliadin gene.

5' and/or 3' to the sequence encoding the peptide the polynucleotide has 30 coding or non-coding sequence. Sequence 5' and/or 3' to the coding sequence may comprise sequences which aid expression, such as transcription and/or translation, of the sequence encoding the agent. The polynucleotide may be capable of expressing the agent prokaryotic or eukaryotic cell. In one embodiment the polynucleotide is

capable of expressing the agent in a mammalian cell, such as a human, primate or rodent (e.g. mouse or rat) cell.

A polynucleotide of the invention may hybridise selectively to a polynucleotide that encodes SEQ ID NO:3 at a level significantly above background.

5 Selective hybridisation is typically achieved using conditions of medium to high stringency (for example 0.03M sodium chloride and 0.03M sodium citrate at from about 50°C to about 60°C). However, such hybridisation may be carried out under any suitable conditions known in the art (see Sambrook *et al* (1989), Molecular Cloning: A Laboratory Manual). For example, if high stringency is required, suitable  
10 conditions include 0.2 x SSC at 60°C. If lower stringency is required, suitable conditions include 2 x SSC at 60°C.

Agents or proteins of the invention may be encoded by the polynucleotides described herein.

The polynucleotide may form or be incorporated into a replicable vector.

15 Such a vector is able to replicate in a suitable cell. The vector may be an expression vector. In such a vector the polynucleotide of the invention is operably linked to a control sequence which is capable of providing for the expression of the polynucleotide. The vector may contain a selectable marker, such as the ampicillin resistance gene.

20 The polynucleotide or vector may be present in a cell. Such a cell may have been transformed by the polynucleotide or vector. The cell may express the agent. The cell will be chosen to be compatible with the said vector and may for example be a prokaryotic (bacterial), yeast, insect or mammalian cell. The polynucleotide or vector may be introduced into host cells using conventional techniques including  
25 calcium phosphate precipitation, DEAE-dextran transfection, or electroporation.

30 The invention provides processes for the production of the proteins of the invention by recombinant means. This may comprise (a) cultivating a transformed cell as defined above under conditions that allow the expression of the protein; and preferably (b) recovering the expressed polypeptide. Optionally, the polypeptide may be isolated and/or purified, by techniques known in the art.

The invention also provides TCRs which recognise (or bind) the agent, or fragments thereof which are capable of such recognition (or binding). These can be

present in the any form mentioned herein (e.g. purity) discussed herein in relation to the protein of the invention. The invention also provides T cells which express such TCRs which can be present in any form (e.g. purity) discussed herein for the cells of the invention.

5 The invention also provides monoclonal or polyclonal antibodies which specifically recognise the agents (such as any of the epitopes of the invention) and which recognise the mutant gliadin proteins (and typically which do not recognise the equivalent wild-type gliadins) of the invention, and methods of making such antibodies. Antibodies of the invention bind specifically to these substances of the  
10 invention:

For the purposes of this invention, the term "antibody" includes antibody fragments such as Fv, F(ab) and F(ab)<sub>2</sub> fragments, as well as single-chain antibodies.

A method for producing a polyclonal antibody comprises immunising a suitable host animal, for example an experimental animal, with the immunogen and  
15 isolating immunoglobulins from the serum. The animal may therefore be inoculated with the immunogen, blood subsequently removed from the animal and the IgG fraction purified. A method for producing a monoclonal antibody comprises immortalising cells which produce the desired antibody. Hybridoma cells may be produced by fusing spleen cells from an inoculated experimental animal with tumour  
20 cells (Kohler and Milstein (1975) *Nature* **256**, 495-497).

An immortalized cell producing the desired antibody may be selected by a conventional procedure. The hybridomas may be grown in culture or injected intraperitoneally for formation of ascites fluid or into the blood stream of an allogenic host or immunocompromised host. Human antibody may be prepared by *in*  
25 *vitro* immunisation of human lymphocytes, followed by transformation of the lymphocytes with Epstein-Barr virus.

For the production of both monoclonal and polyclonal antibodies, the experimental animal is suitably a goat, rabbit, rat or mouse. If desired, the immunogen may be administered as a conjugate in which the immunogen is coupled,  
30 for example via a side chain of one of the amino acid residues, to a suitable carrier. The carrier molecule is typically a physiologically acceptable carrier. The antibody obtained may be isolated and, if desired, purified.

The polynucleotide, agent, protein or antibody of the invention, may carry a detectable label. Detectable labels which allow detection of the secreted substance by visual inspection, optionally with the aid of an optical magnifying means, are preferred. Such a system is typically based on an enzyme label which causes colour 5 change in a substrate, for example alkaline phosphatase causing a colour change in a substrate. Such substrates are commercially available, e.g. from BioRad. Other suitable labels include other enzymes such as peroxidase, or protein labels, such as biotin; or radioisotopes, such as <sup>32</sup>P or <sup>35</sup>S. The above labels may be detected using known techniques.

10 Polynucleotides, agents, proteins, antibodies or cells of the invention may be in substantially purified form. They may be in substantially isolated form, in which case they will generally comprise at least 80% e.g. at least 90, 95, 97 or 99% of the polynucleotide, peptide, antibody, cells or dry mass in the preparation. The polynucleotide, agent, protein or antibody is typically substantially free of other 15 cellular components. The polynucleotide, agent, protein or antibody may be used in such a substantially isolated, purified or free form in the method or be present in such forms in the kit.

20 The invention also provides a transgenic non-human mammal which expresses a TCR of the invention. This may be any of the mammals discussed herein (e.g. in relation to the production of the antibody). Preferably the mammal has, or is susceptible, to coeliac disease. The mammal may also express HLA-DQ2 or -DQ8 or HLA-DR3-DQ2 and/or may be given a diet comprising a gliadin which cause 25 coeliac disease (e.g. any of the gliadin proteins mentioned herein). Thus the mammal may act as an animal model for coeliac disease.

25 The invention also provides a method of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a mammal of the invention which has, or which is susceptible to, coeliac disease and determining whether substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a 30 therapeutic product. Such a product may be used to treat or prevent coeliac disease.

The invention provides therapeutic (including prophylactic) agents or diagnostic substances (the agents, proteins and polynucleotides of the invention).

These substances are formulated for clinical administration by mixing them with a pharmaceutically acceptable carrier or diluent. For example they can be formulated for topical, parenteral, intravenous, intramuscular, subcutaneous, intraocular, intradermal, epidermal or transdermal administration. The substances may be mixed 5 with any vehicle which is pharmaceutically acceptable and appropriate for the desired route of administration. The pharmaceutically carrier or diluent for injection may be, for example, a sterile or isotonic solution such as Water for Injection or physiological saline, or a carrier particle for ballistic delivery.

The dose of the substances may be adjusted according to various parameters, 10 especially according to the agent used; the age, weight and condition of the patient to be treated; the mode of administration used; the severity of the condition to be treated; and the required clinical regimen. As a guide, the amount of substance administered by injection is suitably from 0.01 mg/kg to 30 mg/kg, preferably from 0.1 mg/kg to 10 mg/kg.

15 The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage for any particular patient and condition.

The substances of the invention may thus be used in a method of treatment of 20 the human or animal body, or in a diagnostic method practised on the human body. In particular they may be used in a method of treating or preventing coeliac disease. The invention also provide the agents for use in a method of manufacture of a medicament for treating or preventing coeliac disease. Thus the invention provides a 25 method of preventing or treating coeliac disease comprising administering to a human in need thereof a substance of the invention (typically a non-toxic effective amount thereof).

The agent of the invention can be made using standard synthetic chemistry 30 techniques, such as by use of an automated synthesizer. The agent may be made from a longer polypeptide e.g. a fusion protein, which polypeptide typically comprises the sequence of the peptide. The peptide may be derived from the polypeptide by for example hydrolysing the polypeptide, such as using a protease; or by physically breaking the polypeptide. The polynucleotide of the invention can be made using standard techniques, such as by using a synthesiser.

**Plant cells and plants that express mutant gliadin proteins or express proteins comprising sequences which can act as antagonists**

The cell of the invention may be a plant cell, such as a cell of a graminaceous 5 monocotyledonous species. The species may be one whose wild-type form expresses gliadins, such as any of the gliadin proteins mentioned herein (including gliadins with any degree of homology to SEQ ID NO:3 mentioned herein). Such a gliadin may cause coeliac disease in humans. The cell may be of wheat, maize, oats, rye, 10 rice, barley, triticale, sorghum, or sugar cane. Typically the cell is of the Triticum genus, such as aestivum, spelta, polonicum or monococcum.

The plant cell of the invention is typically one which does not express a wild-type gliadin (such as any of the gliadins mentioned herein which may cause coeliac disease), or one which does not express a gliadin comprising a sequence that can be 15 recognised by a T cell that recognises the agent. Thus if the wild-type plant cell did express such a gliadin then it may be engineered to prevent or reduce the expression of such a gliadin or to change the amino acid sequence of the gliadin so that it no longer causes coeliac disease (typically by no longer expressing the epitope of the invention).

This can be done for example by introducing mutations into 1, 2, 3 or more or 20 all of such gliadin genes in the cell, for example into coding or non-coding (e.g. promoter regions). Such mutations can be any of the type or length of mutations discussed herein (e.g., in relation to homologous proteins). The mutations can be introduced in a directed manner (e.g., using site directed mutagenesis or homologous recombination techniques) or in a random manner (e.g. using a mutagen, and then 25 typically selecting for mutagenised cells which no longer express the gliadin (or a gliadin sequence which causes coeliac disease)).

In the case of plants or plant cells that express a protein that comprises a sequence able to act as an antagonist such a plant or plant cell may express a wild-type gliadin protein (e.g. one which causes coeliac disease). Preferably though the 30 presence of the antagonist sequence will cause reduced coeliac disease symptoms (such as no symptoms) in an individual who ingests a food comprising protein from the plant or plant cell.

The polynucleotide which is present in (or which was transformed into) the plant cell will generally comprise promoter capable of expressing the mutant gliadin protein in the plant cell. Depending on the pattern of expression desired, the promoter may be constitutive, tissue- or stage-specific; and/or inducible. For example, strong 5 constitutive expression in plants can be obtained with the CAMV 35S, Rubisco ssu, or histone promoters. Also, tissue-specific or stage-specific promoters may be used to target expression of protein of the invention to particular tissues in a transgenic plant or to particular stages in its development. Thus, for example seed-specific, 10 root-specific, leaf-specific, flower-specific etc promoters may be used. Seed-specific promoters include those described by Dalta *et al* (Biotechnology Ann. Rev. (1997), 3, pp.269-296). Particular examples of seed-specific promoters are napin promoters (EP-A-0 255, 378), phaseolin promoters, glutenine promoters, helianthenine promoters (WO92/17580), albumin promoters (WO98/45460), oleosin promoters (WO98/45461) and ATS1 and ATS3 promoters (PCT/US98/06798).

15 The cell may be in any form. For example, it may be an isolated cell, e.g. a protoplast, or it may be part of a plant tissue, e.g. a callus, or a tissue excised from a plant, or it may be part of a whole plant. The cell may be of any type (e.g. of any type of plant part). For example, an undifferentiated cell, such as a callus cell; or a 20 differentiated cell, such as a cell of a type found in embryos, pollen, roots, shoots or leaves. Plant parts include roots; shoots; leaves; and parts involved in reproduction, such as pollen, ova, stamens, anthers, petals, sepals and other flower parts.

25 The invention provides a method of obtaining a transgenic plant cell comprising transforming a plant cell with a polynucleotide or vector of the invention to give a transgenic plant cell. Any suitable transformation method may be used (in the case of wheat the techniques disclosed in Vasil V *et al*, Biotechnology 10, 667-674 (1992) may be used). Preferred transformation techniques include electroporation of plant protoplasts and particle bombardment. Transformation may thus give rise to a chimeric tissue or plant in which some cells are transgenic and some are not.

30 The cell of the invention or thus obtained cell may be regenerated into a transgenic plant by techniques known in the art. These may involve the use of plant growth substances such as auxins, gibberellins and/or cytokinins to stimulate the

growth and/or division of the transgenic cell. Similarly, techniques such as somatic embryogenesis and meristem culture may be used. Regeneration techniques are well known in the art and examples can be found in, e.g. US 4,459,355, US 4,536,475, US 5,464,763, US 5, 177,010, US 5, 187,073, EP 267,159, EP 604, 662, EP 672, 752, 5 US 4,945,050, US 5,036,006, US 5,100,792, US 5,371,014, US 5,478,744, US 5,179,022, US 5,565,346, US 5,484,956, US 5,508,468, US 5,538,877, US 5,554,798, US 5,489,520, US 5,510,318, US 5,204,253, US 5,405,765, EP 442,174, EP 486,233, EP 486,234, EP 539,563, EP 674,725, WO91/02071 and WO 95/06128.

In many such techniques, one step is the formation of a callus, i.e. a plant 10 tissue comprising expanding and/or dividing cells. Such calli are a further aspect of the invention as are other types of plant cell cultures and plant parts. Thus, for example, the invention provides transgenic plant tissues and parts, including embryos, meristems, seeds, shoots, roots, stems, leaves and flower parts. These may be chimeric in the sense that some of their cells are cells of the invention and some 15 are not. Transgenic plant parts and tissues, plants and seeds of the invention may be of any of the plant species mentioned herein.

Regeneration procedures will typically involve the selection of transformed cells by means of marker genes.

The regeneration step gives rise to a first generation transgenic plant. The 20 invention also provides methods of obtaining transgenic plants of further generations from this first generation plant. These are known as progeny transgenic plants. Progeny plants of second, third, fourth, fifth, sixth and further generations may be obtained from the first generation transgenic plant by any means known in the art.

Thus, the invention provides a method of obtaining a transgenic progeny 25 plant comprising obtaining a second-generation transgenic progeny plant from a first-generation transgenic plant of the invention, and optionally obtaining transgenic plants of one or more further generations from the second-generation progeny plant thus obtained.

Progeny plants may be produced from their predecessors of earlier 30 generations by any known technique. In particular, progeny plants may be produced by:

obtaining a transgenic seed from a transgenic plant of the invention belonging to a previous generation, then obtaining a transgenic progeny plant of the invention belonging to a new generation by growing up the transgenic seed; and/or

5 propagating clonally a transgenic plant of the invention belonging to a previous generation to give a transgenic progeny plant of the invention belonging to a new generation; and/or

crossing a first-generation transgenic plant of the invention belonging to a previous generation with another compatible plant to give a transgenic progeny plant of the invention belonging to a new generation; and optionally

10 obtaining transgenic progeny plants of one or more further generations from the progeny plant thus obtained.

These techniques may be used in any combination. For example, clonal propagation and sexual propagation may be used at different points in a process that gives rise to a transgenic plant suitable for cultivation. In particular, repetitive back-crossing with a plant taxon with agronomically desirable characteristics may be undertaken. Further steps of removing cells from a plant and regenerating new plants therefrom may also be carried out.

Also, further desirable characteristics may be introduced by transforming the cells, plant tissues, plants or seeds, at any suitable stage in the above process, to introduce desirable coding sequences other than the polynucleotides of the invention.

20 This may be carried out by the techniques described herein for the introduction of polynucleotides of the invention.

For example, further transgenes may be selected from those coding for other herbicide resistance traits, e.g. tolerance to: Glyphosate (e.g. using an EPSP synthase gene (e.g. EP-A-0 293,358) or a glyphosate oxidoreductase (WO 92/000377) gene); or tolerance to fosametin; a dihalobenzonitrile; glufosinate, e.g. using a phosphinothrycin acetyl transferase (PAT) or glutamine synthase gene (cf. EP-A-0 242,236); asulam, e.g. using a dihydropteroate synthase gene (EP-A-0 369,367); or a sulphonylurea, e.g. using an ALS gene); diphenyl ethers such as acifluorfen or

25 oxyfluorfen, e.g. using a protoporphyrin oxidase gene); an oxadiazole such as oxadiazon; a cyclic imide such as chlorophthalim; a phenyl pyrazole such as TNP, or a phenopylate or carbamate analogue thereof.

Similarly, genes for beneficial properties other than herbicide tolerance may be introduced. For example, genes for insect resistance may be introduced, notably genes encoding *Bacillus thuringiensis* (*Bt*) toxins. Likewise, genes for disease resistance may be introduced, e.g. as in WO91/02701 or WO95/06128.

5       Typically, a protein of the invention is expressed in a plant of the invention. Depending on the promoter used, this expression may be constitutive or inducible. Similarly, it may be tissue- or stage-specific, i.e. directed towards a particular plant tissue (such as any of the tissues mentioned herein) or stage in plant development.

10     The invention also provides methods of obtaining crop products by harvesting, and optionally processing further, transgenic plants of the invention. By crop product is meant any useful product obtainable from a crop plant.

15     **Products that contain mutant gliadin proteins or proteins that comprise sequence capable of acting as an antagonist**

The invention provides a product that comprises the mutant gliadin proteins or protein that comprises sequence capable of acting as an antagonist. This is typically derived from or comprise plant parts from plants mentioned herein which express such proteins. Such a product may be obtainable directly by harvesting or 20     indirectly, by harvesting and further processing the plant of the invention. Directly obtainable products include grains. Alternatively, such a product may be obtainable indirectly, by harvesting and further processing. Examples of products obtainable by further processing are flour or distilled alcoholic beverages; food products made from directly obtained or further processed material, e.g. baked products (e.g. bread) 25     made from flour. Typically such food products, which are ingestible and digestible (i.e. non-toxic and of nutrient value) by human individuals.

In the case of food products that comprise the protein which comprises an antagonist sequence the food product may also comprise wild-type gliadin, but 30     preferably the antagonist is able to cause a reduction (e.g. completely) in the coeliac disease symptoms after such food is ingested.

The invention is illustrated by the following nonlimiting Examples:

**Example 1**

We carried out epitope mapping in Coeliac disease by using a set of 51 synthetic 15-mer peptides that span the complete sequence of a fully characterized a-gliadin, "A-gliadin" (see Table 1). A-Gliadin peptides were also individually treated with tTG to generate products that might mimic those produced *in vivo*<sup>3</sup>. We also 5 sought to study Coeliac disease patients at the point of initiation of disease relapse to avoid the possibility that epitope "spreading" or "exhaustion" may have occurred, as described in experimental infectious and autoimmune diseases.

*Clinical and A-gliadin specific T-cell responses with 3 and 10 day bread challenge*

10 In a pilot study, two subjects with Coeliac disease in remission, defined by absence of serum anti-endomysial antibody (EMA), on a gluten free diet were fed four slices of standard gluten-containing white bread daily in addition to their usual gluten free diet. Subject 1 ceased bread because of abdominal pain, mouth ulcers and mild diarrhoea after three days, but Subject 2 continued for 10 days with only 15 mild nausea at one week. The EMA became positive in Subject 2 one week after the bread challenge, indicating the bread used had caused a relapse of Coeliac disease. But in Subject 1, EMA remained negative up to two months after bread challenge. In both subjects, symptoms that appeared with bread challenge resolved within two days after returning to gluten free diet.

20 PBMC responses in IFN $\gamma$  ELISPOT assays to A-gliadin peptides were not found before or during bread challenge. But from the day after bread withdrawal (Day 4) in Subject 1 a single pool of 5 overlapping peptides spanning A-gliadin 51-85 (Pool 3) treated with tTG showed potent IFN $\gamma$  responses (see Figure 1a). In Subject 1, the PBMC IFN $\gamma$  response to A-gliadin peptide remained targeted to Pool 3 25 alone and was maximal on Day 8. The dynamics and magnitude of the response to Pool 3 was similar to that elicited by  $\alpha$ -chymotrypsin digested gliadin. PBMC IFN $\gamma$  responses to tTG-treated Pool 3 were consistently 5 to 12-fold greater than Pool 3 not treated with tTG, and responses to  $\alpha$ -chymotrypsin digested gliadin were 3 to 10-fold greater if treated with tTG. In Subject 2, Pool 3 treated with tTG was also the only 30 immunogenic set of A-gliadin peptides on Day 8, but this response was weaker than Subject 1, was not seen on Day 4 and by Day 11 the response to Pool 3 had diminished and other tTG-treated pools of A-gliadin peptides elicited stronger IFN $\alpha$

responses (see Figure 1b).

The pilot study indicated that the initial T cell response in these Coeliac disease subjects was against a single tTG-treated A-gliadin pool of five peptides and was readily measured in peripheral blood. But if antigen exposure is continued for 5 ten days instead of three, T cell responses to other A-gliadin peptides appear, consistent with epitope spreading.

#### *Coeliac disease-specific IFN- $\gamma$ induction by tTG-treated A-gliadin peptides*

In five out of six further Coeliac disease subjects on gluten free diet (see 10 Table 1), bread challenge for three days identified tTG-treated peptides in Pool 3, and in particular, peptides corresponding to 56-70 (12) and 60-75 (13) as the sole A-gliadin components eliciting IFN $\gamma$  from PBMC (see Figure 2). IL-10 ELISPOT assays run in parallel to IFN $\gamma$  ELISPOT showed no IL-10 response to tTG-treated peptides 12 or 13. In one subject, there were no IFN $\gamma$  responses to any A-gliadin 15 peptide or  $\alpha$ -chymotrypsin digested gliadin before, during or up to four days after bread challenge. In none of these Coeliac disease subjects did EMA status change from baseline when measured for up to two months after bread challenge.

PBMC from four healthy, EMA-negative subjects with the HLA-DQ alleles  $\alpha 1*0501$ ,  $\beta 1*0201$  (ages 28-52, 2 females) who had been challenged for three days 20 with bread after following a gluten free diet for one month, showed no IFN $\gamma$  responses above the negative control to any of the A-gliadin peptides with or without tTG treatment. Thus, induction of IFN $\gamma$  in PBMC to tTG-treated Pool 3 and A-gliadin peptides 56-70 (12) and 60-75 (13) were Coeliac disease specific (7/8 vs. 0/4, p<0.01 by Chi-squared analysis).

25

#### *Fine mapping of the minimal A-gliadin T cell epitope*

tTG-treated peptides representing truncations of A-gliadin 56-75 revealed 30 that the same core peptide sequence QPQLP (SEQ ID NO:9) was essential for antigenicity in all of the five Coeliac disease subjects assessed (see Figure 3). PBMC IFN $\gamma$  responses to tTG-treated peptides spanning this core sequence beginning with the 7-mer PQPQLPY (SEQ ID NO:4) and increasing in length, indicated that the tTG-treated 17-mer QLQPFPQPQLPYPQPQS (SEQ ID NO:10) (A-gliadin 57-73)

possessed optimal activity in the IFN $\gamma$  ELISPOT (see Figure 4).

*Deamidation of Q65 by tTG generates the immunodominant T cell epitope in A-gliadin*

5 HPLC analysis demonstrated that tTG treatment of A-gliadin 56-75 generated a single product that eluted marginally later than the parent peptide. Amino acid sequencing indicated that out of the six glutamine (Q) residues contained in A-gliadin 56-75, Q65 was preferentially deamidated by tTG (see Figure 5). Bioactivity of peptides corresponding to serial expansions from the core A-gliadin 62-68  
10 sequence in which glutamate (E) replaced Q65, was equivalent to the same peptides with Q65 after tTG-treatment (see Figure 4a). Replacement of Q57 and Q72 by E together or alone, with E65 did not enhance antigenicity of the 17-mer in the three Coeliac disease subjects studied (see Figure 6). Q57 and Q72 were investigated because glutamine residues followed by proline in gliadin peptides are not  
15 deamidated by tTG in vitro (W. Vader et al, Proceedings 8th International Symposium Coeliac Disease). Therefore, the immunodominant T cell epitope was defined as QLQPFPQPELPYPQPQS (SEQ ID NO:2).

*Immunodominant T cell epitope response is DQ2-restricted and CD4 dependent*

20 In two Coeliac disease subjects homozygous for HLA-DQ  $\alpha 1^*0501$ ,  $\beta 1^*0201$ , anti-DQ monoclonal antibody blocked the ELISPOT IFN $\gamma$  response to tTG-treated A-gliadin 56-75, but anti-DP and -DR antibody did not (see Figure 7). Anti-CD4 and anti-CD8 magnetic bead depletion of PBMC from two Coeliac disease subjects indicated the IFN $\gamma$  response to tTG-treated A-gliadin 56-75 is CD4 T cell-mediated.  
25

*Discussion*

30 In this study we describe a rather simple dietary antigen challenge using standard white bread to elicit a transient population of CD4 T cells in peripheral blood of Coeliac disease subjects responsive to a tTG-treated A-gliadin 17-mer with the sequence: QLQPFPQPELPYPQPQS (SEQ ID NO:2) (residues 57-73). The immune response to A-gliadin 56-75 (Q $\rightarrow$ E65) is restricted to the Coeliac disease-

associated HLA allele, DQ  $\alpha 1^*0501$ ,  $\beta 1^*0201$ . Tissue transglutaminase action in vitro selectively deamidates Q65. Elicited peripheral blood IFNg responses to synthetic A-gliadin peptides with the substitution Q→E65 is equivalent to tTG-treated Q65 A-gliadin peptides; both stimulate up to 10-fold more T cells in the IFNg ELISPOT than unmodified Q65 A-gliadin peptides.

We have deliberately defined this Coeliac disease-specific T cell epitope using in vivo antigen challenge and short-term ex vivo immune assays to avoid the possibility of methodological artifacts that may occur with the use of T cell clones in epitope mapping. Our findings indicate that peripheral blood T cell responses to 10 ingestion of gluten are rapid but short-lived and can be utilized for epitope mapping. In vivo antigen challenge has also shown there is a temporal hierarchy of immune responses to A-gliadin peptides; A-gliadin 57-73 modified by tTG not only elicits the strongest IFNg response in PBMC but it is also the first IFNg response to appear.

Because we have assessed only peptides spanning A-gliadin, there may be 15 other epitopes in other gliadins of equal or greater importance in the pathogenesis of Coeliac disease. Indeed, the peptide sequence at the core of the epitope in A-gliadin that we have identified PQPQLPY (SEQ ID NO:4) is shared by several other gliadins (SwissProt and Trembl accession numbers: P02863, Q41528, Q41531, Q41533, Q9ZP09, P04722, P04724, P18573). However, A-gliadin peptides that have 20 previously been shown to possess bioactivity in biopsy challenge and in vivo studies (for example: 31-43, 44-55, and 206-217)<sup>4,5</sup> did not elicit IFNg responses in PBMC following three day bread challenge in Coeliac disease subjects. These peptides may be "secondary" T cell epitopes that arise with spreading of the immune response.

25 **Example 2**

*The effect on T cell recognition of substitutions in the immunodominant epitope*

The effect of substituting the glutamate at position 65 in the 57-73 A-gliadin epitope was determined by measuring peripheral blood responses against the substituted epitopes in an IFN $\gamma$  ELISPOT assay using synthetic peptides (at 50 30  $\mu$ g/ml). The responses were measured in 3 Coeliac disease subjects 6 days after commencing gluten challenge (4 slices bread daily for 3 days). Results are shown in table 3 and Figure 8. As can be seen substitution of the glutamate to histidine,

tyrosine, tryptophan, lysine, proline or arginine stimulated a response whose magnitude was less than 10% of the magnitude of the response to the immunodominant epitope. Thus mutation of A-gliadin at this position could be used to produce a mutant gliadin with reduced or absent immunoreactivity.

5

### Example 3

#### *Testing the immunoreactivity of equivalent peptides from other naturally occurring gliadins*

The immunoreactivity of equivalent peptides from other naturally occurring wheat gliadins was assessed using synthetic peptides corresponding to the naturally occurring sequences which were then treated with transglutaminase. These peptides were tested in an ELISPOT in the same manner and with PBMCs from the same subjects as described in Example 2. At least five of the peptides show immunoreactivity comparable to the A-gliadin 57-73 E65 peptide (after transglutaminase treatment) indicating that other gliadin proteins in wheat are also likely to induce this Coeliac disease-specific immune response (Table 4 and Figure 9).

### Methods

20 *Subjects:* Patients used in the study attended a Coeliac Clinic in Oxford, United Kingdom. Coeliac disease was diagnosed on the basis of typical small intestinal histology, and normalization of symptoms and small intestinal histology with gluten free diet.

25 *Tissue typing:* Tissue typing was performed using DNA extracted from EDTA-anticoagulated peripheral blood. HLA-DQA and DQB genotyping was performed by PCR using sequence-specific primer mixes<sup>6-8</sup>.

30 *Anti-endomysial antibody assay:* EMA were detected by indirect immunofluorescence using patient serum diluted 1:5 with monkey oesophagus, followed by FITC-conjugated goat anti-human IgA. IgA was quantitated prior to EMA, none of the subjects were IgA deficient.

*Antigen Challenge:* Coeliac disease subjects following a gluten free diet, consumed 4 slices of gluten-containing bread (50g/slice, Sainsbury's "standard white sandwich bread") daily for 3 or 10 days. EMA was assessed the week before and up to two months after commencing the bread challenge. Healthy subjects who had followed a gluten free diet for four weeks, consumed their usual diet including four slices of gluten-containing bread for three days, then returned to gluten free diet for a further six days.

10 *IFN $\gamma$  and IL-10 ELISPOT:* PBMC were prepared from 50-100 ml of venous blood by Ficoll-Hypaque density centrifugation. After three washes, PBMC were resuspended in complete RPMI containing 10% heat inactivated human AB serum. ELISPOT assays for single cell secretion of IFN $\gamma$  and IL-10 were performed using commercial kits (Mabtech; Stockholm, Sweden) with 96-well plates (MAIP-S-45; Millipore, 15 Bedford, MA) according to the manufacturers instructions (as described elsewhere<sup>9</sup>) with 2-5x10<sup>5</sup> (IFN $\gamma$ ) or 0.4-1x10<sup>5</sup> (IL-10) PBMC in each well. Peptides were assessed in duplicate wells, and Mycobacterium tuberculosis purified protein derivative (PPD RT49) (Serum Institute; Copenhagen, Denmark) (20  $\mu$ g/ml) was included as a positive control in all assays.

20 *Peptides:* Synthetic peptides were purchased from Research Genetics (Huntsville, Alabama) Mass-spectroscopy and HPLC verified peptides' authenticity and >70% purity. Digestion of gliadin (Sigma; G-3375) (100 mg/ml) with  $\alpha$ -chymotrypsin (Sigma; C-3142) 200:1 (w/w) was performed at room temperature in 0.1 M NH<sub>4</sub>HCO<sub>3</sub> with 2M urea and was halted after 24 h by heating to 98°C for 10 minutes. After centrifugation (13,000g, 10 minutes), the gliadin digest supernatant was filter-sterilized (0.2 mm). Digestion of gliadin was verified by SDS-PAGE and protein concentration assessed.  $\alpha$ -Chymotrypsin-digested gliadin (640  $\mu$ g/ml) and synthetic gliadin peptides (15-mers: 160  $\mu$ g/ml, other peptides: 0.1 mM) were individually 25 treated with tTG (Sigma; T-5398) (50  $\mu$ g/ml) in PBS + CaCl<sub>2</sub> 1 mM for 2 h at 37°C. Peptides and peptide pools were aliquotted into sterile 96-well plates and stored 30 frozen at -20°C until use.

*Amino acid sequencing of peptides:* Reverse phase HPLC was used to purify the peptide resulting from tTG treatment of A-gliadin 56-75. A single product was identified and subjected to amino acid sequencing (automated sequencer Model 5 494A, Applied Biosystems, Foster City, California). The sequence of unmodified G56-75 was confirmed as: LQLQPPQPQLPYPQPQSFP (SEQ ID NO:5), and tTG treated G56-75 was identified as: LQLQPFPQPELPYYPQPQSFP (SEQ ID NO:11). Deamidation of glutamyl residues was defined as the amount (pmol) of glutamate recovered expressed as a percent of the combined amount of glutamine and 10 glutamate recovered in cycles 2, 4, 8, 10, 15 and 17 of the amino acid sequencing. Deamidation attributable to tTG was defined as (% deamidation of glutamine in the tTG treated peptide - % deamidation in the untreated peptide) / (100 - % deamidation in the untreated peptide).

*CD4/CD8 and HLA Class II Restriction:* Anti-CD4 or anti-CD8 coated magnetic 15 beads (Dynal, Oslo, Norway) were washed four times with RPMI then incubated with PBMC in complete RPMI containing 10% heat inactivated human AB serum (5x10<sup>6</sup> cells/ml) for 30 minutes on ice. Beads were removed using a magnet and cells remaining counted. In vivo HLA-class II restriction of the immune response to tTG-treated A-gliadin 56-75 was established by incubating PBMC (5x10<sup>6</sup> cells/ml) 20 with anti-HLA-DR (L243), -DQ (L2), and -DP (B7.21) monoclonal antibodies (10 µg/ml) at room temperature for one hour prior to the addition of peptide.

#### **Example 4**

##### *Mucosal integrin expression by gliadin -specific peripheral blood lymphocytes*

25 Interaction between endothelial and lymphocyte adressins facilitates homing of organ-specific lymphocytes. Many adressins are known. The heterodimer  $\alpha_4\beta_7$  is specific for lamina propria gut and other mucosal lymphocytes, and  $\alpha^E\beta_7$  is specific and intra-epithelial lymphocytes in the gut and skin. Approximately 30% of peripheral blood CD4 T cells express  $\alpha_4\beta_7$  and are presumed to be in transit to a 30 mucosal site, while 5% of peripheral blood T cells express  $\alpha^E\beta_7$ . Immunomagnetic beads coated with antibody specific for  $\alpha^E$  or  $\beta_7$  deplete PBMC of cells expressing  $\alpha^E\beta_7$  or  $\alpha^E\beta_7$  and  $\alpha_4\beta_7$ , respectively. In combination with ELISpot assay,

immunomagnetic bead depletion allows determination of gliadin-specific T cell addressin expression that may identify these cells as homing to a mucosal surface. Interestingly, gluten challenge *in vivo* is associated with rapid influx of CD4 T cells to the small intestinal lamina propria (not intra-epithelial sites), where over 90% 5 lymphocytes express  $\alpha_4\beta_7$ .

10 Immunomagnetic beads were prepared and used to deplete PBMC from coeliac subjects on day 6 or 7 after commencing 3 day gluten challenge. FACS analysis demonstrated  $\alpha^E$  beads depleted approximately 50% of positive CD4 T cells, while  $\beta_7$  beads depleted all  $\beta_7$  positive CD4 T cells. Depletion of PBMC using CD4- or  $\beta_7$ -beads, but not CD8- or  $\alpha^E$ -beads, abolished responses in the interferon 15 gamma ELISpot. tTG gliadin and PPD responses were abolished by CD4 depletion, but consistently affected by integrin-specific bead depletion.

Thus A-gliadin 57-73 QE65-specific T cells induced after gluten challenge in coeliac disease express the integrin,  $\alpha_4\beta_7$ , present on lamina propria CD4 T cells in 15 the small intestine.

### Example 5

#### *Optimal T cell Epitope Length*

20 Previous data testing peptides from 7 to 17 amino acids in length spanning the core of the dominant T cell epitope in A-gliadin indicated that the 17mer, A-gliadin 57-73 QE65 (SEQ ID NO:2) induced maximal responses in the interferon gamma Elispot using peripheral blood mononuclear cells (PBMC) from coeliac volunteers 6 days after commencing a 3-day gluten challenge.

25 Peptides representing expansions form the core sequence of the dominant T cell epitope in A-gliadin were assessed in the IFN gamma ELISPOt using peripheral blood mononuclear cells (PBMC) from coeliac volunteers in 6 days after commencing a 3-day gluten challenge (n=4). Peptide 13: A-gliadin 59-71 QE65 (13mer), peptide 15: 58-72 QE65 (15mer), ..., peptide 27: 52-78 SE65 (27mer).

30 As shown in Figure 11 expansion of the A-gliadin 57-73 QE65 sequence does not substantially enhance response in the IFNgamma Elispot. Subsequent Examples

characterise the agonist and antagonist activity of A-gliadin 57-73 QE65 using 17mer peptides.

### Example 6

5 *Comparison of A-gliadin 57-73 QE65 with other DQ2-restricted T cell epitopes in coeliac disease*

Dose response studies were performed using peptides corresponding to unmodified and transglutaminase-treated peptides corresponding to T cell epitopes of gluten-specific T cell clones and lines from intestinal biopsies of coeliac subjects.

10 Responses to peptides were expressed as percent of response to A-gliadin 57-73 QE65. All subjects were HLA-DQ2+ (none were DQ8+).

The studies indicate that A-gliadin 57-73 QE65 is the most potent gliadin peptide for induction of interferon gamma in the ELISpot assay using coeliac PBMC after gluten challenge (see Figure 12a-h, and Tables 5 and 6). The second and third 15 epitopes are suboptimal fragments of larger peptides i.e. A-gliadin 57-73 QE65 and GDA4\_WHEAT P04724-84-100 QE92. The epitope is only modestly bioactive (approximately 1/20<sup>th</sup> as active as A-gliadin 57-73 QE65 after blank is subtracted).

A-gliadin 57-73 QE65 is more potent than other known T cell epitopes in coeliac disease. There are 16 polymorphisms of A-gliadin 57-73 (including the 20 sequence PQLPY (SEQ ID NO:12)) amongst sequenced gliadin genes, their bioactivity is assessed next.

### Example 7

25 *Comparison of gliadin- and A-gliadin 57-73 QE65-specific responses in peripheral blood*

The relative contribution of the dominant epitope, A-gliadin 57-73 QE65, to the total T cell response to gliadin in coeliac disease is a critical issue. Pepsin-trypsin and chymotrypsin-digested gliadin have been traditionally used as antigen for development of T cell lines and clones in coeliac disease. However, it is possible 30 that these proteases may cleave through certain peptide epitopes. Indeed, chymotrypsin digestion of recombinant  $\alpha$ 9-gliadin generates the peptide QLQPFPQPELPY (SEQ ID NO:13), that is a truncation of the optimal epitope

sequence QLQPFPQPELPYPQPQS (SEQ ID NO:2) (see above).

Transglutaminase-treatment substantially increases the potency of chymotrypsin-digested gliadin in proliferation assays of gliadin-specific T cell clones and lines. Hence, transglutaminase-treated chymotrypsin-digested gliadin (tTG gliadin) may not be an ideal antigen, but responses against this mixture may approximate the “total” number of peripheral blood lymphocyte specific for gliadin. Comparison of responses against A-gliadin 57-73 QE65 and tTG gliadin in the ELISpot assay gives an indication of the contribution of this dominant epitope to the overall immune response to gliadin in coeliac disease, and also be a measure of epitope spreading.

10 PBMC collected on day 6 or 7 after commencing gluten challenge in 4 coeliac subjects were assessed in dose response studies using chymotrypsin-digested gliadin +/- tTG treatment and compared with ELISpot responses to an optimal concentration of A-gliadin 57-73 QE65 (25mcg/ml). TTG treatment of gliadin enhanced PBMC responses in the ELISpot approximately 10-fold (tTG was comparable to blank when assessed alone) (see Figure 13a-c). In the four coeliac subjects studied, A-gliadin 57-73 QE65 (25 mcg/ml) elicited responses between 14 and 115% those of tTG gliadin (500 mcg/ml), and the greater the response to A-gliadin 57-73 QE65 the greater proportion it represented of the tTG gliadin response.

15 Relatively limited data suggest that A-gliadin 57-73 QE65 responses are comparable to tTG gliadin in some subjects. Epitope spreading associated with more evolved anti-gliadin T cell responses may account for the smaller contribution of A-gliadin 57-73 QE65 to “total” gliadin responses in peripheral blood in some individuals. Epitope spreading may be maintained in individuals with less strictly gluten free diets.

25

### Example 8

*Definition of gliadin peptides bioactive in coeliac disease: polymorphisms of A-gliadin 57-73*

30 Overlapping 15mer peptides spanning the complete sequence of A-gliadin were assessed in order to identify the immunodominant sequence in coeliac disease. A-gliadin was the first fully sequenced alpha gliadin protein and gene, but is one of approximately 30-50 related alpha gliadin proteins in wheat. Twenty five distinct

alpha-gliadin genes have been identified by searching protein data bases, Swiss-Prot and TREMBL describing a further 8 alpha-gliadins. Contained within these 25 alpha-gliadins, there are 16 distinct polymorphisms of the sequence corresponding to A-gliadin 57-73 (see Table 7).

5 Synthetic peptides corresponding to these 16 polymorphisms, in an unmodified form, after treatment with transglutaminase in vitro, as well as with glutamate substituted at position 10 (equivalent to QE65 in A-gliadin 57-73) were assessed using PBMC from coeliac subjects, normally following a gluten free diet, day 6 or 7 after gluten challenge in interferon gamma ELISpot assays. Glutamate-10 substituted peptides were compared at three concentrations (2.5, 25 and 250 mcg/ml), unmodified peptide and transglutaminase-treated peptides were assessed at 25 mcg/ml only. Bioactivity was expressed as % of response associated with A-gliadin 57-73 QE65 25 mcg/ml in individual subjects (n=4). (See Fig 14).

15 Bioactivity of "wild-type" peptides was substantially increased (>5-fold) by treatment with transglutaminase. Transglutaminase treatment of wild-type peptides resulted in bioactivity similar to that of the same peptides substituted with glutamate at position 10. Bioactivities of five glutamate-substituted peptides (B, C, K, L, M), were >70% that of A-gliadin 57-73 QE65 (A), but none was significantly more 20 bioactive than A-gliadin 57-73 QE65. PBMC responses to glutamate-substituted peptides at concentrations of 2.5 and 250 mcg/ml were comparable to those at 25 mcg/ml. Six glutamate-substituted gliadin peptides (H, I, J, N, O, P) were <15% as 25 bioactive as A-gliadin 57-73 QE65. Other peptides were intermediate in bioactivity.

25 At least six gliadin-derived peptides are equivalent in potency to A-gliadin 57-73 QE65 after modification by transglutaminase. Relatively non-bioactive polymorphisms of A-gliadin 57-73 also exist. These data indicate that transglutaminase modification of peptides from several gliadins of *Triticum aestivum*, *T. uartu* and *T. spelta* may be capable of generating the immunodominant T cell epitope in coeliac disease.

30 Genetic modification of wheat to generate non-coeliac-toxic wheat may likely require removal or modification of multiple gliadin genes. Generation of wheat containing gliadins or other proteins or peptides incorporating sequences defining altered peptide ligand antagonists of A-gliadin 57-73 is an alternative strategy to

generate genetically modified wheat that is therapeutic rather than "non-toxic" in coeliac disease.

### **Example 9**

5    *Definition of Core Epitope Sequence:*

Comparison of peptides corresponding to truncations of A-gliadin 56-75 from the N- and C-terminal indicated that the core sequence of the T cell epitope is PELPY (A-gliadin 64-68). Attempts to define non-agonists and antagonists will focus on variants of A-gliadin that are substituted at residues that substantially 10 contribute to its bioactivity.

Peptides corresponding to A-gliadin 57-73 QE65 with alanine (Figure 15) or lysine (Figure 16) substituted for residues 57 to 73 were compared in the IFN gamma ELISPOT using peripheral blood mononuclear cells (PBMC) from coeliac volunteers 6 days after commencing a 3-day gluten challenge (n=8). (BL is blank, E is A-gliadin 57-73 QE65: QLQPFPQPELPYPQPQS (SEQ ID NO:2)).

It was found that residues corresponding to A-gliadin 60-70 QE65 (PFPQPELPYPQ (SEQ ID NO:14)) contribute substantially to the bioactivity in A-gliadin 57-73 QE65. Variants of A-gliadin 57-73 QE65 substituted at positions 60-70 are assessed in a 2-step procedure. Initially, A-gliadin 57-73 QE65 substituted at 20 positions 60-70 using 10 different amino acids with contrasting properties are assessed. A second group of A-gliadin 57-73 QE65 variants (substituted with all other naturally occurring amino acids except cysteine at positions that prove are sensitive to modification) are assessed in a second round.

25    **Example 10**

*Agonist activity of substituted variants of A-gliadin 57-73 QE65*

A-gliadin 60-70 QE65 is the core sequence of the dominant T cell epitope in A-gliadin. Antagonist and non-agonist peptide variants of this epitope are most likely generated by modification of this core sequence. Initially, A-gliadin 57-73 30 QE65 substituted at positions 60-70 using 10 different amino acids with contrasting properties will be assessed in the IFNgamma ELISPOT using PBMC from coeliac subjects 6 days after starting 3 day gluten challenge. A second group of A-gliadin

57-73 QE65 variants (substituted with all other naturally occurring amino acids except cysteine) at positions 61-70 were also assessed. Both groups of peptides (all at 50 mcg/ml, in duplicate) were assessed using PBMC from 8 subjects and compared to the unmodified peptide (20 replicates per assay). Previous studies 5 indicate that the optimal concentration for A-gliadin 57-73 QE65 in this assay is between 10 and 100 mcg/ml.

Results are expressed as mean response in spot forming cells (95% confidence interval) as % A-G 57-73 QE65 mean response in each individual. Unpaired t-tests will be used to compare ELISPOT responses of modified peptides 10 with A-G 57-73 QE65. Super-agonists were defined as having a greater response than A-G 57-73 QE65 at a level of significance of  $p<0.01$ ; partial agonists as having a response less than A-G 57-73 QE65 at a level of significance of  $p<0.01$ , and non-agonists as being not significantly different ( $p>0.01$ ) from blank (buffer without peptide). Peptides with agonist activity 30% or less that of A-gliadin 57-73 QE65 15 were considered "suitable" partial or non-agonists to assess for antagonistic activity (see Table 8 and Figures 17-27).

The IFNgamma ELISPOT response of PBMC to A-gliadin 57-73 QE65 is highly specific at a molecular level. Proline at position 64 (P64), glutamate at 65 (E65) and leucine at position 66 (L66), and to a lesser extent Q63, P67, Y68 and P69 20 are particularly sensitive to modification. The substitutions Y61 and Y70 both generate super-agonists with 30% greater bioactivity than the parent peptide, probably by enhancing binding to HLA-DQ2 since the motif for this HLA molecule indicates a preference for bulky hydrophobic residues at positions 1 and 9. Eighteen non-agonist peptides were identified. Bioactivities of the variants (50 mcg/ml): P65, 25 K64, K65 and Y65 (bioactivity 7-8%) were comparable to blank (7%). In total, 57 mutated variants of A-gliadin 57-73 QE65 were 30% or less bioactive than A-gliadin 57-73 QE65.

The molecular specificity of the peripheral blood lymphocyte (PBL) T cell response to the dominant epitope, A-gliadin 57-73 QE65, is consistently reproducible 30 amongst HLA-DQ2+ coeliac subjects, and is highly specific to a restricted number of amino acids in the core 7 amino acids. Certain single-amino acid variants of A-gliadin 57-73 QE65 are consistently non-agonists in all HLA-DQ2+ coeliac subjects.

**Example 11***Antagonist activity of substituted variants*

The homogeneity of the PBL T cell response to A-gliadin 57-73 QE65 in HLA-DQ2+ coeliac disease suggests that altered peptide ligands (APL) capable of antagonism in PBMC ex vivo may exist, even though the PBL T cell response is likely to be poly- or oligo-clonal. APL antagonists are generally weak agonists. Fifty-seven single amino acid-substituted variants of A-gliadin 57-73 QE65 with agonist activity 30% or less have been identified and are suitable candidates as APL antagonists. In addition, certain weakly bioactive naturally occurring polymorphisms of A-gliadin 57-73 QE65 have also been identified (see below) and may be "naturally occurring" APL antagonists. It has also been suggested that competition for binding MHC may also antagonise antigen-specific T cell immune. Hence, non-gliadin peptides that do not induce IFNgamma responses in coeliac PBMC after gluten challenge but are known to bind to HLA-DQ2 may be capable of reducing T cell responses elicited by A-gliadin 57-73 QE65. Two peptides that bind avidly to HLA-DQ2 are HLA class 1  $\alpha$  46-60 (HLA 1a) (PRAPWIEQEGPEYW (SEQ ID NO:15)) and thyroid peroxidase (tp) 632-645Y (IDVWLGGLLAENFLPY (SEQ ID NO:16)).

Simultaneous addition of peptide (50 $\mu$ g/ml) or buffer and A-gliadin 57-73 QE65 (10 $\mu$ g/ml) in IFNgamma ELISPOT using PBMC from coeliac volunteers 6 days after commencing 3 day gluten challenge (n=5). Results were expressed as response with peptide plus A-G 57-73 QE65 (mean of duplicates) as % response with buffer plus A-G 57-73 QE65 (mean of 20 replicates). (See Table 9).

Four single amino acid-substituted variants of A-gliadin 57-73 QE65 reduce the interferon gamma PBMC ELISPOT response to A-gliadin 57-73 QE65 ( $p<0.01$ ) by between 25% and 28%, 13 other peptide variants reduce the ELISPOT response by between 18% and 24% ( $p<0.06$ ). The HLA-DQ2 binder, thyroid peroxidase (tp) 632-645Y reduces PBMC interferon gamma responses to A-gliadin 57-73 QE65 by 31% ( $p<0.0001$ ) but the other HLA-DQ2 binder, HLA class 1  $\alpha$  46-60, does not alter responses (see Tables 9 and 10). The peptide corresponding to a transglutaminase-modified polymorphism of A-gliadin 57-73, SwissProt accession no.: P04725 82-98

QE90 (PQPQFPPELPYPQPQS (SEQ ID NO:17)) reduces responses to A-gliadin 57-73 QE65 by 19% (p<0.009) (see Table 11).

Interferon gamma responses of PBMC to A-gliadin 57-73 QE65 in ELISPOT assays are reduced by co-administration of certain single-amino acid A-gliadin 57-73 5 QE65 variants, a polymorphism of A-gliadin 57-73 QE65, and an unrelated peptide known to bind HLA-DQ2 in five-fold excess. These finding suggest that altered peptide ligand antagonists of A-gliadin 57-73 QE65 exist. Not only putative APL antagonists but also certain peptides that bind HLA-DQ2 effectively reduce PBL T cell responses to A-gliadin 57-73 QE65.

10 These findings support two strategies to interrupt the T cell response to the dominant A-gliadin epitope in HLA-DQ2+ coeliac disease.

1. Optimisation of APL antagonists by substituting amino acids at more than one position (64-67) for use as “traditional” peptide pharmaceuticals or for specific genetic modification of gliadin genes in wheat.
- 15 2. Use of high affinity HLA-DQ2 binding peptides to competitively inhibit presentation of A-gliadin 57-73 QE65 in association with HLA-DQ2.

20 These two approaches may be mutually compatible. Super-agonists were generated by replacing F61 and Q70 with tyrosine residues. It is likely these super-agonists resulted from improved binding to HLA-DQ2 rather than enhanced contact with the T cell receptor. By combining these modifications with other substitutions that generate modestly effective APL antagonists might substantially enhance the inhibitory effect of substituted A-gliadin 57-73 QE65 variants.

25 **Example 12**

*Development of interferon gamma ELISpot using PBMC and A-gliadin 57-73 QE65 and P04724 84-100 QE92 as a diagnostic for coeliac disease: Definition of immune-responsiveness in newly diagnosed coeliac disease*

30 Induction of responsiveness to the dominant A-gliadin T cell epitope in PBMC measured in the interferon gamma ELISpot follows gluten challenge in almost all DQ2+ coeliac subjects following a long term strict gluten free diet (GFD) but not in healthy DQ2+ subjects after 4 weeks following a strict GFD. A-gliadin

57-73 QE65 responses are not measurable in PBMC of coeliac subjects before gluten challenge and pilot data have suggested these responses could not be measured in PBMC of untreated coeliacs. These data suggest that in coeliac disease immune-responsiveness to A-gliadin 57-73 QE65 is restored following antigen exclusion (GFD). If a diagnostic test is to be developed using the ELISpot assay and PBMC, it is desirable to define the duration of GFD required before gluten challenge is capable of inducing responses to A-gliadin 57-73 QE65 and other immunoreactive gliadin peptides in blood.

10 Newly diagnosed DQ2+ coeliac subjects were recruited from the gastroenterology outpatient service. PBMC were prepared and tested in interferon gamma ELISpot assays before subjects commenced GFD, and at one or two weeks after commencing GFD. In addition, gluten challenge (3 days consuming 4 slices standard white bread, 200g/day) was performed at one or two weeks after starting GFD. PBMC were prepared and assayed on day six are after commencing gluten  
15 challenge. A-gliadin 57-73 QE65 (A), P04724 84-100 QE92 (B) (alone and combined) and A-gliadin 57-73 QP65 (P65) (non-bioactive variant, see above) (all 25 mcg/ml) were assessed.

20 All but one newly diagnosed coeliac patient was DQ2+ (one was DQ8+) (n=11). PBMC from newly diagnosed coeliacs that were untreated, or after 1 or 2 weeks following GFD did not show responses to A-gliadin 57-73 QE65 and P04724 84-100 QE92 (alone or combined) that were not significantly different from blank or A-gliadin 57-73 QP65 (n=9) (see Figure 28). Gluten challenge in coeliacs who had followed GFD for only one week did not substantially enhance responses to A-gliadin 57-73 QE65 or P04724 84-100 QE92 (alone or combined). But gluten  
25 challenge 2 weeks after commencing GFD did induce responses to A-gliadin 57-73 QE65 and P04724 84-100 QE92 (alone or combined) that were significantly greater than the non-bioactive variant A-gliadin 57-73 QP65 and blank. Although these responses after gluten challenge at 2 weeks were substantial they appear to be less than in subjects >2 months after commencing GFD. Responses to A-gliadin 57-73  
30 QE65 alone were equivalent or greater than responses to P04724 84-100 QE92 alone or when mixed with A-gliadin 57-73 QE65. None of the subjects experienced troubling symptoms with gluten challenge.

Immune responsiveness (as measured in PBMC after gluten challenge) to A-gliadin is partially restored 2 weeks after commencing GFD, implying that "immune unresponsiveness" to this dominant T cell epitope prevails in untreated coeliac disease and for at least one week after starting GFD. The optimal timing of a 5 diagnostic test for coeliac disease using gluten challenge and measurement of responses to A-gliadin 57-73 QE65 in the ELISpot assay is at least 2 weeks after commencing a GFD.

Interferon gamma-secreting T cells specific to A-gliadin 57-73 QE65 cannot be measured in the peripheral blood in untreated coeliacs, and can only be induced 10 by gluten challenge after at least 2 weeks GFD (antigen exclusion). Therefore, timing of a diagnostic test using this methodology is crucial and further studies are needed for its optimization. These finding are consistent with functional anergy of T cells specific for the dominant epitope, A-gliadin 57-73 QE65, reversed by antigen exclusion (GFD). This phenomenon has not been previously demonstrated in a 15 human disease, and supports the possibility that T cell anergy may be inducible with peptide therapy in coeliac disease.

### Example 13

#### *Comprehensive Mapping of Wheat Gliadin T Cell Epitopes*

20 Antigen challenge induces antigen-specific T cells in peripheral blood. In coeliac disease, gluten is the antigen that maintains this immune-mediated disease. Gluten challenge in coeliac disease being treated with a gluten free diet leads to the appearance of gluten-specific T cells in peripheral blood, so enabling determination of the molecular specificity of gluten T cell epitopes. As described above, we have 25 identified a single dominant T cell epitope in a model gluten protein, A-gliadin (57-73 deamidated at Q65). In this Example, gluten challenge in coeliac patients was used to test all potential 12 amino acid sequences in every known wheat gliadin protein derived from 111 entries in Genbank. In total, 652 20mer peptides were tested in HLA-DQ2 and HLA-DQ8 associated coeliac disease. Seven of the 9 30 coeliac subjects with the classical HLA-DQ2 complex (HLA-DQA1\*05, HLA-DQB1\*02) present in over 90% of coeliacs had an inducible A-gliadin 57-73 QE65- and gliadin-specific T cell response in peripheral blood. A-gliadin 57-73 was the

only significant  $\alpha$ -gliadin T cell epitope, as well as the most potent gliadin T cell epitope, in HLA-DQ2-associated coeliac disease. In addition, there were as many as 5 families of structurally related peptides that were between 10 and 70% as potent as A-gliadin 57-73 in the interferon- $\gamma$  ELISpot assay. These new T cell epitopes were 5 derived from  $\gamma$ - and  $\omega$ -gliadins and included common sequences that were structurally very similar, but not identical to the core sequence of A-gliadin 57-73 (core sequence: FPQPQLPYP (SEQ ID NO:18)), for example: FPQPQQPFP (SEQ ID NO:19) and PQQPQQPFP (SEQ ID NO:20). Although no homologues of A-gliadin 57-73 have been found in rye or barley, the other two cereals toxic in coeliac 10 disease, the newly defined T cell epitopes in  $\gamma$ - and  $\omega$ -gliadins have exact matches in rye and barley storage proteins (secalins and hordeins, respectively).

Coeliac disease not associated with HLA-DQ2 is almost always associated with HLA-DQ8. None of the seven HLA-DQ8+ coeliac subjects had inducible A-gliadin 57-73-specific T cell responses following gluten challenge, unless they also 15 possessed the complete HLA-DQ2 complex. Two of 4 HLA-DQ8+ coeliac subjects who did not possess the complete HLA-DQ2 complex, had inducible gliadin peptide-specific T cell responses following gluten challenge. In one HLA-DQ8 subject, a novel dominant T cell epitope was identified with the core sequence LQPQNPSQQQPQ (SEQ ID NO:21). The transglutaminase-deamidated version of 20 this peptide was more potent than the non-deamidated peptide. Previous studies suggest that the transglutaminase-deamidated peptide would have the sequence LQPENPSSEQPE (SEQ ID NO:22); but further studies are required to confirm this sequence. Amongst the healthy HLA-DQ2 (10) and HLA-DQ8 (1) subjects who followed a gluten free diet for a month, gliadin peptide-specific T cell responses 25 were uncommon, seldom changed with gluten challenge, and were never potent T cell epitopes revealed with gluten challenge in coeliac subjects. In conclusion, there are unlikely to be more than six important T cell epitopes in HLA-DQ2-associated coeliac disease, of which A-gliadin 57-73 is the most potent. HLA-DQ2- and HLA-DQ8-associated coeliac disease do not share the same T cell specificity.

30 We have shown that short-term gluten challenge of individuals with coeliac disease following a gluten free diet induces gliadin-specific T cells in peripheral blood. The frequency of these T cells is maximal in peripheral blood on day 6 and

then rapidly wanes over the following week. Peripheral blood gliadin-specific T cells express the integrin  $\alpha 4\beta 7$  that is associated with homing to the gut lamina propria. We exploited this human antigen-challenge design to map T cell epitopes relevant to coeliac disease in the archetypal gluten  $\alpha$ -gliadin protein, A-gliadin.

5 Using 15mer peptides overlapping by 10 amino acids with and without deamidation by transglutaminase (tTG), we demonstrated that T cells induced in peripheral blood initially target only one A-gliadin peptide, residues 57-73 in which glutamine at position 65 is deamidated. The epitope is HLA-DQ2-restricted, consistent with the intimate association of coeliac disease with HLA-DQ2.

10 Coeliac disease is reactivated by wheat, rye and barley exposure. The  $\alpha/\beta$ -gliadin fraction of wheat gluten is consistently toxic in coeliac disease, and most studies have focused on these proteins. The gene cluster coding for  $\alpha/\beta$ -gliadins is located on wheat chromosome 6C. There are no homologues of  $\alpha/\beta$ -gliadins in rye or barley. However, all three of the wheat gliadin subtypes ( $\alpha/\beta$ ,  $\gamma$ , and  $\omega$ ) are toxic 15 in coeliac disease. The  $\gamma$ - and  $\omega$ -gliadin genes are located on chromosome 1A in wheat, and are homologous to the secalins and hordeins in rye and barley.

15 There are now genes identified for 61  $\alpha$ -gliadins in wheat (*Triticum aestivum*). The  $\alpha$ -gliadin sequences are closely homologous, but the dominant epitope in A-gliadin derives from the most polymorphic region in the  $\alpha$ -gliadin 20 sequence. Anderson et al (1997) have estimated that there are a total of about 150 distinct  $\alpha$ -gliadin genes in *T. aestivum*, but many are pseudogenes. Hence, it is unlikely that T-cell epitopes relevant to coeliac disease are not included within known  $\alpha$ -gliadin sequences.

25 Our work has identified a group of deamidated  $\alpha$ -gliadin peptides almost identical to A-gliadin 57-73 as potent T cell epitopes specific to coeliac disease. Over 90% of coeliac patients are HLA-DQ2+, and so far, we have only assessed HLA-DQ2+ coeliac subjects after gluten challenge. However, coeliac patients who do not express HLA-DQ2 nearly all carry HLA-DQ8. Hence, it is critical to know 30 whether A-gliadin 57-73 and its homologues in other wheat, rye and barley gluten proteins are the only T-cell epitopes recognized by T cells induced by gluten challenge in both HLA-DQ2+ and HLA-DQ8+ coeliac disease. If this were the case, design of peptide therapeutics for coeliac disease might only require one peptide.

*Homologues of A-gliadin 57-73 as T-cell epitopes*

Initial searches of SwissProt and Trembl gene databases for cereal genes coding for the core sequence of A-gliadin 57-73 (PQLPY <SEQ ID NO:12>) only 5 revealed  $\alpha/\beta$ -gliadins. However, our fine-mapping studies of the A-gliadin 57-73 QE65 epitope revealed a limited number of permissive point substitutions in the core region (PQLP) (note Q65 is actually deamidated in the epitope). Hence, we extended our search to genes in SwissProt or Trembl databases encoding for peptides with the sequence XXXXXXXXPQ[ILMP][PST]XXXXXX (SEQ ID NO:23). Homologues 10 were identified amongst  $\gamma$ -gliadins, glutenins, hordeins and secalins (see Table 12). A further homologue was identified in  $\omega$ -gliadin by visual search of the three  $\omega$ -gliadin entries in Genbank.

These homologues of A-gliadin 57-73 were assessed after deamidation by tTG (or synthesis of the glutamate(QE)-substituted variant in four close homologues) 15 using the IFN $\gamma$  ELISpot assay with peripheral blood mononuclear cells after gluten challenge in coeliac subjects. The  $\omega$ -gliadin sequence (AAG17702 141-157) was the only bioactive peptide, approximately half as potent as A-gliadin 57-73 (see Table 12, and Figure 29). Hence, searches for homologues of the dominant A-gliadin epitope failed to account for the toxicity of  $\gamma$ -gliadin, secalins, and hordeins.

## 20 Methods

*Design of a set of peptides spanning all possible wheat gliadin T-cell epitopes*

In order to identify all possible T cell epitopes coded by the known wheat (Triticum aestivum) gliadin genes or gene fragments (61  $\alpha/\beta$ -, 47  $\gamma$ -, and 3  $\omega$ -gliadin 25 entries in Genbank), gene-derived protein sequences were aligned using the CustalW software (MegAlign) and arranged into phylogenetic groupings (see Table 22). Many entries represented truncations of longer sequences, and many gene segments were identical except for the length of polyglutamine repeats or rare substitutions. Hence, it was possible to rationalize all potential unique 12 amino acid sequences encoded by known wheat genes to be included in a set of 652 20mer peptides. 30 (Signal peptide sequences were not included). Peptide sequences are listed in Table 23.

*Comprehensive epitope mapping*

Healthy controls (HLA-DQ2+ n=10, and HLA-DQ8+ n=1) who had followed a gluten free diet for 4 weeks, and coeliac subjects (six HLA-DQ2, four complex heterozygotes HLA-DQ2/8, and three HLA-DQ8/X) (see Table 13) following long-term gluten free diet were studied before and on day 6 and 7 after 3-day gluten challenge (four 50g slices of standard white bread – Sainsbury's sandwich bread, each day). Peripheral blood (a total of 300ml over seven days) was collected and peripheral blood mononuclear cells (PBMC) were separated by Lymphoprep density gradient. PBMC were incubated with pools of 6 or 8 20mer peptides, or single peptides with or without deamidation by tTG in overnight interferon gamma (IFN $\gamma$ )

10 ELISpot assays.

Peptides were synthesized in batches of 96 as Pepsets (Mimotopes Inc., Melbourne Australia). Approximately 0.6 micromole of each of 652 20mers was provided. Two marker 20mer peptides were included in each set of 96 (VLQQHNIAHGSSQVLQUESTY – peptide 161 (SEQ ID NO:24), and

15 IKDFHVYFRESRDALWKPGP (SEQ ID NO:25)) and were characterized by reverse phase-HPLC and amino acid sequence analysis. Average purities of these marker peptides were 50% and 19%, respectively. Peptides were initially dissolved in acetonitrile (10%) and Hepes 100mM to 10mg/ml.

The final concentration of individual peptides in pools (or alone) incubated

20 with PBMC for the IFN $\gamma$  ELISpot assays was 20  $\mu$ g/ml. Five-times concentrated solutions of peptides and pools in PBS with calcium chloride 1mM were aliquotted and stored in 96-well plates according to the template later used in ELISpot assays. Deamidated peptides and pools of peptides were prepared by incubation with guinea pig tissue tTG (Sigma T5398) in the ratio 100:32  $\mu$ g/ml for two hours at 37°C.

25 Peptides solutions were stored at –20°C and freshly thawed prior to use.

Gliadin (Sigma G3375) (100 mg/ml) in endotoxin-free water and 2M urea was boiled for 10 minutes, cooled to room temperature and incubated with filter (0.2  $\mu$ m)-sterilised pepsin (Sigma P6887) (2 mg/ml) in HCl 0.02M or chymotrypsin (C3142) (4mg/ml) in ammonium bicarbonate (0.2M). After incubation for 4 hours,

30 pepsin-digested gliadin was neutralized with sodium hydroxide, and then both pepsin- and chymotrypsin-digested gliadin were boiled for 15 minutes. Identical incubations with protease in which gliadin was omitted were also performed.

Samples were centrifuged at 15 000g, then protein concentrations were estimated in supernatants by the BCA method (Pierce, USA). Before final use in IFN $\gamma$  ELISpot assays, aliquots of gliadin-protease were incubated with tTG in the ratio 2500:64  $\mu$ g/ml.

5 IFN $\gamma$  ELISpot assays (Mabtech, Sweden) were performed in 96-well plates (MAIP S-45, Millipore) in which each well contained 25 $\mu$ l of peptide solution and 100 $\mu$ l of PBMC (2-8x10<sup>5</sup>/well) in RPMI containing 10% heat inactivated human AB serum. Deamidated peptide pools were assessed in one 96-well ELISpot plate, and peptides pools without deamidation in a second plate (with an identical layout) on 10 both day 0 and day 6. All wells in the plate containing deamidated peptides included tTG (64  $\mu$ g/ml). In each ELISpot plate there were 83 wells with peptide pools (one unique pool in each well), and a series of wells for “control” peptides (peptides all >90% purity, characterized by MS and HPLC, Research Genetics): P04722 77-93 (QLQPFPQPQLPYPQPQP (SEQ ID NO:26)), P04722 77-93 QE85 (in duplicate) 15 (QLQPFPQPELPYPQPQP (SEQ ID NO:27)), P02863 77-93 (QLQPFPQPQLPYSQPQP (SEQ ID NO:28)), P02863 77-93 QE85 (QLQPFPQPELPYSQPQP (SEQ ID NO:29)), and chymotrypsin-digested gliadin (500  $\mu$ g/ml), pepsin-digested gliadin (500  $\mu$ g/ml), chymotrypsin (20  $\mu$ g/ml) alone, pepsin (10  $\mu$ g/ml) alone, and blank (PBS+/-tTG) (in triplicate).

20 After development and drying, IFN $\gamma$  ELISpot plates were assessed using the MAIP automated ELISpot plate counter. In HLA-DQ2 healthy and coeliac subjects, induction of spot forming cells (sfc) by peptide pools in the IFN $\gamma$  ELISpot assay was tested using a one-tailed Wilcoxon Matched-Pairs Signed-Ranks test (using SPSS software) applied to spot forming cells (sfc) per million PBMC minus blank on day 6 25 versus day 0 (“net response”). Significant induction of an IFN $\gamma$  response to peptide pools in PBMC by *in vivo* gluten challenge was defined as a median “net response” of at least 10 sfc/million PBMC and p<0.05 level of significance. Significant response to a particular pool of peptides on day 6 was followed by assessment of individual peptides within each pool using PBMC drawn the same day or on day 7.

30 For IFN $\gamma$  ELISpot assays of individual peptides, bioactivity was expressed as a percent of response to P04722 77-93 QE85 assessed in the same ELISpot plate. Median response to blank (PBS alone) was 0.2 (range 0-5) sfc per well, and the

positive control (P04722 77-93 QE85) 76.5 (range: 25-282) sfc per well using a median of 0.36 million (range: 0.3-0.72) PBMC. Hence, median response to blank expressed as a percentage of P04722 77-93 QE65 was 0.2% (range: 0-6.7).

Individual peptides with mean bioactivity greater than 10% that of P04722 QE85

5 were analyzed for common structural motifs.

## Results

### *Healthy HLA-DQ2 subjects*

None of the healthy HLA-DQ2+ subjects following a gluten free diet for a month had IFN $\gamma$  ELISpot responses to homologues of A-gliadin 57-73 before or after 10 gluten challenge. However, in 9/10 healthy subjects, gluten challenge was associated with a significant increase in IFN $\gamma$  responses to both peptic- and chymotryptic-digests of gliadin, from a median of 0-4 sfc/million on day 0 to a median of 16-29 sfc/million (see Table 14). Gliadin responses in healthy subjects were unaffected by deamidation (see Table 15). Amongst healthy subjects, there was no consistent 15 induction of IFN $\gamma$  responses to specific gliadin peptide pools with gluten challenge (see Figure 30, and Table 16). IFN $\gamma$  ELISpot responses were occasionally found, but these were weak, and not altered by deamidation. Many of the strongest responses to pools were also present on day 0 (see Table 17, subjects H2, H8 and H9). Four healthy subjects did show definite responses to pool 50, and the two with strongest 20 responses on day 6 also had responses on day 0. In both subjects, the post-challenge responses to pool 50 responses were due to peptide 390 (QQTYPQRPQQPFPQTQQPQQ (SEQ ID NO:30)).

### *HLA-DQ2 coeliac subjects*

Following gluten challenge in HLA-DQ2+ coeliac subjects, median IFN $\gamma$  25 ELISpot responses to P04722 77-93 E85 rose from a median of 0 to 133 sfc/million (see Table 4). One of the six coeliac subjects (C06) did not respond to P04722 77-93 QE85 (2 sfc/million) and had only weak responses to gliadin peptide pools (maximum: Pool 50+tTG 27 sfc/million). Consistent with earlier work, bioactivity of wild-type P04722 increased 6.5 times with deamidation by tTG (see Table 15). 30 Interferon-gamma responses to gliadin-digests were present at baseline, but were substantially increased by gluten challenge from a median of 20 up to 92 sfc/million for chymotryptic-gliadin, and from 44 up to 176 sfc/million for peptide-gliadin.

Deamidation of gliadin increased bioactivity by a median of 3.2 times for chymotryptic-gliadin and 1.9 times for peptic-gliadin (see Table 15). (Note that the acidity required for digestion by pepsin is likely to result in partial deamidation of gliadin.)

5 In contrast to healthy subjects, gluten challenge induced IFN $\gamma$  ELISpot responses to 22 of the 83 tTG-treated pools including peptides from  $\alpha$ -,  $\gamma$ - and  $\omega$ -gliadins (see Figure 31, and Table 17). Bioactivity of pools was highly consistent between subjects (see Table 18). IFN $\gamma$  ELISpot responses elicited by peptide pools were almost always increased by deamidation (see Table 17). But enhancement of 10 bioactivity of pools by deamidation was not as marked as for P04722 77-73 Q85, even for pools including homologues of A-gliadin 57-73. This suggests that Pepset peptides were partially deamidated during synthesis or in preparation, for example the Pepset peptides are delivered as salts of trifluoracetic acid (TFA) after lyophilisation from a TFA solution.

15 One hundred and seventy individual tTG-deamidated peptides from 21 of the most bioactive pools were separately assessed. Seventy-two deamidated peptides were greater than 10% as bioactive as P04722 77-93 QE85 at an equivalent concentration (20  $\mu$ g/ml) (see Table 19). The five most potent peptides (85-94% bioactivity of P04722 QE85) were previously identified  $\alpha$ -gliadin homologues A-gliadin 57-73. Fifty of the bioactive peptides were not homologues of A-gliadin 57-73, but could be divided into six families of structurally related sequences (see Table 20). The most bioactive sequence of each of the peptide families were:

20 PQQPQQPQQPFPPQQPFPW (SEQ ID NO:31) (peptide 626, median 72% bioactivity of P04722 QE85), QQPQQPFPPQQPQLPFPQQ (SEQ ID NO:32) (343, 34%), QAFPQPQQTFPHQPQQQFPQ (SEQ ID NO:33) (355, 27%),  
25 TQQPQQPFPPQQPQPFPQTQ (SEQ ID NO:34) (396, 23%),  
PIQPQQPFPPQQPQQPFP (SEQ ID NO:35) (625, 22%),  
PQQSFSYQQQPFPQQPYPQQ (SEQ ID NO:36) (618, 18%) (core sequences are underlined). All of these sequences include glutamine residues predicted to be 30 susceptible to deamidation by transglutaminase (e.g. QXP, QXPF (SEQ ID NO:37), QXX[FY] (SEQ ID NO:38)) (see Vader et al 2002). Some bioactive peptides contain two core sequences from different families.

Consistent with the possibility that different T-cell populations respond to peptides with distinct core sequences, bioactivity of peptides from different families appear to be additive. For example, median bioactivity of tTG-treated Pool 81 was 141% of P04722 QE85, while bioactivity of individual peptides was in rank order: 5 Peptide 631 (homologue of A-gliadin 57-73) 61%, 636 (homologue of 626) 51%, and 635 19%, 629 16%, and 634 13% (all homologues of 396).

Although likely to be an oversimplification, the contribution of each “peptide family” to the summed IFN $\gamma$  ELISpot response to gliadin peptides was compared in the HLA-DQ2+ coeliac subjects (see Figure 32). Accordingly, the contribution of 10 P04722 77-73 E85 to the summed response to gliadin peptides is between 1/5 and 2/3.

Using the peptide homology search programme, WWW PepPepSearch, which can be accessed through the world wide web of the internet at, for example, “cbrg.inf.ethz.ch/subsection3\_1\_5.html.”, and by direct comparison with Genbank 15 sequences for rye secalins, exact matches were found for the core sequences QQFPFPQPQQPFP (SEQ ID NO:39) in barley hordeins (HOR8) and rye secalins (A23277, CAA26449, AAG35598), QQFPFPQPQQPFP (SEQ ID NO:40) in barley hordeins (HOG1 and HOR8), and for PIQPQQPFPQQP (SEQ ID NO:41) also in barley hordeins (HOR8).

20

#### *HLA-DQ8-associated coeliac disease*

Seven HLA-DQ8+ coeliac subjects were studied before and after gluten challenge. Five of these HLA-DQ8+ (HLA-DQA0\*0301-3, HLA-DQB0\*0302) subjects also carried one or both of the coeliac disease-associated HLA-DQ2 25 complex (DQA0\*05, DQB0\*02). Two of the three subjects with both coeliac-associated HLA-DQ complexes had potent responses to gliadin peptide pools (and individual peptides including P04722 77-93 E85) that were qualitatively and quantitatively identical to HLA-DQ2 coeliac subjects (see Figures 33 and 34, and Table 18). Deamidated peptide pool 74 was bioactive in both HLA-DQ2/8 subjects, 30 but only in one of the 6 HLA-DQ2/X subjects. Pretreatment of pool 74 with tTG enhances bioactivity between 3.8 and 22-times, and bioactivity of tTG-treated pool 74 in the three responders is equivalent to between 78% and 350% the bioactivity of

P04722 77-93 E85. Currently, it is not known which peptides are bioactive in Pool 74 in subject C02, C07, and C08.

Two of the four HLA-DQ8 coeliac subjects that lacked both or one of the HLA-DQ2 alleles associated with coeliac disease showed very weak IFN $\gamma$  ELISpot responses to gliadin peptide pools, but the other two did respond to both protease-digested gliadin and specific peptide pools. Subject C12 (HLA-DQ7/8) responded vigorously to deamidated Pools 1-3 (see Figure 35). Assessment of individual peptides in these pools identified a series of closely related bioactive peptides including the core sequence LQPQNPSQQQPQ (SEQ ID NO:42) (see Table 20).  
10 Previous work (by us) has demonstrated that three glutamine residues in this sequence are susceptible to tTG-mediated deamidation (underlined). Homology searches using WWW PepPepSearch have identified close matches to LQPQNPSQQQPQ (SEQ ID NO:43) only in wheat  $\alpha$ -gliadins.

The fourth HLA-DQ8 subject (C11) had inducible IFN $\gamma$  ELISpot responses to tTG-treated Pool 33 (see Figure 36). Pools 32 and 33 include polymorphisms of a previously defined HLA-DQ8 restricted gliadin epitope (QQYPSGQGSFQPSQQNPQ (SEQ ID NO:44)) active after deamidation by tTG (underlined Gln are deamidated and convey bioactivity) (van der Wal et al 1998). Currently, it is not known which peptides are bioactive in Pool 33 in subject C11.

20 Comprehensive T cell epitope mapping in HLA-DQ2-associated coeliac disease using in vivo gluten challenge and a set of 652 peptides spanning all known 12 amino acid sequences in wheat gliadin has thus identified at least 72 peptides at 10% as bioactive as the known  $\alpha$ -gliadin epitope, A-gliadin 57-73 E65. However, these bioactive peptides can be reduced to a set of perhaps as few as 5 distinct but 25 closely related families of peptides. Almost all these peptides are rich in proline, glutamine, phenylalanine, and/or tyrosine and include the sequence PQ(QL)P(FY)P (SEQ ID NO:45). This sequence facilitates deamidation of Q in position 2 by tTG. By analogy with deamidation of A-gliadin 57-68 (Arentz-Hansen 2000), the enhanced bioactivity of these peptides generally found with deamidation by tTG may 30 be due to increased affinity of binding for HLA-DQ2.

Cross-reactivity amongst T cells in vivo recognizing more than one of these bioactive gliadin peptides is possible. However, if each set of related peptides does

activate a distinct T cell population in vivo, the epitope corresponding to A-gliadin 57-73 E65 is the most potent and is generally recognized by at least 40% of the peripheral blood T cells that secrete IFN $\gamma$  in response to gliadin after gluten challenge.

5. No gliadin-peptide specific responses were found in HLA-DQ2/8 coeliac disease that differed qualitatively from those in HLA-DQ2/X-associated coeliac disease. However, peripheral blood T cells in HLA-DQ8+ coeliac subjects without both HLA-DQ2 alleles did not recognize A-gliadin 57-73 E65 homologues. Two different epitopes were dominant in two HLA-DQ8+ coeliacs. The dominant epitope 10 in one of these HLA-DQ8+ individuals has not been identified previously (LQPQNPSQQQPQ (SEQ ID NO:46)).

Given the teaching herein, design of an immunotherapy for coeliac disease utilizing all the commonly recognised T cell epitopes is practical and may include fewer than six distinct peptides. Epitopes in wheat  $\gamma$ - and  $\omega$ -gliadins are also present 15 in barley hordeins and rye secalins.

#### Example 14

Several ELISpot assays were performed as previously described and yielded the following results and/or conclusions:

20 *Examination of multiple  $\alpha$ -gliadin polymorphisms with PQLPY*

Potent agonists of A-gliadin 57-73QE (G01) include QLQPFPQPELPYPQPQPS (G01), PQL-Y-----P (G10), and PQPQPFL----- (G12). Less potent include -----L---P (G04), -----R-----P (G05), and -----S---P (G06). Less potent yet 25 include -----L-----S---P (G07), -----S-----S---P (G08), -----S--S---P (G09), and PQPQPFP----- (G13). Dashes indicate identity with the G01 sequence in the particular position.

30 *Gluten challenge induces A-gliadin 57-73 QE65 T cells only after two weeks of gluten-free diet in newly diagnosed coeliac disease*

Additional analyses indicated that tTG-deamidated gliadin responses change after two weeks of gluten-free diet in newly diagnosed coeliac disease. Other

analyses indicated that deamidated gliadin-specific T cells are CD4<sup>+</sup>α<sub>4</sub>β<sub>7</sub><sup>+</sup> HLA-DQ2 restricted.

*Optimal epitope (clones versus gluten challenge)*

5 A “dominant” epitope is defined by γIFN ELISpot after gluten challenge. QLQPFPQPELPYYPQPQPS (100% ELISpot response). Epitopes defined by intestinal T cell clones: QLQPFPQPELPY (27%), PQPELPYYPQPELPY (52%), and QQLPQPEQPQQSFPEQERPF (9%).

10

*Dominance among individual peptide responses*

15 Dominance depends on wheat or rye. For wheat, dominant peptides include peptide numbers 89, 90 and 91 (referring to sequence numbers in Table 23). For rye, dominant peptides include peptide numbers 368, 369, 370, 371, and 372 (referring to sequence numbers in Table 23). Some peptides, including 635 and 636 (referring to sequence numbers in Table 23) showed activity in both rye and wheat.

20 *In vivo gluten challenge allows T cell epitope hierarchy to be defined for coeliac disease*

The epitope hierarchy is consistent among HLA-DQ2<sup>+</sup> coeliacs but different for HLA-DQ8<sup>+</sup> coeliacs. The hierarchy depends on what cereal is consumed. Deamidation generates almost all gliadin epitopes. HLA-DQ2, DQ8, and DR4 present deamidated peptides. HLA-DQ2/8-associated coeliac disease preferentially 25 present DQ2-associated gliadin epitopes. Gliadin epitopes are sufficiently restricted to justify development of epitope-based therapeutics.

Other analyses indicated the following: HLA-DR3-DQ2 (85-95%) and HLA-DR4-DQ8 (5-15%).

Other analyses indicated the following:

| 30 | HLA-DQ | HLA-DQA1 | HLA-DQB1 | Duodenal histology | Gluten free | EMA on gluten (on GFD) |
|----|--------|----------|----------|--------------------|-------------|------------------------|
|    | allele | allele   |          |                    |             |                        |

|     |     |              |              |               |      |       |        |
|-----|-----|--------------|--------------|---------------|------|-------|--------|
| C01 | 2,6 | 102/6, 501   | 201, 602     | SVA           | 1 yr | +(-)  |        |
| C02 | 2,2 | 501          | 201          | SVA           | 1 yr | +(-)  |        |
| C03 | 2,5 | 101/4/5, 501 | 201, 501     | PVA           | 1 yr | +(-)  |        |
| C04 | 2,5 | 101/4/5, 501 | 201, 501     | SVA           | 7 yr | +(-)  |        |
| 5   | C05 | 2,2          | 201, 501     | 201, 202      | SVA  | 4 mo  | + (ND) |
|     | C06 | 2,2          | 201, 501     | 201, 202      | SVA  | 2 yr  | +(-)   |
|     | C07 | 2,8          | 301-3, 501   | 201, 302      | SVA  | 1 yr  | +(-)   |
|     | C08 | 2,8          | 301-3, 501   | 201, 302/8    | SVA  | 11 yr | ND (-) |
|     | C09 | 2,8          | 301-3, 501   | 201, 302      | SVA  | 29 yr | +(-)   |
| 10  | C10 | 2,8          | 201, 301-3   | 202, 302      | IEL  | 1 yr  | +(-)   |
|     | C11 | 6,8          | 102/6, 301-3 | 602/15, 302/8 | IEL  | 9 mo  | - (ND) |
|     | C12 | 8,7          | 301-3, 505   | 302, 301/9-10 | SVA  | 2 yr  | - (-)  |
|     | C13 | 8,8          | 301          | 302           | SVA  | 1 yr  | + (+)  |

15 Another analysis was carried out to determine the bioactivity of individual tTG-deamidated peptides in pools 1-3 in subject C12. The results are as follows (sequence numbers refer to the peptides listed in Table 23): Sequence 8 (100%), Sequence 5 (85%), Sequence 6 (82%), Sequence 3 (77%), Sequence 1 (67%), Sequence 2 (59%), Sequence 9 (49%), Sequence 7 (49%), Sequence 10 (33%), Sequence 4 (15%), Sequence 12 (8%), Sequence 11 (0%), Sequence 23 (26%), Sequence 14 (18%), Sequence 15 (18%), Sequence 17 (18%), Sequence 16 (13%), Sequence 14 (8%), Sequence 22 (5%), Sequence 18 (3%), Sequence 19 (3%), Sequence 20 (0%), Sequence 21 (0%). The predicted deamidated sequence is LQPENPSSEQPE.

25

*Individual ELISpot responses by PBMC (Spot forming cells determined by ELISpot Reader)*

|    | Peptide (see Table 23) | C01 | C02 | C03 | C04 | C05 |
|----|------------------------|-----|-----|-----|-----|-----|
|    | 65                     | 16  | 2   | 1   | 2   | 3   |
| 30 | 66                     | 32  | 6   | 13  | 0   | 6   |
|    | 67                     | 16  | 3   | 4   | 0   | 4   |
|    | 68                     | 25  | 8   | 4   | 2   | 2   |

|       |     |    |    |    |    |
|-------|-----|----|----|----|----|
| 69    | 4   | 0  | 0  | 0  | 0  |
| 70    | 2   | 1  | 0  | 0  | 0  |
| 71    | 1   | 1  | 0  | 0  | 1  |
| 72    | 0   | 0  | 0  | 0  | 0  |
| 5 73  | 95  | 21 | 42 | 31 | 31 |
| 74    | 122 | 15 | 29 | 21 | 28 |
| 75    | 5   | 1  | 2  | 2  | 5  |
| 76    | 108 | 13 | 28 | 16 | 22 |
| 77    | 3   | 0  | 1  | 0  | 1  |
| 10 78 | 21  | 2  | 3  | 5  | 3  |
| 79    | 20  | 0  | 2  | 0  | 2  |
| 80    | 5   | 2  | 0  | 0  | 3  |
| 81    | 4   | 1  | 2  | 3  | 1  |
| 82    | 3   | 3  | 5  | 2  | 2  |
| 15 83 | 14  | 2  | 0  | 0  | 1  |
| 84    | 3   | 0  | 0  | 0  | 0  |
| 85    | 14  | 1  | 2  | 1  | 2  |
| 86    | 11  | 0  | 2  | 0  | 2  |

20 *Cross-reactivity*

To deal with data from 652 peptides in 29 subjects, or to determine when a particular response is a true positive peptide-specific T-cell response, or to determine when a response to a peptide is due to cross-reactivity with another structurally related peptide, expression of a particular peptide response can be as a percentage of a "dominant" peptide response. Alternately, the expression can be a "relatedness" as correlation coefficients between peptide responses, or via bioinformatics.

*Additional epitopes*

30 A representative result is as follows:

Combination of peptides with P04722E (all 20mcg/ml) (n=4)

| Alone | P04722E+ |
|-------|----------|
|-------|----------|

69

|         |     |     |
|---------|-----|-----|
| Pep 626 | 60  | 135 |
| P04722E | 100 | 110 |
| HLAa    | 0   | 85  |

(expressed as percent P04722E)

5 626+tT: PQQPQQPQQPFPQPQQPFPW  
 P04724E: QLQPFPQPPELPYPQPQL

TTG-deamidation of peptide 626 (n=12)

10 No tTG = 100%

TTG = 170%

*Substitution at particular positions*

Substitution of Peptide 626 PQQP[Q1]QP[Q2]QPFPQP[Q3]QPFPW(n=12)

| 15 |  | Glu | Arg |
|----|--|-----|-----|
| Q1 |  | 95  | 90  |
| Q2 |  | 145 | 80  |
| Q3 |  | 155 | 10  |

(expressed as percent wild-type peptide)

20

Bioactivity of tTG-treated 15mers spanning Peptide 626/627

(PQQPQQPQQPFPQPQQPFPWQP) (n=8)

|    |       |    |
|----|-------|----|
|    | P1-15 | 5  |
|    | P2-16 | 4  |
| 25 | P3-17 | 3  |
|    | P4-18 | 38 |
|    | P5-19 | 65 |
|    | P6-20 | 95 |
|    | P7-21 | 65 |
| 30 | P8-22 | 90 |

(expressed as percent of maximal 15mer response)

*Multiple epitopes:*

P04724E: QLQPFPPQQLPYPQPQL

626+tTG: PQQPQQPQQPFPQPQQPFPW

Minimal epitope: QPQQPFPQPQQPFPW

5 Immunomagnetic depletion of PBMC by beads coated with anti-CD4 and by anti-integrin  $\beta_7$  depleted IFN $\gamma$  ELISpot responses, while immunomagnetic depletion of PBMC by beads coated with anti-CD8 or anti-alphaE integrin. Thus, the PBMC secreting IFN $\gamma$  are CD4+ and  $\alpha_4\beta_7+$ , associated with homing to the lamina propria in the gut.

10 Blocked by anti-DQ antibody but not by anti-DR antibody in heterozygotes and homozygotes for HLA-DQ2. This may imply multiple epitopes within one sequence.

*T cell epitopes in coeliac disease*

15 Other investigators have characterized certain intestinal T cell clone epitopes. See, e.g., Vader et al., Gastroenterology 2002, 122:1729-37; Arentz-Hansen et al., Gastroenterology 2002, 123:803-809. These are examples of epitopes whose relevance is at best unclear because of the in vitro techniques used to clone T cells.

20 Intestinal versus peripheral blood clones

Intestinal: 1) intestinal biopsies, 2) T cell clones raised against peptic-tryptic digest of gluten, 3) all HLA-DQ2 restricted, 4) clones respond to gliadin deamidated by transglutaminase.

25 Peripheral blood: 1) T cell clones raised against gluten are HLA-DR, DQ and DP restricted. Result: Intestinal T cell clones can be exclusively used to map coeliac disease associated epitopes

30 GDA\_9Wheat 307 aa Definition Alpha/Beta-Gliadin MM1 Precursor (Prolamin) Accession P18573 -- Genbank (which is incorporated herein by reference in its entirety)

*Intestinal T cell clone epitopes*

A definition of intestinal T cell clone epitopes can be found in, for example, Arentz-Hansen et al., J Exp Med. 2000, 191:603-12. Also disclosed therein are gliadin epitopes for intestinal T cell clones. Deamidated QLQPFPQPQLPY is an epitope, with a deamidated sequence of QLQPFPQPQLPY. There is an HLA-DQ2 restriction. A homology search shows other bioactive rAlpha-gliadins include PQPQLPY singly or duplicated. A majority of T cell clones respond to either/or DQ2- $\alpha$ I: QLQPFPQPQLPY DQ2- $\alpha$ II: PQPELPYPQPQLPY

*Dominant gliadin T cell epitopes*

10 All deamidated by transglutaminase.  
 Peripheral blood day 6 after gluten challenge: A-gliadin 57-73:  
 QLQPFPQPQLPY PYPQPQS  
 Intestinal T cell clones: DQ2- $\alpha$ I: QLQPFPQPQLPY DQ2- $\alpha$ II: PQPELPYPQPQLPY

15 *Intestinal T-cell Clone Epitope Mapping*

|                    |                    |                          |
|--------------------|--------------------|--------------------------|
| $\alpha$ -Gliadins | A1                 | PFPQPQLPY                |
|                    | A2                 | PQPQLPYPQ                |
|                    | A3                 | PYPQPQLPY                |
|                    | Glia-20            | PQQPYPPQPQ               |
| 20                 | $\Gamma$ -Gliadins | G1 PQQSFPQQQ             |
|                    |                    | G2 IIPQQPAQ              |
|                    |                    | G3 FPQQPQQPYPPQQP        |
|                    |                    | G4 FSQPQQQFPQPQ          |
|                    |                    | G5 LQPQQPFPQQPQQPYPPQQPQ |
| 25                 |                    | Glu-21 QSEQSQQPFPQQF     |
|                    |                    | Glu-5 Q(IL)PQQPQQF       |
|                    | Glutenin           | Glt-156 PFSQQQQSPF       |
|                    |                    | Glt-17 PFSQQQQQ          |

*Gluten exposure and induction of IFN $\gamma$ -secreting A-Gliadin 57-73QE65-specific T cells in peripheral blood*

Untreated coeliac disease, followed by gluten free diet for 1, 2, or 8 weeks, followed by gluten exposure (3 days bread 200g/day), followed by gluten free diet

5           Result 1: Duration of gluten free diet and IFN $\gamma$  ELISpot responses on day 0 and day 6 of gluten challenge: A-gliadin 57-73 QE65 (results expressed as IFN $\gamma$  specific spots/million PPBMC)

Day 0: none (5), 1 week (1), 2 weeks (2), 8 weeks (1)

Day 6: none (0), 1 week (4), 2 weeks (28), 8 weeks (48)

10           Result 2: Duration of gluten free diet and IFN $\gamma$  ELISpot responses on day 0 and day 6 of gluten challenge: tTG-gliadin (results expressed as IFN $\gamma$  specific spots/million PPBMC)

Day 0: none (45), 1 week (62), 2 weeks (5), 8 weeks (5)

Day 6: none (0), 1 week (67), 2 weeks (40), 8 weeks (60)

15           Result 3: Duration of gluten free diet and IFN $\gamma$  ELISpot responses on day 0 and day 6 of gluten challenge: A-gliadin 57-73 P65 (results expressed as IFN $\gamma$  specific spots/million PPBMC)

Day 0: none (1), 1 week (2), 2 weeks (1), 8 weeks (1)

Day 6: none (0), 1 week (0), 2 weeks (0), 8 weeks (0)

20           Result 4: Duration of gluten free diet and IFN $\gamma$  ELISpot responses on day 0 and day 6 of gluten challenge: PPD (results expressed as IFN $\gamma$  specific spots/million PPBMC)

Day 0: none (90), 1 week (88), 2 weeks (210), 8 weeks (150)

Day 6: none (0), 1 week (100), 2 weeks (210), 8 weeks (100)

25           Result 5: Duration of gluten free diet and IFN $\gamma$  ELISpot responses on day 0 and day 6 of gluten challenge: tTG (results expressed as IFN $\gamma$  specific spots/million PPBMC)

Day 0: none (5), 1 week (4), 2 weeks (3), 8 weeks (2)

Day 6: none (0), 1 week (4), 2 weeks (1), 8 weeks (2)

Characterization of anti-gliadin T cell response was carried out in peripheral blood on day 6-8 after 3-day gluten challenge.

Result 1: PBMC Day 6 Long-term gluten free diet (preincubation with anti-HLA-DR and -DQ antibody) (expressed as % inhibition)

5 DR-: tTG-gliadin 100 mcg/ml (105), A-gliadin 57-73 QE65 50 mcg/ml (90),  
PPD 5 mcg/ml (30)

DQ-: tTG-gliadin 100 mcg/ml (5), A-gliadin 57-73 QE65 50 mcg/ml (22),  
PPD 5 mcg/ml (78).

Result 2: PBMC Day 6 Long-term gluten free diet (expressed as % CD8-depleted PBMC response)

B7 depletion: tTG-gliadin n=6 (7), A-gliadin 57-73 n=9 (6), PPD n=8 (62)

AE depletion: tTG-gliadin n=6 (120), A-gliadin 57-73 n=9 (80), PPD n=8 (110).

CD4 depletion: tTG-gliadin n=6 (10), A-gliadin 57-73 n=9 (9), PPD n=8 (10).

*Therapeutic peptides include, but are not limited to*

QLQPFPQPQLPYPQPQS (AG01)

QLQPFPQPQLPYPQPQP (AG02)

20 QLQPFPQPQLPYPQPQL (AG03)

QLQPFPQPQLPYLQPQP (AG04)

QLQPFPRPQLPYPQPQP (AG05)

QLQPFPQPQLPYSQPQP (AG06)

QLQPFLQPQLPYSQPQP (AG07)

25 QLQPFSQPQLPYSQPQP (AG08)

QLQPFPQPQLSYSQPQP (AG09)

PQLPYPPQQLPYPQPQP (AG10)

PQLPYPPQQLPYPQPQL (AG11)

PQPQPFLPQLPYPQPQS (AG12)

30 PQPQPFPQLPYPQPQS (AG13)

PQPQPFPQLPYPQYQP (AG14)

PQPQPFPQLPYPQPPP (AG015)

Briefly after oral antigen challenge, specificities of peripheral blood T cells reflect those of intestinal T cell clones. In peripheral blood, epitopes of intestinal T cell clones are sub-optimal compared to A-gliadin 57-73 QE65, which is an optimal  $\alpha$ -gliadin epitope.

### Example 15

ELISpot assays were also carried out for mapping purposes as follows.

#### *Fine-mapping the dominant DQ<sub>8</sub> associated epitope*

|    | Sequence / sfc           | tTG-treated sequence / sfc                   |
|----|--------------------------|----------------------------------------------|
| 10 | VPQLQPQNPSQQPQEJV / 76   | RWPVPQLQPQNPSQQ / 60<br>WPVPQLQPQNPSQQQ / 90 |
|    | VPQLQPENPSQQPQEJV / 3    | PVPQLQPQNPSQQQP / 130                        |
|    | VPQLQPRNPSQQPQEJV / 76   | VPQLQPQNPSQQQPQ / 140                        |
| 15 |                          | PQLQPQNPSQQQPQE / 59                         |
|    | VPQLQPQNPSQEQPQEJV / 100 | QLQPQNPSQQQPQEJV / 95                        |
|    | VPQLQPQNPSQRQPQEJV / 1   | LQPQNPSQQQPQEJV / 30<br>QPQNPSQQQPQEJV / 4   |
|    | VPQLQPQNPSQQPSEEJV / 71  |                                              |
| 20 | VPQLQPQNPSQQPREQV / 27   | DQ8 Gliadin Epitope<br>GDA09 202Q / 6        |
|    | VPQLQPQNPSQEQPSEEJV / 81 | GDA09 202E / 83                              |
|    | VPQLQPENPSQQPSEEJV / 2   | GDA09 202Q+tTG / 17                          |
|    | VPQLQPENPSQEQPQEJV / 6   | BI + tTG / 0                                 |
| 25 | VPQLQPENPSQEQPSEEJV / 5  | BI / 0                                       |

#### *Fine-mapping dominant epitope (2)*

Pool 33 (deamidated) / sfc

|    |                                       |
|----|---------------------------------------|
|    | A2b3 301 qqyp sgqg ffqp sqqn pqaq / 2 |
| 30 | A2b5 301 qqyp sgqg ffqp fqqn pqaq / 1 |
|    | A3a1 301 qqyp sgqg ffqp sqqn pqaq / 0 |
|    | A3b1 301 qqyp ssqv sfqp sqln pqaq / 0 |

A3b2 301 qqyp ssqg sfqp sqqn pqaq / 2

A4a 301 eqyp sgqv sfqs sqqn pqaq / 28

A1b1 309 sfrp sqqn plaq gsvq pqql / 2

A1a1 309 sfrp sqqn pqaq gsvq pqql / 2

5

**Example 16**

*Bioactivity of gliadin epitopes in IFN $\gamma$ -ELISpot (25 mcg/ml, n=6) (expressed as % A-gliadin 57-73 QE65 response)*

DQ2-AII: wild type (WT) (4), WT + tTG (52), Glu-substituted (52)

10 DQ2-AI: wild type (WT) (2), WT + tTG (22), Glu-substituted (28)

GDA09: wild type (WT) (1), WT + tTG (7), Glu-substituted (8)

A-G31-49: wild type (WT) (2), WT + tTG (3), Glu-substituted (0)

*Dose response of A-Gliadin 57-73 QE65 (G01E) (n=8) (expressed as %G01E maximal response)*

0.025 mcg/ml (1), 0.05 mcg/ml (8), 0.1 mcg/ml (10), 0.25 mcg/ml (22), 0.5 mcg/ml (38), 1 mcg/ml (43), 2.5 mcg/ml (52), 5 mcg/ml (70), 10 mcg/ml (81), 25 mcg/ml (95), 50 mcg/ml (90), 100 mcg/ml (85).

IFN $\gamma$  ELISpot response to gliadin epitopes alone or mixed with A-gliadin 57-75 (G01E) (all 50 mcg/ml, tTG-gliadin 100 mcg/ml, PPD 5 mcg/ml; n=9) (expressed as % G01E response)

Alone: DQ2-A1 (20), DQ2-A2 (55), Omega G1 (50), tTG Gliadin (80), PPD (220), DQ2 binder (0)

25 G01E+: DQ2-A1 (90), DQ2-A2 (95), Omega G1 (100), tTG Gliadin (120), PPD (280), DQ2 binder (80)

*Effect of alanine and lysine substitution of A-gliadin 57-73 QE65 on IFN $\gamma$  ELISpot responses in individual coeliac subjects (n=8)*

Epitope sequence: QLQPFPQPELPYPQPQPS

30 Alanine substitution at positions 57-59 and 72-73 showed little to no decrease in % A-gliadin 57-73 QE65 response. Alanine substitution at positions 60-62 and 68-71 showed moderate decrease in % A-gliadin 57-73 QE65 response.

Alanine substitution at positions 63-67 showed most decrease in % A-gliadin 57-73 QE65 response.

Effect of lysine substitution of A-gliadin 57-73 QE65 on IFN $\gamma$  ELISpot responses in individual coeliac subjects (n=8);

5 Epitope sequence: QLQPPFPQPELPYPQPQSQ

Lysine substitution at positions 57-59 and 71-73 showed little to no decrease in % A-gliadin 57-73 QE65 response. Lysine substitution at positions 60-61 and 69-70 showed moderate decrease in % A-gliadin 57-73 QE65 response. Lysine substitution at positions 62-68 showed most decrease in % A-gliadin 57-73 QE65

10 response.

### Example 17

Table 24 shows the results of analyses examining the 652 peptides with several patients challenged with wheat or rye.

15

### References

1. Molberg O, et al. Nature Med. 4, 713-717 (1998).
2. Quarsten H, et al. Eur. J. Immunol. 29, 2506-2514 (1999).
- 20 3. Greenberg CS et al. FASEB 5, 3071-3077 (1991).
4. Mantzaris G, Jewell D. Scand. J. Gastroenterol. 26, 392-398 (1991).
5. Mauri L, et al. Scand. J. Gastroenterol. 31, 247-253 (1996).
6. Bunce M, et al. Tissue Antigens 46, 355-367 (1995).
7. Olerup O, et al. Tissue antigens 41, 119-134 (1993).
- 25 8. Mullighan CG, et al. Tissue-Antigens. 50, 688-92 (1997).
9. Plebanski M et al. Eur. J. Immunol. 28, 4345-4355 (1998).
10. Anderson DO, Greene FC. The alpha-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet (1997) 95:59-65.
- 30 11. Arentz-Hansen H, Korner R, Molberg O, Quarsten H, Van der Wal Y, Kooy YMC, Lundin KEA, Koning F, Roepstorff P, Sollid LM, McAdam SN. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a

single deamidated glutamine targeted by tissue transglutaminase. *J Exp Med.* 2000; 191:603-12.

12. Vader LW, de Ru A, van der Wal, Kooy YMC, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P, Koning F. Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. *J Exp Med.* 2002; 195:643-649.

13. van der Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Papadopoulos G, Koning F. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. *J Immunol.* 1998; 161:1585-8.

14. van der Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Molberg O, Lundin KEA, Sollid L, Mutis T, Benckhuijsen WE, Drijfhout JW, Koning F. *Proc Natl Acad Sci USA* 1998; 95:10050-10054.

15. 15. Vader W, Kooy Y, Van Veelen P et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. *Gastroenterology* 2002, 122:1729-37

20 16. Arentz-Hansen H, McAdam SN, Molberg O, et al. Celiac lesion T cells recognize epitopes that cluster in regions of gliadin rich in proline residues. *Gastroenterology* 2002, 123:803-809.

25 Each of the PCT publications, U.S. patents, other patents, journal references, and any other publications cited or referred to herein is incorporated herein by reference in their entirety.

**Table 1. A-Gliadin protein sequence (based on amino acid sequencing)**

5 VRVPVPQLQP QNPSQQQPQE QVPLVQQQF PGQQQQFPPQ QPYPPQPPFP SQQPYLQLQP FPQPQLPYQP  
 1 11 21 31 41 51 61  
 PQSFPPQQPY PQPQPQYSQP QQPISQQQAQ QQQQQQQQQQ QQQILQQILQ QQLIPCMDVV LQQHNIAHAR  
 71 81 91 101 111 121 131  
 SQVLQQSTYQ LLQELCCQHL WQIPEQSQCQ AIHNVVHAI LHQQQKQQQQ PSSQVSFQQP LQQYP LGQGS  
 10 141 151 161 171 181 191 201  
 FRPSQQNPQA QGSVQPQQLP QFEEIRNLAL QTLPAMCNVY IAPYCTIAPF GIFTGN  
 211 221 231 241 251 261

**Table 2. Coeliac disease subjects studied**

|   | Age<br>Sex | Gluten<br>free diet | HLA-DQ2      | Bread<br>challenge | Symptoms<br>with bread                            |
|---|------------|---------------------|--------------|--------------------|---------------------------------------------------|
| 1 | 64 f       | 14 yr               | Homozygote   | 3 days             | Abdominal pain, lethargy, mouth ulcers, diarrhoea |
| 2 | 57 m       | 1 yr                | Heterozygote | 10 days            | Lethargy, nausea                                  |
| 3 | 35 f       | 7 yr                | Heterozygote | 3 days             | Nausea                                            |
| 4 | 36 m       | 6 wk                | Homozygote   | 3 days             | Abdominal pain, mouth ulcers, diarrhoea           |
| 5 | 26 m       | 19 yr               | Heterozygote | 3 days             | None                                              |
| 6 | 58 m       | 35 yr               | Heterozygote | 3 days             | None                                              |
| 7 | 55 m       | 1 yr                | Heterozygote | 3 days             | Diarrhoea                                         |
| 8 | 48 f       | 15 yr               | Homozygote   | 3 days             | Abdominal pain, diarrhoea                         |

| Aminoacid at position 65 | Range   | Mean |
|--------------------------|---------|------|
| Glutamate                | (100)   | 100% |
| Asparagine               | (50-84) | 70%  |
| Aspartate                | (50-94) | 65%  |
| Alanine                  | (44-76) | 64%  |
| Cysteine                 | (45-83) | 62%  |
| Serine                   | (45-75) | 62%  |
| Valine                   | (24-79) | 56%  |
| Threonine                | (46-66) | 55%  |
| Glycine                  | (34-47) | 40%  |
| Leucine                  | (8-46)  | 33%  |
| Glutamine                | (16-21) | 19%  |
| Isoleucine               | (3-25)  | 14%  |
| Methionine               | (3-32)  | 14%  |
| Phenylalanine            | (0-33)  | 12%  |
| Histidine                | (0-13)  | 8%   |
| Tyrosine                 | (0-17)  | 8%   |
| Tryptophan               | (0-17)  | 8%   |
| Lysine                   | (0-11)  | 4%   |
| Proline                  | (0-4)   | 2%   |
| Arginine                 | (0-2)   | 1%   |

Table 3

| pt response<br>'G<br>'TG | Peptide sequence    | Corresponding residues in gliadin protein sequences (Accession no.)    |
|--------------------------|---------------------|------------------------------------------------------------------------|
| 13)<br>100 (100)         | QLQPFPQPQLPYPPQPS   | 57-73 α-Gliadin ( <i>T. aestivum</i> ) Q41545                          |
| 7)<br>53 (44-67)         | QLQPFPQPPELPYPPQPS  | 57-73 α-Gliadin ( <i>T. aestivum</i> ) Q41545                          |
|                          | QLQPFPQPQLPYSQPQP   | 77-93 α/β-Gliadin precursor ( <i>Tricetum. aestivum</i> ) P02863       |
|                          |                     | 76-92 α-Gliadin ( <i>T. aestivum</i> ) Q41528                          |
|                          |                     | 77-93 α-Gliadin storage protein ( <i>T. aestivum</i> ) Q41531          |
|                          |                     | 57-73 α-Gliadin mature peptide ( <i>T. aestivum</i> ) Q41533           |
|                          |                     | 77-93 α-Gliadin precursor ( <i>T. spelta</i> ) Q9ZP09                  |
| -20)<br>83 (61-113)      | QLQPFPQPQLPYPPQPS   | 77-93 α/β-Gliadin A-II precursor ( <i>T. aestivum</i> ) P0472          |
| -33)<br>83 (74-97)       | QLQPFPQPQLPYPPQQL   | 77-93 α/β-Gliadin A-IV precursor ( <i>T. aestivum</i> ) P04724         |
|                          |                     | 77-93 α/β-Gliadin MM1 precursor ( <i>T. aestivum</i> ) P18573          |
| 7)<br>109 (41-152)       | PQLPYPPQPQLPYPPQPS  | 84-100 α/β-Gliadin A-IV precursor ( <i>T. aestivum</i> ) P04724        |
|                          | PQLPYPPQPQLPYPPQQL  | 84-100 α/β-Gliadin MM1 precursor ( <i>T. aestivum</i> ) P18573         |
| 1)<br>3 (0-7)            | QLQPFLQPQLPYSQPQP   | 77-93 α/β-Gliadin A-I precursor ( <i>T. aestivum</i> ) P04721          |
|                          |                     | 77-93 α-Gliadin ( <i>T. aestivum</i> ) Q41509                          |
| 1)<br>2 (0-7)            | QLQPFSQPQLPYSQPQP   | 77-93 α-Gliadin storage protein ( <i>T. aestivum</i> ) Q41530          |
|                          | PQPQPFPPQPQLPYPTQPS | 77-93 α/β-Gliadin A-III precursor ( <i>T. aestivum</i> ) P04723        |
| -40)<br>24 (11-43)       | PQPQPFPPQPQLPYPPQPS | 82-98 α/β-Gliadin A-V precursor ( <i>T. aestivum</i> ) P04725          |
| -30)<br>19 (11-33)       | PQPQPFPPQPQLPYPPQPP | 82-98 α/β-Gliadin clone PW1215 precursor ( <i>T. aestivum</i> ) P04726 |
|                          |                     | 82-98 α/β-Gliadin ( <i>T. urartu</i> ) Q41632                          |
| -30)<br>21 (11-33)       | PQPQPFPLQPQLPYPPQPS | 79-95 α/β-Gliadin clone PW8142 precursor ( <i>T. aestivum</i> ) P04726 |
|                          |                     | 79-95 α-Gliadin ( <i>T. aestivum</i> ) Q41529                          |
|                          |                     | 79-95 α/β-Gliadin precursor ( <i>T. aestivum</i> ) Q41546              |

Table 4

able 5. T cell epitopes described in coeliac disease

| ource        | Restriction | Frequency     | Sequence*           |
|--------------|-------------|---------------|---------------------|
| mma -gliadin | DQ2         | 3/NS (iTCC)   | QLPQPEQPQQSFPEQERPF |
| pha-gliadin  | DQ2         | 12/17 (iTCL)  | QLQFPQPELPY         |
| pha-gliadin  | DQ2         | 11/17 (iTCL)  | PQPELPYPQPELPY      |
| pha-gliadin  | DQ2         | 1/23 (bTCC)   | LGQQQPFPPQQPYQPQPF  |
| pha-gliadin  | DQ8         | 3/NS (iTCC)   | QQYPSGEGSFQPSQENPQ  |
| utenin       | DQ8         | 1/1 (iTCC)    | GQQGYYPTSPQQSGQ     |
| pha-gliadin  | DQ2         | 11/12 in vivo | QLQFPQPELPYPQPQPS   |

\* not stated in original publication, iTCC intestinal T cell clone, iTCL intestinal polyclonal T cell line, bTCC peripheral blood cell clone

ll peptides are the products of transglutaminase modifying wild type gluten peptides except the fourth and sixth peptides

ible 6. Relative bioactivity of gliadin T cell epitopes in coeliac PBMC after gluten challenge

| quence*            | ELISpot response as % A-gliadin 57-73 QE65 (all 25mcg/ml) | Wild type | Wildtype+tTG | E-substituted |
|--------------------|-----------------------------------------------------------|-----------|--------------|---------------|
| LPQPEQPQQSFPEQERPF | 9 (3)                                                     | 18 (7)    | 10 (5)       |               |
| QFPQPELPY          | 6 (2)                                                     | 19 (1)    | 8 (3)        |               |
| PELPYPQPELPY       | 13 (6)                                                    | 53 (8)    | 48 (9)       |               |
| YPSGEGSFQPSQENPQ   | 10 (3)                                                    | 9 (3)     | 14 (8)       |               |
| QFPQPELPYPQPQS     | 18 (7)                                                    | 87 (7)    | 100          |               |
| LPYPQPELPYPQPQPS   | 14 (4)                                                    | 80 (17)   | 69 (20)      |               |

quence refers that of transglutaminase (tTG) modified peptide and the T cell epitope. Wild type is the unmodified gliadin tide. Data from 4 subjects. Blank was 5 (1) %.

**Table 7. Polymorphisms of A-gliadin 57-73****A. Sequences derived from Nordic autumn wheat strain Mjoelner**

| Alpha-gliadin protein (single letter code refers to Fig. 14 peptides) | Polymorphism                   |
|-----------------------------------------------------------------------|--------------------------------|
| Q41545 A-gliadin (from sequenced protein) 57-73 (A)                   | QLQPFPQPQLPYPQPQS              |
| Gli alpha 1,6: (EMBL: AJ133605 & AJ133602 58-74) (J)                  | QPQPFP <del>PP</del> QLPYPQTQP |
| Gli alpha 3,4,5: (EMBL: AJ133606, AJ133607, AJ133608 57-73) (I)       | QLQPFPQPQL <del>S</del> QPQP   |
| Gli alpha 7: (EMBL: AJ133604 57-73) (E)                               | QLQPFP <del>R</del> QLPYPQPQP  |
| Gli alpha 8, 9, 11: (EMBL: ) (F)                                      | QLQPFPQPQL <del>S</del> QPQP   |
| Gli alpha 10: (EMBL: AJ133610 57-73) (D)                              | QLQPFPQPQL <del>P</del> QPQS   |

**5 B. SWISSPROT and TREMBL scan (10.12.99) for gliadins containing the sequence: XXXXXXXX~~P~~QLPYPXXXX**

| Wheat (Triticum aestivum unless stated) gliadin accession number | Polymorphism      |
|------------------------------------------------------------------|-------------------|
| Q41545 A-gliadin (from sequenced protein) 57-73 (A)              | QLQPFPQPQLPYPQPQS |
| SWISSPROT:                                                       |                   |
| GDA0_WHEAT P02863 77-93 (F)                                      | QLQPFPQPQLPYSQPQP |
| GDA1_WHEAT P04721 77-93 (G)                                      | QLQPFLQPQLPYSQPQP |
| GDA2_WHEAT P04722 77-93 (B)                                      | QLQPFPQPQLPYPQPQP |
| GDA3_WHEAT P04723 77-93 (O)                                      | PQPQPFPQLPYPQTQP  |
| GDA4_WHEAT P04724 77-93 (C)                                      | QLQPFPQPQLPYPQPQL |
| GDA4_WHEAT P04724 84-100 (K)                                     | PQLPYPQPQLPYPQPQP |
| GDA5_WHEAT P04725 82-98 (N)                                      | PQPQPFPQLPYPQPQS  |
| GDA6_WHEAT P04726 82-98 (P)                                      | PQPQPFPQLPYPQPPP  |
| GDA7_WHEAT P04727 79-95 (M)                                      | PQPQPFLPQLPYPQPQS |
| GDA9_WHEAT P18573 77-93 (C)                                      | QLQPFPQPQLPYPQPQL |
| GDA9_WHEAT P18573 84-100 (L)                                     | PQLPYPQPQLPYPQPQL |
| GDA9_WHEAT P18573 91-107 (K)                                     | PQLPYPQPQLPYPQPQP |
| TREMBL                                                           |                   |
| Q41509 ALPHA-GLIADIN 77-93 (G)                                   | QLQPFLQPQLPYSQPQP |
| Q41528 ALPHA-GLIADIN 76-92 (F)                                   | QLQPFPQPQLPYSQPQP |
| Q41529 ALPHA-GLIADIN 79-95 (M)                                   | PQPQPFLPQLPYPQPQS |
| Q41530 ALPHA-GLIADIN 77-93 (H)                                   | QLQPFSQPQLPYSQPQP |
| Q41531 ALPHA-GLIADIN 77-93 (F)                                   | QLQPFPQPQLPYSQPQP |
| Q41533 ALPHA-GLIADIN 57-73 (F)                                   | QLQPFPQPQLPYSQPQP |
| Q41546 ALPHA/BETA-GLIADIN 79-95 (M)                              | PQPQPFLPQLPYPQPQS |
| Q41632 ALPHA/BETA-TYPE GLIADIN. Triticum urartu 82-98 (P)        | PQPQPFPQLPYPQPPP  |
| Q9ZP09 ALPHA-GLIADIN Triticum spelta 77-93 (F)                   | QLQPFPQPQLPYSQPQP |

Table 8. Bioactivity of substituted variants of A-gliadin 57-73 QE65 (Subst) compared to unmodified A-gliadin 57-73 QE65 (G) (mean 100%, 95% CI 97-104) and blank (no peptide, bl) (mean 7.1%, 95% CI: 5.7-8.5)

| Subst            | %   | P vs G  | Subst | %  | P vs G  | Subst | %  | P vs G  | Subst | %  | P vs G  | P vs bl      |
|------------------|-----|---------|-------|----|---------|-------|----|---------|-------|----|---------|--------------|
| Super-agonists   |     |         |       |    |         |       |    |         |       |    |         |              |
| Y61              | 129 | <0.0001 | V63   | 71 | 0.001   | H62   | 47 | <0.0001 | N66   | 24 | <0.0001 |              |
|                  |     | 1       |       |    |         | G69   | 47 | <0.0001 | R64   | 24 | <0.0001 |              |
| Y70              | 129 | 0.0006  | S69   | 70 | <0.0001 | N63   | 47 | <0.0001 | K63   | 23 | <0.0001 |              |
| Agonists         |     |         |       |    |         |       |    |         |       |    |         |              |
| W70              | 119 | 0.017   | F63   | 70 | 0.008   | M68   | 46 | <0.0001 | H66   | 23 | <0.0001 |              |
| K57              | 118 | 0.02    | P70   | 69 | <0.0001 | D68   | 46 | <0.0001 | H67   | 22 | <0.0001 |              |
| Y59              | 117 | 0.04    | T62   | 69 | <0.0001 | V69   | 46 | <0.0001 | L64   | 22 | <0.0001 |              |
| A57              | 116 | 0.046   | L61   | 69 | <0.0001 | G63   | 45 | <0.0001 | S66   | 22 | <0.0001 |              |
| S70              | 116 | 0.045   | S61   | 69 | <0.0001 | V64   | 45 | <0.0001 | F67   | 21 | <0.0001 |              |
| K58              | 114 | 0.08    | T61   | 69 | <0.0001 | E61   | 45 | <0.0001 | W66   | 21 | <0.0001 |              |
| W59              | 110 | 0.21    | T63   | 69 | <0.0001 | A69   | 43 | <0.0001 | G64   | 21 | <0.0001 |              |
| A73              | 109 | 0.24    | M66   | 68 | <0.0001 | R62   | 42 | <0.0001 | G65   | 21 | <0.0001 |              |
| I59              | 108 | 0.37    | T69   | 67 | <0.0001 | G68   | 42 | <0.0001 | D64   | 21 | <0.0001 |              |
| G59              | 108 | 0.34    | K60   | 66 | <0.0001 | A64   | 42 | <0.0001 | I65   | 21 | <0.0001 |              |
| A58              | 108 | 0.35    | S62   | 66 | <0.0001 | C65   | 42 | <0.0001 | M64   | 20 | <0.0001 | <0.0001      |
| W60              | 105 | 0.62    | M61   | 66 | <0.0001 | N67   | 41 | <0.0001 | G67   | 19 | <0.0001 | <0.0001      |
| A59              | 104 | 0.61    | P61   | 65 | <0.0001 | W63   | 41 | <0.0001 | T65   | 19 | <0.0001 | 0.003        |
| K72              | 104 | 0.65    | M62   | 64 | <0.0001 | F69   | 41 | <0.0001 | A66   | 19 | <0.0001 | <0.0001      |
| S59              | 103 | 0.76    | Q61   | 64 | <0.0001 | N68   | 40 | <0.0001 | I64   | 19 | <0.0001 | 0.0003       |
| K73              | 102 | 0.8     | G61   | 64 | <0.0001 | V66   | 40 | <0.0001 | R63   | 19 | <0.0001 | <0.0001      |
| A70              | 102 | 0.81    | A63   | 64 | <0.0001 | H69   | 40 | <0.0001 | W67   | 19 | <0.0001 | <0.0001      |
| Y60              | 101 | 0.96    | L62   | 60 | <0.0001 | M69   | 40 | <0.0001 | K68   | 18 | <0.0001 | <0.0001      |
| A72              | 100 | 0.94    | I68   | 60 | <0.0001 | R69   | 40 | <0.0001 | H64   | 18 | <0.0001 | <0.0001      |
| S63              | 98  | 0.67    | S67   | 59 | <0.0001 | W69   | 40 | <0.0001 | W64   | 18 | <0.0001 | 0.0001       |
| K59              | 96  | 0.46    | N61   | 59 | <0.0001 | Q69   | 39 | <0.0001 | Q65   | 18 | <0.0001 | 0.0002       |
| I60              | 96  | 0.5     | I69   | 59 | <0.0001 | L67   | 38 | <0.0001 | F64   | 16 | <0.0001 | 0.0008       |
| G70              | 95  | 0.41    | V61   | 58 | <0.0001 | K69   | 38 | <0.0001 | L65   | 16 | <0.0001 | 0.022        |
| D65              | 95  | 0.44    | D61   | 58 | <0.0001 | K62   | 38 | <0.0001 | N64   | 16 | <0.0001 | <0.0001      |
| E70              | 93  | 0.27    | E60   | 57 | <0.0001 | E67   | 37 | <0.0001 | F65   | 16 | <0.0001 | 0.12         |
| I63              | 92  | 0.19    | A61   | 57 | <0.0001 | L69   | 37 | <0.0001 | Q67   | 15 | <0.0001 | 0.0012       |
| S60              | 92  | 0.23    | Q62   | 56 | <0.0001 | S64   | 36 | <0.0001 | M65   | 14 | <0.0001 | 0.015        |
| P59              | 88  | 0.08    | F68   | 56 | <0.0001 | G62   | 36 | <0.0001 | D66   | 14 | <0.0001 | 0.013        |
| M63              | 87  | 0.03    | N65   | 56 | <0.0001 | E69   | 36 | <0.0001 | R67   | 14 | <0.0001 | 0.002        |
| K71              | 85  | 0.047   | A62   | 56 | <0.0001 | E68   | 36 | <0.0001 |       |    |         | Non-agonists |
| V62              | 84  | 0.04    | A68   | 53 | <0.0001 | V67   | 35 | <0.0001 | P63   | 13 | <0.0001 | 0.012        |
| I70              | 84  | 0.04    | P66   | 53 | <0.0001 | D62   | 35 | <0.0001 | E64   | 12 | <0.0001 | 0.053        |
| I61              | 83  | 0.01    | R61   | 53 | <0.0001 | R68   | 34 | <0.0001 | W65   | 11 | <0.0001 | 0.24         |
| V68              | 82  | 0.0045  | S68   | 53 | <0.0001 | Q66   | 34 | <0.0001 | Q64   | 11 | <0.0001 | 0.15         |
| E59              | 81  | 0.01    | Y63   | 52 | <0.0001 | A67   | 33 | <0.0001 | G66   | 11 | <0.0001 | 0.07         |
| Partial agonists |     |         |       |    |         |       |    |         |       |    |         |              |
| W61              | 79  | 0.002   | E63   | 51 | <0.0001 | F66   | 31 | <0.0001 | Y67   | 10 | <0.0001 | 0.13         |
| A60              | 78  | 0.002   | T64   | 51 | <0.0001 | E62   | 31 | <0.0001 | E66   | 10 | <0.0001 | 0.17         |
| Y62              | 78  | 0.006   | T67   | 51 | <0.0001 | D69   | 31 | <0.0001 | K66   | 10 | <0.0001 | 0.21         |
| G60              | 77  | 0.003   | Y69   | 50 | <0.0001 | D67   | 30 | <0.0001 | R66   | 10 | <0.0001 | 0.23         |
| A71              | 77  | 0.003   | D63   | 50 | <0.0001 | M67   | 29 | <0.0001 | K67   | 10 | <0.0001 | 0.11         |
| W62              | 76  | 0.0009  | A65   | 49 | <0.0001 | Y66   | 28 | <0.0001 | P65   | 8  | <0.0001 | 0.57         |
| Q60              | 76  | 0.001   | K61   | 49 | <0.0001 | I67   | 28 | <0.0001 | K64   | 8  | <0.0001 | 0.82         |
| L63              | 74  | 0.0002  | I66   | 49 | <0.0001 | H65   | 26 | <0.0001 | K65   | 8  | <0.0001 | 0.63         |
| I62              | 74  | 0.0005  | T68   | 48 | <0.0001 | P68   | 26 | <0.0001 | Y65   | 7  | <0.0001 | 0.9          |
| K70              | 74  | 0.001   | S65   | 48 | <0.0001 | Y64   | 25 | <0.0001 |       |    |         |              |
| H61              | 72  | <0.0001 | L68   | 48 | <0.0001 | EK65  | 25 | <0.0001 |       |    |         |              |
| W68              | 72  | <0.0001 | Q68   | 48 | <0.0001 | T66   | 25 | <0.0001 |       |    |         |              |

5 Table 9. Antagonism of A-gliadin 57-73 QE65 interferon gamma ELISPOT response by substituted variants of A-gliadin 57-73 QE65 (Subst) (P is significance level in unpaired t-test). Agonist activity (% agonist) of peptides compared to A-gliadin 57-73 QE65 is also shown.

| Subst                 | % Inhibit. | P      | % agonist. | Subst | % Inhibit. | P    | % agonist. |
|-----------------------|------------|--------|------------|-------|------------|------|------------|
|                       |            |        |            |       |            |      |            |
| Antagonists           |            |        | 65R        | 13    | 0.18       |      |            |
| 65T                   | 28         | 0.004  | 19         | 65M   | 13         | 0.16 | 14         |
| 67M                   | 27         | 0.0052 | 29         | 68P   | 13         | 0.16 | 26         |
| 64W                   | 26         | 0.007  | 18         | 63R   | 13         | 0.19 | 19         |
| 67W                   | 25         | 0.0088 | 19         | 66G   | 12         | 0.19 | 11         |
| Potential antagonists |            |        |            | 65Q   | 12         | 0.2  | 18         |
| 67I                   | 24         | 0.013  | 10         | 65Y   | 12         | 0.22 | 7          |
| 67Y                   | 24         | 0.013  | 21         | 66S   | 12         | 0.22 | 22         |
| 64G                   | 21         | 0.03   | 21         | 67F   | 11         | 0.25 | 21         |
| 64D                   | 21         | 0.029  | 16         | 66R   | 10         | 0.29 | 10         |
| 65L                   | 20         | 0.046  | 26         | 67K   | 10         | 0.29 | 10         |
| 66N                   | 20         | 0.037  | 24         | 64F   | 10         | 0.29 | 16         |
| 65H                   | 20         | 0.038  | 16         | 65F   | 9          | 0.41 | 16         |
| 64N                   | 19         | 0.05   | 16         | 63P   | 8          | 0.42 | 13         |
| 64Y                   | 19         | 0.06   | 25         | 65EK  | 8          | 0.39 | 25         |
| 66Y                   | 19         | 0.048  | 28         | 64Q   | 7          | 0.49 | 11         |
| 64E                   | 19         | 0.049  | 12         | 64I   | 5          | 0.6  | 21         |
| 67A                   | 18         | 0.058  | 30         | 68K   | 5          | 0.56 | 19         |
| 67H                   | 18         | 0.052  | 22         | 67Q   | 5          | 0.61 | 18         |
| Non-antagonists       |            |        |            | 65G   | 5          | 0.62 | 15         |
| 65V                   | 17         | 0.07   | 23         | 64M   | 4          | 0.7  | 20         |
| 65I                   | 17         | 0.086  | 21         | 66H   | 4          | 0.66 | 23         |
| 66T                   | 17         | 0.069  | 25         | 66E   | 3          | 0.76 | 10         |
| 65W                   | 15         | 0.11   | 11         | 66D   | 1          | 0.9  | 14         |
| 67R                   | 15         | 0.13   | 14         | 63K   | 1          | 0.88 | 23         |
| 65P                   | 15         | 0.13   | 8          | 64H   | 1          | 0.93 | 18         |
| 65K                   | 15         | 0.11   | 8          | 66K   | 0          | 0.98 | 10         |
| 66W                   | 15         | 0.12   | 21         | 64K   | -2         | 0.88 | 8          |
| 67G                   | 14         | 0.14   | 19         | 64L   | -11        | 0.26 | 22         |
| 66A                   | 14         | 0.14   | 19         |       |            |      |            |

Table 10. Inhibition of A-gliadin 57-73 QE65 interferon gamma ELISPOT response by peptides known to bind HLA-DQ2 (P is significance level in unpaired t-test).

20

| Peptide | % Inhibit. | P       |
|---------|------------|---------|
| TP      | 31         | <0.0001 |
| HLA1a   | 0          | 0.95    |

Table 11. Antagonism of A-gliadin 57-73 QE65 interferon gamma ELISpot response by naturally occurring polymorphisms of A-gliadin 57-73 QE65 (P is significance level in unpaired t-test).

| A-gliadin 57-73 QE65 polymorphism |                                                                                                                                                 | % Inhibit. | P     |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| P04725 82-98 QE90                 | <u>P</u> <u>O</u> <u>P</u> <u>Q</u> <u>F</u> <u>P</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>P</u> <u>Q</u> <u>P</u> <u>Q</u> <u>S</u> | 19         | 0.009 |
| Q41509 77-93 QE85                 | QLQPF <u>L</u> <u>Q</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>S</u> <u>Q</u> <u>P</u> <u>Q</u> <u>P</u>                               | 11         | 0.15  |
| Gli $\alpha$ 1,6 58-74 QE66       | <u>Q</u> <u>P</u> <u>Q</u> <u>P</u> <u>F</u> <u>P</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>P</u> <u>Q</u> <u>T</u> <u>Q</u> <u>P</u> | 11         | 0.11  |
| P04723 77-93 QE85                 | <u>P</u> <u>O</u> <u>P</u> <u>Q</u> <u>F</u> <u>P</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>P</u> <u>Q</u> <u>T</u> <u>Q</u> <u>P</u> | 10         | 0.14  |
| Gli $\alpha$ 3-5 57-73 QE65       | QLQPF <u>P</u> <u>Q</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>S</u> <u>Q</u> <u>P</u> <u>Q</u> <u>P</u>                               | 7          | 0.34  |
| P02863 77-93 QE85                 | QLQPF <u>P</u> <u>Q</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>S</u> <u>Q</u> <u>P</u> <u>Q</u> <u>P</u>                               | 6          | 0.35  |
| Q41509 77-93 QE85                 | QLQPF <u>L</u> <u>Q</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>S</u> <u>Q</u> <u>P</u> <u>Q</u> <u>P</u>                               | 6          | 0.41  |
| P04727 79-95 QE65                 | <u>P</u> <u>O</u> <u>P</u> <u>Q</u> <u>F</u> <u>L</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>P</u> <u>Q</u> <u>P</u> <u>Q</u> <u>S</u> | 6          | 0.39  |
| P04726 82-98 QE90                 | <u>P</u> <u>O</u> <u>P</u> <u>Q</u> <u>F</u> <u>P</u> <u>P</u> <u>E</u> <u>L</u> <u>P</u> <u>Y</u> <u>P</u> <u>Q</u> <u>P</u> <u>P</u> <u>P</u> | 5          | 0.43  |

Table 12. Prolamin homologues of A-gliadin 57-73 (excluding alpha/beta-gliadins)

| Prolamin                  | Accession number   | Sequence                 | % Bioactivity* |
|---------------------------|--------------------|--------------------------|----------------|
| Wheat: $\alpha$ -gliadin  | A-gliadin (57-73)  | QLQPFPQPQLPYPQPQS        | 100 (0)        |
| Wheat: $\omega$ -gliadin  | AAG17702 (141-157) | PQ.....F.....QSE         | 32 (6.4)       |
| Barley: C-hordein         | Q40055 (166-182)   | ...QPFPL.....F.....Q     | 2.3 (2.0)      |
| Wheat $\gamma$ -gliadin   | P21292 (96-112)    | ...QTFPQ.....F.....QPQ   | 2.1 (4.2)      |
| Rye: secalin              | Q43639 (335-351)   | ...QPSPQ.....F.....Q     | 1.6 (1.4)      |
| Barley: $\gamma$ -hordein | P80198 (52-68)     | ...QPFPQ.....HQHQFP      | -1.0 (1.8)     |
| Wheat: LMW glutenin       | P16315 (67-83)     | LQ...QPIL.....FS...Q...Q | -0.9 (1.0)     |
| Wheat: HMW glutenin       | P08489 (718-734)   | HGYYPTS.....SGQQQRP      | 6.4 (4.0)      |
| Wheat $\gamma$ -gliadin   | P04730 (120-136)   | ...QCCQQL.....I...QQSRYQ | 0.7 (0.9)      |
| Wheat: LMW glutenin       | P10386 (183-199)   | ...QCCQQL.....I...QQSRYE | -0.7 (0.5)     |
| Wheat: LMW glutenin       | O49958 (214-230)   | ...QCCRQL.....I...EQSRYD | -1.1 (0.3)     |
| Barley: B1-hordein        | P06470 (176-192)   | ...QCCQQL.....I...EQFRHE | 1.8 (1.4)      |
| Barley: B-hordein         | Q40026 (176-192)   | ...QCCQQL.....ISEQFRHE   | 0.5 (0.9)      |

\*Bioactivity is expressed as 100x(spot forming cells with peptide 25mcg/ml plus tTG 8mcg/ml minus blank)/(spot forming cells with A-gliadin 57-73 25mcg/ml plus tTG 8mcg/ml minus blank) (mean (SEM), n=5).

Peptides were preincubated with tTG for 2h 37°C. Note, Q is deamidated in A-gliadin 57-73 by tTG.

Table 13. Clinical details of coeliac subjects.

|     | HLA-DQ | HLA-DQA1<br>alleles | HLA-DQB1<br>alleles | Duodenal<br>histology | Gluten free | EMA on gluten<br>(on GFD) |
|-----|--------|---------------------|---------------------|-----------------------|-------------|---------------------------|
| C01 | 2, 6   | 102/6, 501          | 201, 602            | SVA                   | 1 yr        | + (-)                     |
| C02 | 2, 2   | 501                 | 201                 | SVA                   | 1 yr        | + (-)                     |
| C03 | 2, 5   | 101/4/5, 501        | 201, 501            | PVA                   | 1 yr        | + (-)                     |
| C04 | 2, 5   | 101/4-5, 501        | 201, 501            | SVA                   | 7 yr        | + (-)                     |
| C05 | 2, 2   | 201, 501            | 201, 202            | SVA                   | 4 mo        | + (ND)                    |
| C06 | 2, 2   | 201, 501            | 201, 202            | SVA                   | 2 yr        | + (-)                     |
| C07 | 2, 8   | 301-3, 501          | 201, 302            | SVA                   | 1 yr        | + (-)                     |
| C08 | 2, 8   | 301-3, 501          | 201, 302/8          | SVA                   | 11 yr       | ND (-)                    |
| C09 | 2, 8   | 301-3, 501          | 201, 302            | SVA                   | 29 yr       | + (-)                     |
| C10 | 2, 8   | 201, 301-3          | 202, 302            | IEL                   | 1 yr        | + (-)                     |
| C11 | 6, 8   | 102/6, 301-3        | 602/15, 302/8       | IEL                   | 9 mo        | - (ND)                    |
| C12 | 8, 7   | 301-3, 505          | 302, 301/9-10       | SVA                   | 2 yr        | - (-)                     |
| C13 | 8, 8   | 301                 | 302                 | SVA                   | 1 yr        | + (+)                     |

SVA subtotal villous atrophy, PVA partial villous atrophy, IEL increased intra-epithelial atrophy, GFD gluten-free diet, ND not done.

**Table 14. HLA-DQ2+ Coeliac (C01-6) and healthy control (H01-10) IFN $\gamma$  ELISpot responses to control peptides (20  $\mu$ g/ml) and gliadin (500  $\mu$ g/ml) before and after gluten challenge (sfc/million PBMC minus response to PBS alone)**

| Peptide                    | Healthy Day 0 | Healthy Day 6     | Coeliac Day 0  | Coeliac Day 6      |
|----------------------------|---------------|-------------------|----------------|--------------------|
| P04722 77-93               | 0 (-4 to 17)  | 0 (-5 to 9)       | -2 (-3 to 0)   | 27 (0-100)*        |
| P04722 77-93 + tTG         | 0 (-5 to 4)   | 0 (-9 to 3)       | 0 (-4 to 11)   | 141 (8 to 290)**   |
| P04722 77-93 QE85          | 0 (-5 to 5)   | 0 (-3 to 4)       | 0 (-6 to 14)   | 133 (10 to 297)*   |
| P02863 77-93               | 0 (-4 to 13)  | 2 (-3 to 5)       | -2 (-3 to 2)   | 8 (-2 to 42)**     |
| P02863 77-93 + tTG         | -1 (-5 to 4)  | -1 (-4 to 11)     | 1 (-4 to 6)    | 65 (8-164)**       |
| P02863 77-93 QE85          | 0 (-4 to 13)  | 0 (-4 to 14)      | -1 (-4 to 6)   | 42 (-2 to 176)*    |
| Gliadin chymotrypsin       | 2 (-5 to 20)  | 18 (0 to 185)*    | 20 (11 to 145) | 92 (50 to 154)     |
| Gliadin chymotrypsin + tTG | 0 (-1 to 28)  | 16 (-9 to 171)*   | 55 (29 to 248) | 269 (206 to 384)** |
| Chymotrypsin               | 0 (-4 to 5)   | 1 (-4 to 11)      | -2 (-5 to 5)   | 1 (-4 to 8)        |
| Chymotrypsin + tTG         | 0 (-5 to 8)   | 6 (0 to 29)       | -2 (-3 to 11)  | 2 (-3 to 18)*      |
| Gliadin pepsin             | 4 (-4 to 28)  | 29 (0 to 189)***  | 44 (10 to 221) | 176 (54 to 265)**  |
| Gliadin pepsin + tTG       | 2 (-3 to 80)  | 27 (-4 to 241)*** | 61 (8 to 172)  | 280 (207 to 406)** |
| Pepsin                     | 0 (-4 to 10)  | 0 (-3 to 12)      | 0 (-2 to 3)    | 2 (-2 to 8)        |
| Pepsin + tTG               | 0 (-3 to 8)   | 0 (-5 to 9)       | 1 (-6 to 3)    | 0 (-3 to 14)       |
| PBS alone                  | 4 (0 to 6)    | 2 (0 to 6)        | 4 (1 to 12)    | 4 (0 to 4)         |
| PBS + tTG                  | 3 (0 to 8)    | 3 (0 to 11)       | 4 (2 to 10)    | 4 (2 to 11)        |

5 Day 6 vs. Day 0: \*P<0.05 \*\*P<0.02, \*\*\*P<0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test

**Table 15. Effect of deamidation by tTG to gliadin (0.5 mg/ml) and A-gliadin 57-73 homologues on IFN $\gamma$  ELISpot responses in HLA-DQ2+ coeliac (C01-6) and healthy control subjects (H01-10) (median ratio tTG:no tTG pretreatment, 5 range)**

| Peptide              | Healthy Day 6  | Coeliac Day 0  | Coeliac Day 6    |
|----------------------|----------------|----------------|------------------|
| Gliadin chymotrypsin | 0.94 (0.4-9.0) | 2.1 (0.8-6.8)* | 3.2 (1.8-4.2)**  |
| Gliadin pepsin       | 1.4 (0.5-1.4)  | 1.4 (0.8-4.0)* | 1.9 (1.1-4.4)**  |
| P04722 77-93 Q85     |                |                | 6.5 (2.3-12)**   |
| P04722 77-93 E85     |                |                | 0.7 (0.6-1.1)    |
| P02863 77-93 Q85     |                |                | 7.5 (3.9-19.9)** |
| P02863 77-93 E85     |                |                | 1.0 (0.8-1.2)    |

TTG>no tTG: \*P<0.05 \*\*P<0.02, \*\*\*P<0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test

**Table 16. Healthy subjects: IFN $\gamma$  ELISpot Responses (>10 sfc/million PBMC and >4 x buffer only) to tTG-treated gliadin peptide Pools on Day 6 of gluten challenge (sfc/million PBMC) (*italic*: response also present on Day 0):**

#### Group 1 – HLA-DQ2 (DQA1\*0501-5, DQB1\*0201)

5' Group 2 – HLA-DQ8 (DQA1\*0301, DQB1\*0302) and absent or “incomplete” DQ2 (only DQA1\*0501-5 or DQB1\*0201)



Table 17: tTG-deamidated gliadin peptide pools showing significant increase in IFN gamma responses between Day 0 and Day 6 of gluten challenge in HLA-DQ2 coeliac subjects C01-6 (Day 6 –Day 0 response, and ratio of responses to 5 tTG-deamidated pool and same pool without tTG treatment)

| Pool | IFNg ELISpot |                      | IFNg ELISpot            |                      | tTG: no tTG<br>(Median) |
|------|--------------|----------------------|-------------------------|----------------------|-------------------------|
|      | Pool         | (Median sfc/million) | tTG: no tTG<br>(Median) | (Median sfc/million) |                         |
| 9    | 59***        | 1.0                  | 49                      | 46***                | 1.4                     |
| 10   | 116**        | 1.7                  | 50                      | 50***                | 4.6                     |
| 11   | 24***        | 2.5                  | 51                      | 40***                | 1.7                     |
| 12   | 133***       | 1.1                  | 52                      | 30***                | 3.1                     |
| 13   | 26**         | 2.1                  | 53                      | 27**                 | 1.4                     |
| 42   | 30**         | 1.2                  | 76                      | 17***                | 1.1                     |
| 43   | 32***        | 1.3                  | 79                      | 20***                | 0.9                     |
| 44   | 24***        | 1.5                  | 80                      | 83***                | 1                       |
| 45   | 10***        | 1.1                  | 81                      | 141***               | 1.1                     |
| 46   | 12***        | 2.1                  | 82                      | 22***                | 1.5                     |
| 48   | 17***        | 1.4                  | 83                      | 16**                 | 1.8                     |

Day 6 vs. Day 0 \*\*P<0.02, \*\*\*P<0.01 by one-tailed Wilcoxon Matched-Pairs Signed-Ranks test

**Table 18. Coeliac subjects: IFN $\gamma$  ELISpot Responses >10 sfc/million PBMC and >4 x buffer only to tTG-treated Pepset Pools on Day 6 of gluten challenge (sfc/million PBMC) (italic: response also present on Day 0):**

**Group 1 – HLA-DQ2 (DQA1\*0501-5, DQB1\*0201/2),**

**5 Group 2 – HLA-DQ2/8 (DQA1\*0501-5, \*0301, and DQB1\*0201/2, \*0302), and**

**Group 3 – HLA-DQ8 (DQA1\*0301, DQB1\*0302) and absent or “incomplete”**

**DQ2 (only DQA1\*0501-5 or DQB1\*0201/2)**

| Subject | Group 1: |      |      |      |      |      | Group 2: |      |      | Group 3 |      |      |      |
|---------|----------|------|------|------|------|------|----------|------|------|---------|------|------|------|
|         | C01      | C02  | C03  | C04  | C05  | C06  | C07      | C08  | C09  | C10     | C11  | C12  | C13  |
| HLA-DQ  | 2, 6     | 2, 2 | 2, 5 | 2, 5 | 2, 2 | 2, 2 | 2, 8     | 2, 8 | 2, 8 | 2, 8    | 6, 8 | 7, 8 | 8, 8 |
| Pool 1  | .        | .    | .    | .    | .    | .    | 23       | .    | .    | 223     | .    | 155  | 41   |
| 2       | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 3       | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 4       | 11       | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 5       | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 6       | 18       | .    | .    | 21   | .    | .    | 20       | 17   | .    | .       | .    | .    | .    |
| 7       | .        | .    | .    | .    | .    | .    | .        | 353  | .    | .       | .    | .    | .    |
| 8       | 11       | 64   | .    | .    | .    | 14   | 20       | 480  | .    | .       | .    | .    | 13   |
| 9       | 93       | 127  | .    | 92   | 25   | .    | 32       | 460  | .    | .       | .    | .    | 18   |
| 10      | 175      | 491  | 58   | 200  | 48   | .    | 84       | 787  | .    | .       | .    | .    | .    |
| 11      | 32       | 118  | .    | 33   | 14   | .    | 26       | 27   | .    | .       | .    | .    | .    |
| 12      | 204      | 379  | 54   | 225  | 61   | .    | 129      | 587  | 60   | .       | .    | .    | .    |
| 13      | 93       | 142  | .    | 29   | 18   | .    | 17       | .    | .    | .       | .    | .    | 11   |
| 14      | .        | 45   | .    | 21   | .    | .    | 38       | 43   | .    | .       | .    | .    | .    |
| 15      | 18       | 30   | .    | .    | .    | .    | 37       | .    | .    | .       | .    | .    | .    |
| 16      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 17      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 18      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 19      | 11       | .    | .    | .    | .    | .    | 51       | 167  | 11   | .       | .    | .    | .    |
| 20      | 11       | 215  | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 21      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 22      | .        | 21   | .    | .    | .    | .    | .        | 10   | .    | .       | .    | .    | .    |
| 23      | .        | 18   | .    | 21   | .    | .    | .        | .    | 13   | .       | .    | .    | .    |
| 24      | .        | 15   | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 25      | .        | 15   | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 26      | .        | 18   | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 27      | .        | 15   | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 28      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | 11   |
| 29      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 30      | 11       | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 31      | .        | 70   | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 32      | .        | 18   | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 33      | 11       | .    | .    | 10   | .    | .    | 20       | .    | .    | .       | .    | .    | .    |
| 34      | .        | .    | .    | .    | .    | .    | 14       | 11   | .    | .       | .    | .    | .    |
| 35      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 36      | .        | .    | .    | .    | .    | .    | .        | .    | .    | .       | .    | .    | .    |
| 37      | .        | .    | .    | 23   | 14   | .    | .        | .    | .    | .       | .    | .    | .    |
| 38      | .        | 24   | .    | 19   | .    | .    | 20       | .    | .    | .       | .    | .    | .    |
| 39      | .        | 49   | .    | 15   | .    | .    | .        | .    | 11   | .       | .    | .    | .    |
| 40      | .        | .    | .    | .    | .    | .    | .        | .    | 14   | .       | .    | .    | .    |

|                |     |     |     |     |     |     |  |    |   |     |     |
|----------------|-----|-----|-----|-----|-----|-----|--|----|---|-----|-----|
| 41             | .   | 21  |     |     |     |     |  | .  | . | .   | .   |
| 42             | 39  | 42  |     | 44  | 21  |     |  | 12 | . | .   | .   |
| 43             | 50  | 91  | 13  | 75  | 14  |     |  | .  | . | 21  |     |
| 44             | 32  | 97  | 17  | 96  | 13  |     |  | .  | . | .   | .   |
| 45             | .   | 21  | 10  | 100 | 11  |     |  | .  | . | .   | .   |
| 46             | 14  | 55  |     | 102 | 18  |     |  | .  | . | .   | .   |
| 47             | 14  | 58  |     | 38  |     |     |  | .  | . | 31  |     |
| 48             | 21  | 106 |     | 60  | 14  |     |  | .  | . | 57  |     |
| 49             | 75  | 170 | 17  | 142 | 30  |     |  | .  | . | 39  |     |
| 50             | 57  | 245 | 23  | 140 | 61  | 27  |  | .  | . | 11  |     |
| 51             | 68  | 106 | 10  | 127 |     |     |  | .  | . | 29  |     |
| 52             | 43  | 121 |     | 79  | 13  | 16  |  | .  | . | .   | .   |
| 53             | 36  | 94  |     | 92  | 29  |     |  | .  | . | .   | .   |
| 54             | 36  |     |     | 35  | 11  |     |  | .  | . | 19  | 13  |
| 55             | .   |     |     |     |     |     |  | .  | . | .   | .   |
| 56             | 29  |     |     |     |     |     |  | .  | . | .   | .   |
| 57             | .   | 36  |     |     |     |     |  | .  | . | .   | .   |
| 58             | .   |     |     |     |     |     |  | .  | . | .   | .   |
| 59             | .   |     | 10  |     |     |     |  | .  | . | .   | .   |
| 60             | .   | 18  |     | 15  |     |     |  | .  | . | .   | .   |
| 61             | .   |     |     |     |     |     |  | .  | . | .   | .   |
| 62             | 14  | 18  |     | 13  |     |     |  | .  | . | .   | .   |
| 63             | .   |     | 10  |     |     | 14  |  | .  | . | 28  | .   |
| 64             | .   | 15  |     |     |     |     |  | .  | . | 18  | .   |
| 65             |     | 36  |     | 25  | 23  |     |  | .  | . | 11  |     |
| 66             |     |     |     | 31  | 11  | 10  |  | .  | . | .   | .   |
| 67             | .   |     |     | 17  |     |     |  | .  | . | .   | .   |
| 68             | .   |     | 19  | 127 |     | 14  |  | .  | . | .   | .   |
| 69             | .   | 15  |     | 10  |     |     |  | .  | . | .   | .   |
| 70             | .   | 12  | 31  |     | 13  | 10  |  | .  | . | .   | .   |
| 71             | 11  | 21  | 13  |     |     |     |  | .  | . | 18  |     |
| 72             | .   |     |     |     |     | 16  |  | .  | . | .   | .   |
| 73             | .   |     |     | 13  |     | 14  |  | .  | . | .   | .   |
| 74             | .   | 239 |     |     |     |     |  | .  | . | .   | .   |
| 75             | .   |     |     |     |     |     |  | .  | . | .   | .   |
| 76             | 18  | 21  | 19  | 15  |     |     |  | .  | . | 12  |     |
| 77             | .   | 88  |     |     |     | 10  |  | .  | . | .   | .   |
| 78             | .   | 18  | 17  | 69  |     |     |  | .  | . | .   | .   |
| 79             | 11  | 85  |     | 44  | 29  | 12  |  | .  | . | .   | .   |
| 80             | 132 | 133 | 33  | 240 | 39  | 12  |  | .  | . | 70  |     |
| 81             | 171 | 318 | 113 | 367 | 104 | 12  |  | .  | . | 74  |     |
| 82             | 18  | 300 | 17  | 125 | 32  | 16  |  | .  | . | .   | .   |
| 83             | 14  | 164 |     | 31  | 21  |     |  | .  | . | .   | .   |
| P04722 77-93   |     | 211 | 291 | 75  | 281 | 66  |  | .  | . | .   | .   |
| P04722 77-93 E | 164 | 297 | 108 | 221 | 64  | 10  |  | .  | . | .   | .   |
| P04722 77-93 E | 161 | 182 | 98  | 256 | 73  | 16  |  | .  | . | .   | .   |
| P02863 77-93   | 139 | 164 | 35  | 94  | 36  |     |  | .  | . | .   | .   |
| P02863 77-93 E | 46  | 176 | 19  | 88  | 41  |     |  | .  | . | .   | .   |
| Gliadin+C      | 214 | 273 | 265 | 360 | 384 | 206 |  | .  | . | 25  | 527 |
| Chymotrypsin   |     |     |     |     |     | 18  |  | .  | . | .   | .   |
| Gliadin+Pepsin | 239 | 315 | 269 | 406 | 207 | 292 |  | .  | . | 42  | 89  |
| Pepsin         | .   | .   |     |     |     | 14  |  | .  | . | 335 | 87  |

**Table 19. Deamidated peptides with mean bioactivity > 10% of P04722 E85 (20 µg/ml) in HLA-DQ2 coeliac subjects C01-5**

| Rank | No. | Sequence              | Mean<br>(SEM) | Rank | No. | Sequence             | Mean<br>(SEM) |
|------|-----|-----------------------|---------------|------|-----|----------------------|---------------|
|      | 89  | PQLPYPQQLPYPQPQLYP    | 94 (18)       | 37   | 413 | SKQPQQPFPQPQQPQQSHPQ | 18 (4)        |
| *2   | 91  | PQPFPQLPYPQPQLYPQP    | 89 (12)       | 38   | 380 | QPQQPQQPFPQPQQPQLPFP | 18 (6)        |
| *3   | 74  | MQLQPFPQLPYPQPQLYP    | 88 (14)       | 39   | 618 | PQQSFSYQQQQPFPQQYPQQ | 18 (7)        |
| *4   | 90  | PQLPYPQQLPYPQPQFP     | 87 (16)       | *40  | 78  | LQLQPFPRLPYPQPQFP    | 17 (8)        |
| *5   | 76  | LQLQPFPQLPYPQPQFP     | 85 (15)       | 41   | 390 | QQTYPQRPQQPFPQTQQPQQ | 17 (9)        |
| 6    | 626 | PQQQQPQQPFPQPQQPFPW   | 72 (23)       | 42   | 348 | QQTFPQPQQTFPHQPQQQFP | 16 (10)       |
| 7    | 627 | QPFPQPQQPFPWQPQQPFFQ  | 66 (30)       | 43   | 409 | QPQQPFPQLQQPQQPFPQ   | 16 (2)        |
| *8   | 631 | FPQQQQPFPQLPFPQQQS    | 61 (12)       | 44   | 382 | QPFPQPQQPFPQQTQQPQQ  | 16 (6)        |
| 9    | 636 | PQQQQPFPQPPQQLPVPQP   | 51 (10)       | 45   | 629 | PFPQTQSFPLQPQQPFPQQ  | 16 (5)        |
| *10  | 73  | LQLQPFPQLPYPQPQLYP    | 49 (11)       | 46   | 643 | PLQPQQFPQQPQQPFPQ    | 16 (6)        |
| 11   | 412 | SQQQQPFPQPPQQFPQQ     | 34 (19)       | 47   | 389 | QQFPFPQTQQPQQPFPQQ   | 16 (6)        |
| 12   | 343 | QQPQPFPQPPQQPQLPFPQQ  | 34 (11)       | 48   | 350 | QQIFPQPQQTFPHQPQQAFP | 15 (8)        |
| *13  | 68  | LQLQPFPQLPQLYLPQFP    | 33 (10)       | 49   | 65  | PPPSQQPYPQPQFPQFP    | 15 (5)        |
| *14  | 66  | LQLQPFPQLPQLYSQPQFP   | 32 (7)        | 50   | 349 | QQIFPQPQQTFPHQPQQQFP | 15 (9)        |
| *15  | 96  | PQPFPQLPYPQPQFPQQ     | 28 (6)        | 51   | 610 | PWQQQPLPPQQSISQQPPFS | 15 (11)       |
| 16   | 393 | QLPFPQQPQQPFPQQPQQ    | 27 (8)        | *52  | 81  | PQPFPFPQLPYPQTQFPFP  | 15 (5)        |
| 17   | 355 | QAFPQPQQTFTPHQPQQQFPQ | 27 (15)       | *53  | 75  | MQLQPFPQPFPPQLPYPQ   | 14 (5)        |
| *18  | 67  | LQLQPFPQLPQLYSQPQFP   | 26 (6)        | 54   | 368 | QQFPQPQQPQQPFPQQ     | 14 (7)        |
| 19   | 335 | QQQQPFPQPPQQPQFPQPQ   | 25 (11)       | *55  | 82  | PQPFPFPQPFPPQLPYPQ   | 14 (3)        |
| *20  | 95  | PQPFLPQLPYPQPQFPQQ    | 24 (6)        | *56  | 80  | LQLQPFPQPFPPQLPYPQ   | 14 (4)        |
| 21   | 396 | TQQPQQPFPQQPQFPQTQ    | 23 (9)        | 57   | 624 | FTQPQQPTPHQPQQPFPQQ  | 14 (6)        |
| 22   | 609 | SCISGLERPWQQQPLPQQS   | 23 (18)       | 58   | 407 | QPQQPFPQPSQQPQFPQQ   | 14 (5)        |
| 23   | 385 | QQPFPQPQQPQLPFPQQPQQ  | 23 (7)        | 59   | 337 | QQQQPFPQPPQPFQCPQRTI | 13 (4)        |
| 24   | 375 | PQQPFPQPOQQPQFPQQPQQ  | 23 (10)       | 60   | 634 | PQQLQPFPQLPQQPFPQQ   | 13 (3)        |
| 25   | 406 | QPQQPFPQLQQPQFPFPQ    | 22 (8)        | 61   | 388 | QQPYQPQQPFPQFPQQ     | 13 (3)        |
| 26   | 625 | PIQPQQPFPQQPQFPQFP    | 22 (9)        | 62   | 641 | FPELQQPIPQQPQFPPLQ   | 13 (7)        |
| 27   | 378 | QQPQQPFPQQPQQQFPQFPQ  | 22 (10)       | 63   | 399 | QQPFPQTQQPQFPQFPQ    | 13 (5)        |
| 28   | 371 | PQQQFIPQQPFPQFPQFTY   | 22 (10)       | 64   | 387 | QQTFPQQPQPLPFPQQPQFP | 13 (4)        |
| 29   | 642 | PQQPQQPFPQLPQFPQFP    | 20 (8)        | 65   | 628 | PFPWQPQQPFPQTQQSFLQ  | 12 (4)        |
| 30   | 635 | PLQPQQPFPQQPQFPQFP    | 19 (5)        | *66  | 88  | PQPFPQLPYSQPQFPFRPQ  | 12 (3)        |
| *31  | 93  | PQPFPQLPYPQPQFPQFP    | 19 (5)        | 67   | 408 | QPQQPFPQSKQPQFPFPQ   | 12 (5)        |
| 32   | 377 | PQQQFIPQQPQQPQFPQFP   | 19 (9)        | *68  | 77  | LQLQPFPQPFQFPQFPQ    | 11 (4)        |
| 33   | 411 | LQQPQPFPQPPQQQLPQFPQ  | 19 (4)        | 69   | 370 | PQQQFLQPQQPFPQFPQ    | 11 (5)        |
| 34   | 415 | SQQPQQPFPQQPQFPQFP    | 18 (5)        | *70  | 79  | LQLQPFPQPFPLPQLPYPQ  | 11 (5)        |
| *35  | 94  | PQPFPQLPYPQPFPQFP     | 18 (3)        | 71   | 379 | QQPQQQFPQFPQFPQFPQ   | 11 (5)        |
| 36   | 329 | PSGQVWPQQPFPQFPQFP    | 18 (4)        | 72   | 397 | PQQPQQFPQTQQPQFPQ    | 11 (3)        |

\* Indicates homologue of A-gliadin 57-73 with the core sequence PQLP(Y/F)

Table 20. Peptides &gt;10% as bioactive as P04722 QE65 grouped by structure.

| Rank                                          | Peptide no.<br>(Pool)<br>Gliadin-subtype | Sequence                 | IFNg ELISpot<br>response<br>compared to<br>P04722 77-93<br>QE85: mean<br>(SEM) |
|-----------------------------------------------|------------------------------------------|--------------------------|--------------------------------------------------------------------------------|
| <b>Group 1: Homologues of A-gliadin 57-73</b> |                                          |                          |                                                                                |
|                                               | P04722 77-93                             | QLQPFPQPQLPYPQPQP        |                                                                                |
| 1                                             | 89 (12) $\alpha$                         | PQL...Y.....LPYP         | 94 (18)                                                                        |
| 2                                             | 91 (12) $\alpha$                         | PQPFPQPQLPY.....         | 89 (12)                                                                        |
| 3                                             | 74 (10) $\alpha$                         | M.....LPY                | 88 (14)                                                                        |
| 4                                             | 90 (12) $\alpha$                         | PQL...Y.....PFRP         | 87 (16)                                                                        |
| 5                                             | 76 (10) $\alpha$                         | L.....PFR                | 85 (15)                                                                        |
| 8                                             | 631 (81) $\omega$                        | FPQQPQ.....F....QS       | 61 (12)                                                                        |
| 10                                            | 73 (10) $\alpha$                         | L.....LPY                | 49 (11)                                                                        |
| 13                                            | 68 (9) $\alpha$                          | L.....L.....PFR          | 33 (10)                                                                        |
| 14                                            | 66 (9) $\alpha$                          | L.....S.....PFR          | 32 (7)                                                                         |
| 18                                            | 67 (9) $\alpha$                          | L.....S.....QFR          | 26 (6)                                                                         |
| 20                                            | 95 (13) $\alpha$                         | PQPFL.....FPPQQ          | 24 (6)                                                                         |
| 31                                            | 93 (12) $\alpha$                         | PQPFP.....PFRPQQ         | 19 (5)                                                                         |
| 35                                            | 94 (12) $\alpha$                         | PQPFP.....PPFSPQQ        | 18 (3)                                                                         |
| 40                                            | 78 (10) $\alpha$                         | L.....R.....PFR          | 17 (8)                                                                         |
| 52                                            | 81 (11) $\alpha$                         | PQPQPFP.....T...PFPP     | 15 (5)                                                                         |
| 53                                            | 75 (10) $\alpha$                         | MQLQPFPQPQPF.....        | 14 (5)                                                                         |
| 55                                            | 82 (11) $\alpha$                         | PQPQPFPQPQPF.....        | 14 (3)                                                                         |
| 56                                            | 80 (10) $\alpha$                         | LQLQPFPQPQPF.....        | 14 (4)                                                                         |
| 66                                            | 88 (11) $\alpha$                         | PQPFP.....S.....PFRPQQ   | 12 (3)                                                                         |
| 68                                            | 77 (10) $\alpha$                         | LQLQPFPQPQPFP.....       | 11 (4)                                                                         |
| 70                                            | 79 (10) $\alpha$                         | LQLQPFPQPQPFL.....       | 11 (5)                                                                         |
| <b>Group 2: Homologues of peptide 626</b>     |                                          |                          |                                                                                |
|                                               |                                          | QQPFPQPQQPFP             |                                                                                |
| 6                                             | 626(80) $\omega$                         | PQQPQQP.....W            | 72 (23)                                                                        |
| 7                                             | 627(80) $\omega$                         | .....WQPQQPFPQ           | 66 (30)                                                                        |
| 9                                             | 636(81) $\omega$                         | PQQP.....I..VQPQ         | 51 (10)                                                                        |
| 11                                            | 412(53) $\gamma$                         | SQQP.....Q.....PQQ       | 34 (19)                                                                        |
| 33                                            | 411(53) $\gamma$                         | LQQP.....Q.....PQQ       | 19 (4)                                                                         |
| 36                                            | 329(42) $\gamma$                         | PSGQVQWPQ.....           | 18 (4)                                                                         |
| 41                                            | 390(50) $\gamma$                         | QQTYPQRP.....T.....QQ    | 17 (9)                                                                         |
| 59                                            | 337(43) $\gamma$                         | Q.....CQQPQRTI           | 13 (4)                                                                         |
| 61                                            | 388(50) $\gamma$                         | QQPYQPQP.....T.....QQ    | 13 (3)                                                                         |
| <b>Group 3: Homologues of peptide 355</b>     |                                          |                          |                                                                                |
|                                               |                                          | FPQPQQTFPHQPQQQFP        |                                                                                |
| 17                                            | 355(46) $\gamma$                         | QA.....Q                 | 27 (15)                                                                        |
| 42                                            | 348(45) $\gamma$                         | QQT.....                 | 16 (10)                                                                        |
| 48                                            | 350(45) $\gamma$                         | QQI.....A.....           | 15 (8)                                                                         |
| 50                                            | 349(45) $\gamma$                         | QQI.....                 | 15 (9)                                                                         |
| <b>Group 4: Homologues of Peptide 396</b>     |                                          |                          |                                                                                |
|                                               |                                          | QQPFPQQPQQPFP            |                                                                                |
| 21                                            | 396(51) $\gamma$                         | TQQP.....QTQ             | 23 (9)                                                                         |
| 27                                            | 378(49) $\gamma$                         | QQP.....QPQQ             | 22 (10)                                                                        |
| 28                                            | 371(48) $\gamma$                         | PQQQFIQP.....TY          | 22 (10)                                                                        |
| 29                                            | 642(82) $\omega$                         | PQQP.....L.....QQP       | 20 (8)                                                                         |
| 30                                            | 635(81) $\omega$                         | PLQP.....QPQ             | 19 (5)                                                                         |
| 44                                            | 382(49) $\gamma$                         | .....QTQQPQQ             | 16 (6)                                                                         |
| 45                                            | 629(81) $\omega$                         | PFPQT...S....L.....QQ    | 16 (5)                                                                         |
| 46                                            | 643(82) $\omega$                         | PLQP.....QQP             | 16 (6)                                                                         |
| 60                                            | 634(81) $\omega$                         | PQQL.....L.....QQP       | 13 (3)                                                                         |
| 64                                            | 387(50) $\gamma$                         | .....T.....L.....QQPQQPF | 13 (4)                                                                         |
| 62                                            | 641(82) $\omega$                         | FPEL.....I.....LQP       | 13 (7)                                                                         |

| Group 5: Homologues of Peptide 343 (overlap Groups 2 and 4) |                  |                             |         |
|-------------------------------------------------------------|------------------|-----------------------------|---------|
| QQPFPQPQQPQLPFPQ                                            |                  |                             |         |
| 12                                                          | 343(44) $\gamma$ | QQP.....Q                   | 34 (11) |
| 16                                                          | 393(51) $\gamma$ | QLPFPQP.....                | 27 (8)  |
| 19                                                          | 335(43) $\gamma$ | QQ.....Q.....PQ             | 25 (11) |
| 23                                                          | 385(50) $\gamma$ | .....QPQQ                   | 23 (7)  |
| 24                                                          | 375(48) $\gamma$ | P.....Q.....PQQ             | 23 (10) |
| 25                                                          | 406(52) $\gamma$ | QP.....L.....Q.....PQ       | 22 (8)  |
| 32                                                          | 377(49) $\gamma$ | P.....Q.....Q.....QPQ       | 19 (9)  |
| 34                                                          | 415(53) $\gamma$ | SQQP.....QS.....            | 18 (5)  |
| 37                                                          | 413(53) $\gamma$ | SKQP.....QS.....            | 18 (4)  |
| 38                                                          | 380(49) $\gamma$ | QPQQP.....                  | 18 (6)  |
| 43                                                          | 409(53) $\gamma$ | QP.....L.....Q.....L.....PQ | 16 (2)  |
| 47                                                          | 389(50) $\gamma$ | .....T.....Q.....QPQQ       | 16 (6)  |
| 58                                                          | 407(52) $\gamma$ | QP.....S.....Q.....PQ       | 14 (5)  |
| 63                                                          | 399(51) $\gamma$ | .....T.....Q.....LQQP       | 13 (5)  |
| 67                                                          | 408(52) $\gamma$ | QP.....SK.....Q.....PQ      | 12 (5)  |
| 71                                                          | 379(49) $\gamma$ | QQP.....Q.....Q.....P       | 11 (5)  |
| 72                                                          | 397(51) $\gamma$ | PQQP.....T.....Q.....       | 11 (3)  |
| Group 6: Peptide 625                                        |                  |                             |         |
| PIQPQQPFPQQP                                                |                  |                             |         |
| 26                                                          | 625(80) $\omega$ | .....QQPOQPFP               | 22 (9)  |
| 57                                                          | 624(80) $\omega$ | FTQPQQPT.....               | 14 (6)  |
| 65                                                          | 628(80) $\omega$ | PF...W.....TQQSFPLQ         | 12 (4)  |
| Group 7: Peptide 618                                        |                  |                             |         |
| 39                                                          | 618(79) $\omega$ | PQQSFSYQQQFPQQPYPQQ         | 18 (7)  |

Table 21. Bioactivity of individual tTG-deamidated Pools 1-3 peptides in Subject C12:

| No.                                                                                    | Sequence              | %   | No. | Sequence                     | %  |
|----------------------------------------------------------------------------------------|-----------------------|-----|-----|------------------------------|----|
| 8                                                                                      | AVRWPVPQLQPQNPSEQQQPQ | 100 | 23  | <u>LQPQNPSEQQQPQEQVPLMQQ</u> | 26 |
|                                                                                        |                       | 85  |     |                              | 18 |
| 5                                                                                      | MVRVTVVPQ.....        | 14  |     | .....EQVPLVQQ                |    |
|                                                                                        |                       | 82  |     |                              | 18 |
| 6                                                                                      | AVRVSVPQ.....         | 15  |     | .....H.....EQVPLVQQ          |    |
|                                                                                        |                       | 77  |     |                              | 18 |
| 3                                                                                      | MVRVPVPQ.....H.....   | 17  |     | .....KQVPLVQQ                |    |
|                                                                                        |                       | 67  |     |                              | 13 |
| 1                                                                                      | AVRFPVPQ.....L.....   | 16  |     | .....D.....EQVPLVQQ          |    |
|                                                                                        |                       | 59  |     |                              | 8  |
| 2                                                                                      | MVRVPVPQ.....         | 13  |     | .....EQVPLVQQ                |    |
|                                                                                        |                       | 49  |     |                              | 5  |
| 9                                                                                      | AVRVPVPQ.....L.....   | 22  |     | .....K.....EQVPLVQQ          |    |
|                                                                                        |                       | 49  |     |                              | 3  |
| 7                                                                                      | AVRVPVPQ.....         | 18  |     | .....L.....EQVPLVQE          |    |
|                                                                                        |                       | 33  |     |                              | 3  |
| 10                                                                                     | MVRVPVPQ.....L.....   | 19  |     | .....L.....EQVPLVQE          |    |
| 4                                                                                      | MVRVPMPQ.....D.....   | 15  | 20  | P.....P.....GQVPLVQQ         | 0  |
| 12                                                                                     | AVRVPVPQ.....K.....   | 8   | 21  | P.....P.....RQVPLVQQ         | 0  |
| 11                                                                                     | AVRVPVPQP.....P.....  | 0   |     |                              |    |
| Core sequence of epitope is underlined. Predicted deamidated sequence is: LQPENPSSEQPE |                       |     |     |                              |    |

**Table 22: Phylogenetic groupings of wheat (*Triticum aestivum*) gliadins**

| Alpha/beta-gliadins (n=61) |                                                                            |        |                                            |
|----------------------------|----------------------------------------------------------------------------|--------|--------------------------------------------|
| A1a1                       | AAA96525, EEWTA, P02863                                                    | A1b13  | B22364, P04271                             |
| A1a2                       | CAB76963                                                                   | A2a1   | AAB23109, CAA35238, P18573, S10015         |
| A1a3                       | AAA96276                                                                   | A2a2   | CAB76964                                   |
| A1a4                       | CAA26384, S07923                                                           | A2b1   | P04724, T06500, AAA348282                  |
| A1a5                       | AAA34280                                                                   | A2b2   | D22364                                     |
| A1a6                       | P04728                                                                     | A2b3   | P04722, T06498, AAA34276                   |
| A1b1                       | CAB76962                                                                   | A2b4   | C22364                                     |
| A1b2                       | CAB76961                                                                   | A2b5   | CAB76956                                   |
| A1b3                       | BAA12318                                                                   | A3a1   | AAA34277, CAA26383, P04726, S07361         |
| A1b4                       | CAB76960                                                                   | A3a2   | I307187B, A27319, S13333                   |
| A1b5                       | CAB76958                                                                   | A3b1   | AAA96522                                   |
| A1b6                       | CAB76959                                                                   | A3b2i  | AAA34279, P04727,                          |
| A1b7                       | CAB76955                                                                   | A3b2ii | CAA26385, S07924                           |
| A1b8                       | AAA96524                                                                   | A3b3   | A22364, AAA34278, AAB23108, C61218, P04725 |
| A1b9                       | CAA10257                                                                   | A4a    | P04723, AAA34283, T06504                   |
| A1b10                      | AAA96523, T06282                                                           | A4b    | E22364                                     |
| A1b11                      | AAA17741, S52124                                                           | A4c    | CAB76957                                   |
| A1b12                      | AAA34281                                                                   | A4d    | CAB76954                                   |
| Gamma-gliadins (n=47)      |                                                                            |        |                                            |
| GI1a                       | P08079, AAA34288, PS0094, CAC11079, AAD30556, CAC11057, CAC11065, CAC11056 | GI5a   | AAK84774, AAK84772                         |
| GI1b                       | CAC11089, CAC11064, CAC11080, CAC11078, AAD30440                           | GI5b   | AAK84773                                   |
| GI1c                       | CAC11087                                                                   | GI5c   | AAK84776                                   |
| GI1d                       | CAC11088                                                                   | GI6a   | JA0153, P21292, AAA34272, 1507333A         |
| GI1e                       | CAC11055                                                                   | GI6b   | AAK84777                                   |
| GI2a                       | JS0402, P08453, AAA34289                                                   | GI6c   | 1802407A, AAK84775, AAK84780               |
| GI2b                       | AAF42989, AAK84779, AAK84779                                               | GI7    | AAB31090                                   |
| GI3a                       | AAK84778                                                                   | GI8a   | AAA34287, P04730, S07398                   |
| GI3b                       | CAB75404                                                                   | GI8b   | 1209306A                                   |
| GI3c                       | BAA11251                                                                   | GI9a   | P04729                                     |
| GI4                        | EEWTG, P06659, AAA34274                                                    | GI9b   | AAA34286                                   |
| Omega-gliadins (n=3)       |                                                                            |        |                                            |
| O1a                        | AAG17702                                                                   |        |                                            |
| O1b                        | P02865                                                                     |        |                                            |
| O1c                        | A59156                                                                     |        |                                            |

**Table 23. Synthetic peptides spanning all known wheat gliadin 12mers**

| Protein       | Position* | Sequence                 | No. | Protein        | Position*                | Sequence                 | No. |     |
|---------------|-----------|--------------------------|-----|----------------|--------------------------|--------------------------|-----|-----|
| <b>POOL 1</b> |           |                          |     | <b>POOL 43</b> |                          |                          |     |     |
| A1A1          | 20        | AVRF PVPQ LQPQ NPSQ QLPQ | 1   | G12A 33        | QQQL VPQL QQPL SQQP QQT  |                          | 331 |     |
| A1A2          | 20        | MVRV PVPQ LQPQ NPSQ QQPQ | 2   | G13A 33        | QQQP FPQP HQPF SQQP QQT  |                          | 332 |     |
| A1B1          | 20        | MVRV PVPO LOPQ NPSQ OHPO | 3   | G14 33         | QQQP FLQP HQPF SQQP QQIF |                          | 333 |     |
| A1B2          | 20        | MVRV PMPQ LQPQ DPSQ QQPQ | 4   | G15A 33        | QQQQ PPFP PQQP FSQQ PQQI |                          | 334 |     |
| A1B7          | 20        | MVRV TVPQ LQPQ NPSQ QQPQ | 5   | G15B 33        | QQQQ FPFP PQQP QQP PQPQ  |                          | 335 |     |
| A1B8          | 20        | AVRV SVPQ LQPQ NPSQ QQPQ | 6   | G15C 33        | QQQP FRQP QQP YQQP QHTF  |                          | 336 |     |
| A1B9          | 20        | AVRV PVPQ LQPQ NPSQ QQPQ | 7   | G16A 33        | QQQP FPQP QQP CQQP QRTI  |                          | 337 |     |
| A1B10         | 20        | AVRW PVPQ LQPQ NPSQ QQPQ | 8   | G16C 42        | QQQP FPFP QQP CEEQ QRTI  |                          | 338 |     |
| <b>POOL 2</b> |           |                          |     | <b>POOL 44</b> |                          |                          |     |     |
| A2B3          | 20        | AVRV PVPQ LQLQ NPSQ QQPQ | 9   | G11A 42        | HQPF SQQP QQT PQQP QTFF  |                          | 339 |     |
| A2B5          | 20        | MVRV PVPQ LQLQ NPSQ QQPQ | 10  | G12A 42        | QOPL SQQP QQT PQQP QTFF  |                          | 340 |     |
| A3A1          | 20        | AVRV PVPO PQPQ NPSQ PQPQ | 11  | G14 42         | HQPF SQQP QQIF PQQP QTFF |                          | 341 |     |
| A3B1          | 20        | AVRV PVPO LQPQ NPSQ QQPQ | 12  | G15A 42        | QQP SQQP QQIF PQQP QTFF  |                          | 342 |     |
| A1A1          | 28        | LQPQ NPSQ QLPQ EQVP LVQQ | 13  | G15B 42        | QQQP PPFP QPQQ PQLP FPQQ |                          | 343 |     |
| A1A2          | 28        | LQPQ NPSQ QQPQ EQVP LVQQ | 14  | G15C 42        | QPFP YQQP QHTF PQQP QTCP |                          | 344 |     |
| A1B1          | 28        | LQPQ NPSQ QHPQ EQVP LVQQ | 15  | G16A 42        | QPFP CQQP QRTI PQPH QTFF |                          | 345 |     |
| A1B2          | 28        | LQPQ DPSQ QQPQ EQVP LVQQ | 16  | G16B 42        | QPFP CQQP QRTI PQPH QTFF |                          | 346 |     |
| <b>POOL 3</b> |           |                          |     | <b>POOL 45</b> |                          |                          |     |     |
| A2B1          | 28        | LQPQ NPSQ QQPQ KQVP LVQQ | 17  | G16C 42        | QQFP CEEQ QRTI PQPH QTFF |                          | 347 |     |
| A2B3          | 28        | LQLQ NPSQ QQPQ EQVP LVQE | 18  | G11A 50        | QOPL PQQP QTFF HQPF QQFP |                          | 348 |     |
| A2B5          | 28        | LQLQ NPSQ QQPQ EQVP LVQE | 19  | G14 50         | QQIF PQQP QTFF HQPF QQFP |                          | 349 |     |
| A3A1          | 28        | PQPQ NPSQ PQPQ GQVP LVQQ | 20  | G15A 50        | QOIF PQQP QTFF HQPF QAPP |                          | 350 |     |
| A3A2          | 28        | PQPQ NPSQ PQPQ RQVP LVQQ | 21  | G16A 50        | QRTI PQPH QTFF HQPF QTFF |                          | 351 |     |
| A3B1          | 28        | LQPQ NPSQ QQPQ EQVP LVQQ | 22  | G15A 58        | QTFF HQPF QAFP QPQQ TFPF |                          | 352 |     |
| A4A           | 28        | LQPQ NPSQ QQPQ EQVP LMQQ | 23  | G16A 58        | QTFF HQPF QTFF QPQQ TYPH |                          | 353 |     |
| A1A1          | 36        | QLPQ EQVP LVQQ QQFL GQQQ | 24  | G16C 58        | QTFF HQPF QTFF QPEQ TYPH |                          | 354 |     |
| <b>POOL 4</b> |           |                          |     | <b>POOL 46</b> |                          |                          |     |     |
| A1B1          | 36        | QHPQ EQVP LVQQ QQFL GQQQ | 25  | G15A 66        | QAFP QPQQ TFPF QPQQ QFPQ |                          | 355 |     |
| A1B2          | 36        | QQPQ EQVP LVQQ QQFL GQQQ | 26  | G15C 66        | QHTF PQQP QTCP HQPF QFPQ |                          | 356 |     |
| A1B12         | 36        | QQPQ EQVP LVQQ QQFL GQQQ | 27  | G16A 66        | QTFF QPQQ TYPH QPQQ QFPQ |                          | 357 |     |
| A2A1          | 36        | QQPQ EQVP LVQQ QQFP GQQQ | 28  | G16C 66        | QTFF QPEQ TYPH QPQQ QFPQ |                          | 358 |     |
| A2B1          | 36        | QQPQ KQVP LVQQ QQFP GQQQ | 29  | G11A 73        | QTFF HQPF QQFP QPQQ PQQQ |                          | 359 |     |
| A2B3          | 36        | QQPQ EQVP LVQE QQFP GQQQ | 30  | G12A 73        | QTFF HQPF QQVP QPQQ PQQP |                          | 360 |     |
| A3A1          | 36        | PQPQ GQVP LVQQ QQFP GQQQ | 31  | G13A 73        | QTFF HQPF QQFS QPQQ PQQQ |                          | 361 |     |
| A3A2          | 36        | PQPQ RQVP LVQQ QQFP GQQQ | 32  | G15C 73        | QTCP HQPF QQFP QPQQ PQQP |                          | 362 |     |
| <b>POOL 5</b> |           |                          |     | <b>POOL 47</b> |                          |                          |     |     |
| A4A           | 36        | QQPQ EQVP LMQQ QQFP PGQQ | 33  | G16A 73        | QTYP HQPF QQFP QTQQ PQQP |                          | 363 |     |
| A1A1          | 44        | LVQQ QQFL GQQQ PFPF QPY  | 34  | G11A 81        | QOPL PQQP PQQQ FLQP QQP  |                          | 364 |     |
| A1B1          | 44        | LVQQ QQFL GQQQ SFPP QPY  | 35  | G12A 81        | QOVP PQQP PQQQ FLQP QQP  |                          | 365 |     |
| A1B12         | 44        | LVQQ QQFL GQQQ PFPF QPY  | 36  | G13A 81        | QQFS QPQQ PQQQ FIQP QFPQ |                          | 366 |     |
| A2A1          | 44        | LVQQ QQFP GQQQ PFPF QPY  | 37  | G14 81         | QOFP PQQP PQQQ FLQP RQPF |                          | 367 |     |
| A2B3          | 44        | LVQE QQFP GQQQ PFPF QPY  | 38  | G15A 81        | QOFP PQQP PQQP FPQQ PQQQ |                          | 368 |     |
| A3A1          | 44        | LVQQ QQFP GQQQ PFPF QPY  | 39  | G16A 81        | QOFP QTQQ PQQP FPQQ QOTF |                          | 369 |     |
| A4A           | 44        | LMQQ QQFP PGQQ EQFP PQQP | 40  | G11A 89        | PQQQ FLQP QQP PQQP QFPY  |                          | 370 |     |
| <b>POOL 6</b> |           |                          |     | <b>POOL 48</b> |                          |                          |     |     |
| A4D           | 44        | LMQQ QQFP PGQQ ERFP PQQP | 41  | G13A 89        | PQQQ FIQP QQP PQQP QOTY  |                          | 371 |     |
| A1A1          | 53        | GQQQ PFPF QPY PQQP PFPS  | 42  | G13B 89        | PQQQ FIQP QPQQ QTYP QRPQ |                          | 372 |     |
| A1A3          | 53        | GQQQ PFPF QPY PQQP FFSQ  | 43  | G14 89         | PQQQ FIQP PQQP QPY       |                          | 373 |     |
| A1B1          | 53        | GQQQ SFPP QPY PQQP PFPS  | 44  | G15A 89        | PQQP FPQQ PQQP FPFP QPQQ |                          | 374 |     |
| A2B1          | 53        | GQQQ PFPF QPY PQQP PFPS  | 45  | G15C 89        | PQQP FPFP PQQP QPFP QPQQ |                          | 375 |     |
| A3A1          | 53        | GQQQ QFPP QPY PQQP PFPS  | 46  | G16A 89        | PQQP FPQP QQT PQQP QLPF  |                          | 376 |     |
| A4A           | 53        | GQQE QFPP QPY PHQQ PFPS  | 47  | <b>POOL 49</b> |                          |                          |     |     |
| A4D           | 53        | GQQE RFPP QPY PHQQ PFPS  | 48  | G15A 97        | PQQQ FPQP QPQQ QPFP QPQQ |                          | 377 |     |
| <b>POOL 7</b> |           |                          |     |                | G15A 105                 | OQPO QPFP QQQP QOFP QPQQ |     | 378 |
| A1A1          | 61        | QQPY PQPQ PFPS QLPY LQLQ | 49  | G15A 113       | QQPQ QFPQ QPQQ PQQP FPQP |                          | 379 |     |
| A1A3          | 61        | QQPY PQPQ PFSQ LPYL QLQP | 50  | G15A 121       | QOQP PQQP FPQP PQQP LFPF |                          | 380 |     |
| A1B1          | 61        | QQPY PQPQ PFPS QQPY LQLQ | 51  | G11A 126       | QOQP PQQP QQPY PQQP QQPF |                          | 381 |     |
| A2B1          | 61        | QQPY PQPQ PFPS QQPY MQLQ | 52  | G12A 126       | QOQP PQQP QQPF PQTQ QPQQ |                          | 382 |     |
| A4A           | 61        | QQPY PHQQ PFPS QQPY PQQP | 53  | G13A 126       | QOQP PQQP QTYP PQRQ QPQQ |                          | 383 |     |
| A1A1          | 69        | PFPS QLPY LQLQ PFPQ PQLP | 54  | G14 126        | RQPF PQQP QQPY PQQP QQPF |                          | 384 |     |
| A1B1          | 69        | PFPS QQPY LQLQ PFPQ PQLP | 55  | <b>POOL 50</b> |                          |                          |     |     |
| A1B10         | 69        | PFPS QQPY LQLQ PFSQ PQLP | 56  | G15A 126       | QOQP PQQP QPQL PFPQ QPQQ |                          | 385 |     |
| <b>POOL 8</b> |           |                          |     |                | G15C 126                 | QOQP PQQP QAQL PFPQ QPQQ |     | 386 |
| A1B11         | 69        | PFPS QQPY LQLQ PFLQ PQLP | 57  | G16A 126       | QOQP PQQP QLFP PQQP QOFP |                          | 387 |     |
| A1B12         | 69        | PFPS QQPY LQLQ PFLQ PQLP | 58  | G11A 134       | QOFP PQQP QQPF PQTQ QPQQ |                          | 388 |     |
| A2A1          | 69        | PFPS QQPY LQLQ PFPQ PQLP | 59  | G12A 134       | QOFP PQTQ PQQP PFPQ QPQQ |                          | 389 |     |
| A2B1          | 69        | PFPS QQPY MQLQ PFPQ PQLP | 60  | G13A 134       | QOFP PQTQ PQRQ PQTQ QPQQ |                          | 390 |     |
| A2B2          | 69        | PFPS QQPY MQLQ PFPQ PQLP | 61  | G15A 134       | QOPL PFPQ QPOO QPOO PFPQ |                          | 391 |     |

|                |     |                          |                |                                   |     |
|----------------|-----|--------------------------|----------------|-----------------------------------|-----|
| A2B4           | 69  | PFPS QQPY LQLQ PFPQ PQPF | 62             | GI5C 134 QAQL PFPQ QPQQ PLPQ PQQP | 392 |
| A2B5           | 69  | PFPS QQPY LQLQ PFPR PQLP | 63             | <b>POOL 51</b>                    |     |
| A4A            | 69  | PFPS QQPY PQPQ PFPQ QLPY | 64             | GI6A 134 QLPF PQQP QQPF PQPQ QPQQ | 393 |
| <b>POOL 9</b>  |     |                          | 64             | GI2A 142 QPQQ PFPQ QPQQ PFPQ TQQP | 394 |
| A4B            | 69  | PFPS QQPY PQPQ PFPQ PQPF | 65             | GI2A 150 QPQQ PFPQ TQQP QQPF PQQP | 395 |
| A1A1           | 77  | LQLQ PFPQ PQLP YSQP QPFR | 66             | GI2A 158 TQQP QQPF PQQP QQPF PQTQ | 396 |
| A1A4           | 77  | LQLQ PFPQ PQLP YSQP QQFR | 67             | GI2A 166 PQQP QQPF PQTQ QPQQ PFPQ | 397 |
| A1B1           | 77  | LQLQ PFPQ PQLP YLQP QPFR | 68             | GI1A 170 QQPF PQTQ QPQQ LFPQ SQQP | 398 |
| A1B4           | 77  | LQLQ PFPQ PQLS YSQP QPFR | 69             | GI2A 170 QQPF PQTQ QPQQ PFPQ LQQP | 399 |
| A1B10          | 77  | LQLQ PFSQ PQLP YSQP QPFR | 70             | GI3A 170 QQPF PQTQ QPQQ PFPQ SQQP | 400 |
| A1B11          | 77  | LQLQ PFLQ PQLP YSQP QPFR | <b>POOL 52</b> |                                   |     |
| A1B12          | 77  | LQLQ PFLQ PQPQ PPQL PYSQ | 72             | GI4 170 QQPF PQTQ QPQQ PFPQ SKQP  | 401 |
| <b>POOL 10</b> |     |                          | 72             | GI5A 170 QQPF PQPQ QPQQ PFPQ LQQP | 402 |
| A2A1           | 77  | LQLQ PFPQ PQLP YPQP QLPY | 73             | GI5C 170 QQPL PQPQ QPQQ PFPQ SQQP | 403 |
| A2B1           | 77  | MQLQ PFPQ PQLP YPQP QLPY | 74             | GI6A 170 QQPF PQPQ QPQQ PFPQ SQQP | 404 |
| A2B2           | 77  | MQLQ PFPQ PQPF PPQL PYQP | 75             | GI1A 178 QPQQ SQQP QQPF SQQP      | 405 |
| A2B3           | 77  | LQLQ PFPQ PQLP YPQP QPFR | 76             | GI2A 178 QPQQ PFPQ LQQP QQPF PQPQ | 406 |
| A2B4           | 77  | LQLQ PFPQ PQPQ PPQL PYQP | 77             | GI3A 178 QPQQ PFPQ SQQP QQPF PQPQ | 407 |
| A2B5           | 77  | LQLQ PFPR PQLP YPQP QPFR | 78             | GI4 178 QPQQ PFPQ SKQP QQPF PQPQ  | 408 |
| A3B1           | 77  | LQLQ PFPQ PQPQ LPQL PYQP | <b>POOL 53</b> |                                   |     |
| A3B3           | 77  | LQLQ PFPQ PQPQ PPQL PYQP | 80             | GI5A 178 QPQQ PFPQ LQQP QQPL PQPQ | 409 |
| <b>POOL 11</b> |     |                          | 80             | GI1A 186 SQQP QQPF SQQP QQFP QPQQ | 410 |
| A4A            | 77  | PQPQ PFPP QLPY PQTQ PFPF | 81             | GI2A 186 LQQP QQPF PQPQ QQLP QPQQ | 411 |
| A4B            | 77  | PQPQ PFPP QPFP PPQL PYQP | 82             | GI3A 186 SQQP QQPF PQPQ QQFP QPQQ | 412 |
| A1A1           | 85  | PQLP YSQP QPFR PQQP YPQP | 83             | GI4 186 SKQP QQPF PQPQ QPQQ SFQP  | 413 |
| A1A6           | 85  | PQLP YSQP QQFR PQQP YPQP | 84             | GI5A 186 LQQP QQPL PQPQ QPQQ PFPQ | 414 |
| A1B1           | 85  | PQLP YLQP QPFR PQQP YPQP | 85             | GI5C 186 SQQP QPFP PQPQ QPQQ SFQP | 415 |
| A1B4           | 85  | PQLS YSQP QPFR PQQP YPQP | 86             | GI1A 194 SQQP QQFP QPQQ PQQS FPQQ | 416 |
| A1B6           | 85  | PQLS YSQP QPFR PQQL YPQP | <b>POOL 54</b> |                                   |     |
| A1B12          | 85  | PQPF PPQL PYSQ PQPF RPQQ | 88             | GI2A 194 PQPQ QQLP QPQQ PQQS FPQQ | 417 |
| <b>POOL 12</b> |     |                          | 88             | GI3A 194 PQPO QQFP QPQQ PQQS FPQQ | 418 |
| A2A1           | 85  | PQLP YPQP QLPY PQQP LPYP | 89             | GI4 194 PQPQ QPQQ SFQP QPQS LIQQ  | 419 |
| A2B1           | 85  | PQLP YPQP QLPY PQPQ PFPF | 90             | GI5A 194 PQPQ QPQQ PFPQ QQQP LIQP | 420 |
| A2B2           | 85  | PQPF PPQL PYQP PQLP YPQP | 91             | GI5C 194 PQPQ QPQQ SFQP QQQP LIQP | 421 |
| A2B3           | 85  | PQLP YPQP QPFR PQQP YPQP | 92             | GI1A 202 QPQQ PQQS FPQQ QPFF IQPS | 422 |
| A2B4           | 85  | PQPF PPQL PYQP PQPF RPQQ | 93             | GI2A 202 QPQQ PQQS FPQQ QRPF IQPS | 423 |
| A3A1           | 85  | PQPF PPQL PYQP PPPF SPQQ | 94             | GI3A 202 QPQQ PQQS FPQQ QPSL IQQS | 424 |
| <b>POOL 13</b> |     |                          | <b>POOL 55</b> |                                   |     |
| A3B1           | 85  | PQPF LPQL PYQP PQSF PPQQ | 95             | GI1A 210 FPQQ QPFF IQPS LQQQ VNPC | 425 |
| A3B3           | 85  | PQPF PPQL PYQP PQSF PPQQ | 96             | GI2A 210 FPQQ QRPF IQPS LQQQ LNPC | 426 |
| A4A            | 85  | QLPY PQTQ PFPQ QPQY PQPQ | 97             | GI3A 210 FPQQ QPSL IQQS LQQQ LNPC | 427 |
| A4B            | 85  | PQPF PPQL PYQP TQPF PPQQ | 98             | GI5A 210 FPQQ QPQL IQPY LQQQ MNPC | 428 |
| A2A1           | 106 | LPYP QPQP FRPQ QPYP QSQP | 99             | GI6A 210 FPQQ QPQA IQSF LQQQ MNPC | 429 |
| A2B1           | 106 | LPYP QPQP FRPQ QSYP QPQP | 100            | GI1A 218 IQPS LQQQ VNPC KNFL LQQC | 430 |
| A3A1           | 106 | LPYP QPQP FSPQ QPYP QPQP | 101            | GI2A 218 IQPS LQQQ LNPC KNIL LQQS | 431 |
| A3B1           | 106 | LPQL PYQP PQSF PPQQ PYQP | 102            | GI3A 218 IQQS LQQQ LNPC KNFL LQQC | 432 |
| <b>POOL 14</b> |     |                          | <b>POOL 56</b> |                                   |     |
| A4A            | 106 | PPQL PYQP TQPF PPQQ PYQP | 103            | GI5A 218 IQPY LQQQ MNPC KNYL LQQC | 433 |
| A1A1           | 112 | QPFR PQQP YPQP QPQY SQPQ | 104            | GI6A 218 IQSF LQQQ MNPC KNFL LQQC | 434 |
| A1B6           | 112 | QPFR PQQL YPQP QPQY SQPQ | 105            | GI1A 226 VNPC KNFL LQQC KPVS LVSS | 435 |
| A2A1           | 112 | QPFR PQQP YPOS QPQY SQPQ | 106            | GI2A 226 LNPC KNIL LQQS KPAS LVSS | 436 |
| A2B1           | 112 | QPFR PQQS YPQP QPQY SQPQ | 107            | GI3A 226 LNPC KNFL LQQC KPVS LVSS | 437 |
| A3A1           | 112 | PPFS PQQQ YPQP QPQY SQPQ | 108            | GI5A 226 MNPC KNYL LQQC NPVS LVSS | 438 |
| A3B1           | 112 | QSFP PQQP YPQQ RPKY LQQP | 109            | GI6A 226 MNPC KNFL LQQC NHVS LVSS | 439 |
| A3B2           | 112 | QSFP PQQP YPQQ RPML LQQP | 110            | GI1A 234 LQQC KPVS LVSS LWSM IWPK | 440 |
| <b>POOL 15</b> |     |                          | <b>POOL 57</b> |                                   |     |
| A3B3           | 112 | QSFP PQQP YPQQ QPQY LQQP | 111            | GI2A 234 LQQS KPAS LVSS LWSI IWPK | 441 |
| A4A            | 112 | QPFP PQQP YPQP QPQY PQPQ | 112            | GI3A 234 LQQC KPVS LVSS LWSM ILPR | 442 |
| A1A1           | 120 | YPQP QPQY SQPQ QPIS QQQQ | 113            | GI5A 234 LQQC NPVS LVSS LVSM ILPR | 443 |
| A1B3           | 120 | YPQP QPQY SQPQ EPIS QQQQ | 114            | GI6A 234 LQQC NHVS LVSS LWSI ILPR | 444 |
| A2A1           | 120 | YPQS QPQY SQPQ QPIS QQQQ | 115            | GI1A 242 LVSS LWSM IWPK SDCQ VMRQ | 445 |
| A3A1           | 120 | YPQP QPQY SQPQ QPIS QQQA | 116            | GI2A 242 LVSS LWSM ILPR SDCQ VMRQ | 446 |
| A3B1           | 120 | YPQQ RPKY LQQP QPIS QQQA | 117            | GI3A 242 LVSS LWSM ILPR SDCQ VMRQ | 447 |
| A3B2           | 120 | YPQQ RPML LQQP QPIS QQQA | 118            | GI4 242 LVSS LWSI ILPP SDCQ VMRQ  | 448 |
| <b>POOL 16</b> |     |                          | <b>POOL 58</b> |                                   |     |
| A3B3           | 120 | YPQQ QPQY LQQP QPIS QQQA | 119            | GI5A 242 LVSS LWSM ILPR SDCK VMRQ | 449 |
| A1A1           | 128 | SQPQ QPIS QQQQ QQQQ QQQQ | 120            | GI5C 242 LVSS LWSM ILPR SDCQ VMQQ | 450 |
| A1B3           | 128 | SQPQ EPIS QQQQ QQQQ QQQI | 121            | GI6A 242 LVSS LWSI ILPR SDCQ VMQQ | 451 |
| A3A1           | 128 | PQPQ QPIS QQQA QQQQ QQQQ | 122            | GI1A 250 IWPK SDCQ VMRQ QCCQ QLAQ | 452 |
| A1A1           | 138 | QQQQ QQQQ QQQQ QQQQ QQQQ | 123            | GI3A 250 ILPR SDCQ VMRQ QCCQ QLAQ | 453 |
| A1A6           | 138 | QQQQ QQQQ QQQQ QEQQ ILQQ | 124            | GI4 250 ILPP SDCQ VMRQ QCCQ QLAQ  | 454 |
| A1B11          | 138 | QQQQ QQQQ QQQQ QQQQ QQQQ | 125            | GI5A 250 ILPR SDCK VMRQ QCCQ QLAR | 455 |

|         |         |      |      |      |      |       |      |     |  |
|---------|---------|------|------|------|------|-------|------|-----|--|
| A2A1    | 138     | QQQQ | QQQQ | QQKQ | QQQQ | QQQI  |      |     |  |
| POOL 17 |         |      |      |      |      |       |      |     |  |
| A4B     | 139     | AQQQ | QQQQ | QQQQ | QQQQ | TLLLQ |      |     |  |
| A1A1    | 146     | QQQQ | QQQQ | ILQQ | ILQQ | QLIP  |      |     |  |
| A1A6    | 146     | QQQQ | QEQQ | ILQQ | ILQQ | QLIP  |      |     |  |
| A1B6    | 146     | QQQQ | QEQQ | ILQQ | MLQQ | QLIP  |      |     |  |
| A1B10   | 146     | QQQQ | QEQQ | ILQQ | ILQQ | QLTP  |      |     |  |
| A1B11   | 146     | QQQQ | QQQQ | ILQQ | ILQQ | QLIP  |      |     |  |
| A2A1    | 146     | QOKQ | QQQQ | QQQI | LQQI | LQQQ  |      |     |  |
| A3A2    | 146     | QQQQ | QQQQ | ILPQ | ILQQ | QLIP  |      |     |  |
| POOL 18 |         |      |      |      |      |       |      |     |  |
| A4A     | 146     | QQQQ | QQQQ | TLQQ | ILQQ | QLIP  |      |     |  |
| A1A1    | 163     | ILQQ | ILQQ | QLIP | CMDV | VLQQ  |      |     |  |
| A1B6    | 163     | ILQQ | MLQQ | QLIP | CMDV | VLQQ  |      |     |  |
| A1B10   | 163     | ILQQ | ILQQ | QLTP | CMDV | VLQQ  |      |     |  |
| A2B1    | 163     | ILQQ | ILQQ | QLIP | CRDV | VLQQ  |      |     |  |
| A3A2    | 163     | ILPQ | ILQQ | QLIP | CRDV | VLQQ  |      |     |  |
| A4A     | 163     | TLQQ | ILQQ | QLIP | CRDV | VLQQ  |      |     |  |
| A1A1    | 171     | QLIP | CMDV | VLQQ | HNIA | HGRS  |      |     |  |
| POOL 19 |         |      |      |      |      |       |      |     |  |
| A1A3    | 171     | QLIP | CMDV | VLQQ | HNKA | HGRS  |      |     |  |
| A1B2    | 171     | QLIP | CMDV | VLQQ | HNLA | HGRS  |      |     |  |
| A1B7    | 171     | QLIP | CMDV | VLQQ | HNIV | HGRS  |      |     |  |
| A1B10   | 171     | QLTP | CMDV | VLQQ | HNIA | RGRS  |      |     |  |
| A1B11   | 171     | QLIP | CMDV | VLQQ | HNIV | HGKS  |      |     |  |
| A2A1    | 171     | QLIP | CRDV | VLQQ | HSIA | YGSS  |      |     |  |
| A2B1    | 171     | QLIP | CRDV | VLQQ | HSIA | HGSS  |      |     |  |
| A2B3    | 171     | QLIP | CRDV | VLQQ | HNIA | HGSS  |      |     |  |
| POOL 20 |         |      |      |      |      |       |      |     |  |
| A3A1    | 171     | QLIP | CRDV | VLQQ | HNIA | HARS  |      |     |  |
| A3B1    | 171     | QLIP | CRDV | VLQQ | HNIA | HASS  |      |     |  |
| A1A1    | 179     | VLQQ | HNIA | HGRS | QVLQ | QSTY  |      |     |  |
| A1A3    | 179     | VLQQ | HNKA | HGRS | QVLQ | QSTY  |      |     |  |
| A1B2    | 179     | VLQQ | HNLA | HGRS | QVLQ | QSTY  |      |     |  |
| A1B7    | 179     | VLQQ | HNIV | HGRS | QVLQ | QSTY  |      |     |  |
| A1B10   | 179     | VLQQ | HNIA | RGRS | QVLQ | QSTY  |      |     |  |
| A1B11   | 179     | VLQQ | HNIV | HGKS | QVLQ | QSTY  |      |     |  |
| POOL 21 |         |      |      |      |      |       |      |     |  |
| A2A1    | 179     | VLQQ | HSIA | YGSS | QVLQ | QSTY  |      |     |  |
| A2B1    | 179     | VLQQ | HSIA | HGSS | QVLQ | QSTY  |      |     |  |
| A2B3    | 179     | VLQQ | HNIA | HGSS | QVLQ | ESTY  |      |     |  |
| A3A1    | 179     | VLQQ | HNIA | HARS | QVLQ | QSTY  |      |     |  |
| A3B1    | 179     | VLQQ | HNIA | HASS | QVLQ | QSTY  |      |     |  |
| A4A     | 179     | VLQQ | HNIA | HASS | QVLQ | QSSY  |      |     |  |
| A1A1    | 187     | HGRS | QVLQ | QSTY | QLLQ | ELCC  |      |     |  |
| A1A3    | 187     | HGRS | QVLQ | QSTY | QLLR | ELCC  |      |     |  |
| POOL 22 |         |      |      |      |      |       |      |     |  |
| A1B8    | 187     | HGRS | QVLQ | QSTY | QLLR | ELCC  |      |     |  |
| A1B11   | 187     | HGKS | QVLQ | QSTY | QLLQ | ELCC  |      |     |  |
| A2A1    | 187     | YGSS | QVLQ | QSTY | QLVQ | QLCC  |      |     |  |
| A2B1    | 187     | HGSS | QVLQ | QSTY | QLVQ | QFCC  |      |     |  |
| A2B3    | 187     | HGSS | QVLQ | ESTY | QLVQ | QLCC  |      |     |  |
| A3A1    | 187     | HARS | QVLQ | QSTY | QLPQ | QLCC  |      |     |  |
| A3B1    | 187     | HASS | QVLQ | QSTY | QLLQ | QLCC  |      |     |  |
| A4A     | 187     | HASS | QVLQ | QSSY | QLLQ | QLCC  |      |     |  |
| POOL 23 |         |      |      |      |      |       |      |     |  |
| A1A1    | 195     | QSTY | QLLQ | ELCC | QHLW | QIPE  |      |     |  |
| A1A3    | 195     | QSTY | QLLR | ELCC | QHLW | QIPE  |      |     |  |
| A1B8    | 195     | QSTY | QLLR | ELCC | QHLW | QIPE  |      |     |  |
| A2A1    | 195     | QSTY | QLVQ | QLCC | QLLW | QIPE  |      |     |  |
| A2B1    | 195     | QSTY | QLVQ | QFCC | QLLW | QIPE  |      |     |  |
| A3A1    | 195     | QSTY | QLPQ | QLCC | QLLW | QIPE  |      |     |  |
| A3B1    | 195     | QSTY | QLLQ | QLCC | QLLW | QIPE  |      |     |  |
| A4A     | 195     | QSSY | QLLQ | QLCC | QLLF | QIPE  |      |     |  |
| POOL 24 |         |      |      |      |      |       |      |     |  |
| A1A1    | 203     | ELCC | QHLW | QIPE | QSCQ | QAIH  |      |     |  |
| A1B6    | 203     | ELCC | QHLW | QILE | QSCQ | QAIH  |      |     |  |
| A1B10   | 203     | ELCC | QHLW | QIPE | KLQC | QAIH  |      |     |  |
| A2A1    | 203     | QLCC | QQLW | QIPE | QSRC | QAIH  |      |     |  |
| A2B1    | 203     | QFCC | QQLW | QIPE | QSRC | QAIH  |      |     |  |
| A3B1    | 203     | QLCC | QQLL | QIPE | QSRC | QAIH  |      |     |  |
| POOL 25 |         |      |      |      |      |       |      |     |  |
| 126     | GI5C    | 250  | ILPR | SDCQ | VMQQ | QCCQ  | QLAQ | 456 |  |
| POOL 59 |         |      |      |      |      |       |      |     |  |
| 127     | GI1A    | 258  | VMRQ | QCCQ | QLAQ | IPQQ  | LQCA | 457 |  |
| 128     | GI5A    | 258  | VMRQ | QCCQ | QLAR | IPQQ  | LQCA | 458 |  |
| 129     | GI5C    | 258  | VMQQ | QCCQ | QLAQ | IPRQ  | LQCA | 459 |  |
| 130     | GI6A    | 258  | VMQQ | QCCQ | QLAQ | IPQQ  | LQCA | 460 |  |
| 131     | GI1A    | 266  | QLAQ | IPQQ | LQCA | AIHT  | IIHS | 461 |  |
| 132     | GI1B    | 266  | QLAQ | IPQQ | LQCA | AIHT  | VIHS | 462 |  |
| 133     | GI2A    | 266  | QLAQ | IPQQ | LQCA | AIHS  | VVHS | 463 |  |
| 134     | GI3A    | 266  | QLAQ | IPQQ | LQCA | AIHS  | IVHS | 464 |  |
| POOL 60 |         |      |      |      |      |       |      |     |  |
| 135     | GI5A    | 266  | QLAR | IPQQ | LQCA | AIHG  | IVHS | 465 |  |
| 136     | GI5C    | 266  | QLAQ | IPRQ | LQCA | AIHS  | VVHS | 466 |  |
| 137     | GI6A    | 266  | QLAQ | IPQQ | LQCA | AIHS  | VAHS | 467 |  |
| 138     | GI1A    | 274  | LQCA | AIHT | IIHS | IIMQ  | QEQQ | 468 |  |
| 139     | GI1B    | 274  | LQCA | AIHT | VIHS | IIMQ  | QEQQ | 469 |  |
| 140     | GI2A    | 274  | LQCA | AIHS | VVHS | IIMQ  | QQQQ | 470 |  |
| 141     | POOL 61 |      |      |      |      |       |      |     |  |
| 142     | GI3A    | 274  | LQCA | AIHS | IVHS | IIMQ  | QEQQ | 471 |  |
|         | GI4     | 274  | LQCA | AIHS | VVHS | IIMQ  | QEQQ | 472 |  |
| 143     | GI5A    | 274  | LQCA | AIHG | IVHS | IIMQ  | QEQQ | 473 |  |
| 144     | GI6A    | 274  | LQCA | AIHS | VAHS | IIMQ  | QEQQ | 474 |  |
| 145     | GI1A    | 282  | IIHS | IIMQ | QEQQ | EQQQ  | GMHI | 475 |  |
| 146     | GI1B    | 282  | VIHS | IIMQ | QEQQ | QGMH  | ILLP | 476 |  |
| 147     | GI2A    | 282  | VVHS | IIMQ | QQQQ | QGMH  | IFLP | 477 |  |
| 148     | GI3A    | 282  | IVHS | IIMQ | QEQQ | EQRQ  | GVQI | 478 |  |
| 149     | POOL 62 |      |      |      |      |       |      |     |  |
| 150     | GI4     | 282  | VVHS | IIMQ | QEQQ | EQLQ  | GVQI | 479 |  |
|         | GI5A    | 282  | IVHS | IIMQ | QEQQ | QQQQ  | QQQQ | 480 |  |
| 151     | GI5C    | 282  | VVHS | IVMQ | QEQQ | QGIQ  | ILRP | 481 |  |
| 152     | GI6A    | 282  | VAHS | IIMQ | QEQQ | QGVP  | ILRP | 482 |  |
| 153     | GI1A    | 290  | QEQQ | EQQQ | GMHI | ILLP  | YQQQ | 483 |  |
| 154     | GI2A    | 290  | QQQQ | QQQQ | QGMH | IFLP  | LSQH | 484 |  |
| 155     | GI2B    | 290  | QQQQ | QQQQ | QGMH | IFLP  | LSQQ | 485 |  |
| 156     | GI3A    | 290  | QEQQ | EQRQ | GVQI | LVPL  | SQQQ | 486 |  |
| 157     | POOL 63 |      |      |      |      |       |      |     |  |
| 158     | GI4     | 290  | QEQQ | EQLQ | GVQI | LVPL  | SQQQ | 487 |  |
|         | GI5A    | 290  | QEQQ | QQQQ | QQQQ | QQQQ  | IQIM | 488 |  |
| 159     | GI5C    | 290  | QEQQ | QGIQ | ILRP | LFQL  | VQQQ | 489 |  |
| 160     | GI6A    | 290  | QEQQ | QGVP | ILRP | LFQL  | AQGL | 490 |  |
| 161     | GI5A    | 298  | QQQQ | QQQQ | IQIM | RPLF  | QLVQ | 491 |  |
| 162     | GI1A    | 305  | GMHI | ILLP | YQQQ | QVGQ  | GTLV | 492 |  |
| 163     | GI2A    | 305  | GIDI | FLPL | SQHE | QVGQ  | GSLV | 493 |  |
| 164     | GI2B    | 305  | GMHI | FLPL | SQQQ | QVGQ  | GSLV | 494 |  |
| 165     | POOL 64 |      |      |      |      |       |      |     |  |
| 166     | GI3A    | 305  | GVQI | LVPL | SQQQ | QVGQ  | GTLV | 495 |  |
|         | GI4     | 305  | GVQI | LVPL | SQQQ | QVGQ  | GLIV | 496 |  |
| 167     | GI5A    | 305  | GIQI | MRPL | FQLV | QGQQ  | IIQP | 497 |  |
| 168     | GI5C    | 305  | GIQI | LRPL | FQLV | QGQQ  | IIQP | 498 |  |
| 169     | GI6A    | 305  | GPVI | LRPL | FQLA | QGLG  | IIQP | 499 |  |
| 170     | GI1A    | 313  | YQQQ | QVGQ | GTLV | QGQQ  | IIQP | 500 |  |
| 171     | GI2A    | 313  | SQHE | QVGQ | GSLV | QGQQ  | IIQP | 501 |  |
| 172     | GI2B    | 313  | SQQQ | QVGQ | GSLV | QGQQ  | IIQP | 502 |  |
| 173     | POOL 65 |      |      |      |      |       |      |     |  |
| 174     | GI3A    | 313  | SQQQ | QVGQ | GTLV | QGQQ  | IIQP | 503 |  |
|         | GI4     | 313  | SQQQ | QVGQ | GLIV | QGQQ  | IIQP | 504 |  |
| 175     | GI1A    | 321  | GTLV | QGQQ | IIQP | QQPA  | QLEA | 505 |  |
| 176     | GI2A    | 321  | GSLV | QGQQ | IIQP | QQPA  | QLEA | 506 |  |
| 177     | GI5A    | 321  | FQLV | QGQQ | IIQP | QQPA  | QLEV | 507 |  |
| 178     | GI6A    | 321  | FQLA | QGLG | IIQP | QQPA  | QLEG | 508 |  |
| 179     | GI1A    | 329  | IIQP | QQPA | QLEA | IRSL  | VLQT | 509 |  |
| 180     | GI3A    | 329  | IIQP | QQPA | QLEV | IRSL  | VLQT | 510 |  |
| 181     | POOL 66 |      |      |      |      |       |      |     |  |
| 182     | GI3C    | 329  | IIQP | QQPA | QLEV | IRSS  | VLQT | 511 |  |
|         | GI5C    | 329  | IIQP | QQPA | QYEV | IRSL  | VLRT | 512 |  |
| 183     | GI6A    | 329  | IIQP | QQPA | QLEG | IRSL  | VLKT | 513 |  |
| 184     | GI1A    | 337  | QLEA | IRSL | VLQT | LPTM  | CNVY | 514 |  |
| 185     | GI2A    | 337  | QLEA | IRSL | VLQT | LPSM  | CNVY | 515 |  |
| 186     | GI3A    | 337  | QLEV | IRSL | VLQT | LATM  | CNVY | 516 |  |
| 187     | GI3C    | 337  | QLEV | IRSS | VLQT | LATM  | CNVY | 517 |  |
| 188     | GI5A    | 337  | QLEV | IRSL | VLGT | LPTM  | CNVF | 518 |  |
| 189     | POOL 67 |      |      |      |      |       |      |     |  |

|                                        |                                         |     |
|----------------------------------------|-----------------------------------------|-----|
| A3B3 203 GLCC QQLL QIPE QSQC QAIH      | 189 G15C 337 QYEV IRSI VLRT LPNM CNVY   | 519 |
| A4A 203 QLCC QQLF QIPE QSRC QAIH       | 190 G16A 337 QLEG IRSI VLKT LPTM CNVY   | 520 |
| A1A1 211 QIPE QSQC QAIH NVVH AIII      | 191 G11A 345 VLQT LPTM CNVY VPPE CSII   | 521 |
| A1B3 211 QIPE QSQC QAIQ NVVH AIII      | 192 G12A 345 VLQT LPSM CNVY VPPE CSIM   | 522 |
| A1B6 211 QILE QSQC QAIH NVVH AIII      | 193 G13A 345 VLQT LATM CNVY VPPY CSTI   | 523 |
| A1B9 211 QIPE QSQC QAIH KVHH AIII      | 194 G14A 345 VLGT LPTM CNVF VPPE CSTT   | 524 |
| A1B10 211 QIPE KLQCQ QAIH NVVH AIII    | 195 G15C 345 VLRT LPNM CNVY VRPD CSTI   | 525 |
| A2A1 211 QIPE QSRC QAIH NVVH AIII      | 196 G16A 345 VLKT LPTM CNVY VPPD CSTI   | 526 |
| <b>POOL 26</b>                         | <b>POOL 68</b>                          |     |
| A3B3 211 QIPE QSQC QAIH NVAH AIII      | 197 G11A 353 CNVY VPPE CSII KAPF SSVV   | 527 |
| A4A 211 QIPE QSRC QAIH NVVH AIII       | 198 G12A 353 CNVY VPPE CSIM RAPF ASIV   | 528 |
| A1A1 219 QAIH NVVH AIII HQQQ KQQQ      | 199 G13A 353 CNVY VPPY CSTI RAPF ASIV   | 529 |
| A1A6 219 QAIH NVVH AIII HQQQ KQQQ      | 200 G15A 353 CNVF VPPE CSTT KAPF ASIV   | 530 |
| A1B3 219 QAIQ NVVH AIII HQQQ KQQQ      | 201 G15C 353 CNVY VRPD CSTI NAPF ASIV   | 531 |
| A1B9 219 QAIH KVHH AIII HQQQ KQQQ      | 202 G16A 353 CNVY VPPD CSTI NVPY ANID   | 532 |
| A1B13 219 QAIH NVVH AIII HQQQ KQQQ     | 203 G11A 361 CSII KAPF SSVV AGIG GQ     | 533 |
| A2B3 219 QAIH NVVH AIII HQQQ HHHQ      | 204 G12A 361 CSIM RAPF ASIV AGIG GQ     | 534 |
| <b>POOL 27</b>                         | <b>POOL 69</b>                          |     |
| A3A1 219 QAIH NVVH AIII HQQQ RQQQ      | 205 G13A 361 CSTI RAPF ASIV AGIG GQYR   | 535 |
| A3B1 219 QAIH NVVH AIII HQQQ QQQQ      | 206 G14 361 CSTI RAPF ASIV ASIG GQ      | 536 |
| A3B3 219 QAIH NVAH AIII HQQQ QQQQ      | 207 G15A 361 CSTT KAPF ASIV ADIG GQ     | 537 |
| A4A 219 QAIH NVVH AIII HHHQ QQQQ       | 208 G15C 361 CSTI NAPF ASIV AGIS GQ     | 538 |
| A1A1 227 AIII HQQQ KQQQ QPSS QVSF      | 209 G16A 361 CSTI NVPY ANID AGIG GQ     | 539 |
| A1A6 227 AIII HQQQ KQQQ QPSS SQFS      | 210 GII 1 PQQP FPLQ PQQS FLWQ SQQP      | 540 |
| A1B2 227 AIII HQQQ KQQQ QLSS QVSF      | 211 GII 9 PQQS FLWQ SQQP FLQQ PQQP      | 541 |
| A1B10 227 AIII HQQQ KQQQ PSSQ VSFQ     | 212 GII 17 SQQP FLQQ PQQP SPQP QQVV     | 542 |
| <b>POOL 28</b>                         | <b>POOL 70</b>                          |     |
| A1B13 227 AIII HQQQ QQQQ EQKQ QLQQ     | 213 GII 25 PQQP SPQP QQVV QIIS PATP     | 543 |
| A2A1 227 AIII HQQQ QQQQ QQQQ QPLS      | 214 GII 33 QQVV QIIS PATP TTIP SAGK     | 544 |
| A2B3 227 AIII HQHQ HHHQ QQQQ QQQQ      | 215 GII 41 PATP TTIP SAGK PTSI PFPQ     | 545 |
| A2B4 227 AIII HQHQ HHHQ EQKQ QLQQ      | 216 GII 49 SAGK PTSI PFPQ QQQQ HQQL     | 546 |
| A3A1 227 AIII HQQQ RQQQ PSSQ VSLQ      | 217 GII 57 PFPQ QQQQ HQQL AQQQ IPV      | 547 |
| A3B1 227 AIII HQQQ QQQQ LQQQ QQQQ      | 218 GII 65 HQQL AQQQ IPV QPSI LQQL      | 548 |
| A3B3 227 AIII HQQQ QQQQ EQKQ QLQQ      | 219 GII 73 IPV QPSI LQQL NPCK VFLQ      | 549 |
| A4A 227 AIII HHHQ QQQQ QPSS QVSY       | 220 GII 81 LQQL NPCK VFLQ QCCS PVAM     | 550 |
| <b>POOL 29</b>                         | <b>POOL 71</b>                          |     |
| A1A1 235 KQQQ QPSS QVSF QQPL QQYP      | 221 GII 89 VFLQ QCCS PVAM PQRQ ARSQ     | 551 |
| A1A6 235 KQQQ QPSS QFPL QQPL QQYP      | 222 GII 97 PVAM PQRQ ARSQ MLQQ SSCH     | 552 |
| A1B2 235 KQQQ QLSS QVSF QQPK QQYP      | 223 GII 105 ARSQ MLQQ SSCH VMQQ QCCQ    | 553 |
| A1B10 235 KQQQ PSSQ VSFQ QPQQ QYPL     | 224 GII 113 SSCH VMQQ QCCQ QLPQ IPQQ    | 554 |
| A1B13 235 KQQQ EQKQ QLQQ QQQQ QQQL     | 225 GII 121 QCCQ QLPQ IPQQ SRYQ AIRA    | 555 |
| A2B4 235 HHHQ EQKQ QLQQ QQQQ QQQL      | 226 GII 127B PQIP QCSR YEAI RAIY YSII   | 556 |
| A3A1 235 RQQQ PSSQ VSLQ QPQQ QYPS      | 227 GII 129 IPQQ SRYQ AIRA IIYS IIIQ    | 557 |
| A3B1 235 KQQQ LQQQ QQQQ LQQQ QQQQ      | 228 GII 137 AIRA IIYS IIIQ EQQQ VQGS    | 558 |
| <b>POOL 30</b>                         | <b>POOL 72</b>                          |     |
| A4A 235 QQQQ QPSS QVSY QPQQ EQYP       | 229 GII 145 IIIQ EQQQ VQGS IQSQ QQQP    | 559 |
| A1B13 243 QLQQ QQQQ QQQL QQQQ KQQQ     | 230 GII 153 VQGS IQSQ QQQP QQLG QCVS    | 560 |
| A1B13 251 QQLL QQQQ KQQQ QQQS SQVS     | 231 GII 161 QQQP QQLG QCVS QPQQ QSQQ    | 561 |
| A2A1 260 QQQQ QQQQ QPLS QVSF QPQQ      | 232 GII 169 QCVS QPQQ QSQQ QLQG QPQQ    | 562 |
| A2B1 260 QQQQ QQQQ QPLS QVCF QQSQ      | 233 GII 177 QSQQ QLQG QPQQ QQLA QGTF    | 563 |
| A2B3 260 HHHQ QQQQ QQQQ QPLS QVSF      | 234 GII 185 QPQQ QQLA QGTF LQPH QIAQ    | 564 |
| A3B1 260 QQQQ QQQQ QPSS QVSF QPQQ      | 235 <b>POOL 73</b>                      |     |
| A2A1 289 QPLS QVSF QPQQ QQYP SGQG      | 236 GII 193 QGTF LQPH QIAQ LEVM TSIA    | 565 |
| A2B1 289 QPLS QVCF QQSQ QQYP SGQG      | 237 GII 201 QIAQ LEVM TSIA LRIL PTMC    | 566 |
| A3B1 289 QPSS QVSF QPQQ QQYP SSQV      | 238 GII 209 TSIA LRIL PTMC SVNV PLYR    | 567 |
| A1A1 293 QVSF QQPL QQYP LGQQ SFRP      | 239 GII 217 PTMC SVNV PLYR TTTS VPF     | 568 |
| A1A6 293 QFSF QQPL QQYP LGQQ SFRP      | 240 GII 225 PLYR TTTS VPFG VGTG VGAY    | 569 |
| A1B2 293 QVSF QPQQ QQYP LGQQ SFRP      | 241 GIII 1A 1 TTTR TFP1 PTSI SNNN HHFR  | 570 |
| A2A1 293 QVSF QPQQ QQYP SGQQ SFQP      | 242 GIII 1A 9 PTIS SNNN HHFR SNSN HHFH  | 571 |
| A2B1 293 QVCF QQSQ QQYP SGQQ SFQP      | 243 <b>POOL 74</b>                      |     |
| A2B3 293 QVSF QPQQ QQYP SGQQ FFQP      | 244 GIII 1A 25 HHFH SNNN QFYR NNNS PGHN | 572 |
| <b>POOL 31</b>                         | 245 GIII 1A 33 QFYR NNNS PGHN NPLN NNNS | 573 |
| A2B1 289 QPLS QVCF QQSQ QQYP SGQG      | 246 GIII 1A 41 PGHN NPLN NNNS PNNN SPSN | 574 |
| A3B1 289 QPSS QVSF QPQQ QQYP SGQG FFQP | 247 GIII 1A 49 NNNS PNNN SPSN HHNN SPNN | 575 |
| A1A1 293 VQSL QPQQ QQYP SGQG FFQP      | 248 GIII 1A 57 SPSN HHNN SPNN NFQY HTHP | 576 |
| A3B1 293 QVSF QPQQ QQYP SSQV SFQP      | 249 GIII 1A 73 HTHP SNHK NLPH TNNI QQQQ | 577 |
| A3B2 293 QVSF QPQQ QQYP SSQG SFQP      | 250 GIII 1A 81 NLPH TNNI QQQQ PPFS QQQQ | 578 |
| A4A 293 QVSY QPQQ EQYP SGQV SFQS       | 251 <b>POOL 75</b>                      |     |
| A1A1 301 QQYP LGQQ SFRP SQQN POAQ      | 252 GIII 1A 89 QQQQ PPFS QQQQ PPFS QQQQ | 579 |
| A1B2 301 QQYP LGQQ SFRP SQQN SQAQ      | GIII 1A 97 QQQQ PPFS QQQQ PVLP QQSP     | 580 |
| A2A1 301 QQYP SGQQ SFQP SQQN PQAQ      |                                         | 581 |
| <b>POOL 32</b>                         |                                         | 582 |
| A2B5 293 QVSF QPQQ QQYP SGQQ FFQP      |                                         |     |
| A3A1 293 QVSL QPQQ QQYP SGQG FFQP      |                                         |     |
| A3B1 293 QVSF QPQQ QQYP SGQG FFQP      |                                         |     |
| A3B2 293 QVSF QPQQ QQYP SSQG SFQP      |                                         |     |
| A4A 293 QVSY QPQQ EQYP SGQV SFQS       |                                         |     |
| A1A1 301 QQYP LGQQ SFRP SQQN POAQ      |                                         |     |
| A1B2 301 QQYP LGQQ SFRP SQQN SQAQ      |                                         |     |
| A2A1 301 QQYP SGQQ SFQP SQQN PQAQ      |                                         |     |
| <b>POOL 33</b>                         |                                         |     |

|                                   |                                           |     |
|-----------------------------------|-------------------------------------------|-----|
| A2B3 301 QQYP SGQQ FFQP SQQN PQAQ | 253 GIII 1A 105 QQQQ PVLP QQSP FSQQ QQLV  | 583 |
| A2B5 301 QQYP SGQQ FFQP FQQN PQAQ | 254 GIII 1A 113 QQSP FSQQ QQLV LPPQ QQQQ  | 584 |
| A3A1 301 QQYP SGQQ FFQP SQQN PQAQ | 255 GIII 1A 121 QQLV LPPQ QQQQ QLVQ QQIP  | 585 |
| A3B1 301 QQYP SSQV SFQP SQLN PQAQ | 256 GIII 1A 129 QQQQ QLVQ QQIP IVQP SVLQ  | 586 |
| A3B2 301 QQYP SSQG SFQP SQQN PQAQ | 257 GIII 1A 137 QQIP IVQP SVLQ QLNP CKVF  | 587 |
| A4A 301 EQYP SGQV SFQS SQQN PQAQ  | 258 GIII 1A 145 SVLQ QLNP CKVF LQQQ CSPV  | 588 |
| A1B1 309 SFRP SQQN PLAQ GSVQ PQQL | 259 POOL 76                               |     |
| A1A1 309 SFRP SQQN PQAQ GSVQ PQQL | 260 GIII 1A 153 CKVF LQQQ CSPV AMPQ RLAR  | 589 |
| <b>POOL 34</b>                    | 261 GIII 1A 161 CSPV AMPQ RLAR SQMW QSS   | 590 |
| A1A3 309 SFRP SQQN PQTQ GSVQ PQQL | 262 GIII 1A 169 RLAR SQMW QSS CHVM QQQC   | 591 |
| A1B2 309 SFRP SQQN SQAQ GSVQ PQQL | 263 GIII 1A 177 QQSS CHVM QQQC CQQL QQIP  | 592 |
| A1B3 309 SFRP SQQN PQDQ GSVQ PQQL | 264 GIII 1A 185 QQQC CQQL QQIP EQSR YEAI  | 593 |
| A1B4 309 SFRP SQQN PRAQ GSVQ PQQL | 265 GIII 1A 193 QQIP EQSR YEAI RAI YSHI   | 594 |
| A2A1 309 SFQP SQQN PQAQ GSVQ PQQL | 266 GIII 1A 201 YEAI RAI YSHI LQEQQ QGGF  | 595 |
| A2B3 309 FFQP SQQN PQAQ GSFQ PQQL | 267 GIII 1A 209 YSHI LQEQQ QGGF VQPQ QQQP | 596 |
| A2B5 309 FFQP FQON PQAQ GSFQ PQQL | 268 GIII 1A 217 QGGF VQPQ QQQP QQSG QGVS  | 597 |
| A3A1 309 FFQP SQQN PQAQ GSVQ PQQL | 269 GIII 1A 225 QQQP QQSG QGVS QSQQ QSQQ  | 598 |
| <b>Pool 35</b>                    | 270 GIII 1A 233 QGVS QSQQ QSQQ QLQG CSFQ  | 599 |
| A3B1 309 SFQP SQLN PQAQ GSVQ PQQL | 271 GIII 1A 241 QSQQ QLQG CSFQ QPQQ QLQG  | 600 |
| A3B1 309 SFQP SQLN PQAQ GSVQ PQQL | 272 GIII 1A 249 CSFQ QPQQ QLQG QPQQ QQQQ  | 601 |
| A3B2 309 SFQP SQQN PQAQ GSVQ PQQL | 273 GIII 1A 257 QLQG QPQQ QQQQ QVLL GTFL  | 602 |
| A4A 309 SFQS SQQN PQAQ GSVQ PQQL  | 274 GIII 1A 263 QQQQ QVLL GTFL QPHQ IAHL  | 603 |
| A1A1 317 PQAQ GSVQ PQQL PQFE EIRN | 275 GIII 1A 271 GTFL QPHQ IAHL EAVT SIAL  | 604 |
| A1A3 317 PQAQ GSVQ PQQL PQFE EIRN | 276 GIII 1A 279 IAHL EAVT SIAL RTLP TMCS  | 605 |
| <b>POOL 36</b>                    | 277 GIII 1A 287 SIAL RTLP TMCS VNVP LYSA  | 606 |
| A1B3 317 PQQD GSVQ PQQL PQFE EIRN | 278 GIII 1A 295 TMCS VNVP LYSA TTSV PFGV  | 607 |
| A1B4 317 PRAQ GSVQ PQQL PQFE EIRN | 279 GIII 1B 303 LYSA TTSV PFGV GTGV GAY   | 608 |
| A2B3 317 PQAQ GSFQ PQQL PQFE EIRN | 280 GIII 1B 34 PWQQ QPLP PQQS FSQQ PPFS   | 609 |
| A2B5 317 PQAQ GSFQ PQQL PQFE AIRN | 281 GIII 1B 42 PQQS FSQQ PPFS QQQQ QPLP   | 610 |
| A3B1 317 PQAQ GSVQ PQQL PQFE EIRN | 282 GIII 1B 50 PPFS QQQQ QPLP QQPS FSQQ   | 611 |
| A4A 317 PQAQ GSVQ PQQL PQFE EIRN  | <b>Pool 79</b>                            | 612 |
| <b>Pool 37</b>                    | 283 GIII 1B 58 QPLP QQPS FSQQ QPPF SQQQ   | 613 |
| A1A1 325 PQQL PQFE EIRN LALQ TLPA | 284 GIII 1B 66 FSQQ QPPF SQQQ PILS QQPP   | 614 |
| A1A6 325 PQQL PQFE IRNL ALQT LPAM | 285 GIII 1B 74 SQQQ PILS QQPP FSQQ QOPV   | 615 |
| A1B12 325 PQQL PQFE EIRN LARK     | 286 O 1A 17 ATAA RELN PSNK ELQS PQQS      | 616 |
| A2A1 325 PQQL PQFE EIRN LALE TLPA | 287 O 1A 25 PSNK ELQS PQQS FSYQ QOPF      | 617 |
| A2B5 325 PQQL PQFE AIRN LALQ TLPA | 288 O 1A 33 PQQS FSYQ QOPF PQQP YPQQ      | 618 |
| A3B1 325 PQQL PQFE EIRN LALQ TLPA | 289 O 1A 41 QOPF PQQP YPQQ PYPS QOPY      | 619 |
| A4A 325 PQQL PQFE EIRN LALQ TLPA  | 290 O 1A 49 YPQQ PYPS QOPY PSQQ PPFT      | 620 |
| <b>POOL 38</b>                    | <b>Pool 80</b>                            |     |
| A1A3 333 EIRN LALQ TLPS MCNV YIPP | 291 O 1A 57 QOPY PSQQ PPFT PQQQ FPEQ      | 621 |
| A1A6 332 PQQL PQFE EIRN LALQ TLPA | 292 O 1A 65 PPFT PQQQ FPEQ SQQP FTQP      | 622 |
| A1B12 332 PQQL PQFE EIRN LARK     | 293 O 1A 73 FPEQ SQQP FTQP QOPT PIQP      | 623 |
| A2A1 332 PQQL PQFE EIRN LALE TLPA | 294 O 1A 81 FTQP QOPT PIQP QOPF PQQP      | 624 |
| A2B5 332 PQQL PQFE AIRN LALQ TLPA | 295 O 1A 89 PIQP QOPF PQQP QOPF QOPF      | 625 |
| A3B1 332 PQQL PQFE EIRN LALQ TLPA | 296 O 1A 97 PQQQ QOPF PQQP PFPW           | 626 |
| A4A 332 PQQL PQFE EIRN LALQ TLPA  | 297 O 1A 105 QOPF PQQQ PFPW QOPQ PFPQ     | 627 |
| A1A1 333 EIRN LALQ TLPA MCNV YIPP | 298 O 1A 113 PFPW QPQQ PFPQ TQQS FPLQ     | 628 |
| <b>Pool 39</b>                    | <b>Pool 81</b>                            |     |
| A1A3 333 EIRN LALQ TLPS MCNV YIPP | 299 O 1A 121 PFPQ TQQS FPLQ PQQP FPQQ     | 629 |
| A2A1 333 EIRN LALE TLPA MCNV YIPP | 300 O 1A 129 FPLQ PQQP FPQQ PQQP FPQP     | 630 |
| A3A1 333 EIRN LALQ TLPR MCNV YIPP | 301 O 1A 137 FPQQ PQQP FPQP QLFP PQQS     | 631 |
| A1A1 341 TLPA MCNV YIPP YCTI APFG | 302 O 1A 145 FPQP QLFP PQQS EQII PQQL     | 632 |
| A1A3 341 TLPS MCNV YIPP YCTI APFG | 303 O 1A 153 PQQS EQII PQQL QOPF PLQP     | 633 |
| A1B1 341 TLPA MCNV YIPP YCTI VPFG | 304 O 1A 161 PQQL QOPF PLQP QOPF PQQP     | 634 |
| A1B4 341 TLPA MCNV YIPP YCAM APFG | 305 O 1A 169 PLQP QOPF PQQP QOPF PQQP     | 635 |
| A1B9 341 TLPA MCNV YIPP YCTI TPFG | 306 O 1A 177 PQQP QOPF PQQP QOPF VQPQ     | 636 |
| <b>Pool 40</b>                    | <b>Pool 82</b>                            |     |
| A1B5 349 YIPP YCTM APFG IFGT NYR  | 307 O 1A 185 PQPQ QOPF VQPQ QOPF QQQQ     | 637 |
| A1B9 349 YIPP YCTI TPFG IFGT N    | 308 O 1A 193 VQPQ QOPF QQQQ QOPF PFAQ     | 638 |
| A2A1 349 YIPP YCTI APVG IFGT NYR  | 309 O 1A 201 QQQQ QOPF PFAQ PQQL FPEL     | 639 |
| A2B2 349 YIPP YCST TIAP VGIF GTN  | 310 O 1A 209 PFAQ PQQL FPEL QOPF PQQP     | 640 |
| A3A2 349 YIPP YCST TTAP FGIF GTN  | 311 O 1A 217 FPEL QOPF PQQL QOPF PLQP     | 641 |
| A3B1 349 YIPP HCST TIAP FGIF GTN  | 312 O 1A 225 PQQP QOPF PLQP QOPF PQQP     | 642 |
| A3B3 349 YIPP HCST TIAP FGIS GTN  | 313 O 1A 233 PLQP QOPF PQQP QOPF PQQP     | 643 |
| A4D 350 IPPY CSTT IAPF GIFT NYR   | 314 O 1A 241 PQQP QOPF PQQP QOPF PQQP     | 644 |
| <b>Pool 41</b>                    | <b>Pool 83</b>                            |     |
| GI1A 17 GTAN MQVD PSSQ VQWP QQQP  | 315 O 1A 249 PQQP QOPF PQQP QOPF PQQQ     | 645 |
| GI2A 17 GTAN IQVD PSGQ VQWL QQQL  | 316 O 1A 257 PQQP QOPF PQQQ PYGS SLTS     | 646 |

|                                   |     |      |                            |     |
|-----------------------------------|-----|------|----------------------------|-----|
| GI3A 17 ATAN MQVD PSGQ VPWP QQQP  | 317 | O 1A | 265 PQQQ PYGS SLTS IGGQ    | 647 |
| GI3B 19 MN IQVD PSGQ VPWP QQQP FP | 318 | O 1B | 1 ARQL NPSD QELQ SPQQ LYPQ | 648 |
| GI4 17 ATAN MQAD PSGQ VQWP QQQP   | 319 | O 1B | 9 QELQ SPQQ LYPQ QPYP QQPY | 649 |
| GI5A 17 TTAN IQVD PSGQ VQWP QQQQ  | 320 | O 1C | 1 SRLL SPRG KELH TPQE QFPQ | 650 |
| GI5C 17 ATAN MQVD PSGQ VQWP QQQP  | 321 | O 1C | 9 KELH TPQE QFPQ QQFQ PQPQ | 651 |
| GI7 20 QIVF PSGQ VQWP QQQQ PFP    | 322 | O 1C | 17 QFPQ QQFQ PQPQ QFPQ     | 652 |
| <b>Pool 42</b>                    |     |      |                            |     |
| GI1A 25 PSSQ VQWP QQQP VPQP HQPF  | 323 |      |                            |     |
| GI2A 25 PSGQ VQWL QQQL VPQL QQPL  | 324 |      |                            |     |
| GI3A 25 PSGQ VPWP QQQP FPQP HQPF  | 325 |      |                            |     |
| GI4 25 PSGQ VQWP QQQP FLQP HQPF   | 326 |      |                            |     |
| GI5A 25 PSGQ VQWP QQQQ PFPQ PQQP  | 327 |      |                            |     |
| GI5C 25 PSGQ VQWP QQQP FRQP QQPF  | 328 |      |                            |     |
| GI6A 25 PSGQ VQWP QQQP FPQP QQPF  | 329 |      |                            |     |
| GI1A 33 QQQP VPQP HQPF SQQP QQT   | 330 |      |                            |     |

\*Position of N-terminal residue in  $\alpha$ -,  $\gamma 1$ -,  $\gamma 2$ -,  $\gamma 3$ -, or  $\omega$  consensus sequence

Table 24. 652 synthetic peptides and ELISpot analysis with patients and gluten challenge

| COELIAC SUBJECT              | C14 | C15 | C16 | C17 | C18 | C19 | C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 |
|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| HLA-DQ                       | 22  | 22  | 22  | 22  | 22  | 22  | 2X  | 2X  | 2X  | 2X  | 28  | 28  | 2X  | 2X  | 2X  |
| <b>ANTIGEN CHALLENGE</b>     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| WHEAT                        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| DURATION OF CHALLENGE (DAYS) | 3   | 3   | 6   | 3   | 6   | 3   | 3   | 3   | 3   | 0.5 | 3   | 1   | 3   | 3   | 3   |
| DOMINANT PEPTIDE ELISPOT SFC | 203 | 46  | 96  | 195 | 114 | 136 | 29  | 57  | 129 | 259 | 50  | 18  | 163 | 52  | 229 |
| BLANK ELISPOT SFC            | 1   | 2   | 4   | 0.5 | 3   | 1   | 1   | 4   | 3   | 2   | 1   | 2   | 1   | 2   | 6   |



|     |                         |
|-----|-------------------------|
| 99  | LPYLPQPPFRPQQPYPQSQP    |
| 100 | LPYLPQPPFRPQQSYPQQP     |
| 101 | LPYLPQPPFSQPQPYPQQP     |
| 102 | LPOLPYQPQSFPPQOBYPQ     |
| 103 | PPQLPYFOTQFFPPQOBYPQ    |
| 104 | QPFRPQQPYPQQPQOYSQPQ    |
| 105 | QPFRPQQLYPQPQOYSQPQ     |
| 106 | QPFRPQQPYPQSQPQOYSQPQ   |
| 107 | QPFRPQQSYPQPQOYSQPQ     |
| 108 | PPFSPQQPYPQPQOYQPQ      |
| 109 | QSFPPQQPYPQQRPKYLOPQ    |
| 110 | QSFPPQQPYPQQRPMYLOPQ    |
| 111 | QSFPPQQPYPQQQPQYLOPQ    |
| 112 | QPFPPQQPYPQPQOYPOPQ     |
| 113 | YPOQPQOYSQPQEPISQOOQ    |
| 114 | YPOQPQOYSQPQEPISQOOQ    |
| 115 | YPOQSOPQYSSQPQOPISSQOO  |
| 116 | YPOQPQOYQPQPQOPISSQQA   |
| 117 | YPOQRPKYLOPQQPQOPISSQQA |
| 118 | YPOQRPMYLOPQQPQOPISSQQA |
| 119 | YPOQQQOYLOPQQPQOPISSQQA |
| 120 | SQPQOPISSQOOOOOOOOOOOO  |
| 121 | SQPQEPISQOOOOOOOOOOQOI  |
| 122 | POPOQPISSQOOAQQQQQQQQ   |
| 123 | QQQQQQQQQQQQQQQQQILQQ   |
| 124 | QQQQQQQQQQQQQQEOQQILQQ  |
| 125 | QQQQQQQQQQQQQQQQQI1QQ   |
| 126 | QQQQQQQQQQKQQQQQQQOI    |
| 127 | AQQQQQQQQQQQQQQQTLQQ    |
| 128 | QQQQQQQQQILQQILQQQLIP   |
| 129 | QQQQQEQQILQQILQQQLIP    |
| 130 | QQQQQEQQILQMLQQQLIP     |
| 131 | QQQQQEQQILQQILQQQLTP    |
| 132 | QQQQQQQOIIQQILQQQLIP    |
| 133 | QOKQQQQQQQILQQILQQQ     |
| 134 | QQQQQQQQILPQILQQQLIP    |
| 135 | QQQQQQQOTLQQILQQQLIP    |
| 136 | ILQQILQQQLIPCMDVVLQQ    |
| 137 | ILQOMILQQQLIPCMDVVLQQ   |
| 138 | ILQQILQQQLTPCMDVVLQQ    |
| 139 | ILQQILQQQLIPCRDVVLQQ    |
| 140 | ILPQILQQQLIPCRDVVLQQ    |
| 141 | TLQQILQQQLIPCRDVVLQQ    |
| 142 | QIIPCMDVVLQQHNIAHGRS    |
| 143 | QIIPCMDVVLQQHNKAHGRS    |
| 144 | QIIPCMDVVLQQHNLAHGRS    |
| 145 | QIIPCMDVVLQQHNIVHGRS    |
| 146 | QIIPCMDVVLQQHNIARGRS    |
| 147 | QIIPCMDVVLQQHNIVHGKS    |
| 148 | QIIPCRDVVLQQHSIAYGSS    |
| 149 | QIIPCRDVVLQQHSIAHGSS    |
| 150 | QIIPCRDVVLQQHNIAHGSS    |
| 151 | QIIPCRDVVLQQHNIAHARS    |
| 152 | QIIPCRDVVLQQHNIAHASS    |
| 153 | VLQQHNIAHGRSQVLOQSTY    |

|     |                       |
|-----|-----------------------|
| 154 | VLQQQHNKAHGRSQLQQSTY  |
| 155 | VLQQQHNLAHGRSQLQQSTY  |
| 156 | VLQQQHNIVHGRSQLQQSTY  |
| 157 | VLQQQHNIAHGRSQLQQSTY  |
| 158 | VLQQQHNIVHGKSQVLQQSTY |
| 159 | VLQQQHSIAYGSSQVLQQSTY |
| 160 | VLQQQHSIAHGSSQVLQQSTY |
| 161 | VLQQQHNIAHGSSQVLQESTY |
| 162 | VLQQQHNIAHARSQLQQSTY  |
| 163 | VLQQQHNIAHASSQVLQQSTY |
| 164 | VLQQQHNIAHASSQVLQSSY  |
| 165 | HGRSQLQQSTYQLLQELCC   |
| 166 | HGRSQLQQSTYQLLRELCC   |
| 167 | HGRSQLQQSTYQLLRELCC   |
| 168 | HGKSQVLQQSTYQLLQELCC  |
| 169 | YSSQVLQQSTYQLVQQLCC   |
| 170 | HGSSQVLQQSTYQLVQQFCC  |
| 171 | HGSSQVLQESTYQLVQQLCC  |
| 172 | HARSQLQQSTYQLVQQLCC   |
| 173 | HASSQVLQQSTYQLLQQLCC  |
| 174 | HASSQVLQSSYQQLQQLCC   |
| 175 | QSTYQLLQELCCQHLWQIPE  |
| 176 | QSTYQLLRELCCQHLWQIPE  |
| 177 | QSTYQLLRELCCQHLWQIPE  |
| 178 | QSTYQLVQQLCCQQLWQIPE  |
| 179 | QSTYQLVQQFCCQQLWQIPE  |
| 180 | QSTYQPLQQLCCQQLWQIPE  |
| 181 | QSTYQLLQQLCCQQLWQIPE  |
| 182 | QSSYQQLQQLCCQQLWQIPE  |
| 183 | ELCCQHLWQIPEQSQCQAIH  |
| 184 | ELCCQHLWQIPEQSQCQAIH  |
| 185 | ELCCQHLWQIPEKLQQCQAIH |
| 186 | QLCCQQLWQIPEQSRCQAIH  |
| 187 | QFCCQQLWQIPEQSRCQAIH  |
| 188 | QLCCQQLQIPEQSRCQAIH   |
| 189 | GLCCQQLQIPEQSQCQAIH   |
| 190 | QLCCQQLFQIPEQSRCQAIH  |
| 191 | QIPEQSQCQAIHNVVHAIIL  |
| 192 | QIPEQSQCQAIQNVVHAIIL  |
| 193 | QILEQSQCQAIHNVVHAIIL  |
| 194 | QIPEQSQCQAIHKVVHAIIL  |
| 195 | QIPEKLQQCQAIHNVVHAIIL |
| 196 | QIPEQSRCQAIHNVVHAIIL  |
| 197 | QIPEQSQCQAIHNVAHAIIM  |
| 198 | QIPEQSRCQAIHNVVHAIIL  |
| 199 | QAIHNVVHAIILHQQQKQQQ  |
| 200 | QAIHNVVHAIILHQQQKQQ   |
| 201 | QAIQNVVHAIILHQQQKQQQ  |
| 202 | QAIHKVVHAIILHQQQKQQQ  |
| 203 | QAIHNVVHAIILHQQQQQQQ  |
| 204 | QAIHNVVHAIILHQQHHHHQ  |
| 205 | QAIHNVVHAIILHQQQRQQQ  |
| 206 | QAIHNVVHAIIMHQQEQQQ   |
| 207 | QAIHNVAHAIIMHQQQQQQ   |
| 208 | QAIHNVVHAIILHHHHQQQQ  |



|     |                       |
|-----|-----------------------|
| 264 | SFRPSQQNPRAQQGSVQPQQL |
| 265 | SFQPSQQNPQAQQGSVQPQQL |
| 266 | FFQPSQQNPQAQQGSFQPQQL |
| 267 | FFQPFQQNPQAQQGSFQPQQL |
| 268 | FFQPSQQNPQAQQGSVQPQQL |
| 269 | SFQPSOLNPQAQQGSVQPQQL |
| 270 | SFQPSOLNPQAQQGSVQPQQL |
| 271 | SFQPSQQNPQAQQGSVQPQQL |
| 272 | SFQSSQQNPQAQQGSVQPQQL |
| 273 | POAQGSVQPQQLPQFEEIRN  |
| 274 | PQTQGSVQPQQLPQFEEIRN  |
| 275 | POAQGSVQPQQLPQFEEIRNL |
| 276 | PLAQGSVQPQQLPQFEEIRN  |
| 277 | PQDQGSVQPQQLPQFEEIRN  |
| 278 | PRAQGSVQPQQLPQFEEIRN  |
| 279 | PQAQGSFQPQQLPQFEEIRN  |
| 280 | PQAQGSFQPQQLPQFEEAIRN |
| 281 | PQAQGSVQPQQLPQFAEIRN  |
| 282 | PQAQGSVQPQQLPQFQEIRN  |
| 283 | PQQLPQFEEIRNLALQTLPA  |
| 284 | PQQLPQFEEIRNLALQTLPAM |
| 285 | PQQLPQFEEIRNLARK      |
| 286 | PQQLPQFEEIRNLALETLPA  |
| 287 | PQQLPQFEEIRNLALQTLPA  |
| 288 | PQQLPQFEEIRNLALQTLPA  |
| 289 | PQQLPQFEEIRNLALQTLPA  |
| 290 | EIRNLALQTLPAMCNVYIPP  |
| 291 | EIRNLALQTLPSMCNVYIPP  |
| 292 | EIRNLALETLPMCNVYIPP   |
| 293 | EIRNLALQTLPRMCNVYIPP  |
| 294 | TLPAMCNVYIPPYCTIAPFG  |
| 295 | TLPAMCNVYIPPYCTIAPFG  |
| 296 | TLPAMCNVYIPPYCTIVPFG  |
| 297 | TLPAMCNVYIPPYCTIAPFG  |
| 298 | TLPAMCNVYIPPYCTITPFG  |
| 299 | TLPAMCNVYIPPYCTIAPVG  |
| 300 | TLPAMCNVYIPPYCSTTIAP  |
| 301 | TLPRMCNVYIPPYCSTTIAP  |
| 302 | TLPRMCNVYIPPYCSTTTAP  |
| 303 | TLPAMCNVYIPPHCSTTIAP  |
| 304 | YIPPYCTIAPFGIFGTNYR   |
| 305 | YIPPYCTIVPFGIFGTNYR   |
| 306 | YIPPYCAMAPEGIFGTNYR   |
| 307 | YIPPYCTMAPFGIFGTNYR   |
| 308 | YIPPYCTITPFGIFGTN     |
| 309 | YIPPYCTIAPVGLFGTN     |
| 310 | YIPPYCSTTIAPVGLFGTN   |
| 311 | YIPPYCSTTTAPFGIFGTN   |
| 312 | YIPPHCSTTIAPFGIFGTN   |
| 313 | YIPPHCSTTIAPFGISGTN   |
| 314 | IPPYCSTTIAPFGIFGTNYR  |
| 315 | GTANMQVDPSSQVQWPQQP   |
| 316 | GTANIQVDPSSQVQWLQQQL  |
| 317 | ATANMQVDPSSQVWPWPQQP  |
| 318 | MNIQVDPSSQVWPWPQQPFP  |

|     |                          |
|-----|--------------------------|
| 319 | ATANMQADPSGQVOWPQQQP     |
| 320 | TTANIQVDPMSGQVOWPQQQQ    |
| 321 | ATANMQVDPMSGQVOWPQQQP    |
| 322 | QIVVPSGQVOWPQQQPQPF      |
| 323 | PSQVQWVQOQPVPQPHQPF      |
| 324 | PSGQVQWLQQQLVPQLOQPL     |
| 325 | PSGQVWPQOQPFPQPHQPF      |
| 326 | PSGQVQWPQOQPFLQPHQPF     |
| 327 | PSGQVQWPQOQPFPQOQP       |
| 328 | PSGQVQWPQOQPFRQPQOQP     |
| 329 | PSGQVQWPQOQPFPQOQP       |
| 330 | QQQPVQPQPHQPFSSQQPQQT    |
| 331 | QQQLVPQLQQPLSQQPQQT      |
| 332 | QQQPFPQPQPHQPFSSQQPQQT   |
| 333 | QQQPFLQPQPHQPFSSQQPQQT   |
| 334 | QQQQPFQFPQOQPFSQQPQOQI   |
| 335 | QQQQPFQFPQOQPQOQPQOQ     |
| 336 | QQQPFRQPQOQPFYQQPQHQT    |
| 337 | QQQPFPQPQOQPFCQQPQRTI    |
| 338 | QQQPFPQPQOQPFCQOPQRTI    |
| 339 | HQPFESQQPQQTFFPQPQQTFF   |
| 340 | QQPLSQQPQQTFFPQPQQTFF    |
| 341 | HQPFESQQPQOQIFFPQPQQTFF  |
| 342 | QQPFSQQPQOQIFFPQPQQTFF   |
| 343 | QQPOQFPQFPQOQPQLPFPQQ    |
| 344 | QOPFYQQPQHQTFFPQPQQTCP   |
| 345 | QQPFCCQQPQRTIOPPHQHTFH   |
| 346 | QQPFCCQQPQQTIPQPHQHTFH   |
| 347 | QQPFCECQPQRTIOPPHQHTFH   |
| 348 | QQTFPQPOQQTFPHPHQPQQQFP  |
| 349 | QQIFPQPOQQTFPHPHQPQQQFP  |
| 350 | QOIFPQPOQQTFPHPHQPQQAFP  |
| 351 | QRTIPQPHQTFHHHQPQQTFF    |
| 352 | QTFPHQPOQQAFFPQOQQTFPH   |
| 353 | QTFHHHQPQQTFPQOQQTYPH    |
| 354 | QTFHHHQPQQTFPQPEQTYPH    |
| 355 | QAFPQPOQQTFPHPHQPQQQFPQ  |
| 356 | QHTFPQPOQQTCPHQPQOQFP    |
| 357 | QTFPQPOQQTYPHQPQOQFPQ    |
| 358 | QTFPQPEQTYPHQPOQQQFPQ    |
| 359 | QTFPHQPOQQQFPQOQPOQQ     |
| 360 | QTFPHQPOQQVFPQOQPOQOP    |
| 361 | QTFPHQPOQQQFSQPOQPOQQ    |
| 362 | QTCPHOPQQQFPQOQPOQQP     |
| 363 | QTYPHQPOQQQFPQTOQPOQQP   |
| 364 | QQFPQPOQPOQQQFLOPQOQPF   |
| 365 | QOQVFPQPOQPOQQPFLQOPQOQF |
| 366 | QQFSQPOQPOQQQFIOPQOQPF   |
| 367 | QQFPQPOQPOQQQFLOPQOQPF   |
| 368 | QQFPQPOQPOQQQFPQOQPOQQ   |
| 369 | QOFPQTQOQPQOQPFPQOQQT    |
| 370 | POQQQFLQPOQQPFPQOQPOQPY  |
| 371 | PQQQFIQPOQQPFPQOQQT      |
| 372 | PQQQFIQPOQPOQQTYPQRPQ    |
| 373 | POQQQFLQPRQFPQOQPOQPY    |





|     |                       |
|-----|-----------------------|
| 484 | QQQQQQQQGIDIFLPLSQH   |
| 485 | QQQQQQQQGMHIFLPLSQQ   |
| 486 | QEQQEQRQGVQILVPLSQQQ  |
| 487 | QEQQEQIQLGVQILVPLSQQQ |
| 488 | QEQQQQQQQQQQQQGIQIM   |
| 489 | QEQQQGIQILRPLFQLVQGQ  |
| 490 | QEQQQGVPILRPLFQLAQGL  |
| 491 | QQQQQQQGIQIMRPLFQLVQ  |
| 492 | GMHILLPLYQQQGVQGTLV   |
| 493 | GIDIFLPLSQHEQVGQGSLV  |
| 494 | GMHIFLPLSQQQQVGQGSLV  |
| 495 | GVQILVPLSQQQQVGQGTLV  |
| 496 | GVQILVPLSQQQQVGQGILV  |
| 497 | GIQIMRPLFQLVQQQGIQF   |
| 498 | GIQILRPLFQLVQQQGIQF   |
| 499 | GVPILRPLFQLAQGLGIIQF  |
| 500 | YQQQQVGQGTLVQQQGIQF   |
| 501 | SQHEQVGQGSLVQGQGIIQF  |
| 502 | SQQQQVGQGSLVQGQGIIQF  |
| 503 | SQQQQVGQGTLVQGQGIIQF  |
| 504 | SQQQQVGQGILVQGQGIIQF  |
| 505 | GTLVQGQGIIQPQQPAQLEA  |
| 506 | GSLVQGQGIIQPQQPAQLEA  |
| 507 | FQLVQGQGIIQPQQPAQLEV  |
| 508 | FQLAQGLGIIQPQQPAQLEG  |
| 509 | IIQPQQPAQLEAIRSLVLQT  |
| 510 | IIQPQQPAQLEVIRSLVLQT  |
| 511 | IIQPQQPAQLEVIRSSVLQT  |
| 512 | IIQPQQPAQYEVIRSLVLRT  |
| 513 | IIQPQQPAQLEGIRSLVLKT  |
| 514 | QLEAIRSLVLQTLPTMCNVY  |
| 515 | QLEAIRSLVLQTLFSMCNVY  |
| 516 | QLEVIRSLVLQTLATMCNVY  |
| 517 | QLEVIRSSVLQTLATMCNVY  |
| 518 | QLEVIRSLVLGTLPTMCNVF  |
| 519 | QYEVIRSLVLRTLPNMCNVY  |
| 520 | QLEGIRSLVLKTLPTMCNVY  |
| 521 | VLQTLPTMCNVYVPPPECSII |
| 522 | VLQTLPSMCNVYVPPPECSIM |
| 523 | VLQTLATMCNVYVPPYCSTI  |
| 524 | VLGTLPTMCNVFVPPPECSTT |
| 525 | VLRTLPLMCNVYVRPDCASTI |
| 526 | VLKTLPTMCNVYVPPDCSTI  |
| 527 | CNVYVPPPECSIIKAPFSSVV |
| 528 | CNVYVPPPECSIMRAPFASIV |
| 529 | CNVYVPPYCSTIRAPFASIV  |
| 530 | CNVFVPPPECSTTKAPFASIV |
| 531 | CNVYVRPDCSTINAPFASIV  |
| 532 | CNVYVPPDCSTINVPYANID  |
| 533 | CSIIKAPFSSVVAGIGGQ    |
| 534 | CSIMRAPFASIVAGIGGQ    |
| 535 | CSTIRAPFASIVAGIGGQYR  |
| 536 | CSTIRAPFASIVASIGGQ    |
| 537 | CSTTKAPFASIVADIGGQ    |
| 538 | CSTINAPFASIVAGISGO    |

|     |                        |
|-----|------------------------|
| 539 | CTSTINVPYANIDAGIGGO    |
| 540 | PQQPFPPLQFQOQSFLWQSQQP |
| 541 | PQQSFLWQSQQPFLQQPQQP   |
| 542 | SQQPFLQQPQQPSPQPQQV    |
| 543 | PQQPSPQPQQVQIISPATP    |
| 544 | QQVQIISPATPTTIPSAGK    |
| 545 | PATPTTIPSAGKPTSAPFPQ   |
| 546 | SAGKPTSAPFPQQQQQHQQL   |
| 547 | PFPOQQQQHQQLAQQQIPVV   |
| 548 | HQQLAQQQIPVQPSILQQL    |
| 549 | IPVVQPSILQQLNPCKVFLO   |
| 550 | LQQLNPCKVFLOQQCSPVAM   |
| 551 | VFLQQQCSPVAMPQRLARSQ   |
| 552 | PVAMPQRLARSQMLQQSSCH   |
| 553 | ARSQMLQQSSCHVMQQOCQC   |
| 554 | SSCHVMQQQCCQQLPQIPQQ   |
| 555 | QCCQQLPQIPQOSRYQAIRA   |
| 556 | PQIPQOSRYEAIRAIYSSII   |
| 557 | IPQOSRYQAIRAIYSSII     |
| 558 | AIRAIYSSILQEQQQVQGS    |
| 559 | ILQEQQQVQGSIQSQQQQP    |
| 560 | VQGSIQSQQQQPQQLQCVS    |
| 561 | QQQPQQLGQCVSQPQQQSQQ   |
| 562 | QCVSQFQQQSQQQQLGQQPQQ  |
| 563 | QQQQQLGQQPQQQQLAQGTF   |
| 564 | QPQQQLAQGTFLQPHQIAQ    |
| 565 | QCTFLQPHQIAQLEVMTSIA   |
| 566 | QIAQLEVMTSIALRILPTMC   |
| 567 | TSIALRILPTMCVNVPLYR    |
| 568 | PTMCVNVPLYRTTSVPFG     |
| 569 | PLYRTTTSVFFGVGTGVGAY   |
| 570 | TITRTFFIPTISSLNNHHFR   |
| 571 | PTISSLNNHHFRSNSNHHFH   |
| 572 | HHFRSNSNHHFHHSNNNQFYR  |
| 573 | HHFHSSNNQFYRNNNSPGHN   |
| 574 | QFYRNNNSPGHNNPLNNNNNS  |
| 575 | PGHNNPLNNNNSPNNNPSN    |
| 576 | NNNSPNNNNSPSNHNNNSPNN  |
| 577 | SPSNHHNNNSPNNNFQYHTHP  |
| 578 | SPNNNFQYHTPSNHKNLPH    |
| 579 | HHTPSNHKNLPHTNNIQQQQ   |
| 580 | NLPHTNNIQQQQPPFSQQQQ   |
| 581 | QQQQPPFSQQQQPPFSQQQQ   |
| 582 | QQQQPPFSQQQQPVLQQSP    |
| 583 | QQQQPVLQQSPFSQQQOLV    |
| 584 | QQSPFSQQQQVLPPQQQQQ    |
| 585 | QOLVLPPQQQQQLVQQQIP    |
| 586 | QQQQQLVQQQIPIVQPSVLQ   |
| 587 | QOIPIVQPSVLQQLNPCKVF   |
| 588 | SVLQQLNPCKVFLOQQCSPV   |
| 589 | CKVFLQQQCSPVAMPQRLAR   |
| 590 | CSPVAMPQRLARSQMLQQSS   |
| 591 | RLARSQMLQQSSCHVMQQOC   |
| 592 | QQSSCHVMQQQCCQQLQOIP   |
| 593 | QQQCCQQLQQIPQOSRYEAII  |

594 QQIPEQSRYEAIRAIYISII  
595 YEAIRAIYISIIQLEQQQGF  
596 YSIIILQEQQQGFVQPQQQQP  
597 QQGFVQPQQQQPQQSGQGV  
598 QQQPQQSGQGVSQSQSQSQ  
599 QGVSQSQSQSQQLGOCFSQ  
600 QSQQQLGOCFSQOPQQQLGQ  
601 CSFQQOPQQQLGQOPQQQQQQ  
602 QLGQQPQQQQQQVLQGTFL  
603 QQQQQVLQGTFLQPHQIAHL  
604 GTFLQPHQIAHLEAVTSIAL  
605 IAHEAVTSIALRTLPTMCS  
606 SIALRTLPTMCSVNVPLYSA  
607 TMCSVNVPLYSATTSVPFGV  
608 LYSATTTSVPFGVGTGVAY  
609 SC15GLERPWQQQLPPLPQQS  
610 PWQQQLPPLPQSQFSQQPPFS  
611 PQQSFSSQPPFSQQQQQPLP  
612 PPFSSQQQQQLPQQPSFSQQ  
613 QPLPQQPSFSQQQPPFSQQ  
614 FSQQQPPFSQQQPLSQQPP  
615 SQQQPILSQQPPFSQQQQPV  
616 ATAARELNPSNKELQSPQOS  
617 PSNKELQSPQOSFSYQQQPF  
618 PQQSFSSYQQQPFPPQQPYPQQ  
619 QQPFPQQPYPPQQPYPSQQPY  
620 YPQQPYPSQQPYPSQQPFPT  
621 QQPYPSSQQPFPTPQQQPFPEQ  
622 PFPTPQQQFPEQSQQPFETQP  
623 FPEQSQQPFTOQQQPTFIQP  
624 FTQPQQQPTPIQPQQPFPPQQP  
625 PIOPQQPFPPQQPQQPQQPFP  
626 PQQPQQQPFPPQQPQQPFPPW  
627 QPFPPQOPPFPPWOPQQPFPQ  
628 PFPWQPQOPPFPTQOSFPLO  
629 PFPQTQOSFPLOPQQPFPQO  
630 PPLQPQQPFPPQQPQQPFPPQP  
631 FPQQPQQPFPPQPLPFPPQOS  
632 FPQPQLPFFPQQSEQIIIPQQL  
633 PQQSEQIIIPQQLQQPFPLQP  
634 PQQLQQFFPLQPQQPFPPQP  
635 PLQPQOPPFPPQQPQQPFPPQ  
636 PQQPQQPFPPQOPQPIPVQPO  
637 PQPQOPQPIPVQPOQSFPOQSQ  
638 VQPQOSFPQOSQSQSQQPFQAQ  
639 QQSQQSQOPFAQPQQLFPEL  
640 PFAQPQQLFPELQQPIPOQP  
641 FPELQQPIPOQPQQPFPLQP  
642 PQQPQQPFPLQPQQPFPOQP  
643 PLQPQOPPFPPQOPQOPFPOQP  
644 PQQPQOPPFPPQOPQOSFPQOP  
645 PQQPQOSFPQOPQOPYPOQQQ  
646 PQQPQQPYPPQQPYGSSLTS  
647 PQQQPYGSSLTSIGGQ  
648 ARQLNPSDQELOSPQQLYPO

|     |                      |  |  |  |  |  |  |  |  |
|-----|----------------------|--|--|--|--|--|--|--|--|
| 649 | QELQSFQQLYPQQCPYQQPY |  |  |  |  |  |  |  |  |
| 650 | SELLSPRGKELHTPQEQFPQ |  |  |  |  |  |  |  |  |
| 651 | KELHTPQEQFPQQQQFPQPQ |  |  |  |  |  |  |  |  |
| 652 | QFPQQQFPQPQQFPQ      |  |  |  |  |  |  |  |  |

70.1 to 100  
40.1 to 70  
25.1 to 40  
10.1 to 25  
5.1 to 10  
<5  
 $\geq 3 \times B_1$

**The claims defining the invention are as follows:**

1. A method of preventing or treating coeliac disease comprising administering to an individual at least one agent selected from:

5 (a) a peptide comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12); and

10 (b) a peptide analogue of (a) which is capable of being recognised by a T cell receptor that recognises the epitope of (a) and which is not more than 50 amino acids in length; and

15 optionally, in addition to the agent selected from (a) and (b), administering to said individual a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2.

2. A method of claim 1 wherein the peptide of (a) comprises at least one epitope comprising a sequence selected from transglutaminase-deamidated

15 PQQPQQPQQPFPQPQQPFPW SEQ ID NO: 732,

QPFPQPQQPFPWPQPQQPFPQ SEQ ID NO: 733,

PQQPQQPFPQPQQPIPVPQPQ SEQ ID NO: 742,

SQQPQQPFPQPQQQFPQPQQ SEQ ID NO: 518,

LQQPQQPFPQPQQQLPQPQQ SEQ ID NO: 517,

20 PSGQVQWPQQQFPQPQQPF SEQ ID NO: 435,

QQTYPQRPQQPFPQTQQPQQ SEQ ID NO: 496,

QQQPFPQPQQPFCQQPQRTI SEQ ID NO: 443,

QQPYPPQQPQQPFPQTQQPQQ SEQ ID NO: 494,

QAFPQPQQTFPHQPQQQFPQ SEQ ID NO: 461,

25 QQTFPQPQQTFPHQPQQQFP SEQ ID NO: 454,

QQIFPQPQQTFPHQPQQQAFP SEQ ID NO: 456, or

QQIFPQPQQTFPHQPQQQFP SEQ ID NO: 455.

3. A method of claim 1 wherein the agent is HLA-DQ2-restricted or HLA-DQ8-restricted.

30 4. A method of claim 1 wherein one agent is HLA-DQ2-restricted and a second agent is HLA-DQ8-restricted.

5. A method of any one of claims 1 to 4 wherein one or more agents are administered to said individual and said one or more agents are selected from an agent comprising a wheat epitope, an agent comprising a rye epitope, an agent comprising a 35 barley epitope, or any combination thereof.

6. A method of any one of claims 1 to 4 wherein a single agent comprises a wheat epitope, a barley epitope, and a rye epitope.

7. A method of preventing or treating coeliac disease comprising administering to an individual a pharmaceutical composition comprising an agent as defined in claim 1 or claim 2 and a pharmaceutically acceptable carrier or diluent.

8. A method of preventing or treating coeliac disease comprising 5 administering to an individual a pharmaceutical composition comprising an antagonist of a T cell which has a T cell receptor as defined in claim 1, and a pharmaceutically acceptable carrier or diluent.

9. A method of preventing or treating coeliac disease comprising administering to an individual a composition for tolerising an individual to a gliadin 10 protein to suppress the production of a T cell or antibody response to an agent as defined in claim 1, which composition comprises an agent as defined in claim 1.

10. A method of preventing or treating coeliac disease comprising: diagnosing coeliac disease in an individual by either:

a) contacting a sample from the host with at least one agent selected from:

15 i) a peptide comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12), and with the proviso that said peptide does not comprise transglutaminase-deamidated sequence 20 QQFPFPQQPQQYPQPQ, QQPYPPQQPQQPFPQ, QQFPFPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPPQQPQQYPQPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ; and 25 ii) a peptide analogue of i) which is capable of being recognised by a T cell receptor that recognises the epitope of i) and which is not more than 50 amino acids in length; and iii) optionally, in addition to the agent selected from i) and ii), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NOS: 1 and 2; and

30 determining *in vitro* whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease; or

b) administering an agent as defined in claim 1 and determining *in vivo* whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease; and

35 administering to an individual diagnosed as having, or being susceptible to, coeliac disease a therapeutic agent for preventing or treating coeliac disease.

11. A method of claim 10 wherein the peptide of (a) comprises at least one epitope comprising a sequence selected from transglutaminase-deamidated PQQPQQPQQPFPQPQQPFPW SEQ ID NO: 732,

QPFPQPQQPFPWQPQQPFPQ SEQ ID NO: 733,  
PQQPQQPFPQPQQPIPVPQPQ SEQ ID NO: 742,  
SQQPQQPFPQPQQFPQPQQ SEQ ID NO: 518,  
LQQPQQPFPQPQQQLPQPQQ SEQ ID NO: 517,  
5 PSGQVQWPQQPFPQPQQPF SEQ ID NO: 435,  
QQTYPQRPQQPFPQTQQPQQ SEQ ID NO: 496,  
QQQPFPQPQQPFCQQPQRTI SEQ ID NO: 443,  
QQPYQPQQPQQPFPQTQQPQQ SEQ ID NO: 494,  
QAFPQPQQTFPHQPQQQFPQ SEQ ID NO: 461,  
10 QQTFPQPQQTFPHQPQQQFP SEQ ID NO: 454,  
QQIFPQPQQTFPHQPQQQAFP SEQ ID NO: 456, or  
QQIFPQPQQTFPHQPQQQFP SEQ ID NO: 455.

12. Use of an agent for the preparation of a medicament for treating or preventing coeliac disease, wherein the agent comprises:

15 (a) a peptide comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12); and  
(b) a peptide analogue of (a) which is capable of being recognised by a T cell receptor that recognises the epitope of (a) and which is not more than 50 amino acids in 20 length; and  
(c) optionally, in addition to the agent selected from (a) and (b), a peptide comprising at least one epitope comprising a sequence selected from SEQ ID NO:1 and SEQ ID NO:2.

13. A use of claim 12 wherein the peptide of (a) comprises at least one epitope comprising a sequence selected from transglutaminase-deamidated

25 PQQPQQPQQPFPQPQQPFPW SEQ ID NO: 732,  
QPFPQPQQPFPWQPQQPFPQ SEQ ID NO: 733,  
PQQPQQPFPQPQQPIPVPQPQ SEQ ID NO: 742,  
SQQPQQPFPQPQQQFPQPQQ SEQ ID NO: 518,  
30 LQQPQQPFPQPQQQLPQPQQ SEQ ID NO: 517,  
PSGQVQWPQQPFPQPQQPF SEQ ID NO: 435,  
QQTYPQRPQQPFPQTQQPQQ SEQ ID NO: 496,  
QQQPFPQPQQPFCQQPQRTI SEQ ID NO: 443,  
QQPYQPQQPQQPFPQTQQPQQ SEQ ID NO: 494,  
35 QAFPQPQQTFPHQPQQQFPQ SEQ ID NO: 461,  
QQTFPQPQQTFPHQPQQQFP SEQ ID NO: 454,  
QQIFPQPQQTFPHQPQQQAFP SEQ ID NO: 456, or  
QQIFPQPQQTFPHQPQQQFP SEQ ID NO: 455.

14. A use of claim 12 wherein the agent is HLA-DQ2-restricted or HLA-DQ8-restricted.

15. A use of claim 12 wherein one agent is HLA-DQ2-restricted and a second agent is HLA-DQ8-restricted.

5 16. A use of any one of claims 12 to 15 wherein one or more agents are used for the manufacture of said medicament and said one or more agents are selected from an agent comprising a wheat epitope, an agent comprising a rye epitope, an agent comprising a barley epitope or any combination thereof.

10 17. A use of any one of claims 12 to 15 wherein a single agent comprises a wheat epitope, a barley epitope, and a rye epitope.

18. A use of any one of claims 12 to 17 wherein the agent is present within a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent.

15 19. A use of any one of claims 12 to 17 wherein the agent is present within a pharmaceutical composition comprising an antagonist of a T cell which has a T cell receptor as defined in claim 12, and a pharmaceutically acceptable carrier or diluent.

20. A use of any one of claims 12 to 19 wherein the agent is present within a composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined in claim 1.

21. An isolated protein that comprises a sequence which is able to bind to a T cell receptor, which T cell receptor recognises an agent comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said epitope does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12), and with the proviso that said epitope does not comprise transglutaminase-deamidated sequence QQPFPQQPQQPYQP, QQPYPQQPQQPFPQ, 25 QQPFPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPQQPQQPYQP, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ; and

30 which sequence is able to cause antagonism of a T cell that carries such a T cell receptor.

22. An agent comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said epitope does not comprise transglutaminase-deamidated sequence PQLPY (SEQ ID NO:12), and with the proviso that said epitope does not comprise transglutaminase-deamidated sequence QQPFPQQPQQPYQP, QQPYPQQPQQPFPQ, QQPFPQQPQQPFPQ, 35 PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPQQPQQPYQP, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ

or an antagonist of a T cell which has a T cell receptor that recognises said epitope, and which is not more than 50 amino acids in length.

23. A pharmaceutical composition comprising an agent as defined in claim 1 or an antagonist of a T cell which has a T cell receptor that recognises said epitope, and which is not more than 50 amino acids in length and a pharmaceutically acceptable carrier or diluent.

24. A composition for tolerising an individual to a gliadin protein to suppress the production of a T cell or antibody response to an agent as defined in claim 1, which composition comprises an agent as defined in claim 1, with the proviso that said agent does not comprise an epitope comprising transglutaminase-deamidated sequence QQPFPPQQPQQPYPPQ, QQPYPPQQPQQPFPQ, QQPFPPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPPQQPQQPYPPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ.

25. A composition for antagonising a T cell response to an agent as defined in claim 1, which composition comprises an antagonist of a T cell which has a T cell receptor that recognises said epitope, and which is not more than 50 amino acids in length, with the proviso that said epitope does not comprise transglutaminase-deamidated sequence QQPFPPQQPQQPYPPQ, QQPYPPQQPQQPFPQ, QQPFPPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPPQQPQQPYPPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ.

26. A mutant gliadin protein whose wild-type sequence can be modified by a transglutaminase to a sequence which is an agent as defined in claim 1, which wild-type sequence comprises an epitope comprising the amino acid sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said epitope does not comprise the amino acid sequence PQLPY (SEQ ID NO:12), and with the proviso that said epitope does not comprise the amino acid sequence QQPFPPQQPQQPYPPQ, QQPYPPQQPQQPFPQ, QQPFPPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPPQQPQQPYPPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ, which mutant gliadin protein comprises a mutation which prevents its modification by a transglutaminase to a sequence which is an agent as defined in claim 1; or a fragment of such a mutant gliadin protein which is at least 15 amino acids long and which comprises the mutation.

27. A polynucleotide that comprises a coding sequence that encodes a protein or fragment as defined in claim 21 or claim 26.

28. A cell comprising a polynucleotide as defined in claim 27 or which has been transformed with such a polynucleotide.

29. A transgenic mammal that expresses a T cell receptor as defined in claim

1.

30. A method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising:

5 (a) contacting a sample from the host with at least one agent selected from

(i) a peptide comprising at least one epitope comprising transglutaminase-deamidated sequence PQ(QL)P(FY)P (SEQ ID NO:45) with the proviso that said peptide does not comprise the amino acid sequence PQLPY (SEQ ID NO:12), and with the proviso that said epitope does not comprise transglutaminase-deamidated sequence QQPFPQQPQQPYPQ, QQPYPPQQPQQPFPQ, QQPFPQQPQQPFPQ, PFPQTQQPQQPFPQ, PFPQLQQPQQPFPQ, RQPFPPQQPQQPYPQ, QFPQTQQPQQPFPQ, QQTFPQQPQLPFPQ, QLPFPQQPQQPFPQ, PFPQPQQPQQPFPQ, PFPQSQQPQQPFPQ, or QQTYPQRPQQPFPQ; and

10 (ii) a peptide analogue of (i) which is capable of being recognised by a T cell receptor that recognises the epitope of (i) and which is not more than 50 amino acids in length; and

(iii) optionally, in addition to the agent selected from (i) and (ii), a peptide comprising at least one epitope comprising a sequence selected from 20 SEQ ID NOS: 1 and 2; and

(b) determining *in vitro* whether T cells in the sample recognise the agent; recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.

31. A method of claim 30 wherein the peptide of (a) comprises at least one 25 epitope comprising a sequence selected from transglutaminase-deamidated

PQQPQQPQQPFPQPQQPFPW SEQ ID NO: 732,

QPFPQPQQPFPWPQPQQPFPQ SEQ ID NO: 733,

PQQPQQPFPQPQQPIPVPQPQ SEQ ID NO: 742,

SQQPQQPFPQPQQQFPQPQQ SEQ ID NO: 518,

30 LQQPQQPFPQPQQQLPQPQQ SEQ ID NO: 517,

PSGQVQWPQQQFPQPQQPF SEQ ID NO: 435,

QQTYPQRPQQPFPQTQQPQQ SEQ ID NO: 496,

QQQPFPQPQQPFCQQPQRTI SEQ ID NO: 443,

QQPYPPQQPQQPFPQTQQPQQ SEQ ID NO: 494,

35 QAFPQPQQTFPHQPQQQFPQ SEQ ID NO: 461,

QQTFPQPQQTFPHQPQQQFP SEQ ID NO: 454,

QQIFPQPQQTFPHQPQQQAFP SEQ ID NO: 456, or

QQIFPQPQQTFPHQPQQQFP SEQ ID NO: 455.

32. Use of an agent as defined in claim 30 or claim 31 for the preparation of a diagnostic means for use in a method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual, said method comprising determining whether T cells of the individual recognise the agent, recognition by the T cells indicating that the individual has, or is susceptible to, coeliac disease.

33. A method according to claim 30 or claim 31, or a use according to claim 32, wherein the agent is an analogue (iii) which comprises (i) or (ii) bound to (a) an HLA molecule, or (b) a fragment of an HLA molecule capable of binding (i) or (ii).

34. A method or use according to claim 33 wherein the HLA molecule or fragment is in a complex comprising four HLA molecules or fragments of HLA molecules.

35. Use according to any one of claims 32, 33 or 34 wherein the method comprises administering the agent to the skin of an individual and detecting the presence of inflammation at the site of administration, the detection of inflammation indicating that the T cells of the individual recognise the agent.

36. A method according to any one of claims 30, 31, 33 or 34 wherein the sample is a blood sample.

37. A method according to any one of claims 30, 31, 33, 34 or 36 wherein the T cells are not restimulated in antigen specific manner *in vitro* before the said determining.

38. A method for identifying an analogue as defined in any one of claims 30, 33 or 34 comprising determining whether a candidate substance is recognised by a T cell receptor that recognises an epitope comprising sequence as defined in claim 30, recognition of the substance indicating that the substance is an analogue.

39. A method of diagnosing coeliac disease, or susceptibility to coeliac disease, in an individual comprising determining the presence of an antibody that binds to an epitope comprising sequence as defined in claim 30 in a sample from the individual, the presence of the antibody indicating that the individual has, or is susceptible to, coeliac disease.

40. A method of determining whether a composition is capable of causing coeliac disease comprising determining whether a protein capable of being modified by a transglutaminase to an oligopeptide sequence as defined in claim 30 is present in the composition, the presence of the protein indicating that the composition is capable of causing coeliac disease.

41. A method according to claim 40 wherein the said determining is done by contacting the composition with an antibody specific for the sequence which is capable of being modified to the oligopeptide sequence, binding of the antibody to a protein in the composition indicating the composition is capable of causing coeliac disease.

42. A method of identifying an antagonist of a T cell, which T cell recognises an agent as defined in claim 30, comprising contacting a candidate substance with the T cell and detecting whether the substance causes a decrease in the ability of the T cell to undergo an antigen specific response, the detecting of any such decrease in said ability indicating that the substance is an antagonist.

43. A kit for carrying out a method according to any one of claims 30, 31, 33, 34, 36 or 37, or a use according to any one of claims 32 to 35 comprising an agent as defined in any one of claims 30, 31, 33 or 34 and a means to detect the recognition of the peptide by the T cell.

44. Use of an agent or antagonist as defined in claim 42 or a wild type sequence as defined in claim 26 to produce an antibody specific to the agent, antagonist or wild type sequence.

45. Use of a mutation in an epitope of a gliadin protein, which epitope is as defined in claim 30, to decrease the ability of the gliadin protein to cause coeliac disease.

46. Method of identifying a product which is therapeutic for coeliac disease comprising administering a candidate substance to a transgenic mammal as defined in claim 29 which has, or which is susceptible to, coeliac disease and determining whether the substance prevents or treats coeliac disease in the mammal, the prevention or treatment of coeliac disease indicating that the substance is a therapeutic product.

47. A method of diagnosing coeliac disease, or susceptibility to coeliac disease in an individual comprising administering an agent as defined in claim 30 and determining *in vivo* whether T cells in the individual recognise the agent, recognition of the agent indicating that the individual has or is susceptible to coeliac disease.

48. A cell according to claim 28 which is a cell of a graminaceous monocotyledonous species.

49. A cell according to claim 48 which is a cell of wheat, maize, oats, rye, rice, barley, triticale, sorghum, or sugar cane.

50. A process for the production of a protein encoded by a coding sequence as defined in claim 27 which process comprises:

(a) cultivating a cell according to any one of claims 28, 48 or 49 under conditions that allow the expression of the protein; and optionally

(b) recovering the expressed protein.

51. A transgenic plant or plant seed comprising plant cells according to claim 48 or claim 49.

52. A transgenic plant regenerated from a cell according to claim 48 or claim 49.

53. A transgenic plant cell, plant seed, progeny plant, plant part or plant product obtained from a plant according to claim 51 or claim 52.

126

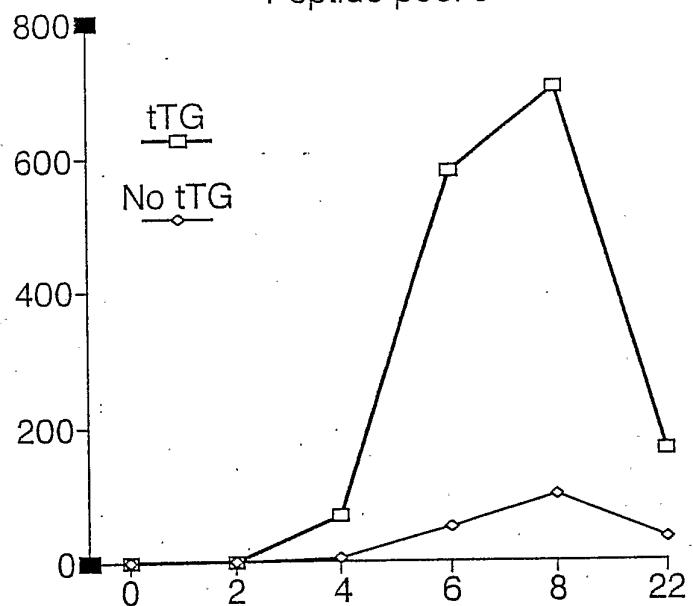
54. A plant product according to claim 53 which is grain, optionally further processed into flour or another grain product.

55. A crop product harvested from a plant or plant seed as defined in claim 51.

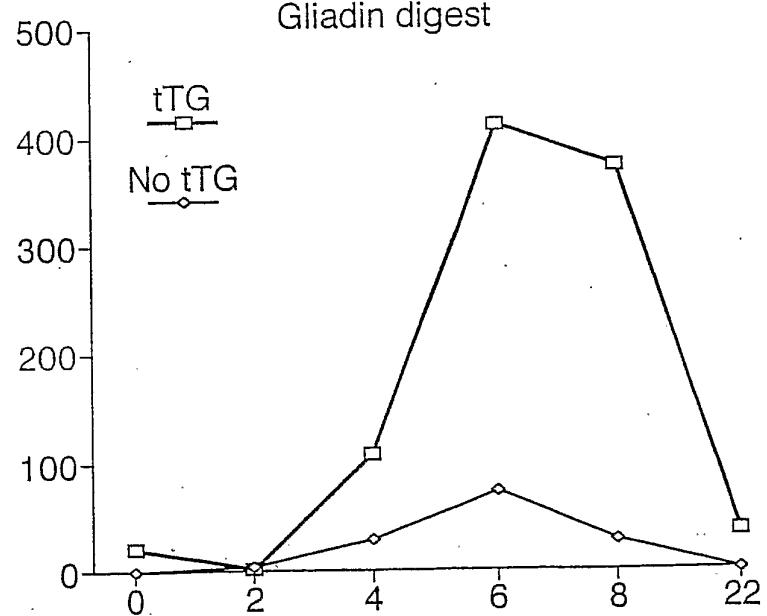
56. A food that comprises a protein as defined in claim 21 or claim 26.

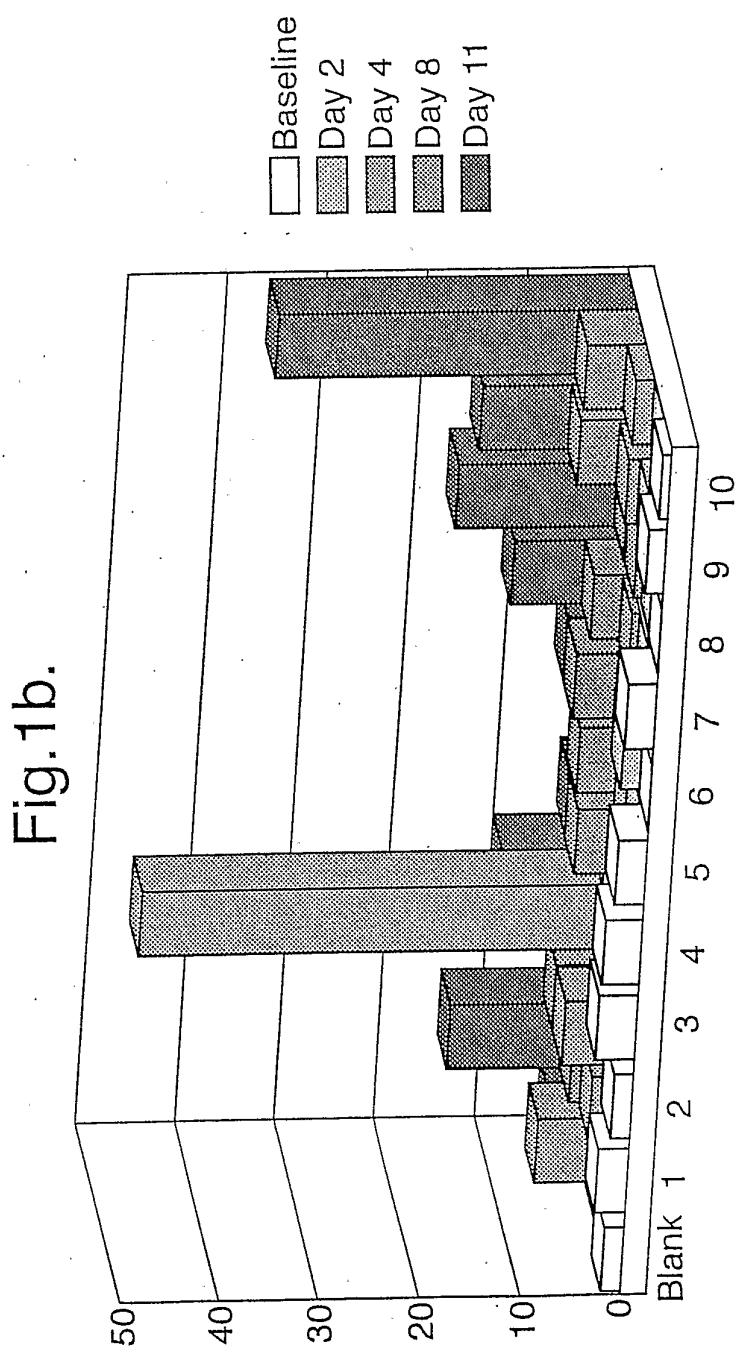
57. A food according to claim 56 in which a protein as defined in claim 21 or claim 26 is used instead of wild-type gliadin.

**Dated 19 November, 2009**


**Isis Innovation Limited**

**Patent Attorneys for the Applicant/Nominated Person**


**SPRUSON & FERGUSON**


Fig. 1a.

Peptide pool 3



Gliadin digest





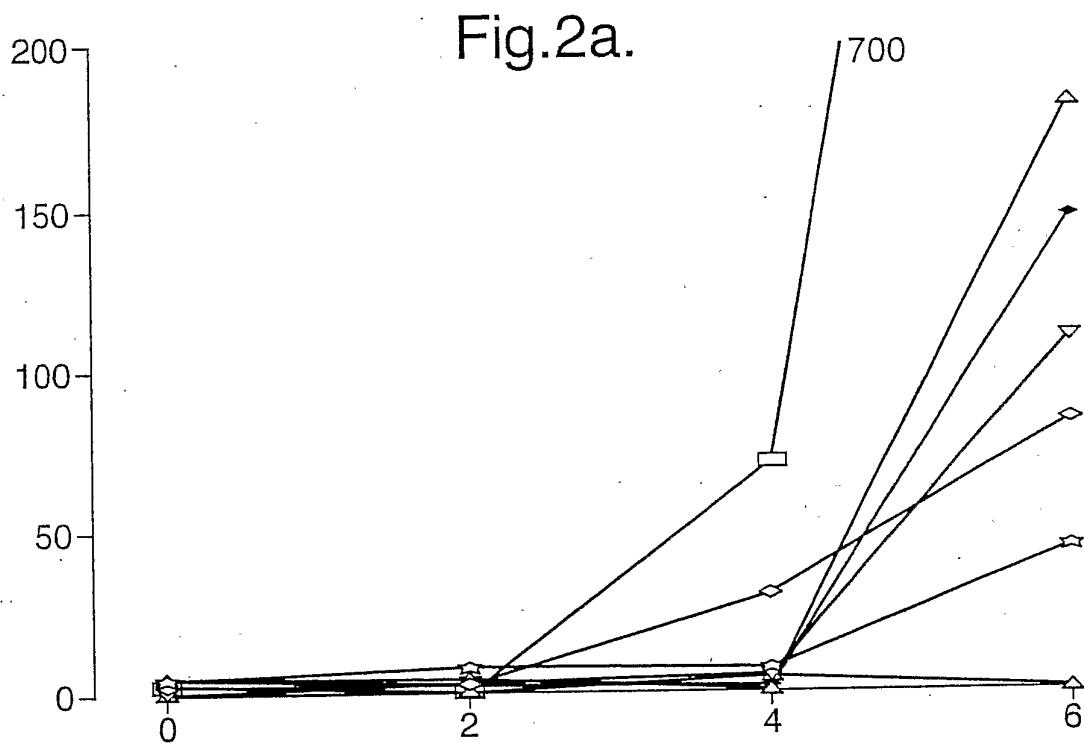
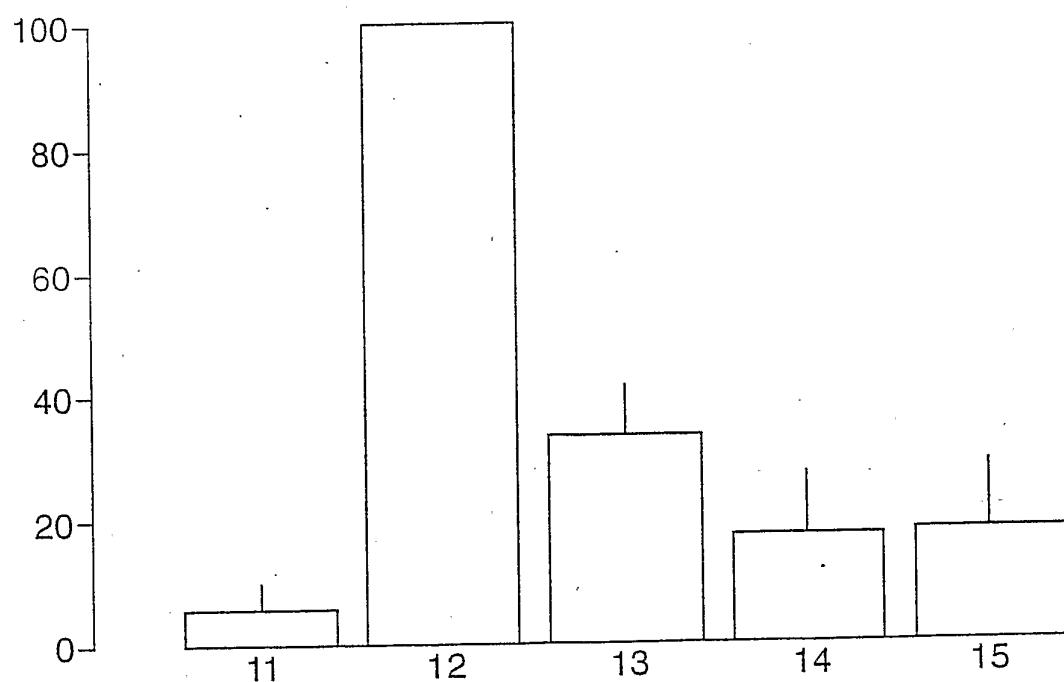




Fig.2b.



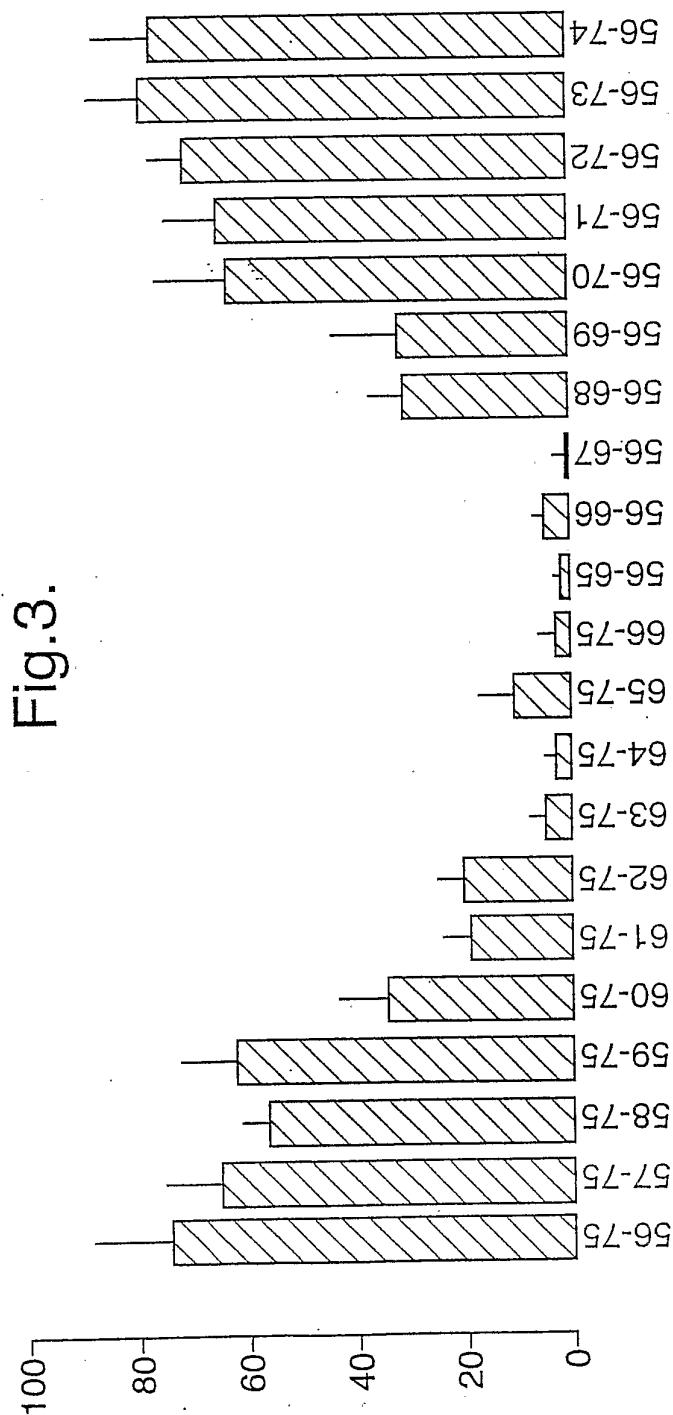



Fig.4a.

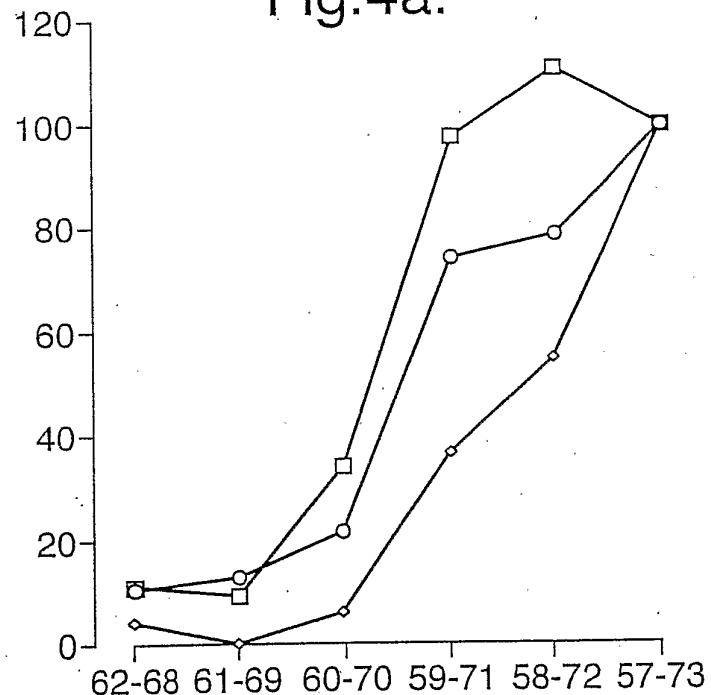



Fig.4b.

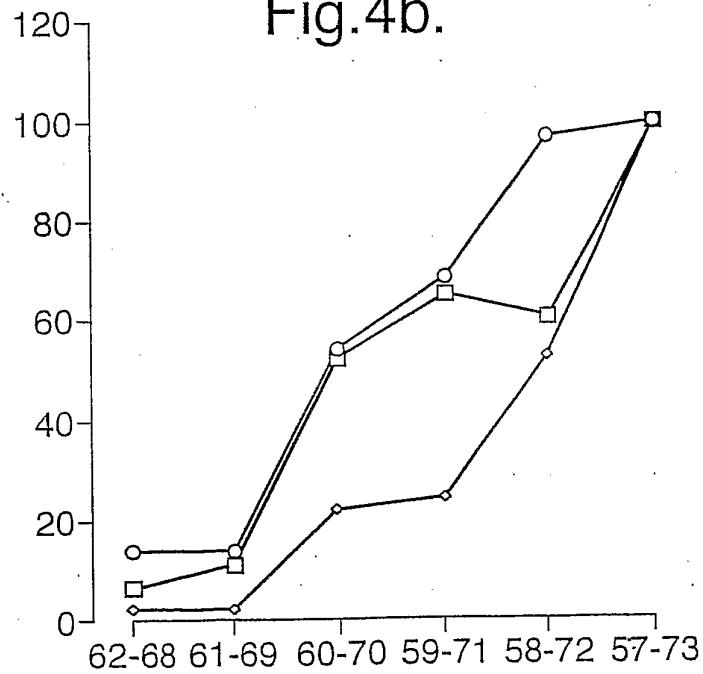



Fig.5.

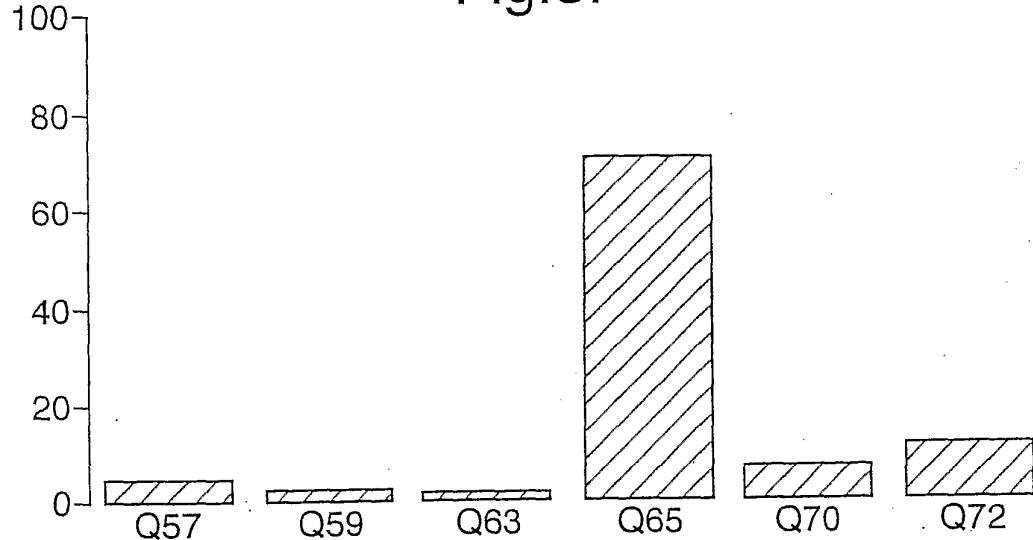



Fig.6.

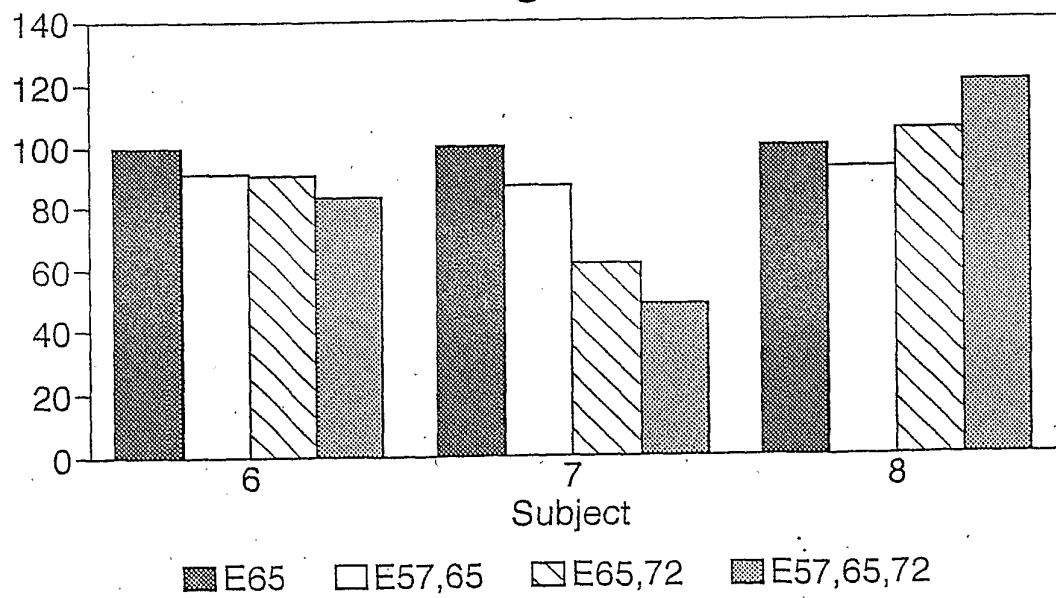



Fig.7a.

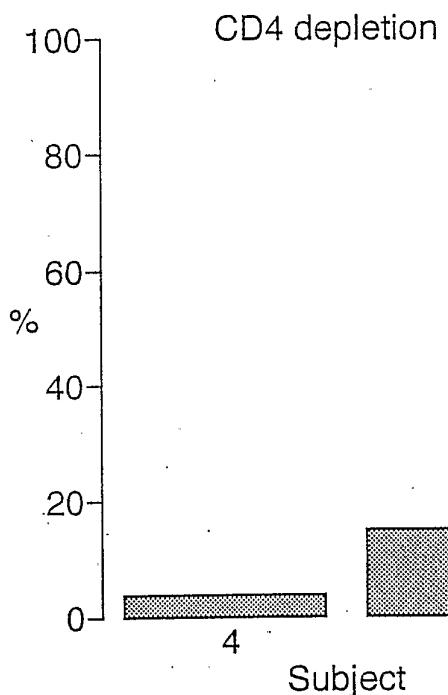




Fig.7b.



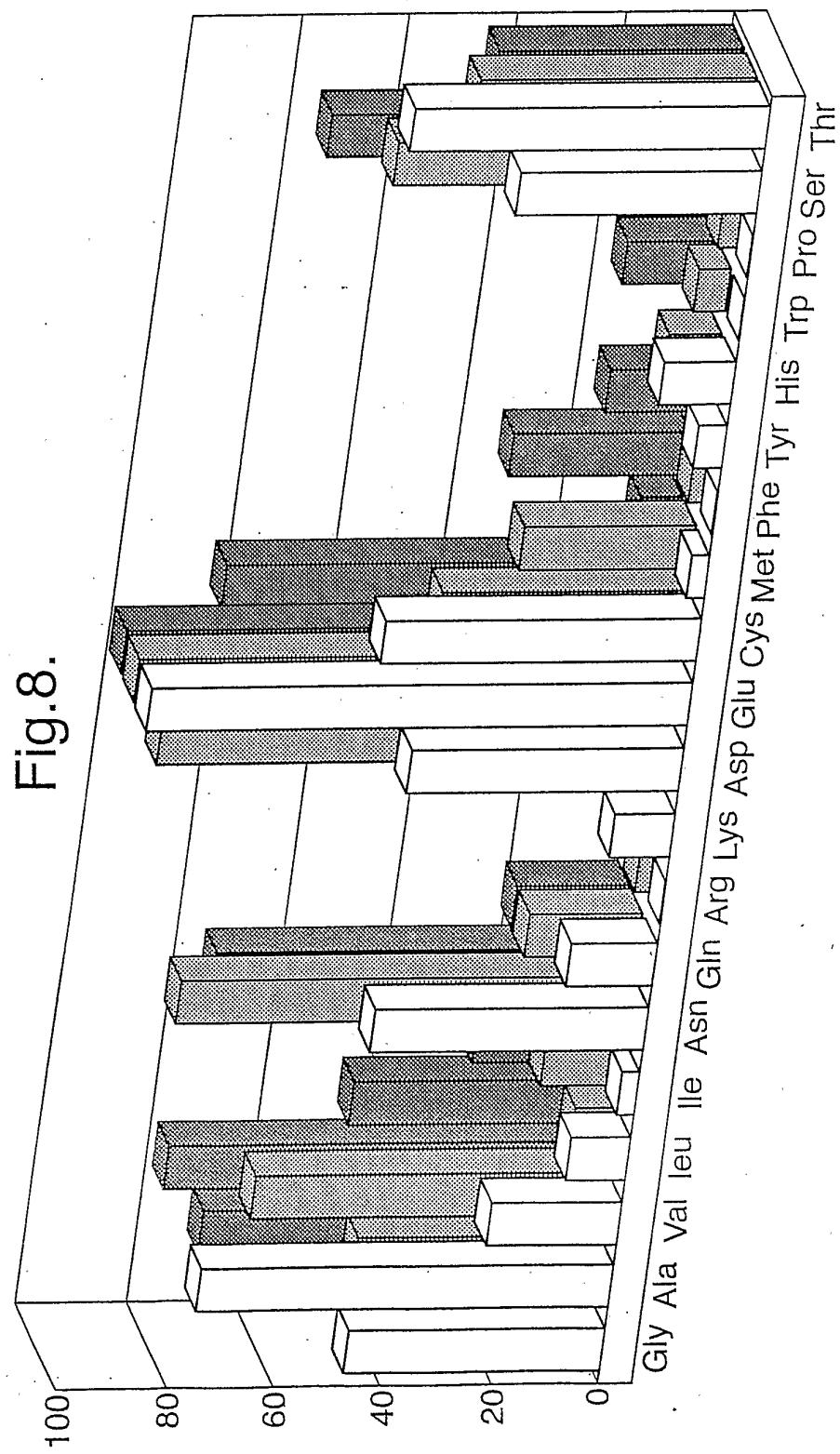



Fig.9.

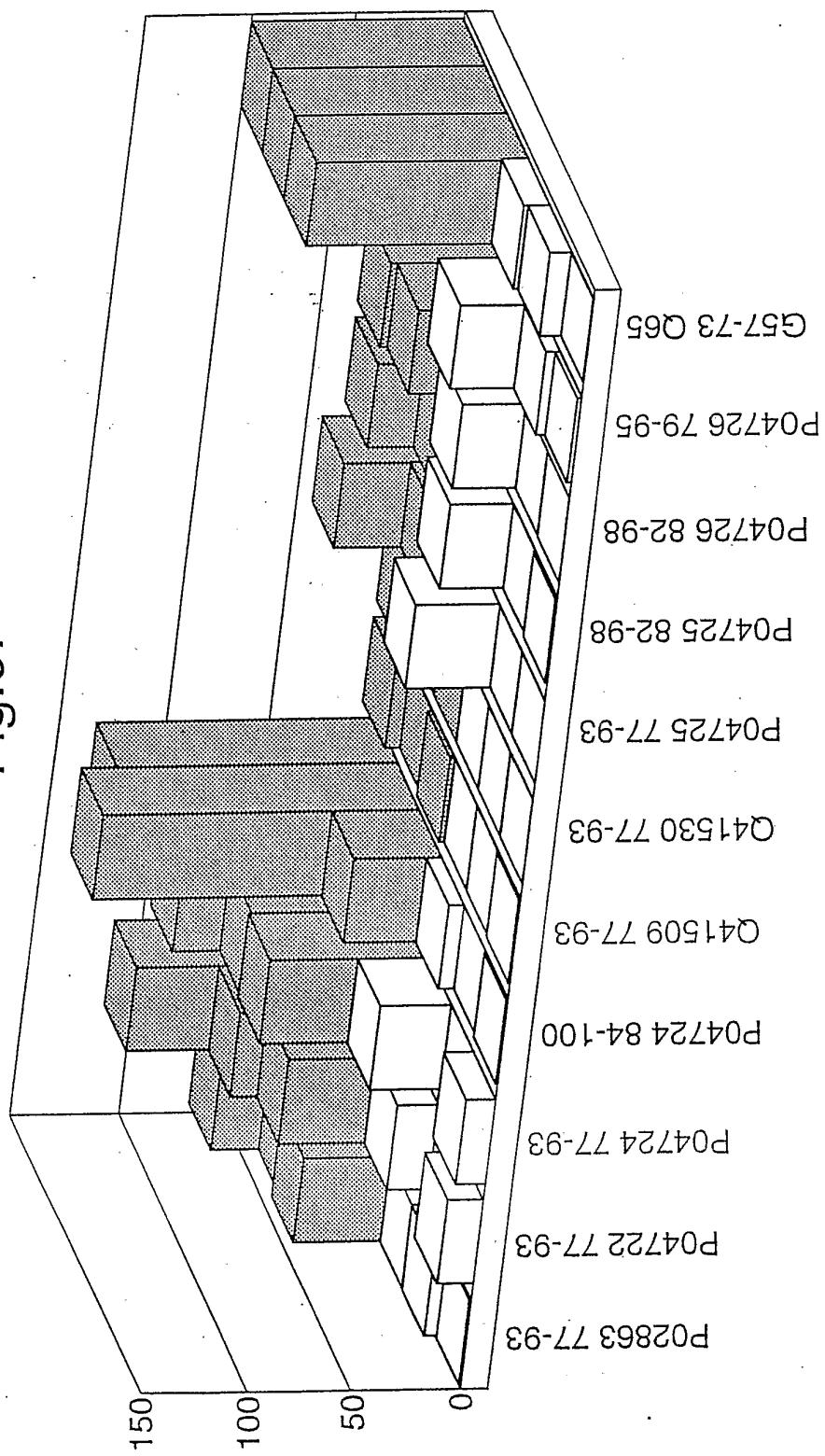



Fig.10.

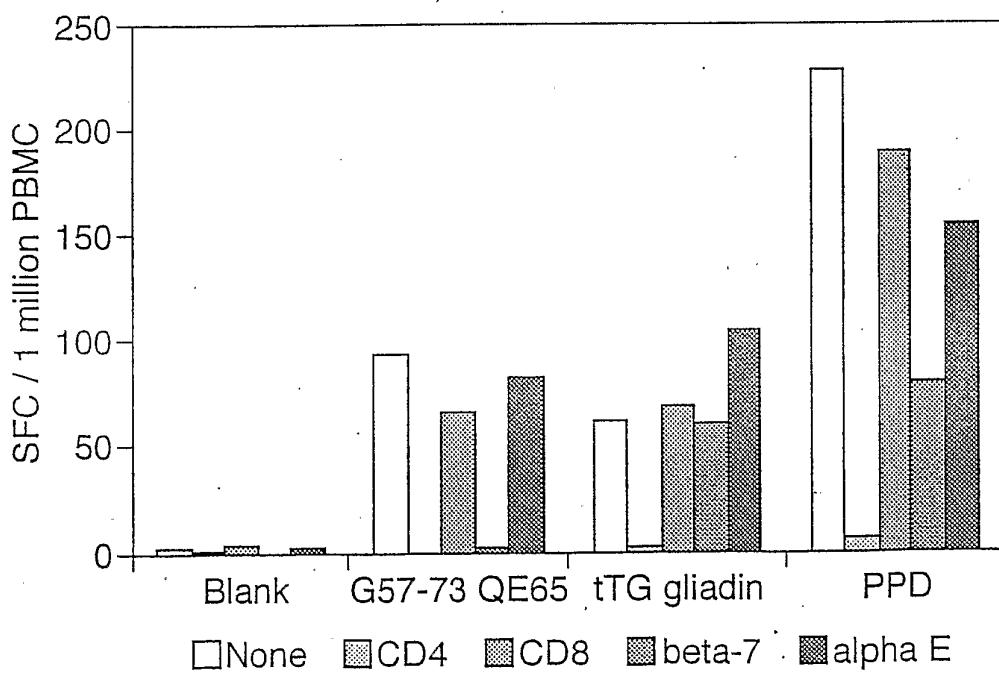
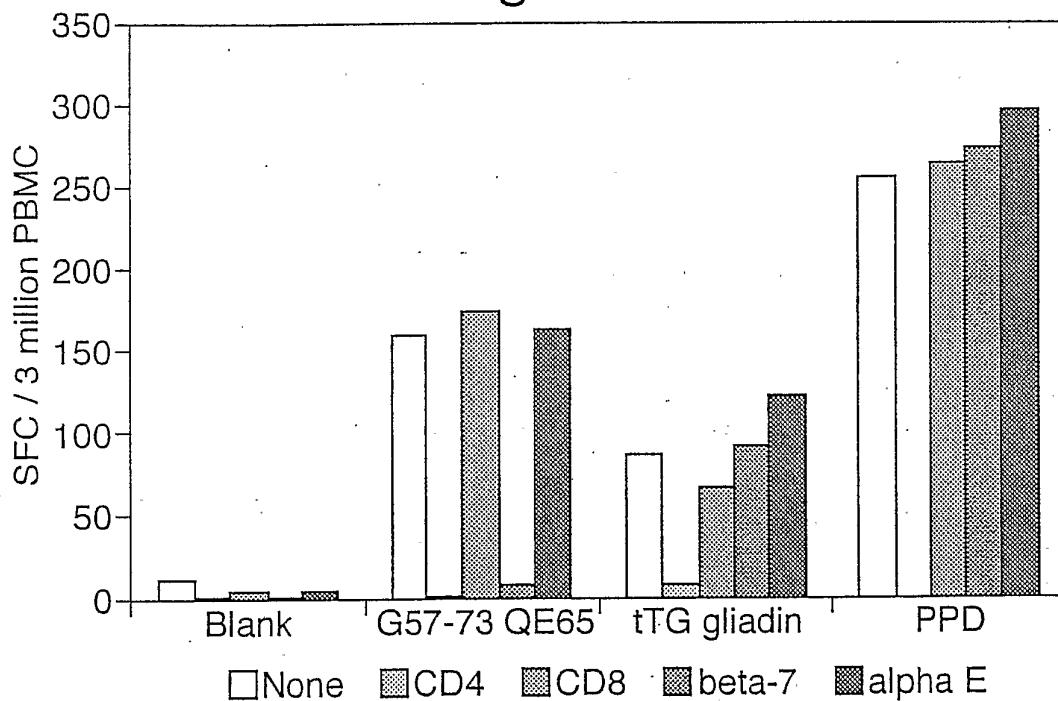




Fig.11.

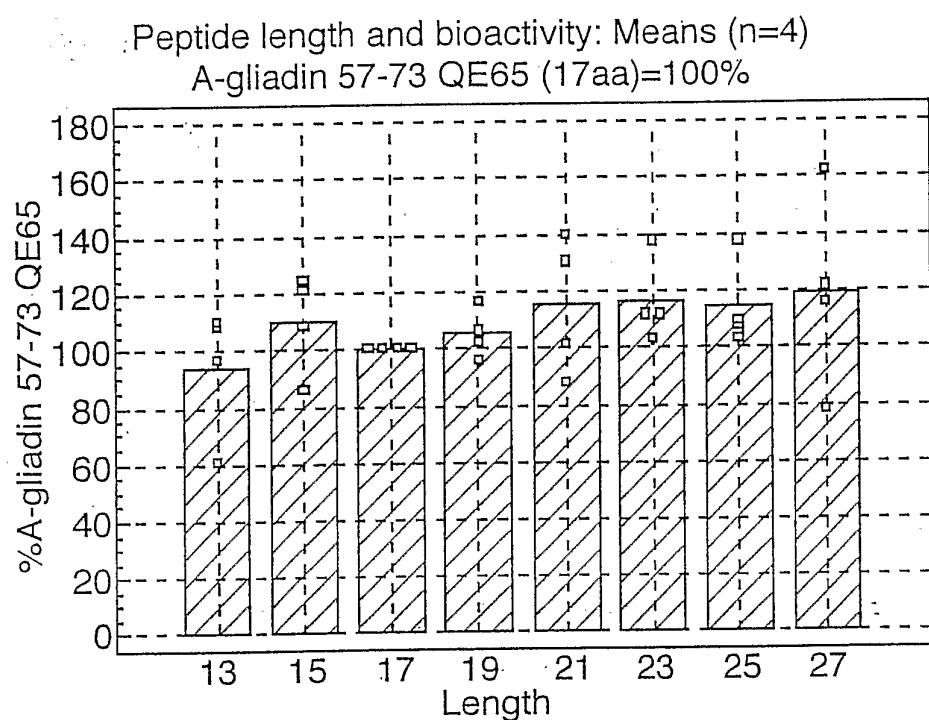



Fig.12a.

Dose response to A-gliadin 57-73 QE65:  
 QLQPFPQPELPYPQPQPS.

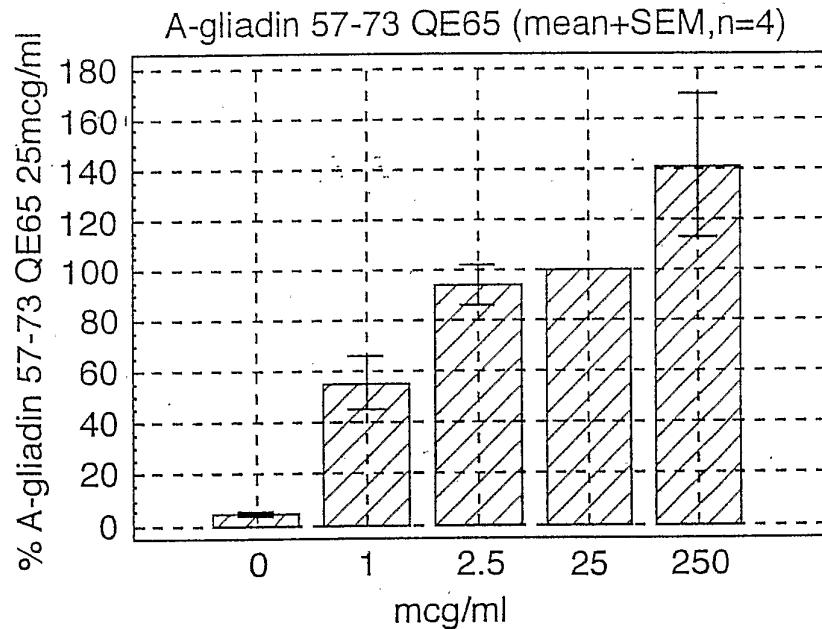



Fig.12b.

Dose response to GDA4\_WHEAT P04724 84-100 QE92:  
 PQLPYPQPELPYPQPQP.

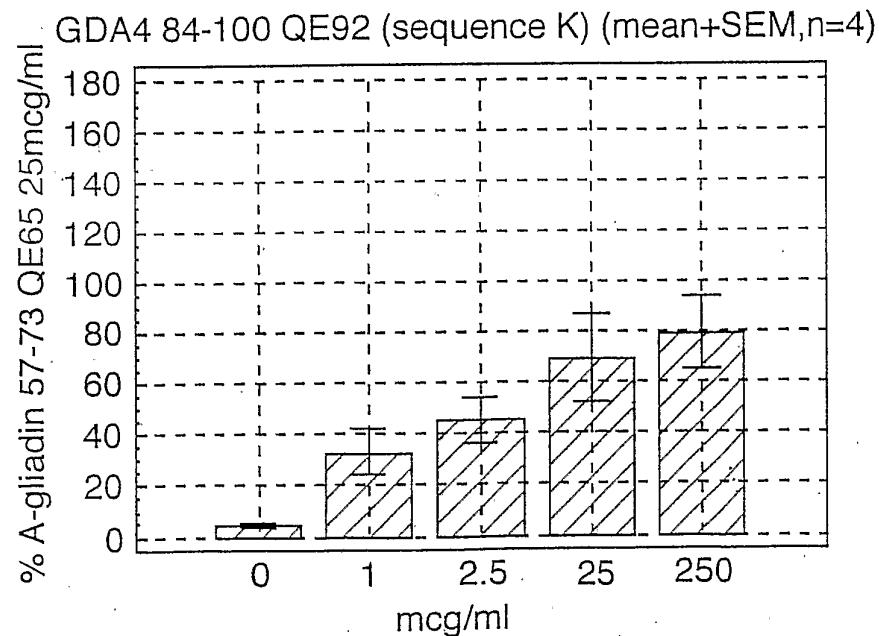



Fig.12c.

Dose response to A-gliadin 57-73:  
 QLQPFPQPQLPYPQPQS (2.5, 25 & 250 mcg/ml),  
 and A-gliadin 57-73 (25 mcg/ml) + tTG treatment.

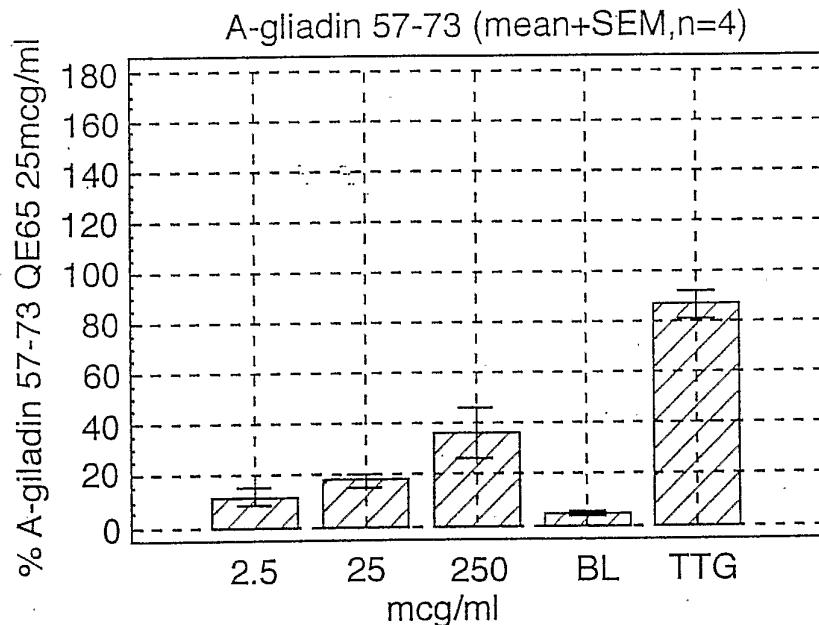



Fig.12d.

Dose response to GDA4\_WHEAT P04724 84-100:  
 PQLPYPQPQLPYPQPQP (2.5, 25 & 250 mcg/ml),  
 and P04724 84-100 (25 mcg/ml) + tTG treatment.

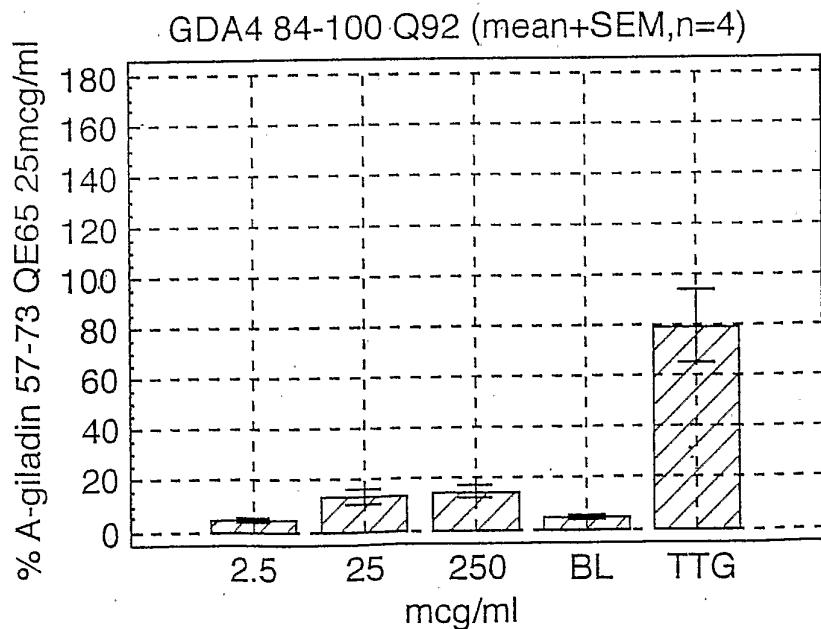



Fig.12e.

Dose response to the DQ2-restricted  $\alpha$  gliadin T cell epitope A-gliadin 57-68 QE65: QLQPFPQPELPY (E65) (2.5, 25 & 250 mcg/ml), and A-gliadin 57-68: QLQPFPQPQLPY (Q65) (25 mcg/ml) +/- tTG treatment.

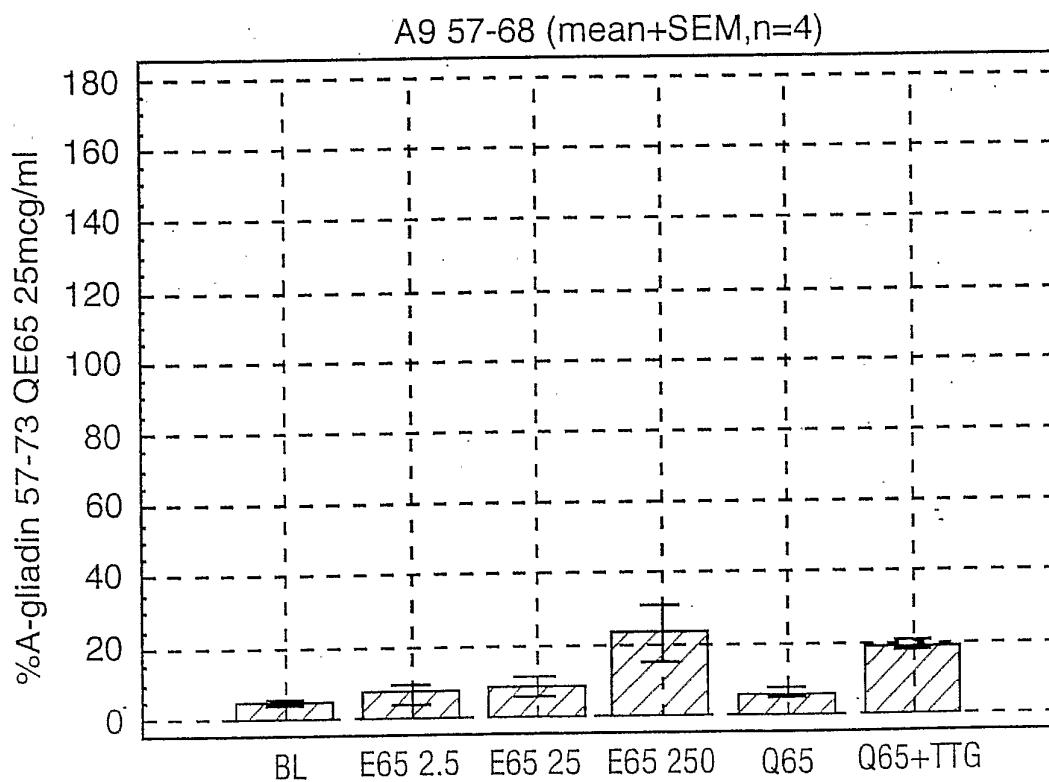
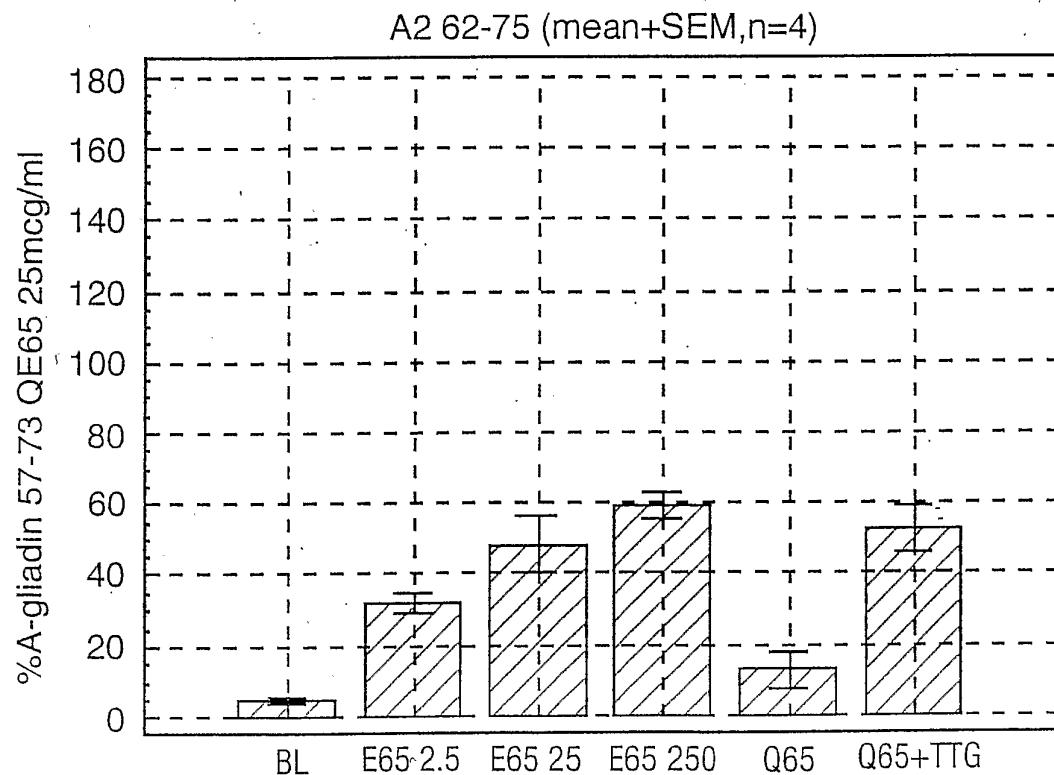
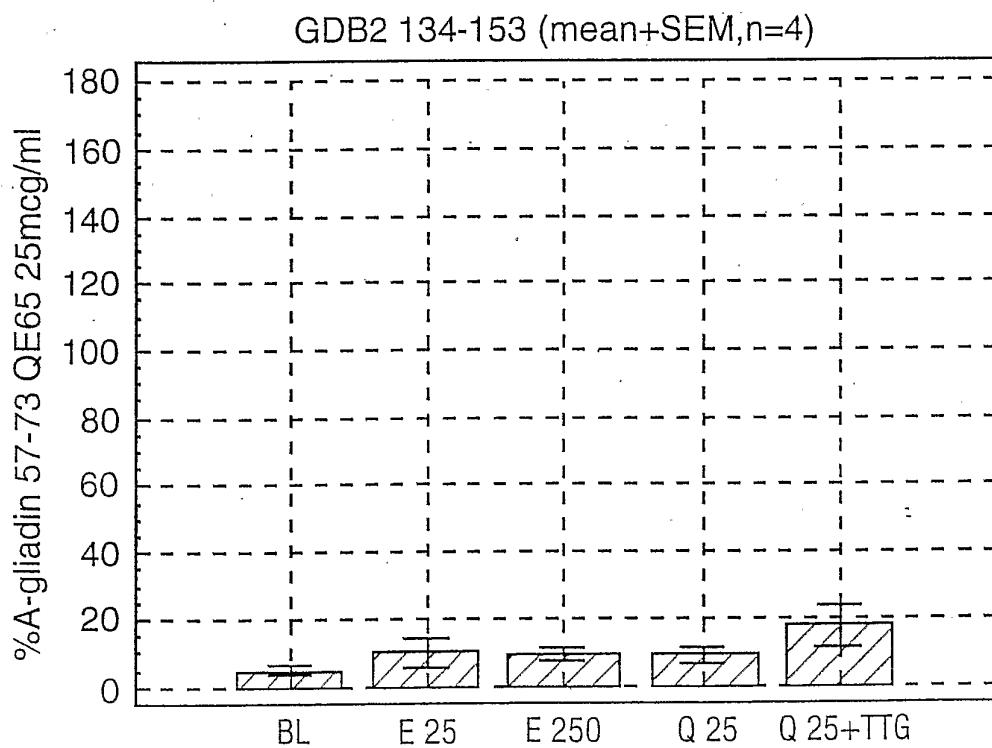




Fig.12f.

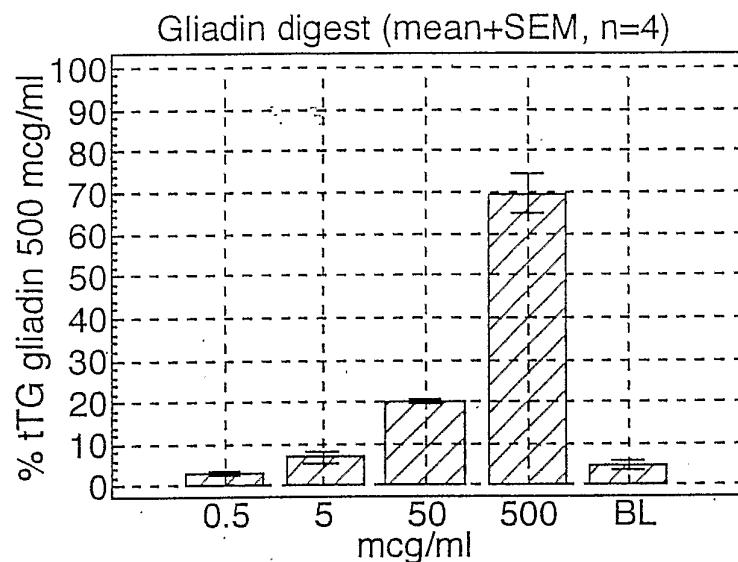
Dose response to the DQ2-restricted  $\alpha$  gliadin T cell epitope  $\alpha$ -2 62-75 QE65 & QE72: PQPELPYPQPELPY (E65) (2.5, 25 & 250 mcg/ml), and  $\alpha$ -2 62-75: PQPQLPYPQPQLPY (Q65) (25 mcg/ml) +/- tTG treatment.




**Fig.12g.**

Dose response to the DQ8-restricted  $\alpha$  gliadin T cell epitope GDA9 202-219: QE208 & 216: QQYPSGEGSFQPSQENPQ (E) (25 & 250 mcg/ml), and to GDA9 202-219 QQYPSGQGSFQPSQQNPQ (Q) (25 mcg/ml) +/- tTG treatment.




**Fig.12h.**

Dose response to the DQ2-restricted  $\gamma$  gliadin T cell epitope GDB2 134-153 QE140, 148,150: QQLPQPEQPQQSFPEQERPF (E) (25 & 250 mcg/ml), and to GDB2 134-153: QQLPQPQQPQQSFPPQQQRPF (Q) (25 mcg/ml) +/- tTG treatment.



### Fig.13a.

Dose response to gliadin digest by chymotrypsin.



### Fig.13b.

Dose response to gliadin digested by chymotrypsin then treated with tTG.

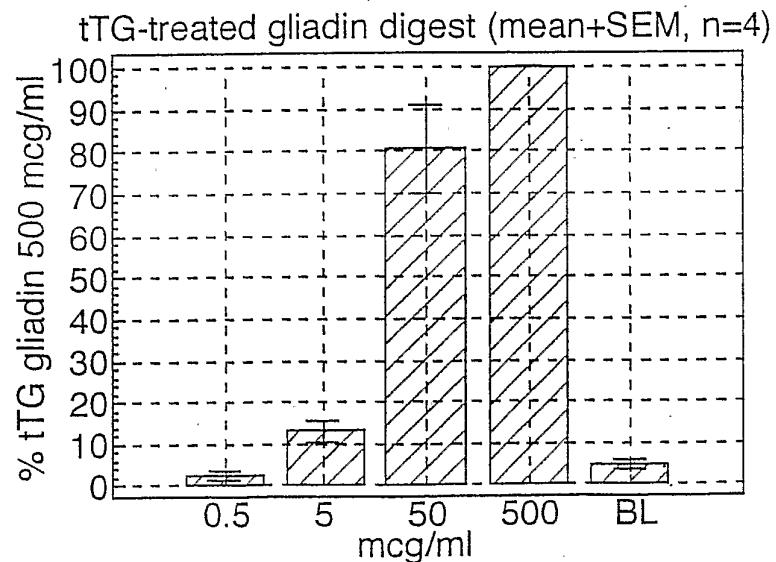
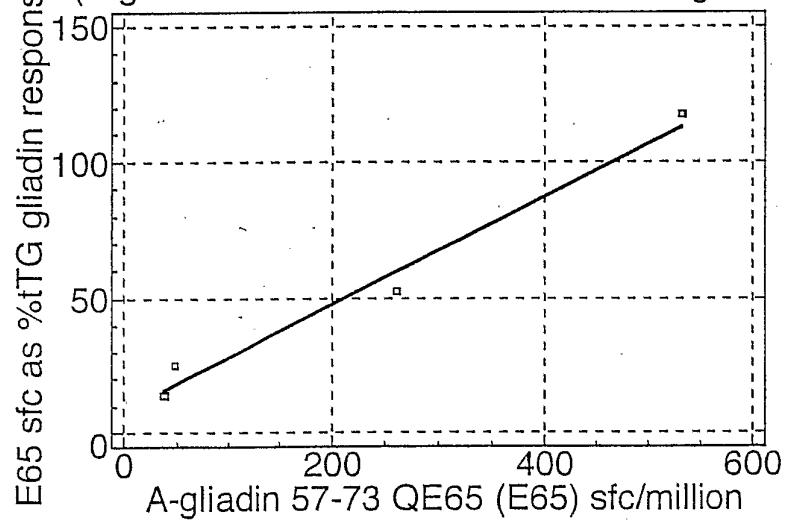
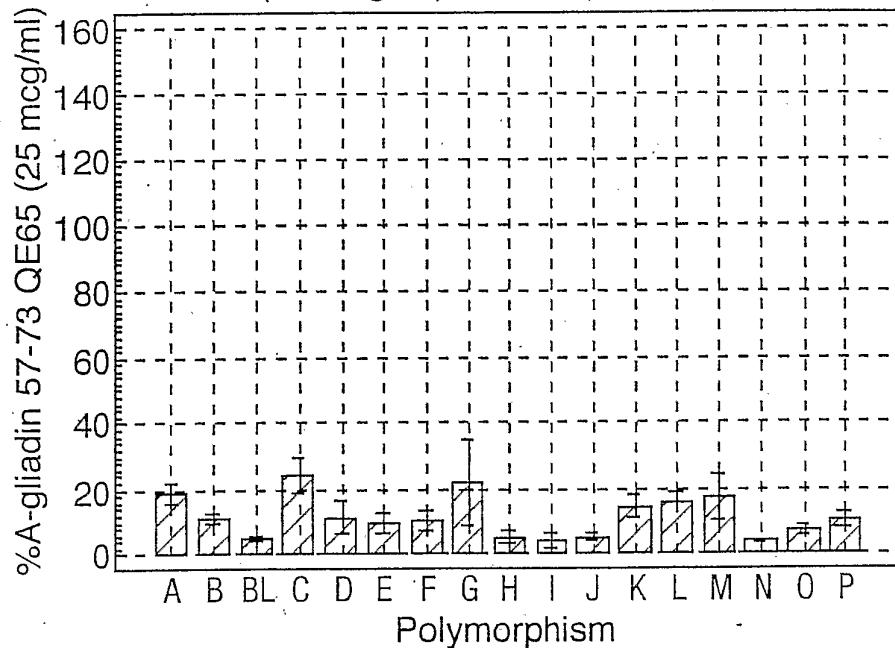




Fig.13c.

Total ELISpot responses to A-gliadin 57-73 QE65 (25mcg/ml) versus A-gliadin 57-73 QE65 responses as percent of tTG gliadin (500mcg/ml) responses.


Responses to dominant epitope and complete antigen (A-gliadin 57-73 QE65 and tTG-treated gliadin)



(Fig.14.)

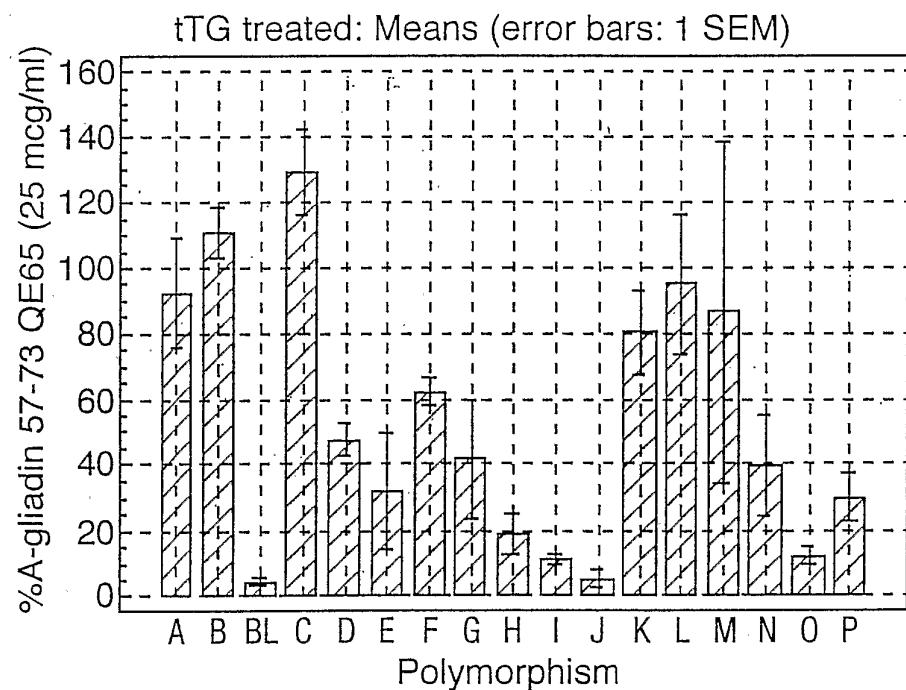
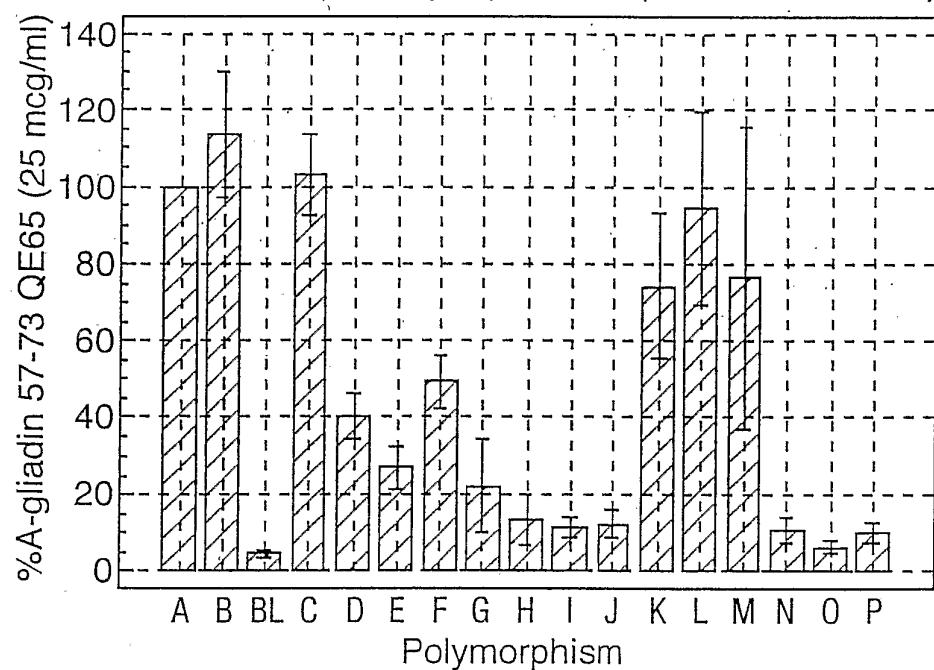

Bioactivity of gliadin polymorphisms of A-gliadin 57-73  
 (A) in coeliac subjects 6/7 days after gluten challenge  
 (Gamma-Interferon Elispot) (n=4).

Fig.14a. Unmodified (25 mcg/ml): Means (error bars: 1 SEM)

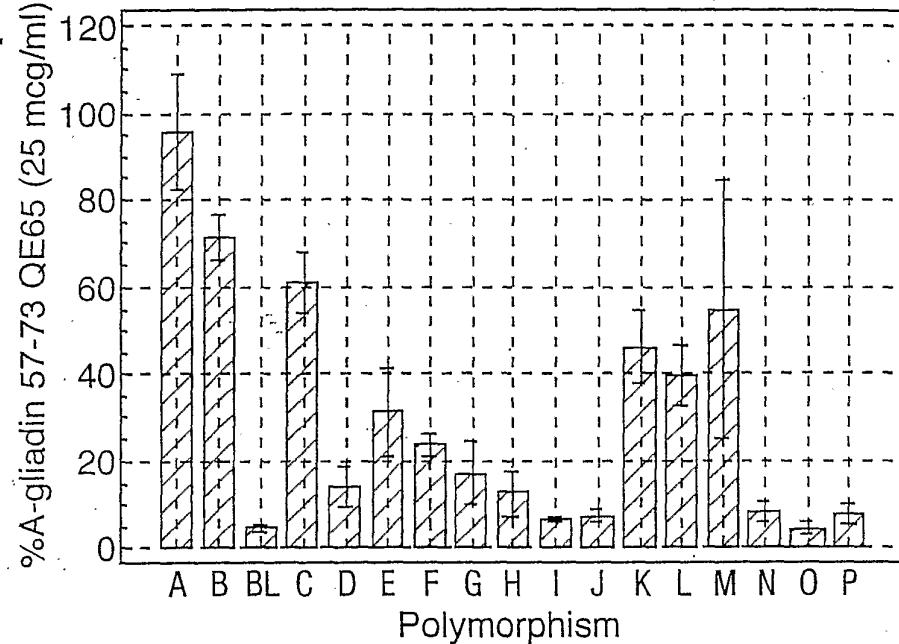


|   |                                |   |                                |
|---|--------------------------------|---|--------------------------------|
| A | QLQPFPQPQLPYPQPQPS             | I | QLQPFPQPQLSYSQPQP              |
| B | QLQPFPQPQLPYPQPQP              | J | QPQPFP <del>PP</del> QLPYPQTQP |
| C | QLQPFPQPQLPYPQPQL              | K | PQLPYPQPQLPYPQPQP              |
| D | QLQPFPQPQLPY <del>L</del> QPQS | L | PQLPYPQPQLPYPQPQL              |
| E | QLQPFP <del>R</del> PQLPYPQPQP | M | PQPQPFLPQLPYPQPQS              |
| F | QLQPFPQPQLPYSQPQP              | N | PQPQPFP <del>P</del> QLPYPQPQS |
| G | QLQPFL <del>Q</del> QLPYSQPQP  | O | PQPQPFP <del>P</del> QLPYPQTQP |
| H | QLQPFSQPQLPYSQPQP              | P | PQPQPFP <del>P</del> QLPYPQPPP |

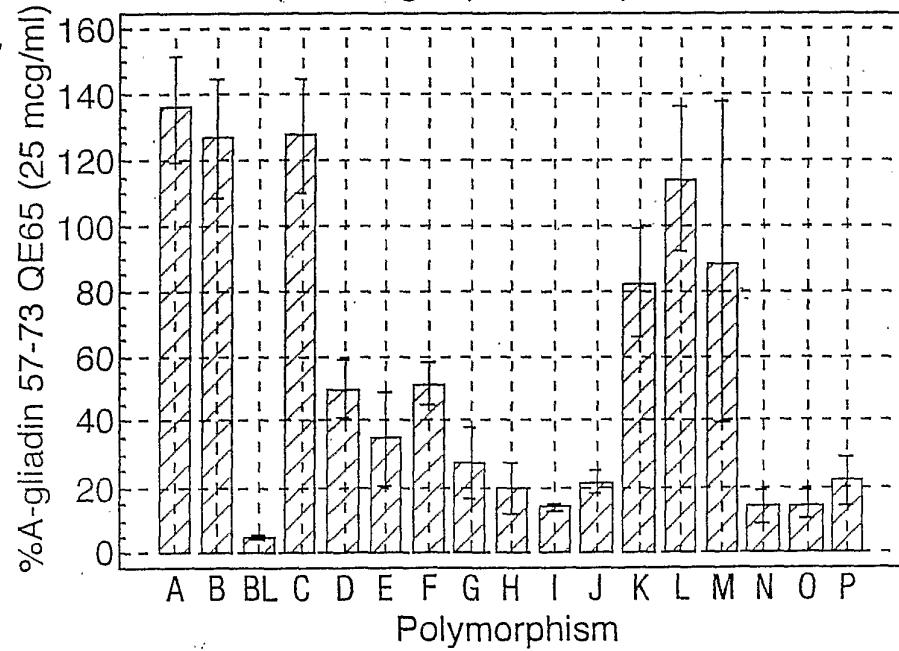

Fig.14b.



|   |                                       |   |                                             |
|---|---------------------------------------|---|---------------------------------------------|
| A | QLQPFPQPQLPYPQPQS                     | I | QLQPFPQPQL <u>SYS</u> QPQP                  |
| B | QLQPFPQPQLPYPQPQP                     | J | QPQPFP <u>PPP</u> QLPYPQTQP                 |
| C | QLQPFPQPQLPYPQPQL                     | K | <u>PQL</u> PYPQPQLPYPQPQP                   |
| D | QLQPFPQPQLP <u>Y</u> LPQPS            | L | <u>PQL</u> PYPQPQLPYPQPQL                   |
| E | QLQPFP <u>R</u> PQLPYPQPQP            | M | <u>PQP</u> QPFLPQLPYPQPQS                   |
| F | QLQPFPQPQLPYS <u>SQ</u> QPQP          | N | <u>PQP</u> QPFP <u>PP</u> QLPYPQPQS         |
| G | QLQPFL <u>Q</u> PQLPYS <u>SQ</u> QPQP | O | <u>PQP</u> QPFP <u>PP</u> QLPYPQTQP         |
| H | QLQPFS <u>Q</u> PQLPYS <u>SQ</u> QPQP | P | <u>PQP</u> QPFP <u>PP</u> QLPYPQP <u>PP</u> |


Fig. 14c.

QE65 substituted (25 mcg/ml): Means (error bars: 1 SEM)




|   |                                |   |                                             |
|---|--------------------------------|---|---------------------------------------------|
| A | QLQPFPQPQLPYPQPQS              | I | QLQPFPQPQLSYSQPQP                           |
| B | QLQPFPQPQLPYPQPQP              | J | QPQPFP <del>PP</del> QLPYPQTQP              |
| C | QLQPFPQPQLPYPQPQL              | K | PQLPYPQPQLPYPQPQP                           |
| D | QLQPFPQPQLPYLQPQS              | L | PQLPYPQPQLPYPQPQL                           |
| E | QLQPFP <del>RP</del> QLPYPQPQP | M | PQPQPFLPQLPYPQPQS                           |
| F | QLQPFPQPQLPYSQPQP              | N | PQPQPFP <del>PP</del> QLPYPQPQS             |
| G | QLQPFLQPQLPYSQPQP              | O | PQPQPFP <del>PP</del> QLPYPQTQP             |
| H | QLQPF <del>S</del> QPQLPYSQPQP | P | PQPQPFP <del>PP</del> QLPYPQP <del>PP</del> |

QE65-substituted (2.5 mcg/ml): Means (error bars: 1 SEM)  
Fig.14d.



QE65-substituted (250 mcg/ml): Means (error bars: 1 SEM)  
Fig.14e.



|   |                    |   |                     |
|---|--------------------|---|---------------------|
| A | QLQPFPQPQLPYPQPQPS | I | QLQPFPQPQLSYSQPQP   |
| B | QLQPFPQPQLPYPQPQP  | J | QPQPFPPPPQLPYPQTQP  |
| C | QLQPFPQPQLPYPQPQL  | K | PQLPYPQPQLPYPQPQP   |
| D | QLQPFPQPQLPYLQPQS  | L | PQLPYPQPQLPYPQPQL   |
| E | QLQPFPBPQLPYPQPQP  | M | PQPQPFLPQLPYPQPQPS  |
| F | QLQPFPQPQLPYSQPQP  | N | PQPQPFPQPQLPYPQPQPS |
| G | QLQPFLQPQLPYSQPQP  | O | PQPQPFPQPQLPYPQTQP  |
| H | QLQPFSQPQLPYSQPQP  | P | PQPQPFPQPQLPYPQPPPP |

Fig.15.

Alanine scan: Means (error bars: 95% CI for mean)

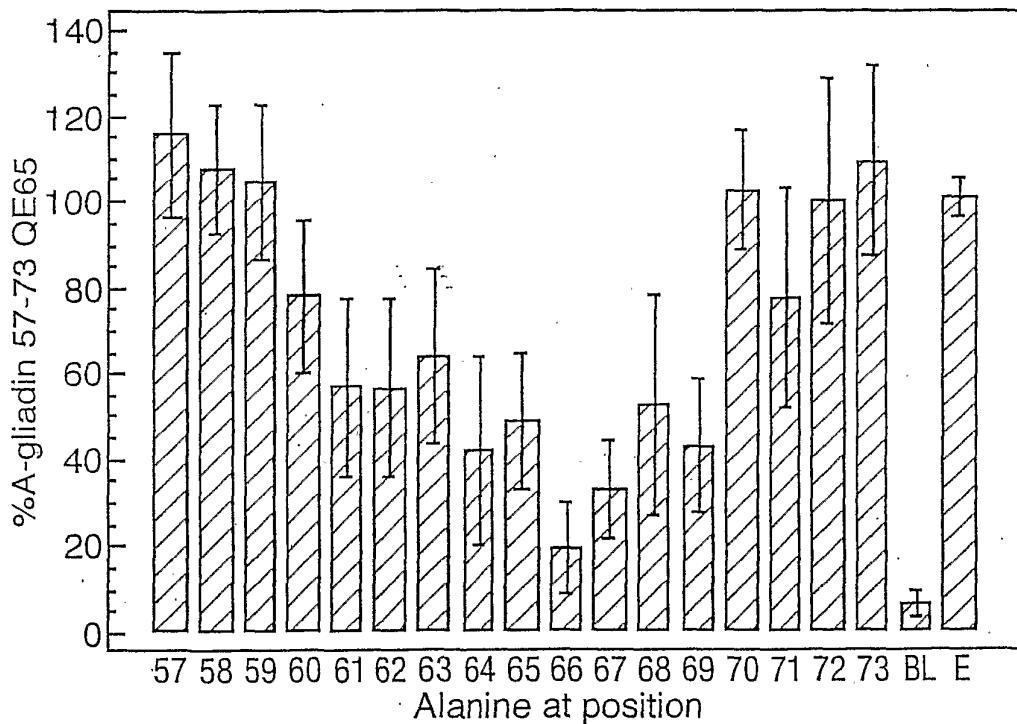



Fig.16.

Lysine scan: Means (error bars: 95% CI for mean)

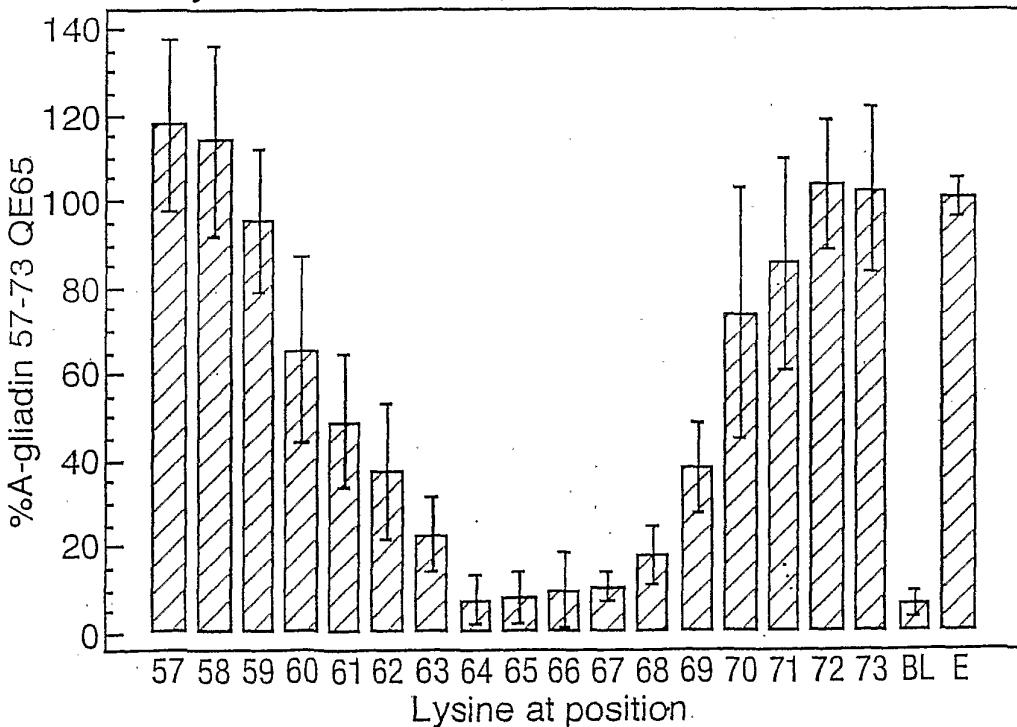



Fig.17.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQSQ

60.....70

P60: Means (error bars: 95% CI for mean)

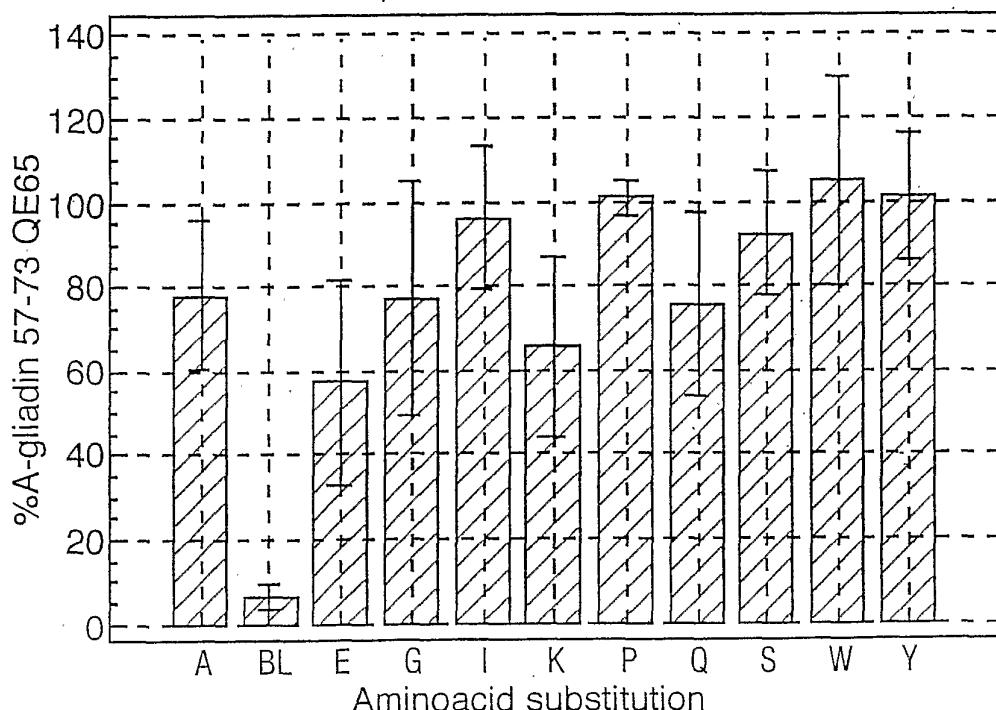



Fig.18.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQS

60.....70

F61: Means (error bars: 95% CI for mean)

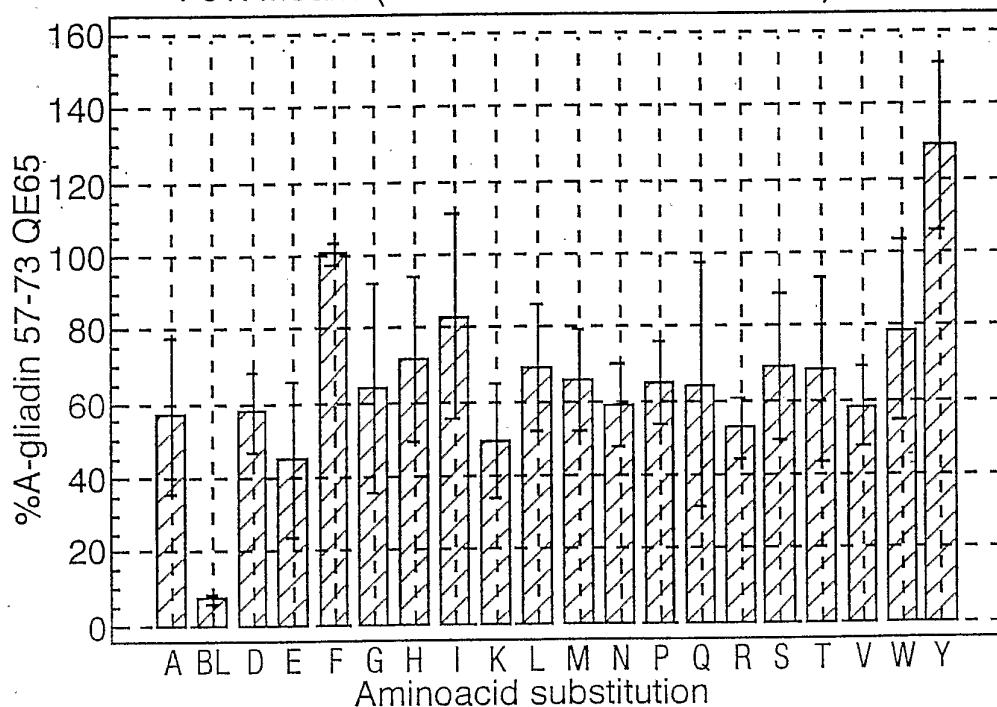



Fig.19.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQSQ

60.....70

P62 Means (error bars: 95% CI for mean)

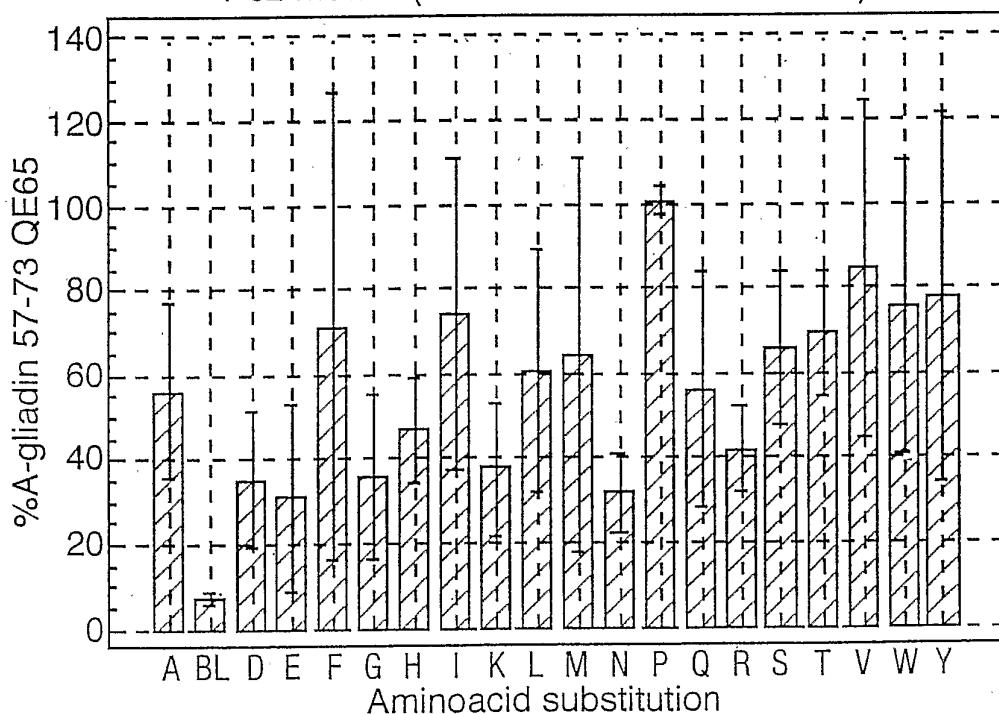



Fig.20.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQS

60.....70

Q63 Means (error bars: 95% CI for mean)

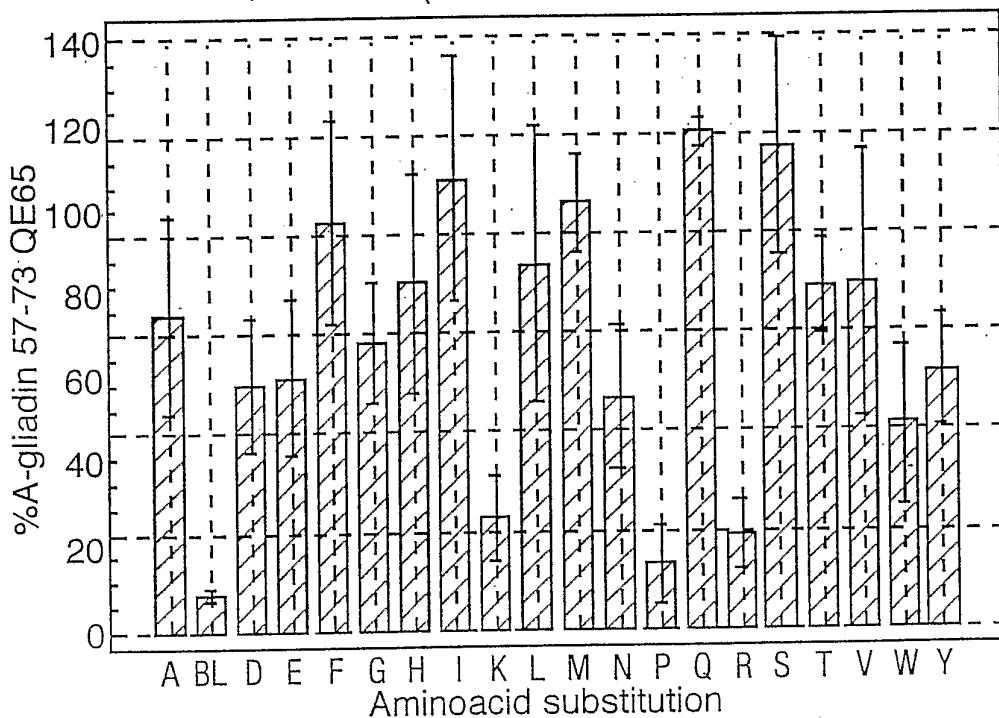



Fig.21.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQS

60.....70

P64 Means (error bars: 95% CI for mean)

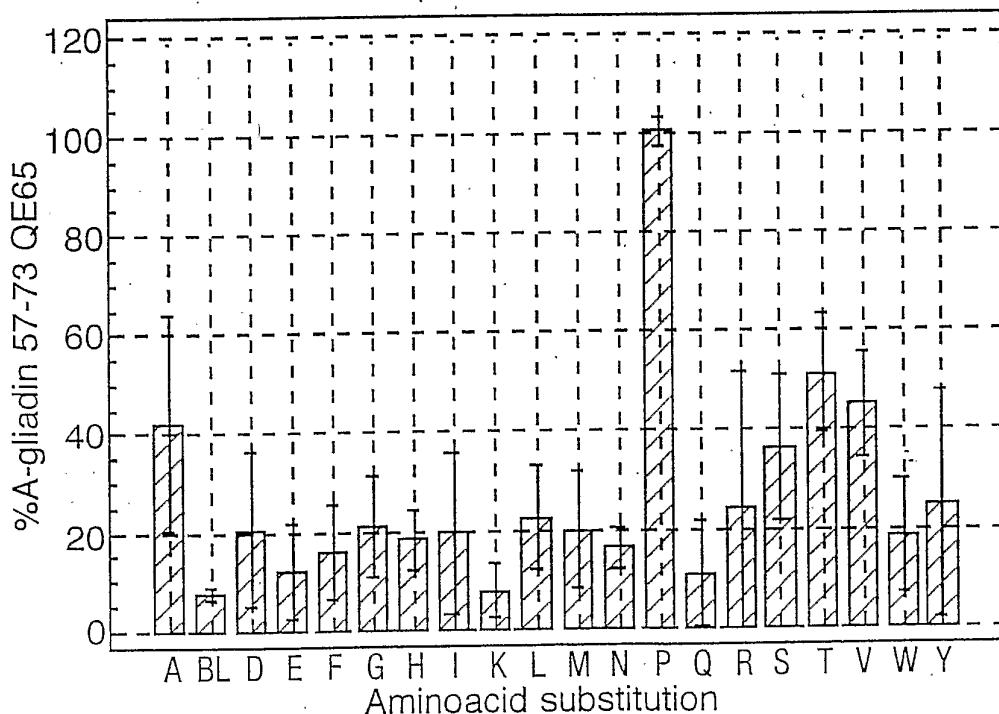



Fig.22.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQS

60.....70

E65 Means (error bars: 95% CI for mean)

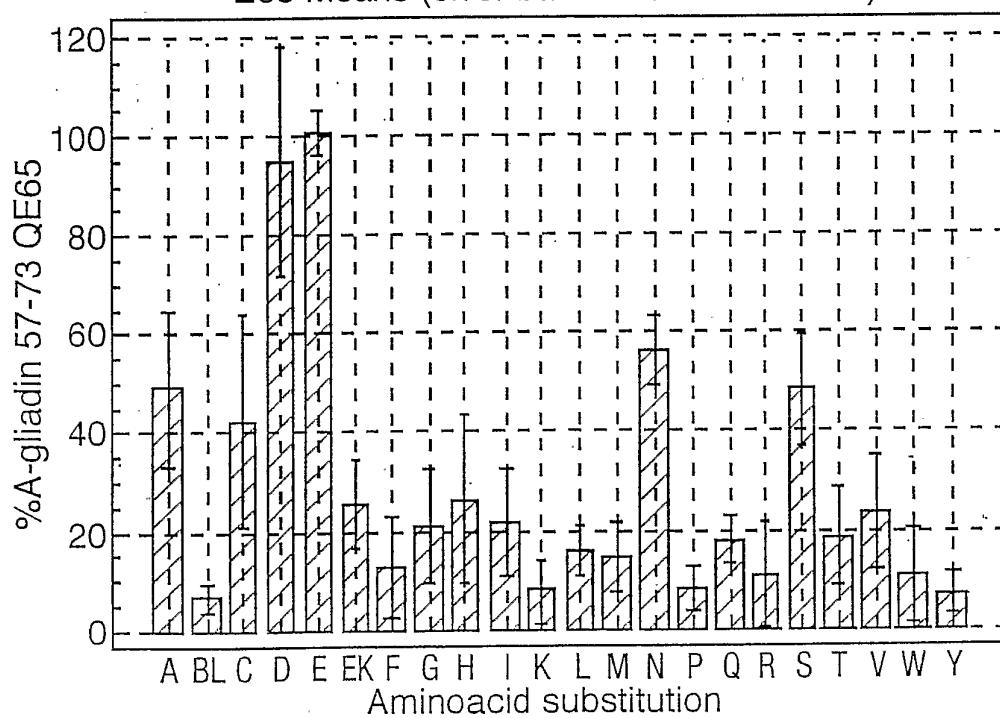



Fig.23.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQS

60.....70

L66 Means (error bars: 95% CI for mean)

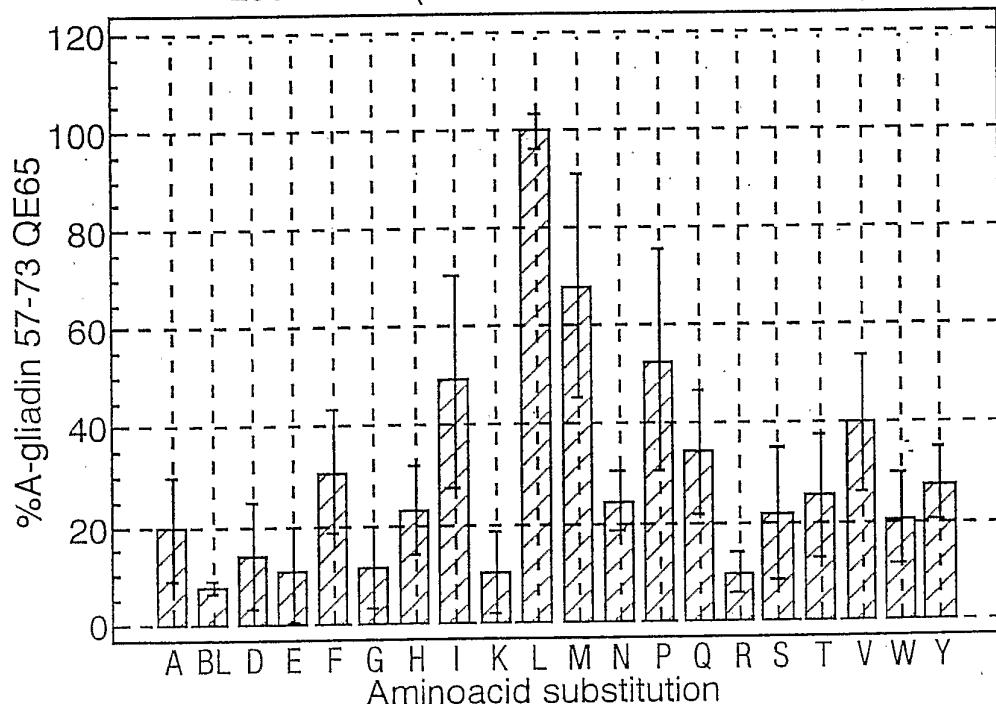



Fig.24.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQSQ

60.....70

P67 Means (error bars: 95% CI for mean)

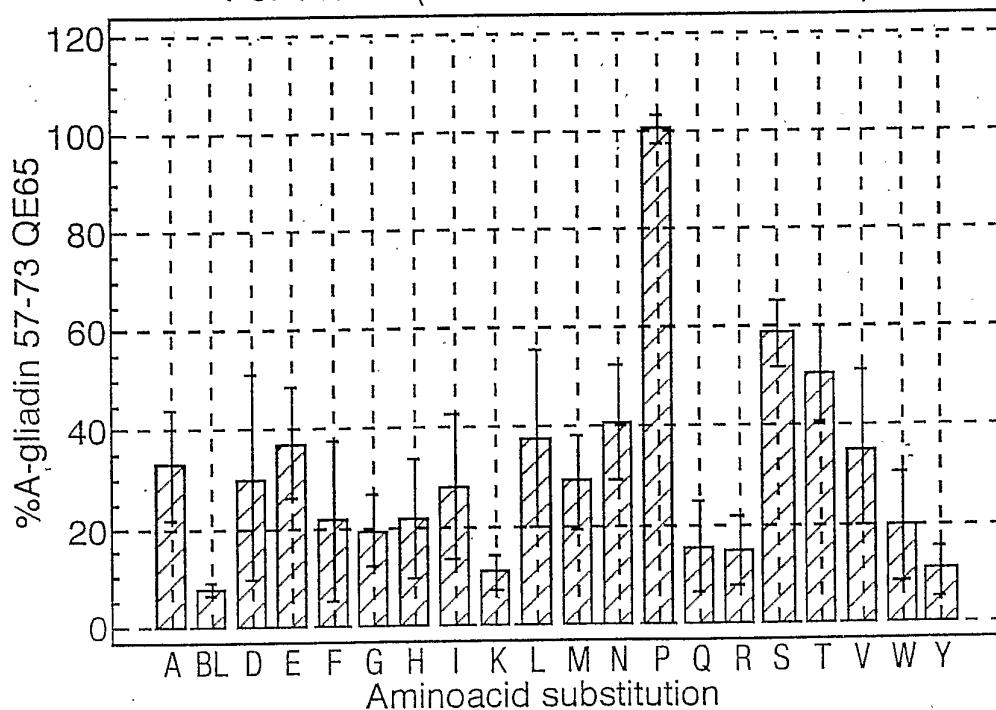



Fig.25.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQS

60.....70

Y68 Means (error bars: 95% CI for mean)

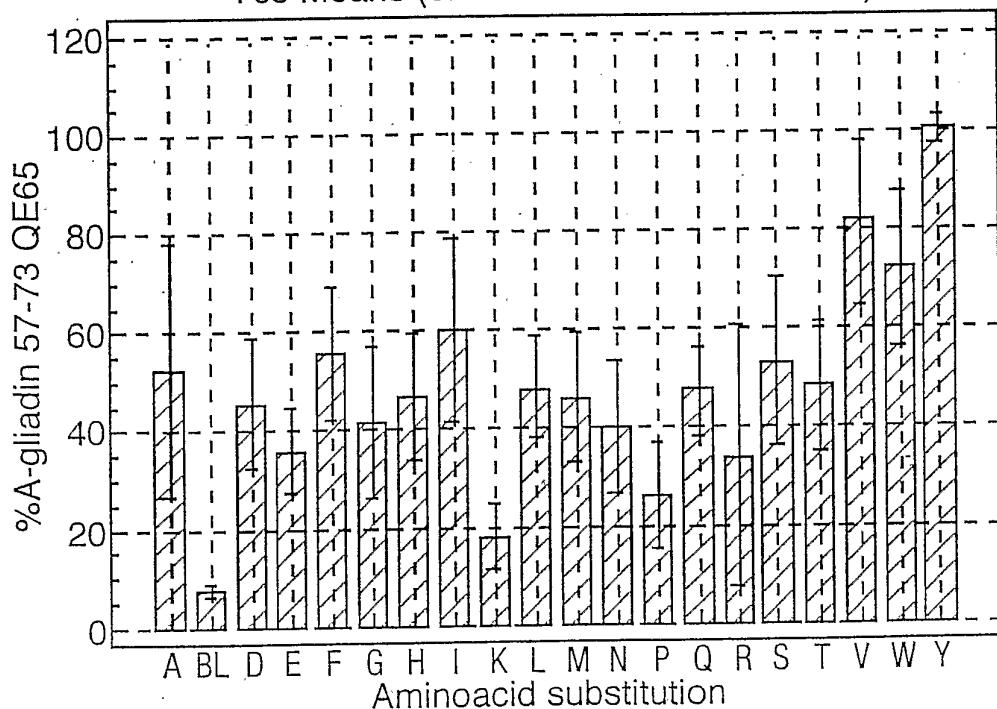


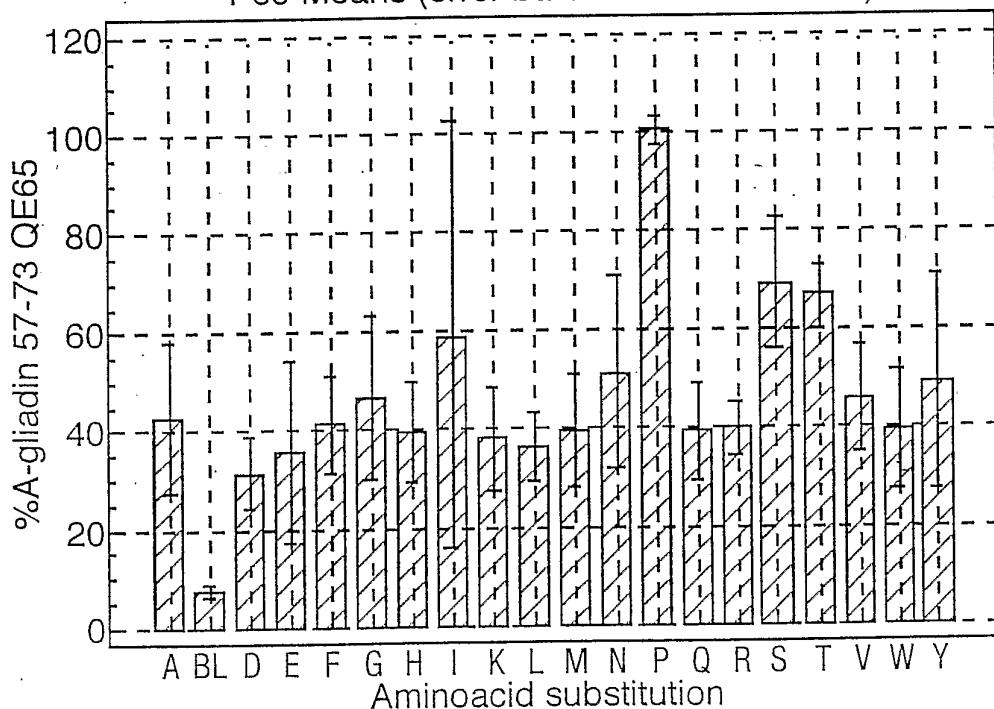

Fig.26.

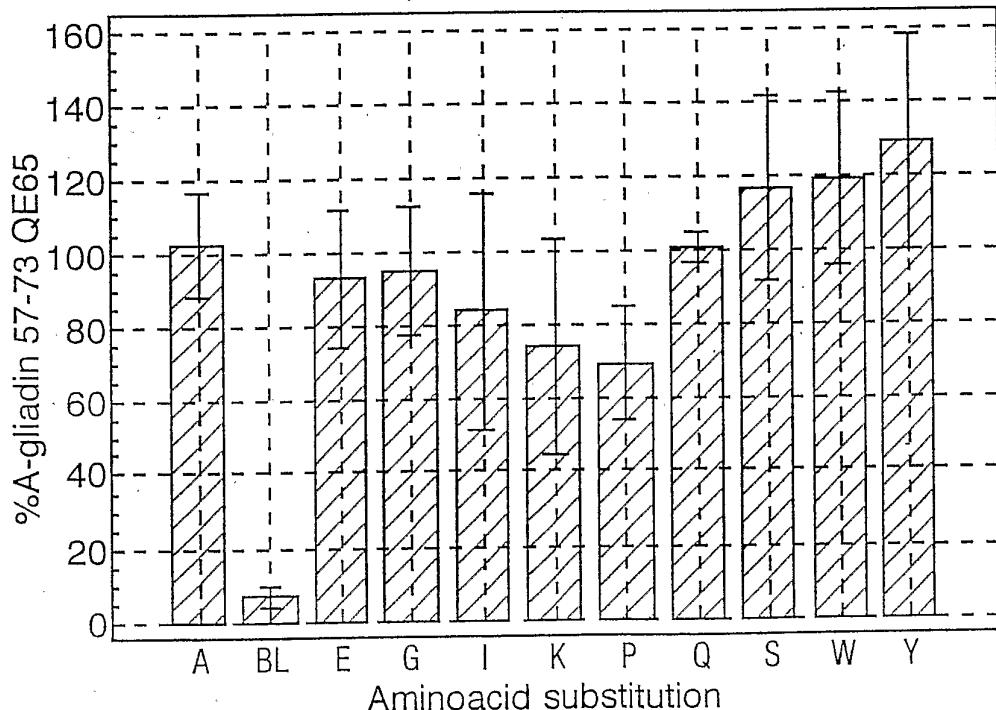
Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQS

60.....70

P69 Means (error bars: 95% CI for mean)





Fig.27.

Agonist activity of A-gliadin 57-73 QE65 variants according to position substituted (Mean of 8 coeliac subjects' PBMC responses in interferon gamma ELISPOT after gluten challenge)

QLQPFPQPELPYPQPQSQ

60.....70

Q70 Means (error bars: 95% CI for mean)



(Fig.28.)

Interferon gamma ELISpot responses in newly diagnosed and treated coeliac subjects, before and after gluten challenge.

Fig.28a. Untreated, newly diagnosed coeliacs (Mean+SEM, n=9)

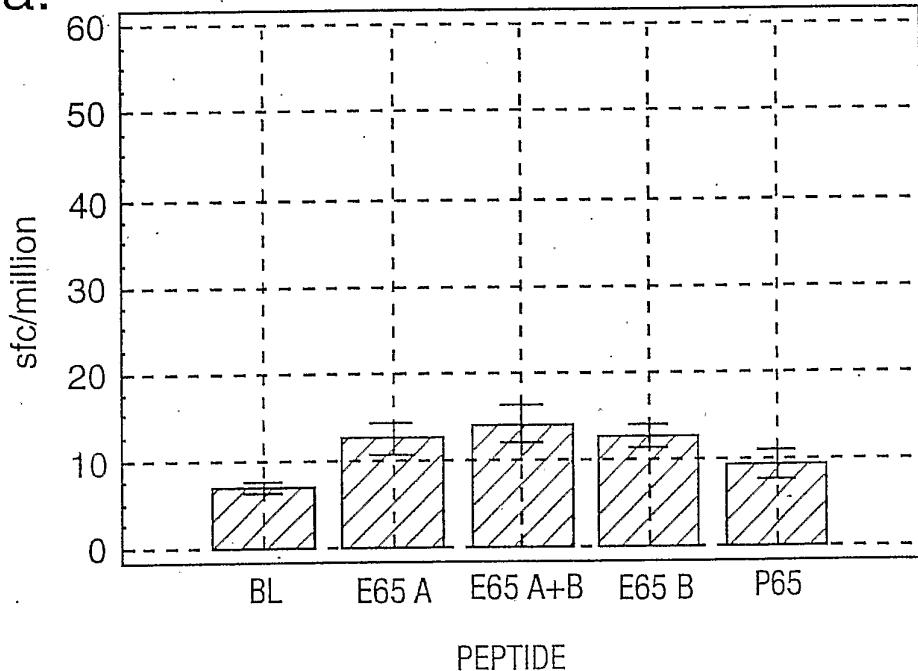



Fig.28b.

One week GFD (Mean+SEM,n=4)

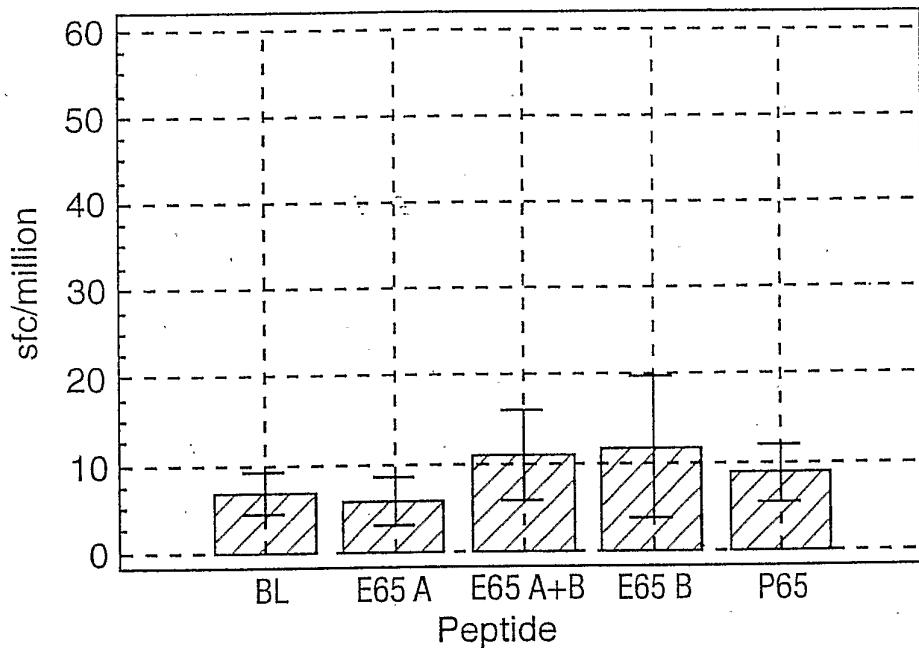



Fig.28c.

Day 6 gluten challenge after 1wk GFD (Mean+SEM,n=4)

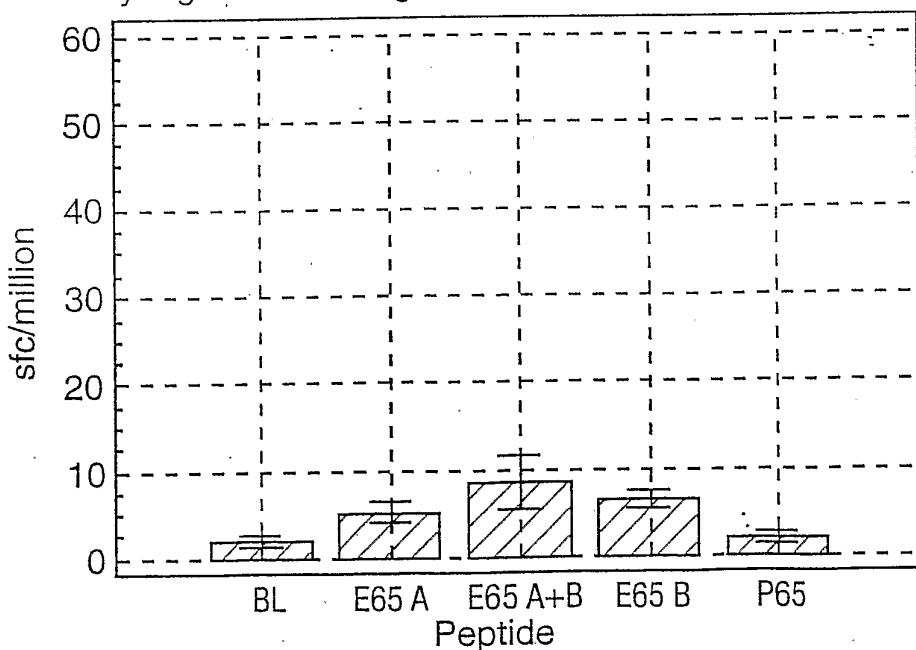



Fig.28d.

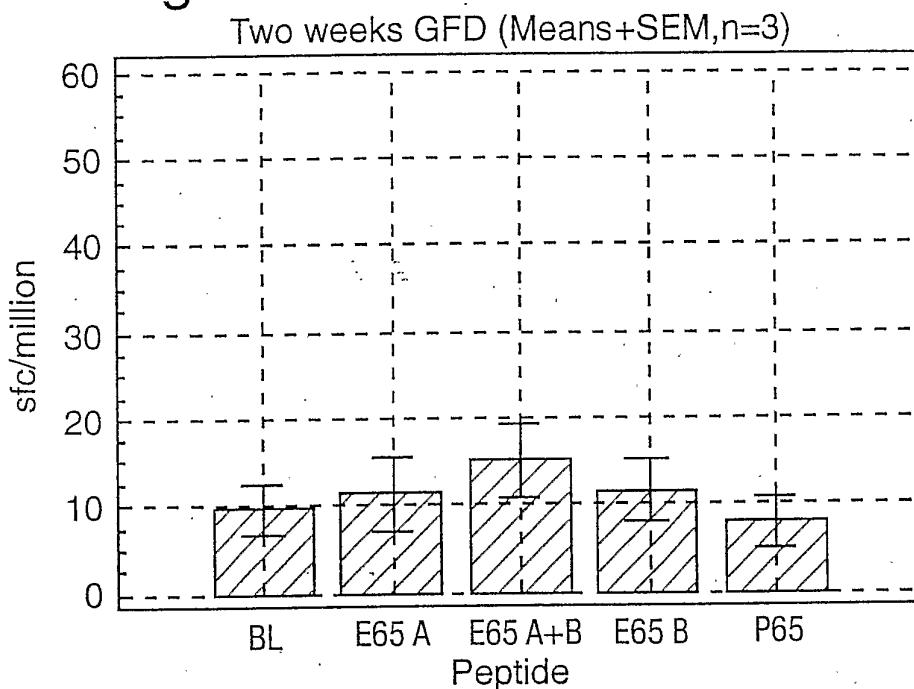



Fig.28e.

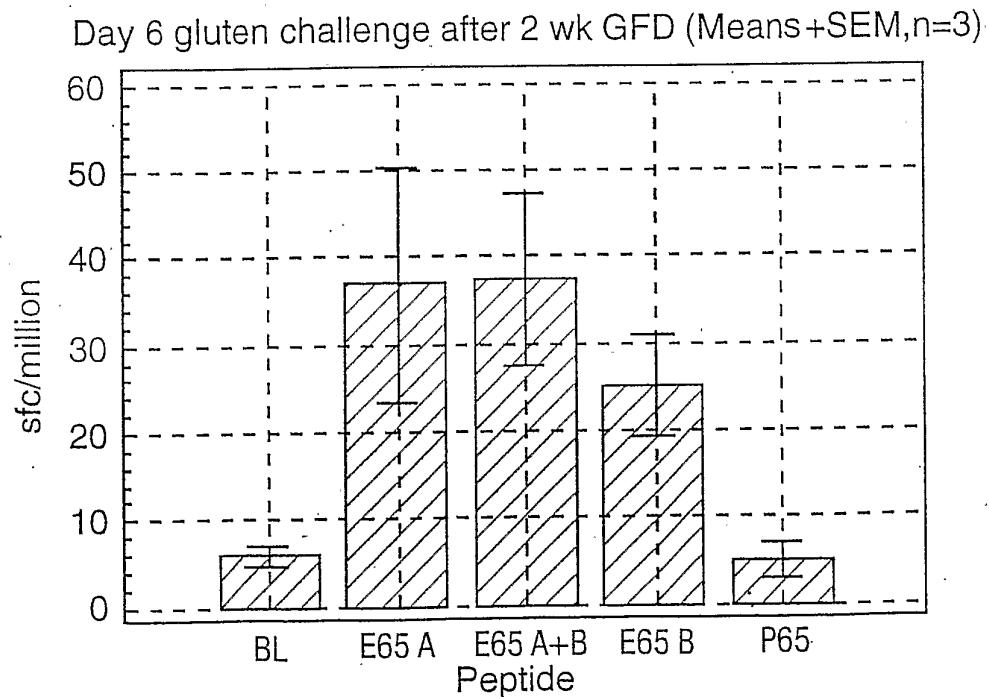



Fig.28f.

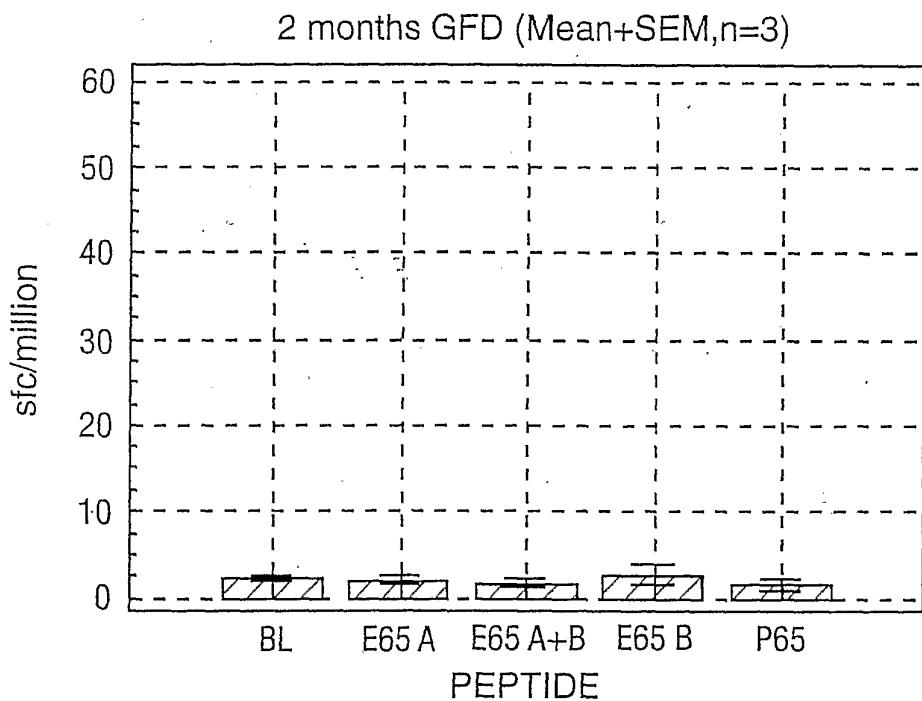
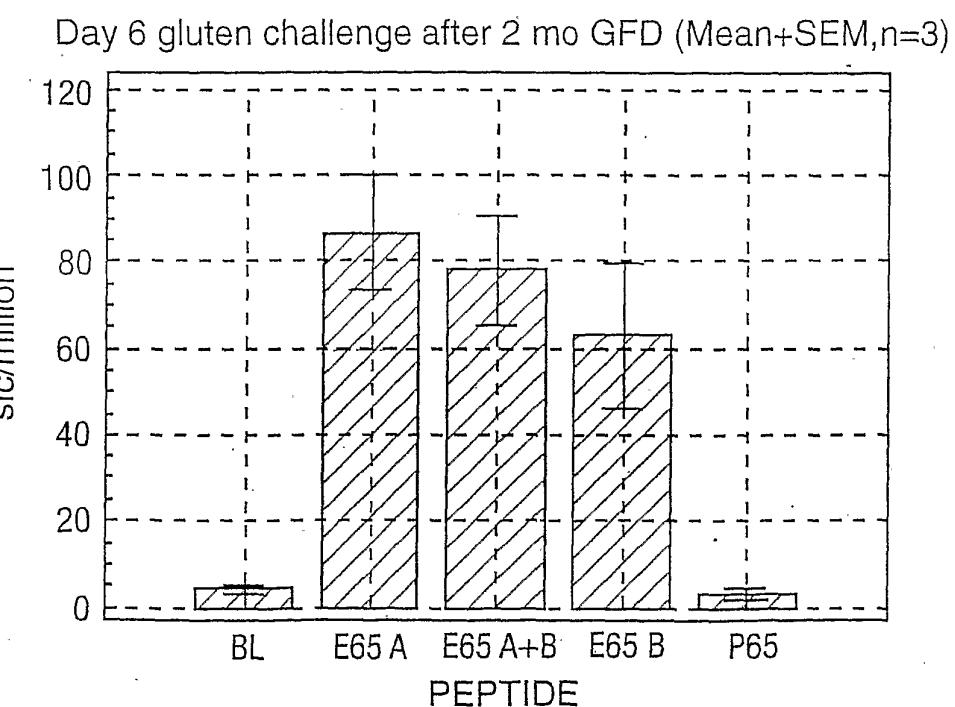
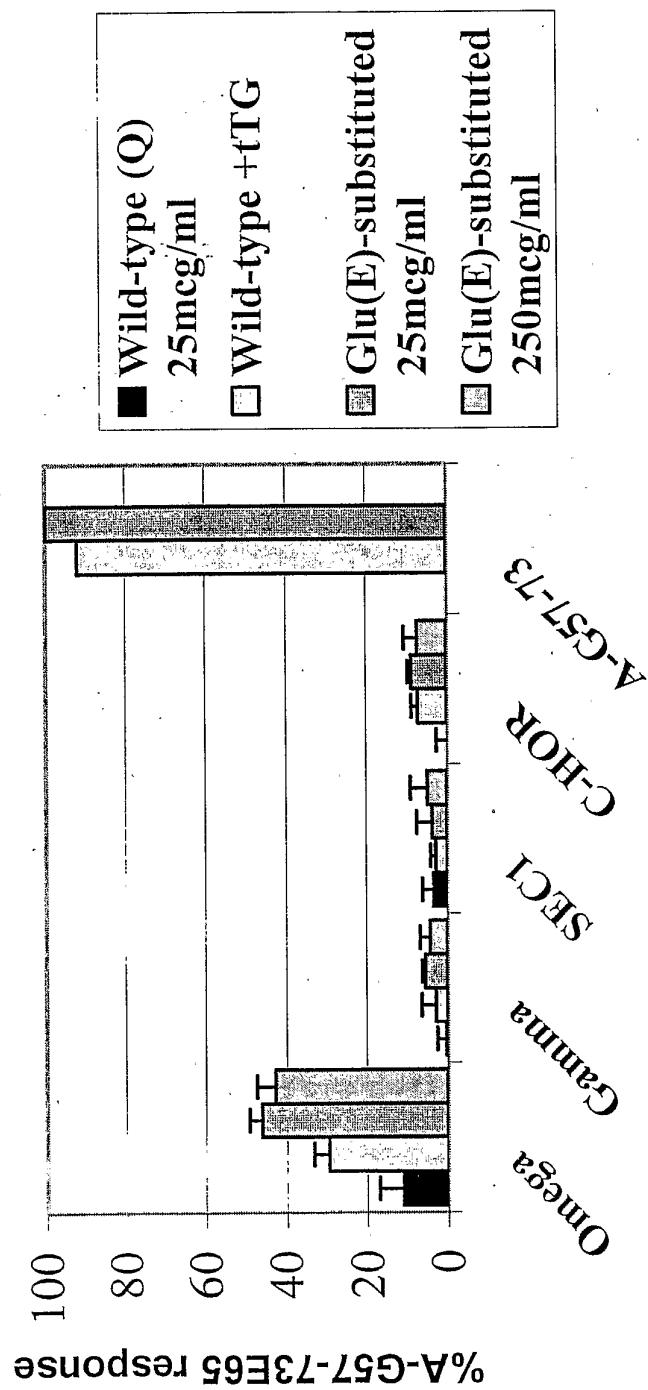





Fig.28g.



**Figure 29. Bioactivity of prolamin homologues of A-gliadin 57-73 (IFNg-ELISpot, mean+SEM, n=6)**



Omega: AAG17702 (141-157), Gamma: P21292 (96-112), SEC1: Q43639 (335-351), C-HOR: Q40055 (166-182). E-substituted peptides were synthesized with E for Q at position 9.

Figure 30. Healthy HLA-DQ2 Subjects: Change in IFNgamma ELISpot Responses to tTG-deamidated Gliadin Peptide Pools (median change Day 6 vs Day 0, n=10)

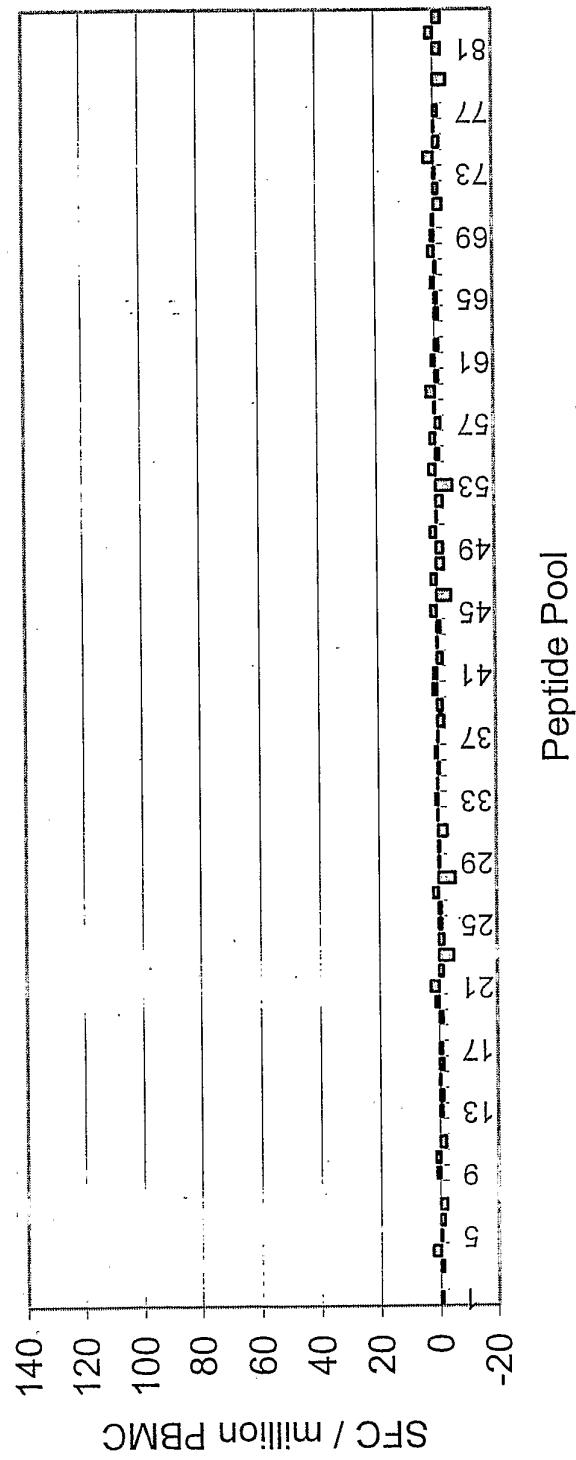
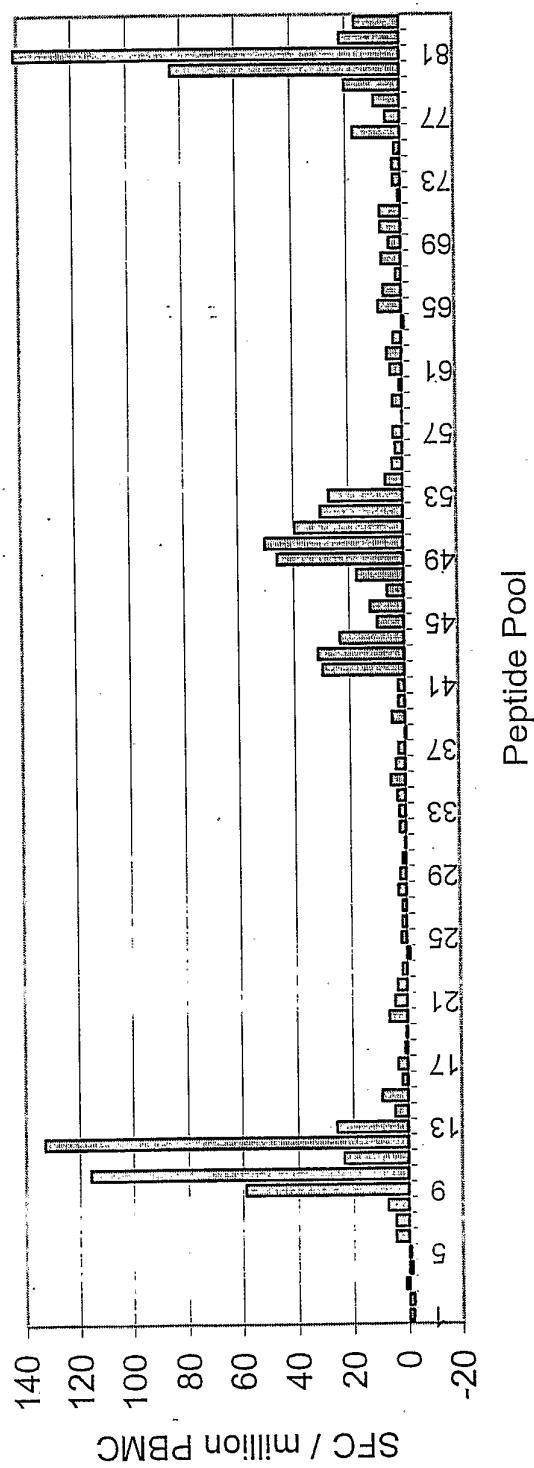




Figure 31. Coeliac HLA-DQ2 Subjects: Change in IFNgamma ELISpot Responses to tTG-deamidated Gliadin Peptide Pools (median change Day 6 vs Day 0, n=6)



**Figure 32. Individual Peptide Contributions to "Summed" Gliadin Peptide Response**

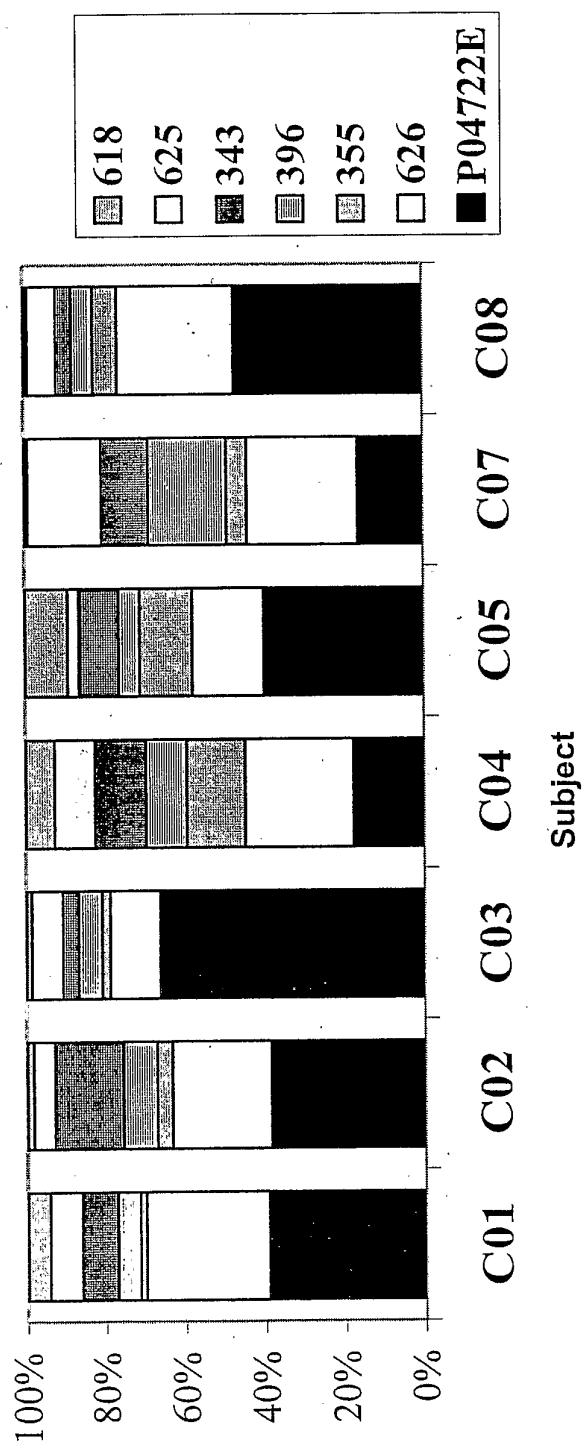



Figure 33. Coeliac HLA-DQ2/8 Subject C08: Gluten challenge induced IFNgamma ELISpot Responses to tTG-deamidated Gliadin Peptide Pools

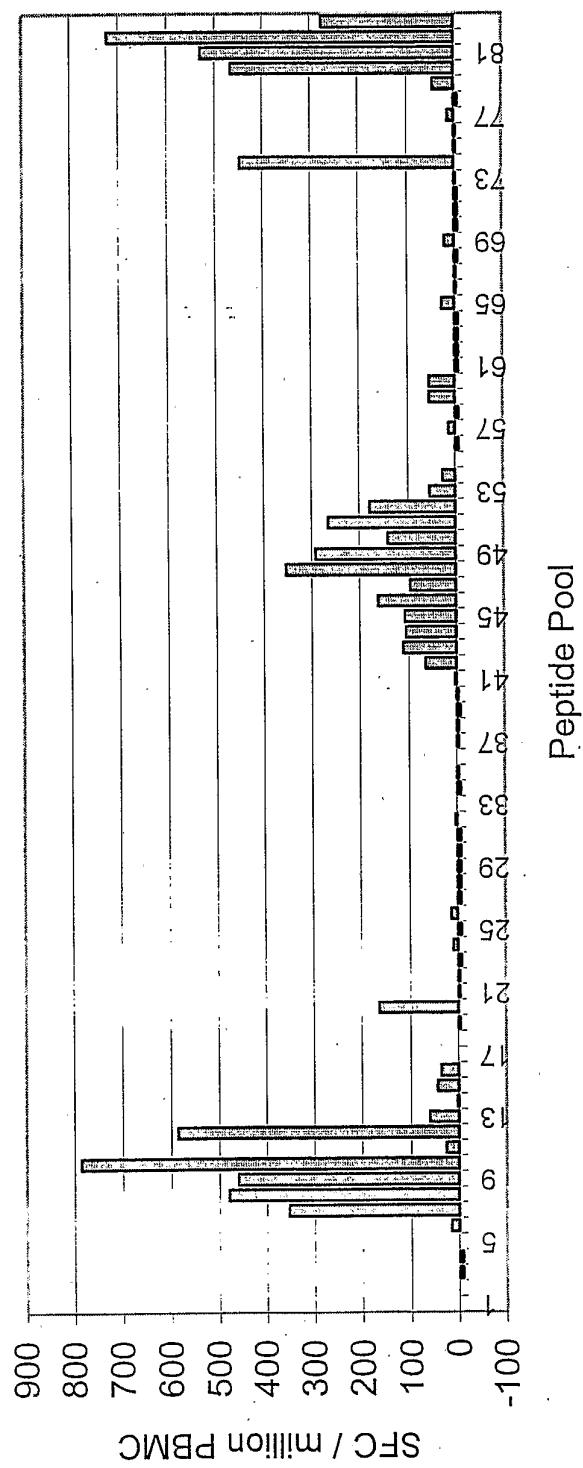



Figure 34. Coeliac HLA-DQ2/8 Subject C07: Change in IFNgamma ELISpot Responses to tTG-deamidated Gliadin Peptide Pools

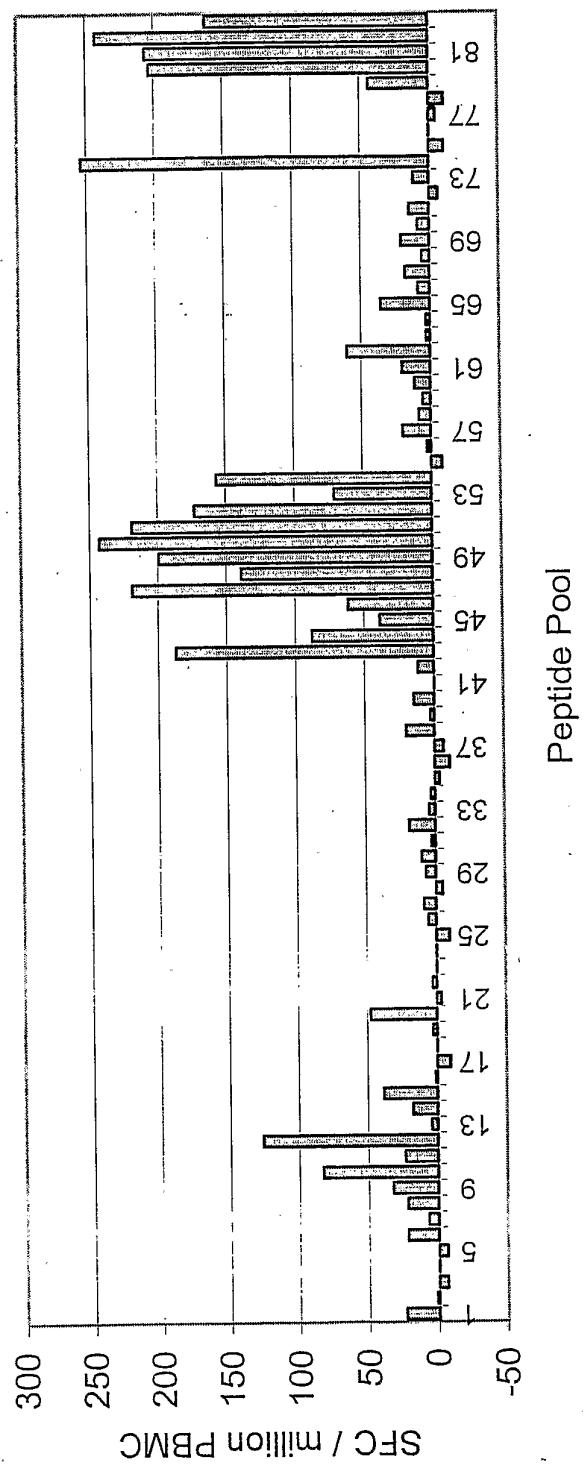



Figure 35. Coeliac HLA-DQ8/7 Subject C12: Gluten challenge induced IFNgamma ELISpot Responses to tTG-deamidated Gliadin Peptide Pools

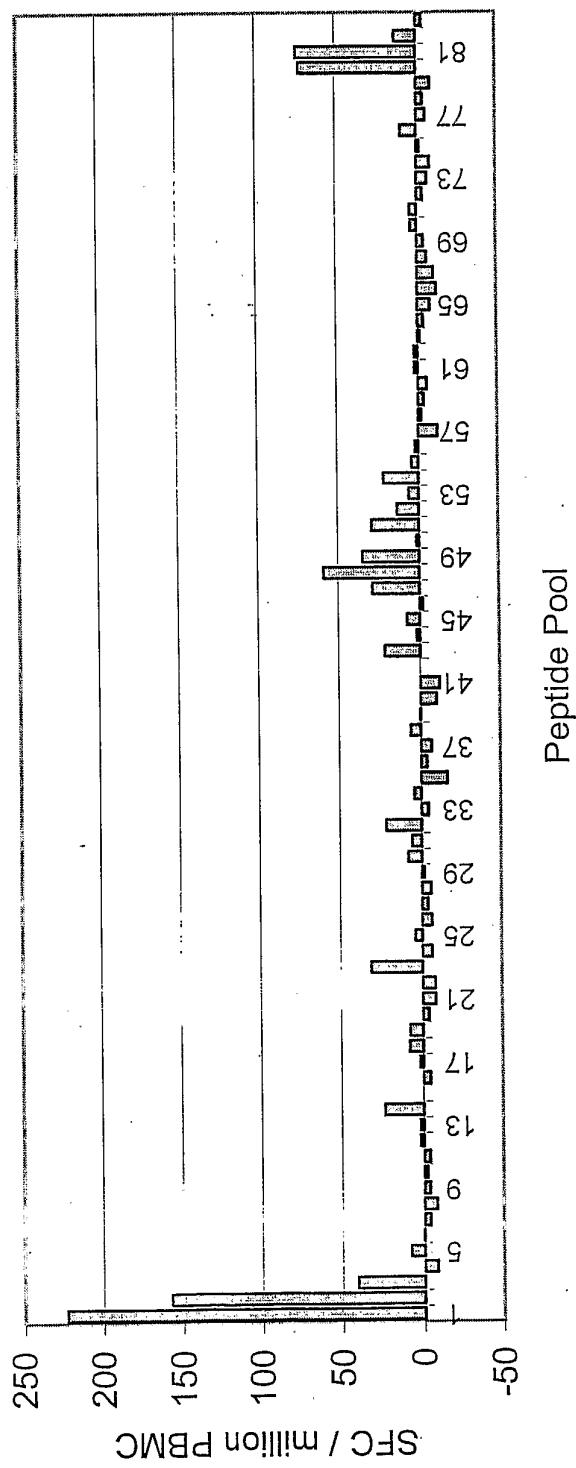
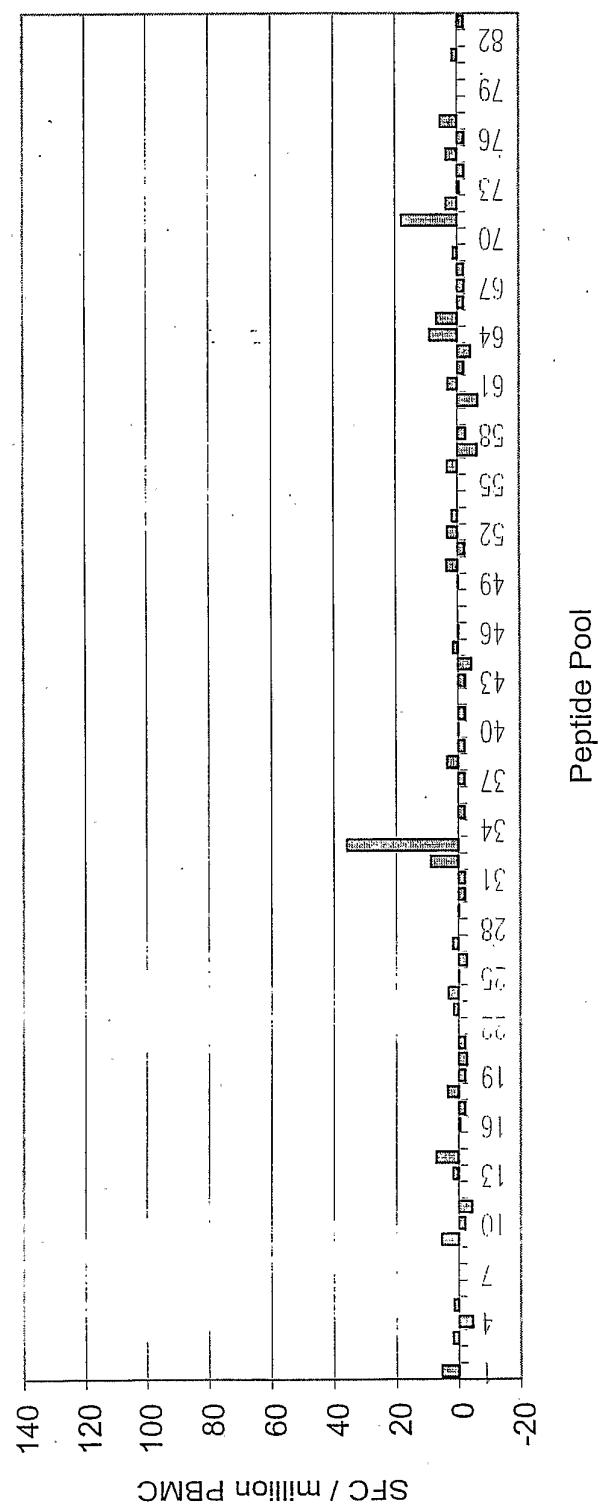




Figure 36. Coeliac HLA-DQ6/8 Subject C11: Change in IFNgamma ELISpot Responses to tTG-deamidated Gliadin Peptide Pools



## SEQUENCE LISTING

<110> ISIS INNOVATION LIMITED  
ANDERSON, Robert Paul  
HILL, Adrian Vivian Sinton  
JEWELL, Derek Parry

<120> THERAPEUTIC EPITOPEs AND USES THEREOF

<130> 142769 / P035468WO

<140> PCT/GB03/02450  
<141> 2003-06-05

<150> GB 0212885.8  
<151> 2002-06-05

<160> 758

<170> Seqwin99, version 1.02

<210> 1  
<211> 7  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 1  
Pro Gln Pro Glu Leu Pro Tyr  
1 5

<210> 2  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 2  
Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Ser

<210> 3  
<211> 266  
<212> PRT  
<213> Homo sapiens

<400> 3  
Val Arg Val Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln  
1 5 10 15

Gln Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe Pro Gly  
20 25 30

Gln Gln Gln Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln Pro  
35 40 45

Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln Pro  
50 55 60

Gln Leu Pro Tyr Pro Gln Pro Gln Ser Phe Pro Pro Gln Gln Pro Tyr  
65 70 75 80

2003244771 30 Mar 2005

Pro Gln Pro Gln Pro Gln Tyr Ser Gln Pro Gln Gln Pro Ile Ser Gln  
85 90 95  
Gln Gln Ala Gln  
100 105 110  
Gln Ile Leu Gln Gln Ile Leu Gln Gln Leu Ile Pro Cys Met Asp  
115 120 125  
Val Val Leu Gln Gln His Asn Ile Ala His Ala Arg Ser Gln Val Leu  
130 135 140  
Gln Gln Ser Thr Tyr Gln Leu Leu Gln Glu Leu Cys Cys Gln His Leu  
145 150 155 160  
Trp Gln Ile Pro Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Val  
165 170 175  
His Ala Ile Ile Leu His Gln Gln Gln Lys Gln Gln Gln Gln Pro Ser  
180 185 190  
Ser Gln Val Ser Phe Gln Gln Pro Leu Gln Gln Tyr Pro Leu Gly Gln  
195 200 205  
Gly Ser Phe Arg Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val  
210 215 220  
Gln Pro Gln Gln Leu Pro Gln Phe Glu Glu Ile Arg Asn Leu Ala Leu  
225 230 235 240  
Gln Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Ala Pro Tyr Cys Thr  
245 250 255  
Ile Ala Pro Phe Gly Ile Phe Gly Thr Asn  
260 265

<210> 4  
<211> 7  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 4  
Pro Gln Pro Gln Leu Pro Tyr  
1 5

<210> 5  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 5  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro  
1 5 10 15

Gln Ser Phe Pro  
20

<210> 6  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 6  
Glu Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Ser

<210> 7  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 7  
Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Glu  
1 5 10 15

Ser

<210> 8  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 8  
Glu Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Glu  
1 5 10 15

Ser

<210> 9  
<211> 5  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 9  
Gln Pro Gln Leu Pro  
1 5

<210> 10  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 10  
Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Ser

<210> 11  
<211> 20  
<212> PRT

2003244771 30 Mar 2005

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 11  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro  
1 5 10 15  
Gln Ser Phe Pro  
20  
<210> 12  
<211> 5  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 12  
Pro Gln Leu Pro Tyr  
1 5  
<210> 13  
<211> 12  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 13  
Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr  
1 5 10  
<210> 14  
<211> 11  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 14  
Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln  
1 5 10  
<210> 15  
<211> 14  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 15  
Pro Arg Ala Pro Trp Ile Glu Gln Glu Gly Pro Glu Tyr Trp  
1 5 10  
<210> 16  
<211> 16  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 16

2003244771 30 Mar 2005

Ile Asp Val Trp Leu Gly Gly Leu Leu Ala Glu Asn Phe Leu Pro Tyr  
1 5 10 15

<210> 17  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 17  
Pro Gln Pro Gln Pro Phe Pro Pro Glu Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Ser

<210> 18  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 18  
Phe Pro Gln Pro Gln Leu Pro Tyr Pro  
1 5

<210> 19  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 19  
Phe Pro Gln Pro Gln Gln Pro Phe Pro  
1 5

<210> 20  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 20  
Pro Gln Gln Pro Gln Gln Pro Phe Pro  
1 5

<210> 21  
<211> 12  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 21  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln  
1 5 10

<210> 22  
<211> 12

2003244771 30 Mar 2005

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 22  
Leu Gln Pro Glu Asn Pro Ser Gln Glu Gln Pro Glu  
1 5 10  
  
<210> 23  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<220>  
<222> 1-7 and 12-17  
<223> Xaa is any amino acid  
  
<220>  
<222> 10  
<223> Xaa is Ile, Leu, Met or Pro  
  
<220>  
<222> 11  
<223> Xaa is Pro, Ser or Thr  
  
  
<400> 23  
Xaa Xaa Xaa Xaa Xaa Xaa Pro Gln Xaa Xaa Xaa Xaa Xaa Xaa Xaa  
1 5 10 15  
  
Xaa  
  
<210> 24  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 24  
Val Leu Gln Gln His Asn Ile Ala His Gly Ser Ser Gln Val Leu Gln  
1 5 10 15  
  
Glu Ser Thr Tyr  
20  
  
<210> 25  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 25  
Ile Lys Asp Phe His Val Tyr Phe Arg Glu Ser Arg Asp Ala Leu Trp  
1 5 10 15  
  
Lys Gly Pro Gly  
20

2003244771 30 Mar 2005

<210> 26  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 26  
Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Pro

<210> 27  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 27  
Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Pro

<210> 28  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 28  
Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Ser Gln Pro Gln  
1 5 10 15

Pro

<210> 29  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 29  
Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Ser Gln Pro Gln  
1 5 10 15

Pro

<210> 30  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 30

2003244771 30 Mar 2005

Gln Gln Thr Tyr Pro Gln Arg Pro Gln Gln Pro Phe Pro Gln Thr Gln  
1 5 10 15

Gln Pro Gln Gln  
20

<210> 31  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 31  
Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln  
1 5 10 15

Pro Phe Pro Trp  
20

<210> 32  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 32  
Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Leu Pro  
1 5 10 15

Phe Pro Gln Gln  
20

<210> 33  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 33  
Gln Ala Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln Gln  
1 5 10 15

Gln Phe Pro Gln  
20

<210> 34  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 34  
Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Thr Gln  
20

<210> 35  
<211> 20  
<212> PRT

2003244771 30 Mar 2005

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 35  
Pro Ile Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Gln  
1 5 10 15  
Gln Pro Phe Pro  
20  
<210> 36  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 36  
Pro Gln Gln Ser Phe Ser Tyr Gln Gln Gln Pro Phe Pro Gln Gln Pro  
1 5 10 15  
Tyr Pro Gln Gln  
20  
<210> 37  
<211> 4  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<220>  
<222> 2  
<223> Xaa is any amino acid  
<400> 37  
Gln Xaa Pro Phe  
1  
<210> 38  
<211> 4  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<220>  
<222> 2-3  
<223> Xaa is any amino acid  
<220>  
<222> 4  
<223> Xaa is Phe or Tyr  
<400> 38  
Gln Xaa Xaa Xaa  
1  
<210> 39  
<211> 12  
<212> PRT  
<213> Artificial Sequence  
<220>

2003244771 30 Mar 2005

<223> peptide

<400> 39  
Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Pro  
1 5 10

<210> 40  
<211> 13  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 40  
Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro  
1 5 10

<210> 41  
<211> 12  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 41  
Pro Ile Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro  
1 5 10

<210> 42  
<211> 12  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 42  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln  
1 5 10

<210> 43  
<211> 12  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 43  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln  
1 5 10

<210> 44  
<211> 18  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 44  
Gln Gln Tyr Pro Ser Gly Gln Gly Ser Phe Gln Pro Ser Gln Gln Asn  
1 5 10 15

Pro Gln

2003244771 30 Mar 2005

<210> 45  
<211> 6  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<220>  
<222> 3  
<223> Xaa is Gln or Leu  
  
<220>  
<222> 5  
<223> Xaa is Phe or Tyr  
  
<400> 45  
Pro Gln Xaa Pro Xaa Pro  
1 5  
  
<210> 46  
<211> 12  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 46  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln  
1 5 10  
  
<210> 47  
<211> 14  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 47  
Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Glu Leu Pro Tyr  
1 5 10  
  
<210> 48  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 48  
Gln Gln Leu Pro Gln Pro Glu Gln Pro Gln Gln Ser Phe Pro Glu Gln  
1 5 10 15  
  
Glu Arg Pro Phe  
20  
  
<210> 49  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 49  
Gln Leu Gln Pro Phe Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Gln

2003244771 30 Mar 2005

1 5 10 15

Leu

<210> 50  
<211> 22  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 50  
Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Pro Gln Pro Gln Gln  
1 5 10 15

Pro Phe Pro Trp Gln Pro  
20

<210> 51  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 51  
Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Leu

<210> 52  
<211> 15  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 52  
Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Pro Trp  
1 5 10 15

<210> 53  
<211> 12  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 53  
Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr  
1 5 10

<210> 54  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 54  
Pro Phe Pro Gln Pro Gln Leu Pro Tyr

1 5

<210> 55  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 55  
Pro Gln Pro Gln Leu Pro Tyr Pro Gln  
1 5

<210> 56  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 56  
Pro Tyr Pro Gln Pro Gln Leu Pro Tyr  
1 5

<210> 57  
<211> 11  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 57  
Pro Gln Gln Pro Tyr Pro Gln Pro Gln Pro Gln  
1 5 10

<210> 58  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 58  
Pro Gln Gln Ser Phe Pro Gln Gln Gln  
1 5

<210> 59  
<211> 8  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 59  
Ile Ile Pro Gln Gln Pro Ala Gln  
1 5

<210> 60  
<211> 13  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

2003244771

30 Mar 2005

<400> 60  
Phe Pro Gln Gln Pro Gln Gln Pro Tyr Pro Gln Gln Pro  
1 5 10

<210> 61  
<211> 12  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 61  
Phe Ser Gln Pro Gln Gln Phe Pro Gln Pro Gln  
1 5 10

<210> 62  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 62  
Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Tyr Pro  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 63  
<211> 13  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 63  
Gln Ser Glu Gln Ser Gln Gln Pro Phe Pro Gln Gln Phe  
1 5 10

<210> 64  
<211> 9  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<220>  
<222> 2  
<223> xaa is Ile or Leu

<400> 64  
Gln Xaa Pro Gln Gln Pro Gln Gln Phe  
1 5

<210> 65  
<211> 10  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 65

2003244771 30 Mar 2005

Pro Phe Ser Gln Gln Gln Ser Pro Phe  
1 5 10  
<210> 66  
<211> 8  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 66  
Pro Phe Ser Gln Gln Gln Gln Gln  
1 5  
<210> 67  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 67  
Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Leu Gln Pro Gln  
1 5 10 15

Pro

<210> 68  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 68  
Gln Leu Gln Pro Phe Pro Arg Pro Gln Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Pro

<210> 69  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 69  
Gln Leu Gln Pro Phe Leu Gln Pro Gln Leu Pro Tyr Ser Gln Pro Gln  
1 5 10 15

Pro

<210> 70  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 70

2003244771 30 Mar 2005

Gln Leu Gln Pro Phe Ser Gln Pro Gln Leu Pro Tyr Ser Gln Pro Gln  
1 5 10 15

Pro

<210> 71

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 71

Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Ser Tyr Ser Gln Pro Gln

1 5 10 15

Pro

<210> 72

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 72

Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln

1 5 10 15

Pro

<210> 73

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 73

Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln

1 5 10 15

Leu

<210> 74

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 74

Pro Gln Pro Gln Pro Phe Leu Pro Gln Leu Pro Tyr Pro Gln Pro Gln

1 5 10 15

Ser

<210> 75

<211> 17

<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 75  
Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Ser

<210> 76  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 76  
Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Tyr Gln  
1 5 10 15

Pro

<210> 77  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 77  
Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Pro  
1 5 10 15

Pro

<210> 78  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 78  
Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu  
1 5 10 15

Gln Val

<210> 79  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 79  
Val Pro Gln Leu Gln Pro Glu Asn Pro Ser Gln Gln Gln Pro Gln Glu  
1 5 10 15

2003244771 30 Mar 2005

Gln Val

<210> 80  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 80  
Val Pro Gln Leu Gln Pro Arg Asn Pro Ser Gln Gln Gln Pro Gln Glu  
1 5 10 15

Gln Val

<210> 81  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 81  
Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Glu Gln Pro Gln Glu  
1 5 10 15

Gln Val

<210> 82  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 82  
Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Arg Gln Pro Gln Glu  
1 5 10 15

Gln Val

<210> 83  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 83  
Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Glu Glu  
1 5 10 15

Gln Val

<210> 84  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
  
<220>

2003244771 30 Mar 2005

<223> peptide

<400> 84  
Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Arg Glu  
1 5 10 15

Gln Val

<210> 85

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 85  
Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Glu Gln Pro Glu Glu  
1 5 10 15

Gln Val

<210> 86

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 86

Val Pro Gln Leu Gln Pro Glu Asn Pro Ser Gln Gln Gln Pro Glu Glu  
1 5 10 15

Gln Val

<210> 87

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 87

Val Pro Gln Leu Gln Pro Glu Asn Pro Ser Gln Glu Gln Pro Gln Glu  
1 5 10 15

Gln Val

<210> 88

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 88

Val Pro Gln Leu Gln Pro Glu Asn Pro Ser Gln Glu Gln Pro Glu Glu  
1 5 10 15

Gln Val

2003244771 30 Mar 2005

<210> 89  
<211> 15  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 89  
Arg Trp Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln  
1 5 10 15  
  
<210> 90  
<211> 15  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 90  
Trp Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln  
1 5 10 15  
  
<210> 91  
<211> 15  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 91  
Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro  
1 5 10 15  
  
<210> 92  
<211> 15  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 92  
Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln  
1 5 10 15  
  
<210> 93  
<211> 15  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 93  
Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu  
1 5 10 15  
  
<210> 94  
<211> 15  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 94

2003244771 30 Mar 2005

Gln Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln  
1 5 10 15

<210> 95  
<211> 15  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 95  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val  
1 5 10 15

<210> 96  
<211> 15  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 96  
Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro  
1 5 10 15

<210> 97  
<211> 17  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 97  
Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln  
1 5 10 15

Pro

<210> 98  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 98  
Leu Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro  
1 5 10 15

Gln Pro Phe

<210> 99  
<211> 18  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 99  
Gln Gln Tyr Pro Ser Gly Glu Gly Ser Phe Gln Pro Ser Gln Glu Asn  
1 5 10 15

2003244771 30 Mar 2005

Pro Gln

<210> 100  
<211> 15  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 100  
Gly Gln Gln Gly Tyr Tyr Pro Thr Ser Pro Gln Gln Ser Gly Gln  
1 5 10 15  
  
<210> 101  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 101  
Pro Gln Leu Pro Tyr Pro Gln Pro Glu Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Pro

<210> 102  
<211> 14  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 102  
Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro Tyr  
1 5 10

<210> 103  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 103  
Gln Gln Leu Pro Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln  
1 5 10 15

Gln Arg Pro Phe  
20

<210> 104  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 104  
Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Leu Gln Pro Gln  
1 5 10 15

2003244771 30 Mar 2005

Ser

<210> 105

<211> 17

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 105

Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln  
1 5 10 15

Pro

<210> 106

<211> 17

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 106

Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln  
1 5 10 15

Ser

<210> 107

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 107

Ala Val Arg Phe Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15

Gln Leu Pro Gln  
20

<210> 108

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 108

Met Val Arg Val Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 109

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 109  
Met Val Arg Val Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15

Gln His Pro Gln  
20

<210> 110

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 110  
Met Val Arg Val Pro Met Pro Gln Leu Gln Pro Gln Asp Pro Ser Gln  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 111

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 111  
Met Val Arg Val Thr Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 112

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 112  
Ala Val Arg Val Ser Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 113

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 113  
Ala Val Arg Val Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15

Gln Gln Pro Gln  
20

2003244771 30 Mar 2005

<210> 114  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 114  
Ala Val Arg Trp Pro Val Pro Gln Leu Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15  
  
Gln Gln Pro Gln  
20  
  
<210> 115  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 115  
Ala Val Arg Val Pro Val Pro Gln Leu Gln Leu Gln Asn Pro Ser Gln  
1 5 10 15  
  
Gln Gln Pro Gln  
20  
  
<210> 116  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 116  
Met Val Arg Val Pro Val Pro Gln Leu Gln Leu Gln Asn Pro Ser Gln  
1 5 10 15  
  
Gln Gln Pro Gln  
20  
  
<210> 117  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 117  
Ala Val Arg Val Pro Val Pro Gln Pro Gln Pro Gln Asn Pro Ser Gln  
1 5 10 15  
  
Pro Gln Pro Gln  
20  
  
<210> 118  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 118

2003244771 30 Mar 2005

Ala Val Arg Val Pro Val Pro Gln Leu Gln Pro Lys Asn Pro Ser Gln  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 119  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 119  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Leu Pro Gln Glu Gln Val Pro  
1 5 10 15

Leu Val Gln Gln  
20

<210> 120  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 120  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro  
1 5 10 15

Leu Val Gln Gln  
20

<210> 121  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 121  
Leu Gln Pro Gln Asn Pro Ser Gln Gln His Pro Gln Glu Gln Val Pro  
1 5 10 15

Leu Val Gln Gln  
20

<210> 122  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 122  
Leu Gln Pro Gln Asp Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro  
1 5 10 15

Leu Val Gln Gln  
20

<210> 123  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 123  
Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Lys Gln Val Pro  
1 5 10 15  
Leu Val Gln Gln  
20  
<210> 124  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 124  
Leu Gln Leu Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro  
1 5 10 15  
Leu Val Gln Glu  
20  
<210> 125  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 125  
Leu Gln Leu Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro  
1 5 10 15  
Leu Val Gln Glu  
20  
<210> 126  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 126  
Pro Gln Pro Gln Asn Pro Ser Gln Pro Gln Pro Gln Gly Gln Val Pro  
1 5 10 15  
Leu Val Gln Gln  
20  
<210> 127  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 127  
Pro Gln Pro Gln Asn Pro Ser Gln Pro Gln Pro Gln Arg Gln Val Pro  
1 5 10 15

2003244771 30 Mar 2005

Leu Val Gln Gln  
20

<210> 128

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 128

Leu Gln Pro Lys Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro  
1 5 10 15

Leu Val Gln Gln  
20

<210> 129

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 129

Leu Gln Pro Gln Asn Pro Ser Gln Gln Gln Pro Gln Glu Gln Val Pro  
1 5 10 15

Leu Met Gln Gln  
20

<210> 130

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 130

Gln Leu Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe Leu  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 131

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 131

Gln His Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe Leu  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 132

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 132  
Gln Gln Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe Leu  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 133  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 133  
Gln Gln Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe Leu  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 134  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 134  
Gln Gln Pro Gln Glu Gln Val Pro Leu Val Gln Gln Gln Gln Phe Pro  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 135  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 135  
Gln Gln Pro Gln Lys Gln Val Pro Leu Val Gln Gln Gln Gln Phe Pro  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 136  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 136  
Gln Gln Pro Gln Glu Gln Val Pro Leu Val Gln Glu Gln Gln Phe Gln  
1 5 10 15

Gly Gln Gln Gln  
20

2003244771 30 Mar 2005

<210> 137  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 137  
Pro Gln Pro Gln Gly Gln Val Pro Leu Val Gln Gln Gln Gln Phe Pro  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 138  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 138  
Pro Gln Pro Gln Arg Gln Val Pro Leu Val Gln Gln Gln Gln Phe Pro  
1 5 10 15

Gly Gln Gln Gln  
20

<210> 139  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 139  
Gln Gln Pro Gln Glu Gln Val Pro Leu Met Gln Gln Gln Gln Phe  
1 5 10 15

Pro Gly Gln Gln  
20

<210> 140  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 140  
Leu Val Gln Gln Gln Gln Phe Leu Gly Gln Gln Gln Pro Phe Pro Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 141  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 141

2003244771 30 Mar 2005

Leu Val Gln Gln Gln Gln Phe Leu Gly Gln Gln Gln Ser Phe Pro Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 142  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 142

Leu Val Gln Gln Gln Gln Phe Leu Gly Gln Gln Gln Pro Phe Pro Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 143  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 143

Leu Val Gln Gln Gln Gln Phe Pro Gly Gln Gln Gln Pro Phe Pro Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 144  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 144

Leu Val Gln Glu Gln Gln Phe Gln Gly Gln Gln Gln Pro Phe Pro Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 145  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 145

Leu Val Gln Gln Gln Gln Phe Pro Gly Gln Gln Gln Gln Phe Pro Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 146  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence

<220>  
<223> peptide

<400> 146  
Leu Met Gln Gln Gln Gln Gln Phe Pro Gly Gln Gln Glu Gln Phe Pro  
1 5 10 15  
Pro Gln Gln Pro  
20

<210> 147  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 147  
Leu Met Gln Gln Gln Gln Phe Pro Gly Gln Gln Glu Arg Phe Pro  
1 5 10 15  
Pro Gln Gln Pro  
20

<210> 148  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 148  
Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Pro Phe Pro Ser  
20

<210> 149  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 149  
Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Phe Pro Ser Gln  
20

<210> 150  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 150  
Gly Gln Gln Gln Ser Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln  
1 5 10 15

2003244771 30 Mar 2005

Pro Phe Pro Ser  
20

<210> 151  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 151  
Gly Gln Gln Gln Pro Phe Pro Pro Gln Gln Pro Tyr Pro Gln Gln Gln  
1 5 10 15

Pro Phe Pro Ser  
20

<210> 152  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 152  
Gly Gln Gln Gln Gln Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Pro Phe Pro Ser  
20

<210> 153  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 153  
Gly Gln Gln Glu Gln Phe Pro Pro Gln Gln Pro Tyr Pro His Gln Gln  
1 5 10 15

Pro Phe Pro Ser  
20

<210> 154  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 154  
Gly Gln Gln Glu Arg Phe Pro Pro Gln Gln Pro Tyr Pro His Gln Gln  
1 5 10 15

Pro Phe Pro Ser  
20

<210> 155  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 155  
Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro Ser Gln Leu Pro Tyr  
1 5 10 15

Leu Gln Leu Gln  
20

<210> 156  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 156  
Gln Gln Pro Tyr Pro Gln Pro Gln Phe Pro Ser Gln Leu Pro Tyr Leu  
1 5 10 15

Gln Leu Gln Pro  
20

<210> 157  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 157  
Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro Ser Gln Gln Pro Tyr  
1 5 10 15

Leu Gln Leu Gln  
20

<210> 158  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 158  
Gln Gln Pro Tyr Pro Gln Gln Gln Pro Phe Pro Ser Gln Gln Pro Tyr  
1 5 10 15

Met Gln Leu Gln  
20

<210> 159  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 159  
Gln Gln Pro Tyr Pro His Gln Gln Pro Phe Pro Ser Gln Gln Pro Tyr  
1 5 10 15

Pro Gln Pro Gln  
20

2003244771 30 Mar 2005

<210> 160  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 160  
Pro Phe Pro Ser Gln Leu Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln  
1 5 10 15  
  
Pro Gln Leu Pro  
20  
  
<210> 161  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 161  
Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln  
1 5 10 15  
  
Pro Gln Leu Pro  
20  
  
<210> 162  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 162  
Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Ser Gln  
1 5 10 15  
  
Pro Gln Leu Pro  
20  
  
<210> 163  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 163  
Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Leu Gln  
1 5 10 15  
  
Pro Gln Leu Pro  
20  
  
<210> 164  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 164

2003244771 30 Mar 2005

Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Leu Gln  
1 5 10 15

Pro Gln Pro Phe  
20

<210> 165  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 165  
Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln  
1 5 10 15

Pro Gln Leu Pro  
20

<210> 166  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 166  
Pro Phe Pro Ser Gln Gln Pro Tyr Met Gln Leu Gln Pro Phe Pro Gln  
1 5 10 15

Pro Gln Leu Pro  
20

<210> 167  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 167  
Pro Phe Pro Ser Gln Gln Pro Tyr Met Gln Leu Gln Pro Phe Pro Gln  
1 5 10 15

Pro Gln Pro Phe  
20

<210> 168  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 168  
Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Gln  
1 5 10 15

Pro Gln Pro Phe  
20

<210> 169  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 169  
Pro Phe Pro Ser Gln Gln Pro Tyr Leu Gln Leu Gln Pro Phe Pro Arg  
1 5 10 15  
Pro Gln Leu Pro  
20  
<210> 170  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 170  
Pro Phe Pro Ser Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro Pro  
1 5 10 15  
Gln Leu Pro Tyr  
20  
<210> 171  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 171  
Pro Phe Pro Ser Gln Gln Pro Tyr Pro Gln Pro Gln Pro Phe Pro Gln  
1 5 10 15  
Pro Gln Pro Phe  
20  
<210> 172  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 172  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Ser Gln Pro  
1 5 10 15  
Gln Pro Phe Arg  
20  
<210> 173  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 173  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Ser Gln Pro  
1 5 10 15

2003244771 30 Mar 2005

Gln Gln Phe Arg  
20

<210> 174  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 174

Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Leu Gln Pro  
1 5 10 15

Gln Pro Phe Arg  
20

<210> 175  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 175

Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Ser Tyr Ser Gln Pro  
1 5 10 15

Gln Pro Phe Arg  
20

<210> 176  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 176

Leu Gln Leu Gln Pro Phe Ser Gln Pro Gln Leu Pro Tyr Ser Gln Pro  
1 5 10 15

Gln Pro Phe Arg  
20

<210> 177  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 177

Leu Gln Leu Gln Pro Phe Leu Gln Pro Gln Leu Pro Tyr Ser Gln Pro  
1 5 10 15

Gln Pro Phe Arg  
20

<210> 178  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 178  
Leu Gln Leu Gln Pro Phe Leu Gln Pro Gln Pro Phe Pro Pro Gln Leu  
1 5 10 15

Pro Tyr Ser Gln  
20

<210> 179  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 179  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro  
1 5 10 15

Gln Leu Pro Tyr  
20

<210> 180  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 180  
Met Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro  
1 5 10 15

Gln Leu Pro Tyr  
20

<210> 181  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 181  
Met Gln Leu Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu  
1 5 10 15

Pro Tyr Pro Gln  
20

<210> 182  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 182  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro  
1 5 10 15

Gln Pro Phe Arg  
20

2003244771 30 Mar 2005

<210> 183  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 183  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu  
1 5 10 15  
  
Pro Tyr Pro Gln  
20  
  
<210> 184  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 184  
Leu Gln Leu Gln Pro Phe Pro Arg Pro Gln Leu Pro Tyr Pro Gln Pro  
1 5 10 15  
  
Gln Pro Phe Arg  
20  
  
<210> 185  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 185  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Pro Phe Leu Pro Gln Leu  
1 5 10 15  
  
Pro Tyr Pro Gln  
20  
  
<210> 186  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 186  
Leu Gln Leu Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu  
1 5 10 15  
  
Pro Tyr Pro Gln  
20  
  
<210> 187  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 187

2003244771 30 Mar 2005

Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln  
1 5 10 15

Pro Phe Pro Pro  
20

<210> 188  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 188

Pro Gln Pro Gln Pro Phe Pro Gln Pro Gln Pro Phe Pro Pro Gln Leu  
1 5 10 15

Pro Tyr Pro Gln  
20

<210> 189  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 189

Pro Gln Leu Pro Tyr Ser Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro  
1 5 10 15

Tyr Pro Gln Pro  
20

<210> 190  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 190

Pro Gln Leu Pro Tyr Ser Gln Pro Gln Gln Phe Arg Pro Gln Gln Pro  
1 5 10 15

Tyr Pro Gln Pro  
20

<210> 191  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 191

Pro Gln Leu Pro Tyr Leu Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro  
1 5 10 15

Tyr Pro Gln Pro  
20

<210> 192  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence

<220>  
<223> peptide

<400> 192

Pro Gln Leu Ser Tyr Ser Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro  
1 5 10 15

Tyr Pro Gln Pro  
20

<210> 193

<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 193

Pro Gln Leu Ser Tyr Ser Gln Pro Gln Pro Phe Arg Pro Gln Gln Leu  
1 5 10 15

Tyr Pro Gln Pro  
20

<210> 194

<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 194

Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Ser Gln Pro Gln Pro Phe  
1 5 10 15

Arg Pro Gln Gln  
20

<210> 195

<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 195

Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

Leu Pro Tyr Pro  
20

<210> 196

<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 196

Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro Tyr Pro Gln Pro Gln  
1 5 10 15

2003244771 30 Mar 2005

Pro Phe Arg Pro  
20

<210> 197

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 197

Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Gln Leu Pro  
1 5 10 15

Tyr Pro Gln Pro  
20

<210> 198

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 198

Pro Gln Leu Pro Tyr Pro Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro  
1 5 10 15

Tyr Pro Gln Pro  
20

<210> 199

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 199

Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Gln Pro Phe  
1 5 10 15

Arg Pro Gln Gln  
20

<210> 200

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 200

Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Pro Pro Phe  
1 5 10 15

Ser Pro Gln Gln  
20

<210> 201

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 201  
Pro Gln Pro Phe Leu Pro Gln Leu Pro Tyr Pro Gln Pro Gln Ser Phe  
1 5 10 15

Pro Pro Gln Gln  
20

<210> 202  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 202  
Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Pro Gln Ser Phe  
1 5 10 15

Pro Pro Gln Gln  
20

<210> 203  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 203  
Gln Leu Pro Tyr Pro Gln Thr Gln Pro Phe Pro Pro Gln Gln Pro Tyr  
1 5 10 15

Pro Gln Pro Gln  
20

<210> 204  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 204  
Pro Gln Pro Phe Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln Pro Phe  
1 5 10 15

Pro Pro Gln Gln  
20

<210> 205  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 205  
Leu Pro Tyr Pro Gln Pro Gln Pro Phe Arg Pro Gln Gln Pro Tyr Pro  
1 5 10 15

Gln Ser Gln Pro  
20

2003244771 30 Mar 2005

<210> 206  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 206  
Leu Pro Tyr Pro Gln Pro Gln Pro Phe Arg Pro Gln Gln Ser Tyr Pro  
1 5 10 15

Gln Pro Gln Pro  
20

<210> 207  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 207  
Leu Pro Tyr Pro Gln Pro Pro Pro Phe Ser Pro Gln Gln Pro Tyr Pro  
1 5 10 15

Gln Pro Gln Pro  
20

<210> 208  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 208  
Leu Pro Gln Leu Pro Tyr Pro Gln Pro Gln Ser Phe Pro Pro Gln Gln  
1 5 10 15

Pro Tyr Pro Gln  
20

<210> 209  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 209  
Pro Pro Gln Leu Pro Tyr Pro Gln Thr Gln Pro Phe Pro Pro Gln Gln  
1 5 10 15

Pro Tyr Pro Gln  
20

<210> 210  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 210

2003244771 30 Mar 2005

Gln Pro Phe Arg Pro Gln Gln Pro Tyr Pro Gln Pro Gln Pro Gln Tyr  
1 5 10 15

Ser Gln Pro Gln  
20

<210> 211  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 211  
Gln Pro Phe Arg Pro Gln Gln Leu Tyr Pro Gln Pro Gln Pro Gln Tyr  
1 5 10 15

Ser Gln Pro Gln  
20

<210> 212  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 212  
Gln Pro Phe Arg Pro Gln Gln Pro Tyr Pro Gln Ser Gln Pro Gln Tyr  
1 5 10 15

Ser Gln Pro Gln  
20

<210> 213  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 213  
Gln Pro Phe Arg Pro Gln Gln Ser Tyr Pro Gln Pro Gln Pro Gln Tyr  
1 5 10 15

Ser Gln Pro Gln  
20

<210> 214  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 214  
Pro Pro Phe Ser Pro Gln Gln Pro Tyr Pro Gln Pro Gln Pro Gln Tyr  
1 5 10 15

Pro Gln Pro Gln  
20

<210> 215  
<211> 20  
<212> PRT

2003244771 30 Mar 2005

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 215  
Gln Ser Phe Pro Pro Gln Gln Pro Tyr Pro Gln Gln Arg Pro Lys Tyr  
1 5 10 15  
Leu Gln Pro Gln  
20  
<210> 216  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 216  
Gln Ser Phe Pro Pro Gln Gln Pro Tyr Pro Gln Gln Arg Pro Met Tyr  
1 5 10 15  
Leu Gln Pro Gln  
20  
<210> 217  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 217  
Gln Ser Phe Pro Pro Gln Gln Pro Tyr Pro Gln Gln Gln Pro Gln Tyr  
1 5 10 15  
Leu Gln Pro Gln  
20  
<210> 218  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 218  
Gln Pro Phe Pro Pro Gln Gln Pro Tyr Pro Gln Pro Gln Pro Gln Tyr  
1 5 10 15  
Pro Gln Pro Gln  
20  
<210> 219  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 219  
Tyr Pro Gln Pro Gln Pro Gln Tyr Ser Gln Pro Gln Gln Pro Ile Ser  
1 5 10 15

2003244771 30 Mar 2005

Gln Gln Gln Gln  
20

<210> 220  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 220  
Tyr Pro Gln Pro Gln Pro Gln Tyr Ser Gln Pro Gln Glu Pro Ile Ser  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 221  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 221  
Tyr Pro Gln Ser Gln Pro Gln Tyr Ser Gln Pro Gln Gln Pro Ile Ser  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 222  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 222  
Tyr Pro Gln Pro Gln Pro Gln Tyr Pro Gln Pro Gln Gln Pro Ile Ser  
1 5 10 15

Gln Gln Gln Ala  
20

<210> 223  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 223  
Tyr Pro Gln Gln Arg Pro Lys Tyr Leu Gln Pro Gln Gln Pro Ile Ser  
1 5 10 15

Gln Gln Gln Ala  
20

<210> 224  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 224  
Tyr Pro Gln Gln Arg Pro Met Tyr Leu Gln Pro Gln Gln Pro Ile Ser  
1 5 10 15

Gln Gln Gln Ala  
20

<210> 225  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 225  
Tyr Pro Gln Gln Gln Pro Gln Tyr Leu Gln Pro Gln Gln Pro Ile Ser  
1 5 10 15

Gln Gln Gln Ala  
20

<210> 226  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 226  
Ser Gln Pro Gln Gln Pro Ile Ser Gln Gln Gln Gln Gln Gln Gln  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 227  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 227  
Ser Gln Pro Gln Glu Pro Ile Ser Gln Gln Gln Gln Gln Gln Gln  
1 5 10 15

Gln Gln Gln Ile  
20

<210> 228  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 228  
Pro Gln Pro Gln Gln Pro Ile Ser Gln Gln Gln Ala Gln Gln Gln  
1 5 10 15

Gln Gln Gln Gln  
20

2003244771 30 Mar 2005

<210> 229  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 229  
Gln  
1 5 10 15  
  
Ile Leu Gln Gln  
20  
  
<210> 230  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 230  
Gln Glu Gln Gln  
1 5 10 15  
  
Ile Leu Gln Gln  
20  
  
<210> 231  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 231  
Gln  
1 5 10 15  
  
Ile Ile Gln Gln  
20  
  
<210> 232  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 232  
Gln Gln Gln Gln Gln Gln Gln Gln Gln Lys Gln Gln Gln Gln Gln  
1 5 10 15  
  
Gln Gln Gln Ile  
20  
  
<210> 233  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 233

2003244771 30 Mar 2005

Ala Gln  
1 5 10 15

Thr Leu Gln Gln  
20

<210> 234  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 234  
Gln Gln Gln Gln Gln Gln Gln Ile Leu Gln Gln Ile Leu Gln Gln  
1 5 10 15

Gln Leu Ile Pro  
20

<210> 235  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 235  
Gln Gln Gln Gln Glu Gln Gln Ile Leu Gln Gln Ile Leu Gln Gln  
1 5 10 15

Gln Leu Ile Pro  
20

<210> 236  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 236  
Gln Gln Gln Gln Glu Gln Gln Ile Leu Gln Gln Met Leu Gln Gln  
1 5 10 15

Gln Leu Ile Pro  
20

<210> 237  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 237  
Gln Gln Gln Gln Glu Gln Gln Ile Leu Gln Gln Ile Leu Gln Gln  
1 5 10 15

Gln Leu Thr Pro  
20

<210> 238  
<211> 20  
<212> PRT

2003244771 30 Mar 2005

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 238  
Gln Gln Gln Gln Gln Gln Ile Ile Gln Gln Ile Leu Gln Gln  
1 5 10 15  
Gln Leu Ile Pro  
20  
<210> 239  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 239  
Gln Gln Lys Gln Gln Gln Gln Gln Gln Ile Leu Gln Gln Ile  
1 5 10 15  
Leu Gln Gln Gln  
20  
<210> 240  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 240  
Gln Gln Gln Gln Gln Gln Ile Leu Pro Gln Ile Leu Gln Gln  
1 5 10 15  
Gln Leu Ile Pro  
20  
<210> 241  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 241  
Gln Gln Gln Gln Gln Gln Thr Leu Gln Gln Ile Leu Gln Gln  
1 5 10 15  
Gln Leu Ile Pro  
20  
<210> 242  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 242  
Ile Leu Gln Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Met Asp Val  
1 5 10 15

2003244771 30 Mar 2005

val Leu Gln Gln  
20

<210> 243  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 243  
Ile Leu Gln Gln Met Leu Gln Gln Gln Leu Ile Pro Cys Met Asp Val  
1 5 10 15

val Leu Gln Gln  
20

<210> 244  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 244  
Ile Leu Gln Gln Ile Leu Gln Gln Gln Leu Thr Pro Cys Met Asp Val  
1 5 10 15

val Leu Gln Gln  
20

<210> 245  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 245  
Ile Leu Gln Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Arg Asp Val  
1 5 10 15

val Leu Gln Gln  
20

<210> 246  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 246  
Ile Leu Pro Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Arg Asp Val  
1 5 10 15

val Leu Gln Gln  
20

<210> 247  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 247  
Thr Leu Gln Gln Ile Leu Gln Gln Gln Leu Ile Pro Cys Arg Asp Val  
1 5 10 15  
Val Leu Gln Gln  
20

<210> 248  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 248  
Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln Gln His Asn Ile Ala  
1 5 10 15  
His Gly Arg Ser  
20

<210> 249  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 249  
Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln Gln His Asn Lys Ala  
1 5 10 15  
His Gly Arg Ser  
20

<210> 250  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 250  
Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln Gln His Asn Leu Ala  
1 5 10 15  
His Gly Arg Ser  
20

<210> 251  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 251  
Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln Gln His Asn Ile Val  
1 5 10 15  
His Gly Arg Ser  
20

2003244771 30 Mar 2005

<210> 252  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 252  
Gln Leu Thr Pro Cys Met Asp Val Val Leu Gln Gln His Asn Ile Ala  
1 5 10 15  
  
Arg Gly Arg Ser  
20  
  
<210> 253  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 253  
Gln Leu Ile Pro Cys Met Asp Val Val Leu Gln Gln His Asn Ile Val  
1 5 10 15  
  
His Gly Lys Ser  
20  
  
<210> 254  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 254  
Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln Gln His Ser Ile Ala  
1 5 10 15  
  
Tyr Gly Ser Ser  
20  
  
<210> 255  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 255  
Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln Gln His Ser Ile Ala  
1 5 10 15  
  
His Gly Ser Ser  
20  
  
<210> 256  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 256

2003244771 30 Mar 2005

Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln Gln His Asn Ile Ala  
1 5 10 15

His Gly Ser Ser  
20

<210> 257  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 257  
Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln Gln His Asn Ile Ala  
1 5 10 15

His Ala Arg Ser  
20

<210> 258  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 258  
Gln Leu Ile Pro Cys Arg Asp Val Val Leu Gln Gln His Asn Ile Ala  
1 5 10 15

His Ala Ser Ser  
20

<210> 259  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 259  
Val Leu Gln Gln His Asn Ile Ala His Gly Arg Ser Gln Val Leu Gln  
1 5 10 15

Gln Ser Thr Tyr  
20

<210> 260  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 260  
Val Leu Gln Gln His Asn Lys Ala His Gly Arg Ser Gln Val Leu Gln  
1 5 10 15

Gln Ser Thr Tyr  
20

<210> 261  
<211> 20  
<212> PRT

2003244771 30 Mar 2005

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 261  
Val Leu Gln Gln His Asn Leu Ala His Gly Arg Ser Gln Val Leu Gln  
1 5 10 15  
Gln Ser Thr Tyr  
20  
<210> 262  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 262  
Val Leu Gln Gln His Asn Ile Val His Gly Arg Ser Gln Val Leu Gln  
1 5 10 15  
Gln Ser Thr Tyr  
20  
<210> 263  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 263  
Val Leu Gln Gln His Asn Ile Ala Arg Gly Arg Ser Gln Val Leu Gln  
1 5 10 15  
Gln Ser Thr Tyr  
20  
<210> 264  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 264  
Val Leu Gln Gln His Asn Ile Val His Gly Lys Ser Gln Val Leu Gln  
1 5 10 15  
Gln Ser Thr Tyr  
20  
<210> 265  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 265  
Val Leu Gln Gln His Ser Ile Ala Tyr Gly Ser Ser Gln Val Leu Gln  
1 5 10 15

2003244771 30 Mar 2005

Gln Ser Thr Tyr  
20

<210> 266

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 266

Val Leu Gln Gln His Ser Ile Ala His Gly Ser Ser Gln Val Leu Gln  
1 5 10 15

Gln Ser Thr Tyr  
20

<210> 267

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 267

Val Leu Gln Gln His Asn Ile Ala His Gly Ser Ser Gln Val Leu Gln  
1 5 10 15

Glu Ser Thr Tyr  
20

<210> 268

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 268

Val Leu Gln Gln His Asn Ile Ala His Ala Arg Ser Gln Val Leu Gln  
1 5 10 15

Gln Ser Thr Tyr  
20

<210> 269

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 269

Val Leu Gln Gln His Asn Ile Ala His Ala Ser Ser Gln Val Leu Gln  
1 5 10 15

Gln Ser Thr Tyr  
20

<210> 270

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 270  
Val Leu Gln Gln His Asn Ile Ala His Ala Ser Ser Gln Val Leu Gln  
1 5 10 15

Gln Ser Ser Tyr  
20

<210> 271

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 271  
His Gly Arg Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu Gln  
1 5 10 15

Glu Leu Cys Cys  
20

<210> 272

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 272  
His Gly Arg Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu Arg  
1 5 10 15

Glu Leu Cys Cys  
20

<210> 273

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 273  
His Gly Arg Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu Arg  
1 5 10 15

Glu Leu Cys Cys  
20

<210> 274

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 274  
His Gly Lys Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu Gln  
1 5 10 15

Glu Leu Cys Cys  
20

2003244771 30 Mar 2005

<210> 275  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 275  
Tyr Gly Ser Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Val Gln  
1 5 10 15  
  
Gln Leu Cys Cys  
20  
  
<210> 276  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 276  
His Gly Ser Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Val Gln  
1 5 10 15  
  
Gln Phe Cys Cys  
20  
  
<210> 277  
<211> 20  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> peptide  
  
<400> 277  
His Gly Ser Ser Gln Val Leu Gln Glu Ser Thr Tyr Gln Leu Val Gln  
1 5 10 15  
  
Gln Leu Cys Cys  
20  
  
<210> 278  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 278  
His Ala Arg Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Pro Leu Gln  
1 5 10 15  
  
Gln Leu Cys Cys  
20  
  
<210> 279  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 279

2003244771 30 Mar 2005

His Ala Ser Ser Gln Val Leu Gln Gln Ser Thr Tyr Gln Leu Leu Gln  
1 5 10 15

Gln Leu Cys Cys  
20

<210> 280  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 280  
His Ala Ser Ser Gln Val Leu Gln Gln Ser Ser Tyr Gln Gln Leu Gln  
1 5 10 15

Gln Leu Cys Cys  
20

<210> 281  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 281  
Gln Ser Thr Tyr Gln Leu Leu Gln Glu Leu Cys Cys Gln His Leu Trp  
1 5 10 15

Gln Ile Pro Glu  
20

<210> 282  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 282  
Gln Ser Thr Tyr Gln Leu Leu Arg Glu Leu Cys Cys Gln His Leu Trp  
1 5 10 15

Gln Ile Pro Glu  
20

<210> 283  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 283  
Gln Ser Thr Tyr Gln Leu Leu Arg Glu Leu Cys Cys Gln His Leu Trp  
1 5 10 15

Gln Ile Pro Glu  
20

<210> 284  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 284  
Gln Ser Thr Tyr Gln Leu Val Gln Gln Leu Cys Cys Gln Gln Leu Trp  
1 5 10 15  
Gln Ile Pro Glu  
20  
<210> 285  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 285  
Gln Ser Thr Tyr Gln Leu Val Gln Gln Phe Cys Cys Gln Gln Leu Trp  
1 5 10 15  
Gln Ile Pro Glu  
20  
<210> 286  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 286  
Gln Ser Thr Tyr Gln Pro Leu Gln Gln Leu Cys Cys Gln Gln Leu Trp  
1 5 10 15  
Gln Ile Pro Glu  
20  
<210> 287  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 287  
Gln Ser Thr Tyr Gln Leu Leu Gln Gln Leu Cys Cys Gln Gln Leu Leu  
1 5 10 15  
Gln Ile Pro Glu  
20  
<210> 288  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 288  
Gln Ser Ser Tyr Gln Gln Leu Gln Gln Leu Cys Cys Gln Gln Leu Phe  
1 5 10 15

2003244771 30 Mar 2005

Gln Ile Pro Glu  
20

<210> 289

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 289

Glu Leu Cys Cys Gln His Leu Trp Gln Ile Pro Glu Gln Ser Gln Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 290

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 290

Glu Leu Cys Cys Gln His Leu Trp Gln Ile Leu Glu Gln Ser Gln Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 291

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 291

Glu Leu Cys Cys Gln His Leu Trp Gln Ile Pro Glu Lys Leu Gln Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 292

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 292

Gln Leu Cys Cys Gln Gln Leu Trp Gln Ile Pro Glu Gln Ser Arg Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 293

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 293  
Gln Phe Cys Cys Gln Gln Leu Trp Gln Ile Pro Glu Gln Ser Arg Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 294  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 294  
Gln Leu Cys Cys Gln Gln Leu Leu Gln Ile Pro Glu Gln Ser Arg Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 295  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 295  
Gly Leu Cys Cys Gln Gln Leu Leu Gln Ile Pro Glu Gln Ser Gln Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 296  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 296  
Gln Leu Cys Cys Gln Gln Leu Phe Gln Ile Pro Glu Gln Ser Arg Cys  
1 5 10 15

Gln Ala Ile His  
20

<210> 297  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 297  
Gln Ile Pro Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Val His  
1 5 10 15

Ala Ile Ile Leu  
20

2003244771 30 Mar 2005

<210> 298  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 298  
Gln Ile Pro Glu Gln Ser Gln Cys Gln Ala Ile Gln Asn Val Val His  
1 5 10 15  
  
Ala Ile Ile Leu  
20  
  
<210> 299  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 299  
Gln Ile Leu Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Val His  
1 5 10 15  
  
Ala Ile Ile Leu  
20  
  
<210> 300  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 300  
Gln Ile Pro Glu Gln Ser Gln Cys Gln Ala Ile His Lys Val Val His  
1 5 10 15  
  
Ala Ile Ile Leu  
20  
  
<210> 301  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 301  
Gln Ile Pro Glu Lys Leu Gln Cys Gln Ala Ile His Asn Val Val His  
1 5 10 15  
  
Ala Ile Ile Leu  
20  
  
<210> 302  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 302

2003244771 30 Mar 2005

Gln Ile Pro Glu Gln Ser Arg Cys Gln Ala Ile His Asn Val Val His  
1 5 10 15

Ala Ile Ile Leu  
20

<210> 303  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 303  
Gln Ile Pro Glu Gln Ser Gln Cys Gln Ala Ile His Asn Val Ala His  
1 5 10 15

Ala Ile Ile Met  
20

<210> 304  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 304  
Gln Ile Pro Glu Gln Ser Arg Cys Gln Ala Ile His Asn Val Val His  
1 5 10 15

Ala Ile Ile Leu  
20

<210> 305  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 305  
Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His Gln Gln Gln  
1 5 10 15

Lys Gln Gln Gln  
20

<210> 306  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 306  
Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His Gln Gln Gln  
1 5 10 15

Gln Lys Gln Gln  
20

<210> 307  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence

<220>  
<223> peptide

<400> 307  
Gln Ala Ile Gln Asn Val Val His Ala Ile Ile Leu His Gln Gln Gln  
1 5 10 15  
Lys Gln Gln Gln  
20

<210> 308

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 308  
Gln Ala Ile His Lys Val Val His Ala Ile Ile Leu His Gln Gln Gln  
1 5 10 15  
Lys Gln Gln Gln  
20

<210> 309

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 309  
Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His Gln Gln Gln  
1 5 10 15  
Gln Gln Gln Gln  
20

<210> 310

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 310  
Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His Gln Gln His  
1 5 10 15  
His His His Gln  
20

<210> 311

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 311  
Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His Gln Gln Gln  
1 5 10 15

2003244771 30 Mar 2005

Arg Gln Gln Gln  
20

<210> 312  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 312  
Gln Ala Ile His Asn Val Val His Ala Ile Ile Met His Gln Gln Glu  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 313  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 313  
Gln Ala Ile His Asn Val Ala His Ala Ile Ile Met His Gln Gln Gln  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 314  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 314  
Gln Ala Ile His Asn Val Val His Ala Ile Ile Leu His His Gln  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 315  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 315  
Ala Ile Ile Leu His Gln Gln Gln Lys Gln Gln Gln Gln Pro Ser Ser  
1 5 10 15

Gln Val Ser Phe  
20

<210> 316  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 316  
Ala Ile Ile Leu His Gln Gln Gln Lys Gln Gln Gln Gln Pro Ser  
1 5 10 15

Ser Gln Phe Ser  
20

<210> 317  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 317  
Ala Ile Ile Leu His Gln Gln Gln Lys Gln Gln Gln Leu Ser Ser  
1 5 10 15

Gln Val Ser Phe  
20

<210> 318  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 318  
Ala Ile Ile Leu His Gln Gln Gln Lys Gln Gln Gln Pro Ser Ser Gln  
1 5 10 15

Val Ser Phe Gln  
20

<210> 319  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 319  
Ala Ile Ile Leu His Gln Gln Gln Gln Gln Gln Glu Gln Lys Gln  
1 5 10 15

Gln Leu Gln Gln  
20

<210> 320  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 320  
Ala Ile Ile Leu His Gln  
1 5 10 15

Gln Pro Leu Ser  
20

2003244771 30 Mar 2005

<210> 321  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 321  
Ala Ile Ile Leu His Gln Gln His His His Gln Gln Gln Gln Gln  
1 5 10 15  
  
Gln Gln Gln Gln  
20  
  
<210> 322  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 322  
Ala Ile Ile Leu His Gln Gln His His His Gln Glu Gln Lys Gln  
1 5 10 15  
  
Gln Leu Gln Gln  
20  
  
<210> 323  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 323  
Ala Ile Ile Leu His Gln Gln Gln Arg Gln Gln Gln Pro Ser Ser Gln  
1 5 10 15  
  
Val Ser Leu Gln  
20  
  
<210> 324  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 324  
Ala Ile Ile Met His Gln Gln Glu Gln Gln Gln Gln Leu Gln Gln Gln  
1 5 10 15  
  
Gln Gln Gln Gln  
20  
  
<210> 325  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 325

2003244771 30 Mar 2005

Ala Ile Ile Met His Gln Gln Gln Gln Gln Gln Glu Gln Lys Gln  
1 5 10 15

Gln Leu Gln Gln  
20

<210> 326  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 326  
Ala Ile Ile Leu His His His Gln Gln Gln Gln Gln Pro Ser Ser  
1 5 10 15

Gln Val Ser Tyr  
20

<210> 327  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 327  
Lys Gln Gln Gln Gln Pro Ser Ser Gln Val Ser Phe Gln Gln Pro Leu  
1 5 10 15

Gln Gln Tyr Pro  
20

<210> 328  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 328  
Lys Gln Gln Gln Gln Pro Ser Ser Gln Phe Ser Phe Gln Gln Pro Leu  
1 5 10 15

Gln Gln Tyr Pro  
20

<210> 329  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 329  
Lys Gln Gln Gln Gln Leu Ser Ser Gln Val Ser Phe Gln Gln Pro Gln  
1 5 10 15

Gln Gln Tyr Pro  
20

<210> 330  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 330  
Lys Gln Gln Gln Pro Ser Ser Gln Val Ser Phe Gln Gln Pro Gln Gln  
1 5 10 15  
Gln Tyr Pro Leu  
20  
<210> 331  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 331  
Gln Gln Gln Gln Glu Gln Lys Gln Gln Leu Gln Gln Gln Gln Gln Gln  
1 5 10 15  
Gln Gln Gln Leu  
20  
<210> 332  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 332  
His His His Gln Glu Gln Lys Gln Gln Leu Gln Gln Gln Gln Gln  
1 5 10 15  
Gln Gln Gln Leu  
20  
<210> 333  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 333  
Arg Gln Gln Gln Pro Ser Ser Gln Val Ser Leu Gln Gln Pro Gln Gln  
1 5 10 15  
Gln Tyr Pro Ser  
20  
<210> 334  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 334  
Gln Gln Gln Gln Leu Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln  
1 5 10 15

2003244771 30 Mar 2005

Gln Gln Gln Gln  
20

<210> 335  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 335  
Gln Gln Gln Gln Gln Pro Ser Ser Gln Val Ser Tyr Gln Gln Pro Gln  
1 5 10 15

Glu Gln Tyr Pro  
20

<210> 336  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 336  
Gln Leu Gln Gln Gln Gln Gln Gln Gln Gln Gln Leu Gln Gln Gln Gln  
1 5 10 15

Gln Lys Gln Gln  
20

<210> 337  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 337  
Gln Gln Gln Leu Gln Gln Gln Gln Lys Gln Gln Gln Gln Pro Ser  
1 5 10 15

Ser Gln Val Ser  
20

<210> 338  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 338  
Gln Gln Gln Gln Gln Gln Gln Gln Pro Leu Ser Gln Val Ser Phe  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 339  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 339  
Gln Gln Gln Gln Gln Gln Gln Gln Pro Leu Ser Gln Val Cys Phe  
1 5 10 15

Gln Gln Ser Gln  
20

<210> 340  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 340  
His His His Gln Gln Gln Gln Gln Gln Gln Gln Gln Pro Leu Ser  
1 5 10 15

Gln Val Ser Phe  
20

<210> 341  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 341  
Gln Gln Gln Gln Gln Gln Gln Pro Ser Ser Gln Val Ser Phe  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 342  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 342  
Gln Pro Leu Ser Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro  
1 5 10 15

Ser Gly Gln Gly  
20

<210> 343  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 343  
Gln Pro Leu Ser Gln Val Cys Phe Gln Gln Ser Gln Gln Gln Tyr Pro  
1 5 10 15

Ser Gly Gln Gly  
20

2003244771 30 Mar 2005

<210> 344  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 344  
Gln Pro Ser Ser Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro  
1 5 10 15

Ser Ser Gln Val  
20

<210> 345  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 345  
Gln Val Ser Phe Gln Gln Pro Leu Gln Gln Tyr Pro Leu Gly Gln Gly  
1 5 10 15

Ser Phe Arg Pro  
20

<210> 346  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> peptide

<400> 346  
Gln Phe Ser Phe Gln Gln Pro Leu Gln Gln Tyr Pro Leu Gly Gln Gly  
1 5 10 15

Ser Phe Arg Pro  
20

<210> 347  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> peptide

<400> 347  
Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Leu Gly Gln Gly  
1 5 10 15

Ser Phe Arg Pro  
20

<210> 348  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 348

2003244771 30 Mar 2005

Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Gly Gln Gly  
1 5 10 15

Ser Phe Gln Pro  
20

<210> 349  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 349  
Gln Val Cys Phe Gln Gln Ser Gln Gln Gln Tyr Pro Ser Gly Gln Gly  
1 5 10 15

Ser Phe Gln Pro  
20

<210> 350  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 350  
Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Gly Gln Gly  
1 5 10 15

Phe Phe Gln Pro  
20

<210> 351  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 351  
Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Gly Gln Gly  
1 5 10 15

Phe Phe Gln Pro  
20

<210> 352  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 352  
Gln Val Ser Leu Gln Gln Pro Gln Gln Gln Tyr Pro Ser Gly Gln Gly  
1 5 10 15

Phe Phe Gln Pro  
20

<210> 353  
<211> 20  
<212> PRT

2003244771 30 Mar 2005

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 353  
Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Ser Gln Val  
1 5 10 15  
Ser Phe Gln Pro  
20  
<210> 354  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 354  
Gln Val Ser Phe Gln Gln Pro Gln Gln Gln Tyr Pro Ser Ser Gln Gly  
1 5 10 15  
Ser Phe Gln Pro  
20  
<210> 355  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 355  
Gln Val Ser Tyr Gln Gln Pro Gln Glu Gln Tyr Pro Ser Gly Gln Val  
1 5 10 15  
Ser Phe Gln Ser  
20  
<210> 356  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 356  
Gln Gln Tyr Pro Leu Gly Gln Gly Ser Phe Arg Pro Ser Gln Gln Asn  
1 5 10 15  
Pro Gln Ala Gln  
20  
<210> 357  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 357  
Gln Gln Tyr Pro Leu Gly Gln Gly Ser Phe Arg Pro Ser Gln Gln Asn  
1 5 10 15

2003244771 30 Mar 2005

Ser Gln Ala Gln  
20

<210> 358

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 358

Gln Gln Tyr Pro Ser Gly Gln Gly Ser Phe Gln Pro Ser Gln Gln Asn  
1 5 10 15

Pro Gln Ala Gln  
20

<210> 359

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 359

Gln Gln Tyr Pro Ser Gly Gln Gly Phe Phe Gln Pro Ser Gln Gln Asn  
1 5 10 15

Pro Gln Ala Gln  
20

<210> 360

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 360

Gln Gln Tyr Pro Ser Gly Gln Gly Phe Phe Gln Pro Phe Gln Gln Asn  
1 5 10 15

Pro Gln Ala Gln  
20

<210> 361

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 361

Gln Gln Tyr Pro Ser Gly Gln Gly Phe Phe Gln Pro Ser Gln Gln Asn  
1 5 10 15

Pro Gln Ala Gln  
20

<210> 362

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 362  
Gln Gln Tyr Pro Ser Ser Gln Val Ser Phe Gln Pro Ser Gln Leu Asn  
1 5 10 15

Pro Gln Ala Gln  
20

<210> 363  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 363  
Gln Gln Tyr Pro Ser Ser Gln Gly Ser Phe Gln Pro Ser Gln Gln Asn  
1 5 10 15

Pro Gln Ala Gln  
20

<210> 364  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 364  
Glu Gln Tyr Pro Ser Gly Gln Val Ser Phe Gln Ser Ser Gln Gln Asn  
1 5 10 15

Pro Gln Ala Gln  
20

<210> 365  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 365  
Ser Phe Arg Pro Ser Gln Gln Asn Pro Leu Ala Gln Gly Ser Val Gln  
1 5 10 15

Pro Gln Gln Leu  
20

<210> 366  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

<223> peptide

<400> 366  
Ser Phe Arg Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val Gln  
1 5 10 15

Pro Gln Gln Leu  
20

2003244771 30 Mar 2005

<210> 367  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 367  
Ser Phe Arg Pro Ser Gln Gln Asn Pro Gln Thr Gln Gly Ser Val Gln  
1 5 10 15  
  
Pro Gln Gln Leu  
20  
  
<210> 368  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 368  
Ser Phe Arg Pro Ser Gln Gln Asn Ser Gln Ala Gln Gly Ser Val Gln  
1 5 10 15  
  
Pro Gln Gln Leu  
20  
  
<210> 369  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 369  
Ser Phe Arg Pro Ser Gln Gln Asn Pro Gln Asp Gln Gly Ser Val Gln  
1 5 10 15  
  
Pro Gln Gln Leu  
20  
  
<210> 370  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 370  
Ser Phe Arg Pro Ser Gln Gln Asn Pro Arg Ala Gln Gly Ser Val Gln  
1 5 10 15  
  
Pro Gln Gln Leu  
20  
  
<210> 371  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 371

2003244771 30 Mar 2005

Ser Phe Gln Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val Gln  
1 5 10 15

Pro Gln Gln Leu  
20

<210> 372  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 372  
Phe Phe Gln Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Phe Gln  
1 5 10 15

Pro Gln Gln Leu  
20

<210> 373  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 373  
Phe Phe Gln Pro Phe Gln Gln Asn Pro Gln Ala Gln Gly Ser Phe Gln  
1 5 10 15

Pro Gln Gln Leu  
20

<210> 374  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 374  
Phe Phe Gln Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val Gln  
1 5 10 15

Pro Gln Gln Leu  
20

<210> 375  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 375  
Ser Phe Gln Pro Ser Gln Leu Asn Pro Gln Ala Gln Gly Ser Val Gln  
1 5 10 15

Pro Gln Gln Leu  
20

<210> 376  
<211> 20  
<212> PRT

30 Mar 2005

2003244771

<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 376  
Ser Phe Gln Pro Ser Gln Leu Asn Pro Gln Ala Gln Gly Ser Val Gln  
1 5 10 15  
Pro Gln Gln Leu  
20  
<210> 377  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 377  
Ser Phe Gln Pro Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val Gln  
1 5 10 15  
Pro Gln Gln Leu  
20  
<210> 378  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 378  
Ser Phe Gln Ser Ser Gln Gln Asn Pro Gln Ala Gln Gly Ser Val Gln  
1 5 10 15  
Pro Gln Gln Leu  
20  
<210> 379  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 379  
Pro Gln Ala Gln Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15  
Glu Ile Arg Asn  
20  
<210> 380  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220>  
<223> peptide  
<400> 380  
Pro Gln Thr Gln Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15

2003244771 30 Mar 2005

Glu Ile Arg Asn  
20

<210> 381  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 381  
Pro Gln Ala Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15

Ile Arg Asn Leu  
20

<210> 382  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 382  
Pro Leu Ala Gln Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15

Glu Ile Arg Asn  
20

<210> 383  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 383  
Pro Gln Asp Gln Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15

Glu Ile Arg Asn  
20

<210> 384  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 384  
Pro Arg Ala Gln Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15

Glu Ile Arg Asn  
20

<210> 385  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>

2003244771 30 Mar 2005

<223> peptide

<400> 385

Pro Gln Ala Gln Gly Ser Phe Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15

Glu Ile Arg Asn  
20

<210> 386

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 386

Pro Gln Ala Gln Gly Ser Phe Gln Pro Gln Gln Leu Pro Gln Phe Glu  
1 5 10 15

Ala Ile Arg Asn  
20

<210> 387

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 387

Pro Gln Ala Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Ala  
1 5 10 15

Glu Ile Arg Asn  
20

<210> 388

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 388

Pro Gln Ala Gln Gly Ser Val Gln Pro Gln Gln Leu Pro Gln Phe Gln

1 5 10 15

Glu Ile Arg Asn  
20

<210> 389

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 389

Pro Gln Gln Leu Pro Gln Phe Glu Glu Ile Arg Asn Leu Ala Leu Gln  
1 5 10 15

Thr Leu Pro Ala  
20

2003244771 30 Mar 2005

<210> 390  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 390  
Pro Gln Gln Leu Pro Gln Phe Glu Ile Arg Asn Leu Ala Leu Gln Thr  
1 5 10 15  
  
Leu Pro Ala Met  
20  
  
<210> 391  
<211> 16  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 391  
Pro Gln Gln Leu Pro Gln Phe Glu Glu Ile Arg Asn Leu Ala Arg Lys  
1 5 10 15  
  
<210> 392  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 392  
Pro Gln Gln Leu Pro Gln Phe Glu Glu Ile Arg Asn Leu Ala Leu Glu  
1 5 10 15  
  
Thr Leu Pro Ala  
20  
  
<210> 393  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 393  
Pro Gln Gln Leu Pro Gln Phe Glu Ala Ile Arg Asn Leu Ala Leu Gln  
1 5 10 15  
  
Thr Leu Pro Ala  
20  
  
<210> 394  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 394  
Pro Gln Gln Leu Pro Gln Phe Ala Glu Ile Arg Asn Leu Ala Leu Gln  
1 5 10 15

2003244771 30 Mar 2005

Thr Leu Pro Ala  
20

<210> 395  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 395  
Pro Gln Gln Leu Pro Gln Phe Gln Glu Ile Arg Asn Leu Ala Leu Gln  
1 5 10 15

Thr Leu Pro Ala  
20

<210> 396  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 396  
Glu Ile Arg Asn Leu Ala Leu Gln Thr Leu Pro Ala Met Cys Asn Val  
1 5 10 15

Tyr Ile Pro Pro  
20

<210> 397  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 397  
Glu Ile Arg Asn Leu Ala Leu Gln Thr Leu Pro Ser Met Cys Asn Val  
1 5 10 15

Tyr Ile Pro Pro  
20

<210> 398  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 398  
Glu Ile Arg Asn Leu Ala Leu Glu Thr Leu Pro Ala Met Cys Asn Val  
1 5 10 15

Tyr Ile Pro Pro  
20

<210> 399  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220> 399  
<223> peptide  
  
<400> 399  
Glu Ile Arg Asn Leu Ala Leu Gln Thr Leu Pro Arg Met Cys Asn Val  
1 5 10 15  
Tyr Ile Pro Pro  
20  
  
<210> 400  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 400  
<223> peptide  
  
<400> 400  
Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr Ile  
1 5 10 15  
Ala Pro Phe Gly  
20  
  
<210> 401  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 401  
<223> peptide  
  
<400> 401  
Thr Leu Pro Ser Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr Ile  
1 5 10 15  
Ala Pro Phe Gly  
20  
  
<210> 402  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 402  
<223> peptide  
  
<400> 402  
Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr Ile  
1 5 10 15  
Val Pro Phe Gly  
20  
  
<210> 403  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 403  
<223> peptide  
  
<400> 403  
Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Ala Met  
1 5 10 15  
Ala Pro Phe Gly  
20

2003244771 30 Mar 2005

<210> 404  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 404  
Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr Ile  
1 5 10 15

Thr Pro Phe Gly  
20

<210> 405  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 405  
Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Thr Ile  
1 5 10 15

Ala Pro Val Gly  
20

<210> 406  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 406  
Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Ser Thr  
1 5 10 15

Thr Ile Ala Pro  
20

<210> 407  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 407  
Thr Leu Pro Arg Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Ser Thr  
1 5 10 15

Thr Ile Ala Pro  
20

<210> 408  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 408  
Thr Leu Pro Arg Met Cys Asn Val Tyr Ile Pro Pro Tyr Cys Ser Thr  
1 5 10 15

Thr Thr Ala Pro  
20

<210> 409  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 409  
Thr Leu Pro Ala Met Cys Asn Val Tyr Ile Pro Pro His Cys Ser Thr  
1 5 10 15

Thr Ile Ala Pro  
20

<210> 410  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 410  
Tyr Ile Pro Pro Tyr Cys Thr Ile Ala Pro Phe Gly Ile Phe Gly Thr  
1 5 10 15

Asn Tyr Arg

<210> 411  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 411  
Tyr Ile Pro Pro Tyr Cys Thr Ile Val Pro Phe Gly Ile Phe Gly Thr  
1 5 10 15

Asn Tyr Arg

<210> 412  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 412  
Tyr Ile Pro Pro Tyr Cys Ala Met Ala Pro Phe Gly Ile Phe Gly Thr  
1 5 10 15

Asn Tyr Arg

<210> 413  
<211> 19

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 413  
Tyr Ile Pro Pro Tyr Cys Thr Met Ala Pro Phe Gly Ile Phe Gly Thr  
1 5 10 15  
  
Asn Tyr Arg

<210> 414  
<211> 17  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 414  
Tyr Ile Pro Pro Tyr Cys Thr Ile Thr Pro Phe Gly Ile Phe Gly Thr  
1 5 10 15  
  
Asn

<210> 415  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 415  
Tyr Ile Pro Pro Tyr Cys Thr Ile Ala Pro Val Gly Ile Phe Gly Thr  
1 5 10 15  
  
Asn Tyr Arg

<210> 416  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 416  
Tyr Ile Pro Pro Tyr Cys Ser Thr Thr Ile Ala Pro Val Gly Ile Phe  
1 5 10 15  
  
Gly Thr Asn

<210> 417  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 417  
Tyr Ile Pro Pro Tyr Cys Ser Thr Thr Ala Pro Phe Gly Ile Phe  
1 5 10 15

2003244771 30 Mar 2005

Gly Thr Asn

<210> 418  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 418  
Tyr Ile Pro Pro His Cys Ser Thr Thr Ile Ala Pro Phe Gly Ile Phe  
1 5 10 15

Gly Thr Asn

<210> 419  
<211> 19  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 419  
Tyr Ile Pro Pro His Cys Ser Thr Thr Ile Ala Pro Phe Gly Ile Ser  
1 5 10 15

Gly Thr Asn

<210> 420  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 420  
Ile Pro Pro Tyr Cys Ser Thr Thr Ile Ala Pro Phe Gly Ile Phe Gly  
1 5 10 15

Thr Asn Tyr Arg  
20

<210> 421  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 421  
Gly Thr Ala Asn Met Gln Val Asp Pro Ser Ser Gln Val Gln Trp Pro  
1 5 10 15

Gln Gln Gln Pro  
20

<210> 422  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220> peptide  
<223> peptide  
  
<400> 422  
Gly Thr Ala Asn Ile Gln Val Asp Pro Ser Gly Gln Val Gln Trp Leu  
1 5 10 15  
  
Gln Gln Gln Leu  
20  
  
<210> 423  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> peptide  
  
<400> 423  
Ala Thr Ala Asn Met Gln Val Asp Pro Ser Gly Gln Val Pro Trp Pro  
1 5 10 15  
  
Gln Gln Gln Pro  
20  
  
<210> 424  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> peptide  
  
<400> 424  
Met Asn Ile Gln Val Asp Pro Ser Gly Gln Val Pro Trp Pro Gln Gln  
1 5 10 15  
  
Gln Pro Phe Pro  
20  
  
<210> 425  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> peptide  
  
<400> 425  
Ala Thr Ala Asn Met Gln Ala Asp Pro Ser Gly Gln Val Gln Trp Pro  
1 5 10 15  
  
Gln Gln Gln Pro  
20  
  
<210> 426  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> peptide  
  
<400> 426  
Thr Thr Ala Asn Ile Gln Val Asp Pro Ser Gly Gln Val Gln Trp Pro  
1 5 10 15  
  
Gln Gln Gln Gln  
20

30 Mar 2005

2003244771

<210> 427  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 427  
Ala Thr Ala Asn Met Gln Val Asp Pro Ser Gly Gln Val Gln Trp Pro  
1 5 10 15  
Gln Gln Gln Pro  
20

<210> 428  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 428  
Gln Ile Val Phe Pro Ser Gly Gln Val Gln Trp Pro Gln Gln Gln  
1 5 10 15  
Pro Phe Pro

<210> 429  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 429  
Pro Ser Ser Gln Val Gln Trp Pro Gln Gln Gln Pro Val Pro Gln Pro  
1 5 10 15  
His Gln Pro Phe  
20

<210> 430  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 430  
Pro Ser Gly Gln Val Gln Trp Leu Gln Gln Gln Leu Val Pro Gln Leu  
1 5 10 15  
Gln Gln Pro Leu  
20

<210> 431  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 431  
Pro Ser Gly Gln Val Pro Trp Pro Gln Gln Gln Pro Phe Pro Gln Pro  
1 5 10 15  
His Gln Pro Phe  
20  
  
<210> 432  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 432  
Pro Ser Gly Gln Val Gln Trp Pro Gln Gln Gln Pro Phe Leu Gln Pro  
1 5 10 15  
His Gln Pro Phe  
20  
  
<210> 433  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 433  
Pro Ser Gly Gln Val Gln Trp Pro Gln Gln Gln Gln Pro Phe Pro Gln  
1 5 10 15  
Pro Gln Gln Pro  
20  
  
<210> 434  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 434  
Pro Ser Gly Gln Val Gln Trp Pro Gln Gln Gln Pro Phe Arg Gln Pro  
1 5 10 15  
Gln Gln Pro Phe  
20  
  
<210> 435  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 435  
Pro Ser Gly Gln Val Gln Trp Pro Gln Gln Gln Pro Phe Pro Gln Pro  
1 5 10 15  
Gln Gln Pro Phe  
20  
  
<210> 436  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 436  
Gln Gln Gln Pro Val Pro Gln Pro His Gln Pro Phe Ser Gln Gln Pro  
1 5 10 15  
  
Gln Gln Thr Phe  
20  
  
<210> 437  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 437  
Gln Gln Gln Leu Val Pro Gln Leu Gln Gln Pro Leu Ser Gln Gln Pro  
1 5 10 15  
  
Gln Gln Thr Phe  
20  
  
<210> 438  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 438  
Gln Gln Gln Pro Phe Pro Gln Pro His Gln Pro Phe Ser Gln Gln Pro  
1 5 10 15  
  
Gln Gln Thr Phe  
20  
  
<210> 439  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 439  
Gln Gln Gln Pro Phe Leu Gln Pro His Gln Pro Phe Ser Gln Gln Pro  
1 5 10 15  
  
Gln Gln Ile Phe  
20  
  
<210> 440  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 440  
Gln Gln Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Ser Gln Gln  
1 5 10 15

2003244771 30 Mar 2005

Pro Gln Gln Ile  
20

<210> 441  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 441  
Gln Gln Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Pro Gln  
20

<210> 442  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 442  
Gln Gln Gln Pro Phe Arg Gln Pro Gln Gln Pro Phe Tyr Gln Gln Pro  
1 5 10 15

Gln His Thr Phe  
20

<210> 443  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 443  
Gln Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Cys Gln Gln Pro  
1 5 10 15

Gln Arg Thr Ile  
20

<210> 444  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 444  
Gln Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Cys Glu Gln Pro  
1 5 10 15

Gln Arg Thr Ile  
20

<210> 445  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220> peptide  
<223> peptide  
<400> 445  
His Gln Pro Phe Ser Gln Gln Pro Gln Gln Thr Phe Pro Gln Pro Gln  
1 5 10 15  
Gln Thr Phe Pro  
20  
<210> 446  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 446  
Gln Gln Pro Leu Ser Gln Gln Pro Gln Gln Thr Phe Pro Gln Pro Gln  
1 5 10 15  
Gln Thr Phe Pro  
20  
<210> 447  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 447  
His Gln Pro Phe Ser Gln Gln Pro Gln Gln Ile Phe Pro Gln Pro Gln  
1 5 10 15  
Gln Thr Phe Pro  
20  
<210> 448  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 448  
Gln Gln Pro Phe Ser Gln Gln Pro Gln Gln Ile Phe Pro Gln Pro Gln  
1 5 10 15  
Gln Thr Phe Pro  
20  
<210> 449  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 449  
Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Leu Pro  
1 5 10 15  
Phe Pro Gln Gln  
20

2003244771 30 Mar 2005

<210> 450  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 450  
Gln Gln Pro Phe Tyr Gln Gln Pro Gln His Thr Phe Pro Gln Pro Gln  
1 5 10 15  
  
Gln Thr Cys Pro  
20  
  
<210> 451  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 451  
Gln Gln Pro Phe Cys Gln Gln Pro Gln Arg Thr Ile Pro Gln Pro His  
1 5 10 15  
  
Gln Thr Phe His  
20  
  
<210> 452  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 452  
Gln Gln Pro Phe Cys Gln Gln Pro Gln Gln Thr Ile Pro Gln Pro His  
1 5 10 15  
  
Gln Thr Phe His  
20  
  
<210> 453  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 453  
Gln Gln Pro Phe Cys Glu Gln Pro Gln Arg Thr Ile Pro Gln Pro His  
1 5 10 15  
  
Gln Thr Phe His  
20  
  
<210> 454  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 454  
Gln Gln Thr Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln  
1 5 10 15

Gln Gln Phe Pro  
20

<210> 455  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 455  
Gln Gln Ile Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln  
1 5 10 15

Gln Gln Phe Pro  
20

<210> 456  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 456  
Gln Gln Ile Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln  
1 5 10 15

Gln Ala Phe Pro  
20

<210> 457  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 457  
Gln Arg Thr Ile Pro Gln Pro His Gln Thr Phe His His Gln Pro Gln  
1 5 10 15

Gln Thr Phe Pro  
20

<210> 458  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 458  
Gln Thr Phe Pro His Gln Pro Gln Gln Ala Phe Pro Gln Pro Gln Gln  
1 5 10 15

Thr Phe Pro His  
20

<210> 459  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 459  
Gln Thr Phe His His Gln Pro Gln Gln Thr Phe Pro Gln Pro Gln Gln  
1 5 10 15  
  
Thr Tyr Pro His  
20  
  
<210> 460  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 460  
Gln Thr Phe His His Gln Pro Gln Gln Thr Phe Pro Gln Pro Glu Gln  
1 5 10 15  
  
Thr Tyr Pro His  
20  
  
<210> 461  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 461  
Gln Ala Phe Pro Gln Pro Gln Gln Thr Phe Pro His Gln Pro Gln Gln  
1 5 10 15  
  
Gln Phe Pro Gln  
20  
  
<210> 462  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 462  
Gln His Thr Phe Pro Gln Pro Gln Gln Thr Cys Pro His Gln Pro Gln  
1 5 10 15  
  
Gln Gln Phe Pro  
20  
  
<210> 463  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 463  
Gln Thr Phe Pro Gln Pro Gln Gln Thr Tyr Pro His Gln Pro Gln Gln  
1 5 10 15

2003244771 30 Mar 2005

Gln Phe Pro Gln  
20

<210> 464  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 464  
Gln Thr Phe Pro Gln Pro Glu Gln Thr Tyr Pro His Gln Pro Gln Gln  
1 5 10 15

Gln Phe Pro Gln  
20

<210> 465  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 465  
Gln Thr Phe Pro His Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln  
1 5 10 15

Pro Gln Gln Gln  
20

<210> 466  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 466  
Gln Thr Phe Pro His Gln Pro Gln Gln Gln Val Pro Gln Pro Gln Gln  
1 5 10 15

Pro Gln Gln Pro  
20

<210> 467  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 467  
Gln Thr Phe Pro His Gln Pro Gln Gln Gln Phe Ser Gln Pro Gln Gln  
1 5 10 15

Pro Gln Gln Gln  
20

<210> 468  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220> 468  
<223> peptide  
Gln Thr Cys Pro His Gln Pro Gln Gln Phe Pro Gln Pro Gln Gln  
1 5 10 15  
Pro Gln Gln Pro  
20  
  
<210> 469  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 469  
<223> peptide  
Gln Thr Tyr Pro His Gln Pro Gln Gln Phe Pro Gln Thr Gln Gln  
1 5 10 15  
Pro Gln Gln Pro  
20  
  
<210> 470  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 470  
<223> peptide  
Gln Gln Phe Pro Gln Pro Gln Gln Phe Leu Gln Pro  
1 5 10 15  
Gln Gln Pro Phe  
20  
  
<210> 471  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 471  
<223> peptide  
Gln Gln Val Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Leu Gln Pro  
1 5 10 15  
Gln Gln Pro Phe  
20  
  
<210> 472  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 472  
<223> peptide  
Gln Gln Phe Ser Gln Pro Gln Gln Pro Gln Gln Gln Phe Ile Gln Pro  
1 5 10 15  
Gln Gln Pro Phe  
20

2003244771 30 Mar 2005

<210> 473  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 473  
Gln Gln Phe Pro Gln Pro Gln Gln Phe Leu Gln Pro  
1 5 10 15  
  
Arg Gln Pro Phe  
20  
  
<210> 474  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 474  
Gln Gln Phe Pro Gln Pro Gln Gln Pro Phe Pro Gln Gln  
1 5 10 15  
  
Pro Gln Gln Gln  
20  
  
<210> 475  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 475  
Gln Gln Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro  
1 5 10 15  
  
Gln Gln Thr Phe  
20  
  
<210> 476  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 476  
Pro Gln Gln Gln Phe Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro  
1 5 10 15  
  
Gln Gln Pro Tyr  
20  
  
<210> 477  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 477  
Pro Gln Gln Gln Phe Ile Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro  
1 5 10 15

Gln Gln Thr Tyr  
20

<210> 478

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 478

Pro Gln Gln Gln Phe Ile Gln Pro Gln Gln Pro Gln Gln Thr Tyr Pro  
1 5 10 15

Gln Arg Pro Gln  
20

<210> 479

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 479

Pro Gln Gln Gln Phe Leu Gln Pro Arg Gln Pro Phe Pro Gln Gln Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 480

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 480

Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Gln Phe Pro Gln Pro  
1 5 10 15

Gln Gln Pro Gln  
20

<210> 481

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 481

Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro  
1 5 10 15

Gln Pro Gln Gln  
20

<210> 482

<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 482  
Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Thr Phe Pro Gln Gln Pro  
1 5 10 15  
  
Gln Leu Pro Phe  
20  
  
<210> 483  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 483  
Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro  
1 5 10 15  
  
Gln Gln Pro Gln  
20  
  
<210> 484  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 484  
Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Gln Phe Pro  
1 5 10 15  
  
Gln Pro Gln Gln  
20  
  
<210> 485  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 485  
Gln Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Pro  
1 5 10 15  
  
Phe Pro Gln Pro  
20  
  
<210> 486  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 486  
Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln  
1 5 10 15

2003244771 30 Mar 2005

Leu Pro Phe Pro  
20

<210> 487  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 487

Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Tyr Pro Gln Gln Pro  
1 5 10 15

Gln Gln Pro Phe  
20

<210> 488  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 488

Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Thr Gln  
1 5 10 15

Gln Pro Gln Gln  
20

<210> 489  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 489

Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Thr Tyr Pro Gln Arg Pro  
1 5 10 15

Gln Gln Pro Phe  
20

<210> 490  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 490

Arg Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Tyr Pro Gln Gln Pro  
1 5 10 15

Gln Gln Pro Phe  
20

<210> 491  
<211> 20

<212> PRT

<213> Artificial Sequence

2003244771 30 Mar 2005

<220> peptide  
<223> peptide  
<400> 491  
Gln Gln Pro Phe Pro Gln Pro Gln Pro Gln Leu Pro Phe Pro Gln  
1 5 10 15  
Gln Pro Gln Gln  
20  
<210> 492  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 492  
Gln Gln Pro Phe Pro Gln Pro Gln Ala Gln Leu Pro Phe Pro Gln  
1 5 10 15  
Gln Pro Gln Gln  
20  
<210> 493  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 493  
Gln Gln Thr Phe Pro Gln Gln Pro Gln Leu Pro Phe Pro Gln Gln Pro  
1 5 10 15  
Gln Gln Pro Phe  
20  
<210> 494  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 494  
Gln Gln Pro Tyr Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Thr Gln  
1 5 10 15  
Gln Pro Gln Gln  
20  
<210> 495  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 495  
Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15  
Gln Pro Gln Gln  
20

30 Mar 2005

2003244771

<210> 496  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 496  
Gln Gln Thr Tyr Pro Gln Arg Pro Gln Gln Pro Phe Pro Gln Thr Gln  
1 5 10 15  
  
Gln Pro Gln Gln  
20  
  
<210> 497  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 497  
Gln Pro Gln Leu Pro Phe Pro Gln Gln Pro Gln Gln Gln Pro Gln Gln  
1 5 10 15  
  
Pro Phe Pro Gln  
20  
  
<210> 498  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 498  
Gln Ala Gln Leu Pro Phe Pro Gln Gln Pro Gln Gln Pro Leu Pro Gln  
1 5 10 15  
  
Pro Gln Gln Pro  
20  
  
<210> 499  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 499  
Gln Leu Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln  
1 5 10 15  
  
Gln Pro Gln Gln  
20  
  
<210> 500  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 500  
Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15  
Thr Gln Gln Pro  
20  
  
<210> 501  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 501  
Gln Pro Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15  
Pro Gln Gln Pro  
20  
  
<210> 502  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 502  
Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15  
Pro Gln Thr Gln  
20  
  
<210> 503  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 503  
Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln  
1 5 10 15  
Pro Phe Pro Gln  
20  
  
<210> 504  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 504  
Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Leu Phe Pro Gln  
1 5 10 15  
Ser Gln Gln Pro  
20  
  
<210> 505  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 505  
Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15  
  
Leu Gln Gln Pro  
20  
  
<210> 506  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 506  
Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15  
  
Ser Gln Gln Pro  
20  
  
<210> 507  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 507  
Gln Gln Pro Phe Pro Gln Thr Gln Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15  
  
Ser Lys Gln Pro  
20  
  
<210> 508  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 508  
Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15  
  
Leu Gln Gln Pro  
20  
  
<210> 509  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 509  
Gln Gln Pro Leu Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15

2003244771 30 Mar 2005

Ser Gln Gln Pro  
20

<210> 510  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 510  
Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Phe Pro Gln  
1 5 10 15

Ser Gln Gln Pro  
20

<210> 511  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 511  
Gln Pro Gln Gln Leu Phe Pro Gln Ser Gln Gln Pro Gln Gln Phe  
1 5 10 15

Ser Gln Pro Gln  
20

<210> 512  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 512  
Gln Pro Gln Gln Pro Phe Pro Gln Leu Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Pro Gln  
20

<210> 513  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 513  
Gln Pro Gln Gln Pro Phe Pro Gln Ser Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Pro Gln  
20

<210> 514  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220> peptide  
<223> peptide  
<400> 514  
Gln Pro Gln Gln Pro Phe Pro Gln Ser Lys Gln Pro Gln Gln Pro Phe  
1 5 10 15  
Pro Gln Pro Gln  
20  
<210> 515  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 515  
Gln Pro Gln Gln Pro Phe Pro Gln Leu Gln Gln Pro Gln Gln Pro Leu  
1 5 10 15  
Pro Gln Pro Gln  
20  
<210> 516  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 516  
Ser Gln Gln Pro Gln Gln Phe Ser Gln Pro Gln Gln Gln Phe Pro  
1 5 10 15  
Gln Pro Gln Gln  
20  
<210> 517  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 517  
Leu Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Gln Leu Pro  
1 5 10 15  
Gln Pro Gln Gln  
20  
<210> 518  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
<220> peptide  
<223> peptide  
<400> 518  
Ser Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Gln Phe Pro  
1 5 10 15  
Gln Pro Gln Gln  
20

2003244771 30 Mar 2005

<210> 519  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 519  
Ser Lys Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Gln  
1 5 10 15  
  
Ser Phe Pro Gln  
20  
  
<210> 520  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 520  
Leu Gln Gln Pro Gln Gln Pro Leu Pro Gln Pro Gln Gln Pro Gln Gln  
1 5 10 15  
  
Pro Phe Pro Gln  
20  
  
<210> 521  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 521  
Ser Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Gln Gln  
1 5 10 15  
  
Ser Phe Pro Gln  
20  
  
<210> 522  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 522  
Ser Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Ser  
1 5 10 15  
  
Phe Pro Gln Gln  
20  
  
<210> 523  
<211> 20  
<212> PRT  
<213> Artificial sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 523  
Pro Gln Pro Gln Gln Gln Leu Pro Gln Pro Gln Gln Pro Gln Gln Ser  
1 5 10 15

Phe Pro Gln Gln  
20

<210> 524  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 524  
Pro Gln Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln Pro Gln Gln Ser  
1 5 10 15

Phe Pro Gln Gln  
20

<210> 525  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 525  
Pro Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Pro Ser  
1 5 10 15

Leu Ile Gln Gln  
20

<210> 526  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 526  
Pro Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln Gln Gln Pro  
1 5 10 15

Leu Ile Gln Pro  
20

<210> 527  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 527  
Pro Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Gln Pro  
1 5 10 15

Leu Ile Gln Pro  
20

<210> 528  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 528  
Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Pro Pro Phe  
1 5 10 15  
  
Ile Gln Pro Ser  
20  
  
<210> 529  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 529  
Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Arg Pro Phe  
1 5 10 15  
  
Ile Gln Pro Ser  
20  
  
<210> 530  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 530  
Gln Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Gln Pro Ser Leu  
1 5 10 15  
  
Ile Gln Gln Ser  
20  
  
<210> 531  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 531  
Phe Pro Gln Gln Gln Pro Pro Phe Ile Gln Pro Ser Leu Gln Gln Gln  
1 5 10 15  
  
Val Asn Pro Cys  
20  
  
<210> 532  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 532  
Phe Pro Gln Gln Gln Arg Pro Phe Ile Gln Pro Ser Leu Gln Gln Gln  
1 5 10 15

2003244771 30 Mar 2005

Leu Asn Pro Cys  
20

<210> 533  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 533  
Phe Pro Gln Gln Gln Pro Ser Leu Ile Gln Gln Ser Leu Gln Gln Gln  
1 5 10 15

Leu Asn Pro Cys  
20

<210> 534  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 534  
Phe Pro Gln Gln Gln Gln Pro Leu Ile Gln Pro Tyr Leu Gln Gln Gln  
1 5 10 15

Met Asn Pro Cys  
20

<210> 535  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 535  
Phe Pro Gln Gln Gln Gln Pro Ala Ile Gln Ser Phe Leu Gln Gln Gln  
1 5 10 15

Met Asn Pro Cys  
20

<210> 536  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 536  
Ile Gln Pro Ser Leu Gln Gln Val Asn Pro Cys Lys Asn Phe Leu  
1 5 10 15

Leu Gln Gln Cys  
20

<210> 537  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 537  
Ile Gln Pro Ser Leu Gln Gln Gln Leu Asn Pro Cys Lys Asn Ile Leu  
1 5 10 15

Leu Gln Gln Ser  
20

<210> 538  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 538  
Ile Gln Gln Ser Leu Gln Gln Gln Leu Asn Pro Cys Lys Asn Phe Leu  
1 5 10 15

Leu Gln Gln Cys  
20

<210> 539  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 539  
Ile Gln Pro Tyr Leu Gln Gln Gln Met Asn Pro Cys Lys Asn Tyr Leu  
1 5 10 15

Leu Gln Gln Cys  
20

<210> 540  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 540  
Ile Gln Ser Phe Leu Gln Gln Gln Met Asn Pro Cys Lys Asn Phe Leu  
1 5 10 15

Leu Gln Gln Cys  
20

<210> 541  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 541  
Val Asn Pro Cys Lys Asn Phe Leu Leu Gln Gln Cys Lys Pro Val Ser  
1 5 10 15

Leu Val Ser Ser  
20

2003244771 30 Mar 2005

<210> 542  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 542  
Leu Asn Pro Cys Lys Asn Ile Leu Leu Gln Gln Ser Lys Pro Ala Ser  
1 5 10 15  
  
Leu Val Ser Ser  
20  
  
<210> 543  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 543  
Leu Asn Pro Cys Lys Asn Phe Leu Leu Gln Gln Cys Lys Pro Val Ser  
1 5 10 15  
  
Leu Val Ser Ser  
20  
  
<210> 544  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 544  
Met Asn Pro Cys Lys Asn Tyr Leu Leu Gln Gln Cys Asn Pro Val Ser  
1 5 10 15  
  
Leu Val Ser Ser  
20  
  
<210> 545  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 545  
Met Asn Pro Cys Lys Asn Phe Leu Leu Gln Gln Cys Asn His Val Ser  
1 5 10 15  
  
Leu Val Ser Ser  
20  
  
<210> 546  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 546  
Leu Gln Gln Cys Lys Pro Val Ser Leu Val Ser Ser Leu Trp Ser Met  
1 5 10 15

Ile Trp Pro Gln  
20

<210> 547

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 547

Leu Gln Gln Ser Lys Pro Ala Ser Leu Val Ser Ser Leu Trp Ser Ile  
1 5 10 15

Ile Trp Pro Gln  
20

<210> 548

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 548

Leu Gln Gln Cys Lys Pro Val Ser Leu Val Ser Ser Leu Trp Ser Met  
1 5 10 15

Ile Leu Pro Arg  
20

<210> 549

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 549

Leu Gln Gln Cys Asn Pro Val Ser Leu Val Ser Ser Leu Val Ser Met  
1 5 10 15

Ile Leu Pro Arg  
20

<210> 550

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 550

Leu Gln Gln Cys Asn His Val Ser Leu Val Ser Ser Leu Val Ser Ile  
1 5 10 15

Ile Leu Pro Arg  
20

<210> 551

<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 551  
Leu Val Ser Ser Leu Trp Ser Met Ile Trp Pro Gln Ser Asp Cys Gln  
1 5 10 15  
  
Val Met Arg Gln  
20  
  
<210> 552  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 552  
Leu Val Ser Ser Leu Trp Ser Ile Ile Trp Pro Gln Ser Asp Cys Gln  
1 5 10 15  
  
Val Met Arg Gln  
20  
  
<210> 553  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 553  
Leu Val Ser Ser Leu Trp Ser Met Ile Leu Pro Arg Ser Asp Cys Gln  
1 5 10 15  
  
Val Met Arg Gln  
20  
  
<210> 554  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 554  
Leu Val Ser Ser Leu Trp Ser Ile Ile Leu Pro Pro Ser Asp Cys Gln  
1 5 10 15  
  
Val Met Arg Gln  
20  
  
<210> 555  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 555  
Leu Val Ser Ser Leu Val Ser Met Ile Leu Pro Arg Ser Asp Cys Lys  
1 5 10 15

2003244771 30 Mar 2005

val Met Arg Gln  
20

<210> 556  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 556  
Leu Val Ser Ser Leu Val Ser Met Ile Leu Pro Arg Ser Asp Cys Gln  
1 5 10 15

val Met Gln Gln  
20

<210> 557  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 557  
Leu Val Ser Ser Leu Val Ser Ile Ile Leu Pro Arg Ser Asp Cys Gln  
1 5 10 15

val Met Gln Gln  
20

<210> 558  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 558  
Ile Trp Pro Gln Ser Asp Cys Gln Val Met Arg Gln Gln Cys Cys Gln  
1 5 10 15

Gln Leu Ala Gln  
20

<210> 559  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 559  
Ile Leu Pro Arg Ser Asp Cys Gln Val Met Arg Gln Gln Cys Cys Gln  
1 5 10 15

Gln Leu Ala Gln  
20

<210> 560  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide  
  
<400> 560  
Ile Leu Pro Pro Ser Asp Cys Gln Val Met Arg Gln Gln Cys Cys Gln  
1 5 10 15  
  
Gln Leu Ala Gln  
20  
  
<210> 561  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 561  
Ile Leu Pro Arg Ser Asp Cys Lys Val Met Arg Gln Gln Cys Cys Gln  
1 5 10 15  
  
Gln Leu Ala Arg  
20  
  
<210> 562  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 562  
Ile Leu Pro Arg Ser Asp Cys Gln Val Met Gln Gln Gln Cys Cys Gln  
1 5 10 15  
  
Gln Leu Ala Gln  
20  
  
<210> 563  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 563  
Val Met Arg Gln Gln Cys Cys Gln Gln Leu Ala Gln Ile Pro Gln Gln  
1 5 10 15  
  
Leu Gln Cys Ala  
20  
  
<210> 564  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 564  
Val Met Arg Gln Gln Cys Cys Gln Gln Leu Ala Arg Ile Pro Gln Gln  
1 5 10 15  
  
Leu Gln Cys Ala  
20

2003244771 30 Mar 2005

<210> 565  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 565  
Val Met Gln Gln Gln Cys Cys Gln Gln Leu Ala Gln Ile Pro Arg Gln  
1 5 10 15  
  
Leu Gln Cys Ala  
20  
  
<210> 566  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 566  
Val Met Gln Gln Gln Cys Cys Gln Gln Leu Ala Gln Ile Pro Gln Gln  
1 5 10 15  
  
Leu Gln Cys Ala  
20  
  
<210> 567  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 567  
Gln Leu Ala Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Thr  
1 5 10 15  
  
Ile Ile His Ser  
20  
  
<210> 568  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 568  
Gln Leu Ala Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Thr  
1 5 10 15  
  
Val Ile His Ser  
20  
  
<210> 569  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 569  
Gln Leu Ala Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Ser  
1 5 10 15

Val Val His Ser  
20

<210> 570

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 570  
Gln Leu Ala Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Ser  
1 5 10 15

Ile Val His Ser  
20

<210> 571

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 571  
Gln Leu Ala Arg Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Gly  
1 5 10 15

Ile Val His Ser  
20

<210> 572

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 572  
Gln Leu Ala Gln Ile Pro Arg Gln Leu Gln Cys Ala Ala Ile His Ser  
1 5 10 15

Val Val His Ser  
20

<210> 573

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 573  
Gln Leu Ala Gln Ile Pro Gln Gln Leu Gln Cys Ala Ala Ile His Ser  
1 5 10 15

Val Ala His Ser  
20

<210> 574

<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 574  
Leu Gln Cys Ala Ala Ile His Thr Ile Ile His Ser Ile Ile Met Gln  
1 5 10 15  
  
Gln Glu Gln Gln  
20

<210> 575  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 575  
Leu Gln Cys Ala Ala Ile His Thr Val Ile His Ser Ile Ile Met Gln  
1 5 10 15  
  
Gln Glu Gln Gln  
20

<210> 576  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 576  
Leu Gln Cys Ala Ala Ile His Ser Val Val His Ser Ile Ile Met Gln  
1 5 10 15  
  
Gln Glu Gln Gln  
20

<210> 577  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 577  
Leu Gln Cys Ala Ala Ile His Ser Ile Val His Ser Ile Ile Met Gln  
1 5 10 15  
  
Gln Glu Gln Gln  
20

<210> 578  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 578  
Leu Gln Cys Ala Ala Ile His Ser Val Val His Ser Ile Ile Met Gln  
1 5 10 15

2003244771 30 Mar 2005

Gln Glu Gln Gln  
20

<210> 579  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 579  
Leu Gln Cys Ala Ala Ile His Gly Ile Val His Ser Ile Ile Met Gln  
1 5 10 15

Gln Glu Gln Gln  
20

<210> 580  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 580  
Leu Gln Cys Ala Ala Ile His Ser Val Ala His Ser Ile Ile Met Gln  
1 5 10 15

Gln Glu Gln Gln  
20

<210> 581  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 581  
Ile Ile His Ser Ile Ile Met Gln Gln Glu Gln Gln Gln Gln Gln  
1 5 10 15

Gly Met His Ile  
20

<210> 582  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 582  
Val Ile His Ser Ile Ile Met Gln Gln Glu Gln Gln Gln Gly Met His  
1 5 10 15

Ile Leu Leu Pro  
20

<210> 583  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 583  
val Val His Ser Ile Ile Met Gln Gln Gln Gln Gln Gln Gln Gln Gln  
1 5 10 15

Gln Gly Ile Asp  
20

<210> 584  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 584  
Ile Val His Ser Ile Ile Met Gln Gln Glu Gln Gln Glu Gln Arg Gln  
1 5 10 15

Gly Val Gln Ile  
20

<210> 585  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 585  
val Val His Ser Ile Ile Met Gln Gln Glu Gln Gln Glu Gln Leu Gln  
1 5 10 15

Gly Val Gln Ile  
20

<210> 586  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 586  
Ile Val His Ser Ile Ile Met Gln Gln Glu Gln Gln Gln Gln Gln Gln  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 587  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 587  
val Val His Ser Ile Val Met Gln Gln Glu Gln Gln Gln Gly Ile Gln  
1 5 10 15

Ile Leu Arg Pro  
20

2003244771 30 Mar 2005

<210> 588  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 588  
Val Ala His Ser Ile Ile Met Gln Gln Glu Gln Gln Gly Val Pro  
1 5 10 15  
  
Ile Leu Arg Pro  
20  
  
<210> 589  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 589  
Gln Glu Gln Gln Glu Gln Gln Gln Gly Met His Ile Leu Leu Pro Leu  
1 5 10 15  
  
Tyr Gln Gln Gln  
20  
  
<210> 590  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 590  
Gln Gln Gln Gln Gln Gln Gln Gln Gly Ile Asp Ile Phe Leu Pro  
1 5 10 15  
  
Leu Ser Gln His  
20  
  
<210> 591  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 591  
Gln Gln Gln Gln Gln Gln Gln Gln Gly Met His Ile Phe Leu Pro  
1 5 10 15  
  
Leu Ser Gln Gln  
20  
  
<210> 592  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 592  
Gln Glu Gln Gln Glu Gln Arg Gln Gly Val Gln Ile Leu Val Pro Leu  
1 5 10 15

Ser Gln Gln Gln  
20

<210> 593

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 593

Gln Glu Gln Gln Glu Gln Leu Gln Gly Val Gln Ile Leu Val Pro Leu

1 5 10 15

Ser Gln Gln Gln  
20

<210> 594

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 594

Gln Glu Gln Gly

1 5 10 15

Ile Gln Ile Met  
20

<210> 595

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 595

Gln Glu Gln Gln Gln Gly Ile Gln Ile Leu Arg Pro Leu Phe Gln Leu

1 5 10 15

Val Gln Gly Gln  
20

<210> 596

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 596

Gln Glu Gln Gln Gln Gly Val Pro Ile Leu Arg Pro Leu Phe Gln Leu

1 5 10 15

Ala Gln Gly Leu  
20

<210> 597

<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 597  
Gln Gln Gln Gln Gln Gln Gly Ile Gln Ile Met Arg Pro Leu Phe  
1 5 10 15  
  
Gln Leu Val Gln  
20  
  
<210> 598  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 598  
Gly Met His Ile Leu Leu Pro Leu Tyr Gln Gln Gln Gln Val Gly Gln  
1 5 10 15  
  
Gly Thr Leu Val  
20  
  
<210> 599  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 599  
Gly Ile Asp Ile Phe Leu Pro Leu Ser Gln His Glu Gln Val Gly Gln  
1 5 10 15  
  
Gly Ser Leu Val  
20  
  
<210> 600  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 600  
Gly Met His Ile Phe Leu Pro Leu Ser Gln Gln Gln Gln Val Gly Gln  
1 5 10 15  
  
Gly Ser Leu Val  
20  
  
<210> 601  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 601  
Gly Val Gln Ile Leu Val Pro Leu Ser Gln Gln Gln Gln Val Gly Gln  
1 5 10 15

2003244771 30 Mar 2005

Gly Thr Leu Val  
20

<210> 602

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 602

Gly Val Gln Ile Leu Val Pro Leu Ser Gln Gln Gln Gln Val Gly Gln  
1 5 10 15

Gly Ile Leu Val  
20

<210> 603

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 603

Gly Ile Gln Ile Met Arg Pro Leu Phe Gln Leu Val Gln Gly Gln Gly  
1 5 10 15

Ile Ile Gln Pro  
20

<210> 604

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 604

Gly Ile Gln Ile Leu Arg Pro Leu Phe Gln Leu Val Gln Gly Gln Gly  
1 5 10 15

Ile Ile Gln Pro  
20

<210> 605

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 605

Gly Val Pro Ile Leu Arg Pro Leu Phe Gln Leu Ala Gln Gly Leu Gly  
1 5 10 15

Ile Ile Gln Pro  
20

<210> 606

<211> 20

<212> PRT

<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 606  
Tyr Gln Gln Gln Gln Val Gly Gln Gly Thr Leu Val Gln Gly Gln Gly  
1 5 10 15

Ile Ile Gln Pro  
20

<210> 607  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 607  
Ser Gln His Glu Gln Val Gly Gln Gly Ser Leu Val Gln Gly Gln Gly  
1 5 10 15

Ile Ile Gln Pro  
20

<210> 608  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 608  
Ser Gln Gln Gln Gln Val Gly Gln Gly Ser Leu Val Gln Gly Gln Gly  
1 5 10 15

Ile Ile Gln Pro  
20

<210> 609  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 609  
Ser Gln Gln Gln Gln Val Gly Gln Gly Thr Leu Val Gln Gly Gln Gly  
1 5 10 15

Ile Ile Gln Pro  
20

<210> 610  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 610  
Ser Gln Gln Gln Gln Val Gly Gln Gly Ile Leu Val Gln Gly Gln Gly  
1 5 10 15

Ile Ile Gln Pro  
20

2003244771 30 Mar 2005

<210> 611  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 611  
Gly Thr Leu Val Gln Gly Gln Gly Ile Ile Gln Pro Gln Gln Pro Ala  
1 5 10 15

Gln Leu Glu Ala  
20

<210> 612  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 612  
Gly Ser Leu Val Gln Gly Gln Gly Ile Ile Gln Pro Gln Gln Pro Ala  
1 5 10 15

Gln Leu Glu Ala  
20

<210> 613  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 613  
Phe Gln Leu Val Gln Gly Gln Gly Ile Ile Gln Pro Gln Gln Pro Ala  
1 5 10 15

Gln Leu Glu Val  
20

<210> 614  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 614  
Phe Gln Leu Ala Gln Gly Leu Gly Ile Ile Gln Pro Gln Gln Pro Ala  
1 5 10 15

Gln Leu Glu Gly  
20

<210> 615  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 615  
Ile Ile Gln Pro Gln Gln Pro Ala Gln Leu Glu Ala Ile Arg Ser Leu  
1 5 10 15  
Val Leu Gln Thr  
20  
  
<210> 616  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 616  
Ile Ile Gln Pro Gln Gln Pro Ala Gln Leu Glu Val Ile Arg Ser Leu  
1 5 10 15  
Val Leu Gln Thr  
20  
  
<210> 617  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 617  
Ile Ile Gln Pro Gln Gln Pro Ala Gln Leu Glu Val Ile Arg Ser Ser  
1 5 10 15  
Val Leu Gln Thr  
20  
  
<210> 618  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 618  
Ile Ile Gln Pro Gln Gln Pro Ala Gln Tyr Glu Val Ile Arg Ser Leu  
1 5 10 15  
Val Leu Arg Thr  
20  
  
<210> 619  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 619  
Ile Ile Gln Pro Gln Gln Pro Ala Gln Leu Glu Gly Ile Arg Ser Leu  
1 5 10 15  
Val Leu Lys Thr  
20  
  
<210> 620  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 620  
Gln Leu Glu Ala Ile Arg Ser Leu Val Leu Gln Thr Leu Pro Thr Met  
1 5 10 15  
  
Cys Asn Val Tyr  
20  
  
<210> 621  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 621  
Gln Leu Glu Ala Ile Arg Ser Leu Val Leu Gln Thr Leu Pro Ser Met  
1 5 10 15  
  
Cys Asn Val Tyr  
20  
  
<210> 622  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 622  
Gln Leu Glu Val Ile Arg Ser Leu Val Leu Gln Thr Leu Ala Thr Met  
1 5 10 15  
  
Cys Asn Val Tyr  
20  
  
<210> 623  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 623  
Gln Leu Glu Val Ile Arg Ser Ser Val Leu Gln Thr Leu Ala Thr Met  
1 5 10 15  
  
Cys Asn Val Tyr  
20  
  
<210> 624  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 624  
Gln Leu Glu Val Ile Arg Ser Leu Val Leu Gly Thr Leu Pro Thr Met  
1 5 10 15

2003244771 30 Mar 2005

Cys Asn Val Phe  
20

<210> 625  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 625  
Gln Tyr Glu Val Ile Arg Ser Leu Val Leu Arg Thr Leu Pro Asn Met  
1 5 10 15

Cys Asn Val Tyr  
20

<210> 626  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 626  
Gln Leu Glu Gly Ile Arg Ser Leu Val Leu Lys Thr Leu Pro Thr Met  
1 5 10 15

Cys Asn Val Tyr  
20

<210> 627  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 627  
Val Leu Gln Thr Leu Pro Thr Met Cys Asn Val Tyr Val Pro Pro Glu  
1 5 10 15

Cys Ser Ile Ile  
20

<210> 628  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 628  
Val Leu Gln Thr Leu Pro Ser Met Cys Asn Val Tyr Val Pro Pro Glu  
1 5 10 15

Cys Ser Ile Met  
20

<210> 629  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 629  
Val Leu Gln Thr Leu Ala Thr Met Cys Asn Val Tyr Val Pro Pro Tyr  
1 5 10 15

Cys Ser Thr Ile  
20

<210> 630  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 630  
Val Leu Gly Thr Leu Pro Thr Met Cys Asn Val Phe Val Pro Pro Glu  
1 5 10 15

Cys Ser Thr Thr  
20

<210> 631  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 631  
Val Leu Arg Thr Leu Pro Asn Met Cys Asn Val Tyr Val Arg Pro Asp  
1 5 10 15

Cys Ser Thr Ile  
20

<210> 632  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 632  
Val Leu Lys Thr Leu Pro Thr Met Cys Asn Val Tyr Val Pro Pro Asp  
1 5 10 15

Cys Ser Thr Ile  
20

<210> 633  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 633  
Cys Asn Val Tyr Val Pro Pro Glu Cys Ser Ile Ile Lys Ala Pro Phe  
1 5 10 15

Ser Ser Val Val  
20

2003244771

30 Mar 2005

<210> 634  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 634  
Cys Asn Val Tyr Val Pro Pro Glu Cys Ser Ile Met Arg Ala Pro Phe  
1 5 10 15  
  
Ala Ser Ile Val  
20  
  
<210> 635  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 635  
Cys Asn Val Tyr Val Pro Pro Tyr Cys Ser Thr Ile Arg Ala Pro Phe  
1 5 10 15  
  
Ala Ser Ile Val  
20  
  
<210> 636  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 636  
Cys Asn Val Phe Val Pro Pro Glu Cys Ser Thr Thr Lys Ala Pro Phe  
1 5 10 15  
  
Ala Ser Ile Val  
20  
  
<210> 637  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 637  
Cys Asn Val Tyr Val Arg Pro Asp Cys Ser Thr Ile Asn Ala Pro Phe  
1 5 10 15  
  
Ala Ser Ile Val  
20  
  
<210> 638  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 638  
Cys Asn Val Tyr Val Pro Pro Asp Cys Ser Thr Ile Asn Val Pro Tyr  
1 5 10 15

Ala Asn Ile Asp  
20

<210> 639

<211> 18

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 639

Cys Ser Ile Ile Lys Ala Pro Phe Ser Ser Val Val Ala Gly Ile Gly  
1 5 10 15

Gly Gln

<210> 640

<211> 18

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 640

Cys Ser Ile Met Arg Ala Pro Phe Ala Ser Ile Val Ala Gly Ile Gly  
1 5 10 15

Gly Gln

<210> 641

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 641

Cys Ser Thr Ile Arg Ala Pro Phe Ala Ser Ile Val Ala Gly Ile Gly  
1 5 10 15

Gly Gln Tyr Arg  
20

<210> 642

<211> 18

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 642

Cys Ser Thr Ile Arg Ala Pro Phe Ala Ser Ile Val Ala Ser Ile Gly  
1 5 10 15

Gly Gln

<210> 643

<211> 18

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 643  
Cys Ser Thr Thr Lys Ala Pro Phe Ala Ser Ile Val Ala Asp Ile Gly  
1 5 10 15  
Gly Gln

<210> 644  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 644  
Cys Ser Thr Ile Asn Ala Pro Phe Ala Ser Ile Val Ala Gly Ile Ser  
1 5 10 15  
Gly Gln

<210> 645  
<211> 18  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 645  
Cys Ser Thr Ile Asn Val Pro Tyr Ala Asn Ile Asp Ala Gly Ile Gly  
1 5 10 15  
Gly Gln

<210> 646  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 646  
Pro Gln Gln Pro Phe Pro Leu Gln Pro Gln Gln Ser Phe Leu Trp Gln  
1 5 10 15  
Ser Gln Gln Pro  
20

<210> 647  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 647  
Pro Gln Gln Ser Phe Leu Trp Gln Ser Gln Gln Pro Phe Leu Gln Gln  
1 5 10 15

2003244771 30 Mar 2005

Pro Gln Gln Pro  
20

<210> 648  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 648

Ser Gln Gln Pro Phe Leu Gln Gln Pro Gln Gln Pro Ser Pro Gln Pro  
1 5 10 15

Gln Gln Val Val  
20

<210> 649  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 649

Pro Gln Gln Pro Ser Pro Gln Pro Gln Val Val Gln Ile Ile Ser  
1 5 10 15

Pro Ala Thr Pro  
20

<210> 650  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 650

Gln Gln Val Val Gln Ile Ile Ser Pro Ala Thr Pro Thr Thr Ile Pro  
1 5 10 15

Ser Ala Gly Lys  
20

<210> 651  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 651

Pro Ala Thr Pro Thr Thr Ile Pro Ser Ala Gly Lys Pro Thr Ser Ala  
1 5 10 15

Pro Phe Pro Gln  
20

<210> 652  
<211> 20

<212> PRT

<213> Artificial Sequence

2003244771 30 Mar 2005

<220> 652  
<223> peptide  
  
<400> Ser Ala Gly Lys Pro Thr Ser Ala Pro Phe Pro Gln Gln Gln Gln Gln  
1 5 10 15  
  
His Gln Gln Leu  
20  
  
<210> 653  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 653  
<223> peptide  
  
<400> Pro Phe Pro Gln Gln Gln Gln His Gln Gln Leu Ala Gln Gln Gln  
1 5 10 15  
  
Ile Pro Val Val  
20  
  
<210> 654  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 654  
<223> peptide  
  
<400> His Gln Gln Leu Ala Gln Gln Gln Ile Pro Val Val Gln Pro Ser Ile  
1 5 10 15  
  
Leu Gln Gln Leu  
20  
  
<210> 655  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 655  
<223> peptide  
  
<400> Ile Pro Val Val Gln Pro Ser Ile Leu Gln Gln Leu Asn Pro Cys Lys  
1 5 10 15  
  
Val Phe Leu Gln  
20  
  
<210> 656  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220> 656  
<223> peptide  
  
<400> Leu Gln Gln Leu Asn Pro Cys Lys Val Phe Leu Gln Gln Gln Cys Ser  
1 5 10 15  
  
Pro Val Ala Met  
20

2003244771 30 Mar 2005

<210> 657  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 657  
Val Phe Leu Gln Gln Gln Cys Ser Pro Val Ala Met Pro Gln Arg Leu  
1 5 10 15  
  
Ala Arg Ser Gln  
20  
  
<210> 658  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 658  
Pro Val Ala Met Pro Gln Arg Leu Ala Arg Ser Gln Met Leu Gln Gln  
1 5 10 15  
  
Ser Ser Cys His  
20  
  
<210> 659  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 659  
Ala Arg Ser Gln Met Leu Gln Gln Ser Ser Cys His Val Met Gln Gln  
1 5 10 15  
  
Gln Cys Cys Gln  
20  
  
<210> 660  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 660  
Ser Ser Cys His Val Met Gln Gln Gln Cys Cys Gln Gln Leu Pro Gln  
1 5 10 15  
  
Ile Pro Gln Gln  
20  
  
<210> 661  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 661  
Gln Cys Cys Gln Gln Leu Pro Gln Ile Pro Gln Gln Ser Arg Tyr Gln  
1 5 10 15

Ala Ile Arg Ala  
20

<210> 662

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 662

Pro Gln Ile Pro Gln Gln Ser Arg Tyr Glu Ala Ile Arg Ala Ile Ile  
1 5 10 15

Tyr Ser Ile Ile  
20

<210> 663

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 663

Ile Pro Gln Gln Ser Arg Tyr Gln Ala Ile Arg Ala Ile Ile Tyr Ser  
1 5 10 15

Ile Ile Leu Gln  
20

<210> 664

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 664

Ala Ile Arg Ala Ile Ile Tyr Ser Ile Ile Leu Gln Glu Gln Gln Gln  
1 5 10 15

Val Gln Gly Ser  
20

<210> 665

<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 665

Ile Ile Leu Gln Glu Gln Gln Val Gln Gly Ser Ile Gln Ser Gln  
1 5 10 15

Gln Gln Gln Pro  
20

<210> 666

<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 666  
Val Gln Gly Ser Ile Gln Ser Gln Gln Gln Pro Gln Gln Leu Gly  
1 5 10 15  
  
Gln Cys Val Ser  
20  
  
<210> 667  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 667  
Gln Gln Gln Pro Gln Gln Leu Gly Gln Cys Val Ser Gln Pro Gln Gln  
1 5 10 15  
  
Gln Ser Gln Gln  
20  
  
<210> 668  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 668  
Gln Cys Val Ser Gln Pro Gln Gln Ser Gln Gln Gln Leu Gly Gln  
1 5 10 15  
  
Gln Pro Gln Gln  
20  
  
<210> 669  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 669  
Gln Ser Gln Gln Gln Leu Gly Gln Gln Pro Gln Gln Gln Leu Ala  
1 5 10 15  
  
Gln Gly Thr Phe  
20  
  
<210> 670  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 670  
Gln Pro Gln Gln Gln Gln Leu Ala Gln Gly Thr Phe Leu Gln Pro His  
1 5 10 15

2003244771 30 Mar 2005

Gln Ile Ala Gln  
20

<210> 671  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 671  
Gln Gly Thr Phe Leu Gln Pro His Gln Ile Ala Gln Leu Glu Val Met  
1 5 10 15

Thr Ser Ile Ala  
20

<210> 672  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 672  
Gln Ile Ala Gln Leu Glu Val Met Thr Ser Ile Ala Leu Arg Ile Leu  
1 5 10 15

Pro Thr Met Cys  
20

<210> 673  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 673  
Thr Ser Ile Ala Leu Arg Ile Leu Pro Thr Met Cys Ser Val Asn Val  
1 5 10 15

Pro Leu Tyr Arg  
20

<210> 674  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 674  
Pro Thr Met Cys Ser Val Asn Val Pro Leu Tyr Arg Thr Thr Ser  
1 5 10 15

Val Pro Phe Gly  
20

<210> 675  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 675  
Pro Leu Tyr Arg Thr Thr Ser Val Pro Phe Gly Val Gly Thr Gly  
1 5 10 15

Val Gly Ala Tyr  
20

<210> 676  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 676  
Thr Ile Thr Arg Thr Phe Pro Ile Pro Thr Ile Ser Ser Asn Asn Asn  
1 5 10 15

His His Phe Arg  
20

<210> 677  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 677  
Pro Thr Ile Ser Ser Asn Asn Asn His His Phe Arg Ser Asn Ser Asn  
1 5 10 15

His His Phe His  
20

<210> 678  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 678  
His His Phe Arg Ser Asn Ser Asn His His Phe His Ser Asn Asn Asn  
1 5 10 15

Gln Phe Tyr Arg  
20

<210> 679  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 679  
His His Phe His Ser Asn Asn Asn Gln Phe Tyr Arg Asn Asn Asn Ser  
1 5 10 15

Pro Gly His Asn  
20

2003244771

30 Mar 2005

<210> 680  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 680  
Gln Phe Tyr Arg Asn Asn Asn Ser Pro Gly His Asn Asn Pro Leu Asn  
1 5 10 15  
  
Asn Asn Asn Ser  
20  
  
<210> 681  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 681  
Pro Gly His Asn Asn Pro Leu Asn Asn Asn Ser Pro Asn Asn Asn  
1 5 10 15  
  
Ser Pro Ser Asn  
20  
  
<210> 682  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 682  
Asn Asn Asn Ser Pro Asn Asn Asn Ser Pro Ser Asn His His Asn Asn  
1 5 10 15  
  
Ser Pro Asn Asn  
20  
  
<210> 683  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 683  
Ser Pro Ser Asn His His Asn Asn Ser Pro Asn Asn Asn Phe Gln Tyr  
1 5 10 15  
  
His Thr His Pro  
20  
  
<210> 684  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 684  
Ser Pro Asn Asn Asn Phe Gln Tyr His Thr His Pro Ser Asn His Lys  
1 5 10 15  
Asn Leu Pro His  
20  
<210> 685  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 685  
His Thr His Pro Ser Asn His Lys Asn Leu Pro His Thr Asn Asn Ile  
1 5 10 15  
Gln Gln Gln Gln  
20  
<210> 686  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 686  
Asn Leu Pro His Thr Asn Asn Ile Gln Gln Gln Pro Pro Phe Ser  
1 5 10 15  
Gln Gln Gln Gln  
20  
<210> 687  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 687  
Gln Gln Gln Gln Pro Pro Phe Ser Gln Gln Gln Pro Pro Phe Ser  
1 5 10 15  
Gln Gln Gln Gln  
20  
<210> 688  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 688  
Gln Gln Gln Gln Pro Pro Phe Ser Gln Gln Gln Pro Val Leu Pro  
1 5 10 15  
Gln Gln Ser Pro  
20  
<210> 689  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 689  
Gln Gln Gln Gln Pro Val Leu Pro Gln Gln Ser Pro Phe Ser Gln Gln  
1 5 10 15  
  
Gln Gln Leu Val  
20  
  
<210> 690  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 690  
Gln Gln Ser Pro Phe Ser Gln Gln Gln Leu Val Leu Pro Pro Gln  
1 5 10 15  
  
Gln Gln Gln Gln  
20  
  
<210> 691  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 691  
Gln Gln Leu Val Leu Pro Pro Gln Gln Gln Gln Gln Leu Val Gln  
1 5 10 15  
  
Gln Gln Ile Pro  
20  
  
<210> 692  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 692  
Gln Gln Gln Gln Gln Leu Val Gln Gln Gln Ile Pro Ile Val Gln Pro  
1 5 10 15  
  
Ser Val Leu Gln  
20  
  
<210> 693  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 693  
Gln Gln Ile Pro Ile Val Gln Pro Ser Val Leu Gln Gln Leu Asn Pro  
1 5 10 15

2003244771 30 Mar 2005

Cys Lys Val Phe  
20

<210> 694  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 694  
Ser Val Leu Gln Gln Leu Asn Pro Cys Lys Val Phe Leu Gln Gln Gln  
1 5 10 15

Cys Ser Pro Val  
20

<210> 695  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 695  
Cys Lys Val Phe Leu Gln Gln Gln Cys Ser Pro Val Ala Met Pro Gln  
1 5 10 15

Arg Leu Ala Arg  
20

<210> 696  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 696  
Cys Ser Pro Val Ala Met Pro Gln Arg Leu Ala Arg Ser Gln Met Trp  
1 5 10 15

Gln Gln Ser Ser  
20

<210> 697  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 697  
Arg Leu Ala Arg Ser Gln Met Trp Gln Gln Ser Ser Cys His Val Met  
1 5 10 15

Gln Gln Gln Cys  
20

<210> 698  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 698  
Gln Gln Ser Ser Cys His Val Met Gln Gln Gln Cys Cys Gln Gln Leu  
1 5 10 15

Gln Gln Ile Pro  
20

<210> 699  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> peptide

<400> 699  
Gln Gln Gln Cys Cys Gln Gln Leu Gln Gln Ile Pro Glu Gln Ser Arg  
1 5 10 15

Tyr Glu Ala Ile  
20

<210> 700  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> peptide

<400> 700  
Gln Gln Ile Pro Glu Gln Ser Arg Tyr Glu Ala Ile Arg Ala Ile Ile  
1 5 10 15

Tyr Ser Ile Ile  
20

<210> 701  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> peptide

<400> 701  
Tyr Glu Ala Ile Arg Ala Ile Ile Tyr Ser Ile Ile Leu Gln Glu Gln  
1 5 10 15

Gln Gln Gly Phe  
20

<210> 702  
<211> 20  
<212> PRT  
<213> Artificial sequence

<220>  
<223> peptide

<400> 702  
Tyr Ser Ile Ile Leu Gln Glu Gln Gln Gln Gly Phe Val Gln Pro Gln  
1 5 10 15

Gln Gln Gln Pro  
20

2003244771 30 Mar 2005

<210> 703  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 703  
Gln Gln Gly Phe Val Gln Pro Gln Gln Gln Pro Gln Gln Ser Gly  
1 5 10 15  
  
Gln Gly Val Ser  
20  
  
<210> 704  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 704  
Gln Gln Gln Pro Gln Gln Ser Gly Gln Gly Val Ser Gln Ser Gln Gln  
1 5 10 15  
  
Gln Ser Gln Gln  
20  
  
<210> 705  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 705  
Gln Gly Val Ser Gln Ser Gln Gln Gln Ser Gln Gln Gln Leu Gly Gln  
1 5 10 15  
  
Cys Ser Phe Gln  
20  
  
<210> 706  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 706  
Gln Ser Gln Gln Gln Leu Gly Gln Cys Ser Phe Gln Gln Pro Gln Gln  
1 5 10 15  
  
Gln Leu Gly Gln  
20  
  
<210> 707  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 707  
Cys Ser Phe Gln Gln Pro Gln Gln Gln Leu Gly Gln Gln Pro Gln Gln  
1 5 10 15

Gln Gln Gln Gln  
20

<210> 708  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 708  
Gln Leu Gly Gln Gln Pro Gln Gln Gln Gln Gln Val Leu Gln  
1 5 10 15

Gly Thr Phe Leu  
20

<210> 709  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 709  
Gln Gln Gln Gln Val Leu Gln Gly Thr Phe Leu Gln Pro His Gln  
1 5 10 15

Ile Ala His Leu  
20

<210> 710  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 710  
Gly Thr Phe Leu Gln Pro His Gln Ile Ala His Leu Glu Ala Val Thr  
1 5 10 15

Ser Ile Ala Leu  
20

<210> 711  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 711  
Ile Ala His Leu Glu Ala Val Thr Ser Ile Ala Leu Arg Thr Leu Pro  
1 5 10 15

Thr Met Cys Ser  
20

<210> 712  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 712  
Ser Ile Ala Leu Arg Thr Leu Pro Thr Met Cys Ser Val Asn Val Pro  
1 5 10 15  
Leu Tyr Ser Ala  
20

<210> 713  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 713  
Thr Met Cys Ser Val Asn Val Pro Leu Tyr Ser Ala Thr Thr Ser Val  
1 5 10 15  
Pro Phe Gly Val  
20

<210> 714  
<211> 19  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 714  
Leu Tyr Ser Ala Thr Thr Ser Val Pro Phe Gly Val Gly Thr Gly Val  
1 5 10 15  
Gly Ala Tyr

<210> 715  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 715  
Ser Cys Ile Ser Gly Leu Glu Arg Pro Trp Gln Gln Gln Pro Leu Pro  
1 5 10 15  
Pro Gln Gln Ser  
20

<210> 716  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 716  
Pro Trp Gln Gln Gln Pro Leu Pro Pro Gln Gln Ser Phe Ser Gln Gln  
1 5 10 15

2003244771 30 Mar 2005

Pro Pro Phe Ser  
20

<210> 717  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 717

Pro Gln Gln Ser Phe Ser Gln Gln Pro Pro Phe Ser Gln Gln Gln Gln  
1 5 10 15

Gln Pro Leu Pro  
20

<210> 718  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 718

Pro Pro Phe Ser Gln Gln Gln Gln Pro Leu Pro Gln Gln Pro Ser  
1 5 10 15

Phe Ser Gln Gln  
20

<210> 719  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 719

Gln Pro Leu Pro Gln Gln Pro Ser Phe Ser Gln Gln Gln Pro Pro Phe  
1 5 10 15

Ser Gln Gln Gln  
20

<210> 720  
<211> 20

<212> PRT

<213> Artificial Sequence

<220>  
<223> peptide

<400> 720

Phe Ser Gln Gln Gln Pro Pro Phe Ser Gln Gln Gln Pro Ile Leu Ser  
1 5 10 15

Gln Gln Pro Pro  
20

<210> 721  
<211> 20

<212> PRT

<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 721  
Ser Gln Gln Gln Pro Ile Leu Ser Gln Gln Pro Pro Phe Ser Gln Gln  
1 5 10 15

Gln Gln Pro Val  
20

<210> 722  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 722  
Ala Thr Ala Ala Arg Glu Leu Asn Pro Ser Asn Lys Glu Leu Gln Ser  
1 5 10 15

Pro Gln Gln Ser  
20

<210> 723  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 723  
Pro Ser Asn Lys Glu Leu Gln Ser Pro Gln Gln Ser Phe Ser Tyr Gln  
1 5 10 15

Gln Gln Pro Phe  
20

<210> 724  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 724  
Pro Gln Gln Ser Phe Ser Tyr Gln Gln Gln Pro Phe Pro Gln Gln Pro  
1 5 10 15

Tyr Pro Gln Gln  
20

<210> 725  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 725  
Gln Gln Pro Phe Pro Gln Gln Pro Tyr Pro Gln Gln Pro Tyr Pro Ser  
1 5 10 15

Gln Gln Pro Tyr  
20

2003244771 30 Mar 2005

<210> 726  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 726  
Tyr Pro Gln Gln Pro Tyr Pro Ser Gln Gln Pro Tyr Pro Ser Gln Gln  
1 5 10 15

Pro Phe Pro Thr  
20

<210> 727  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 727  
Gln Gln Pro Tyr Pro Ser Gln Gln Pro Phe Pro Thr Pro Gln Gln Gln  
1 5 10 15

Phe Pro Glu Gln  
20

<210> 728  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 728  
Pro Phe Pro Thr Pro Gln Gln Gln Phe Pro Glu Gln Ser Gln Gln Pro  
1 5 10 15

Phe Thr Gln Pro  
20

<210> 729  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 729  
Phe Pro Glu Gln Ser Gln Gln Pro Phe Thr Gln Pro Gln Gln Pro Thr  
1 5 10 15

Pro Ile Gln Pro  
20

<210> 730  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 730  
Phe Thr Gln Pro Gln Gln Pro Thr Pro Ile Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Gln Pro  
20

<210> 731  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 731  
Pro Ile Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Gln  
1 5 10 15

Gln Pro Phe Pro  
20

<210> 732  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 732  
Pro Gln Gln Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln  
1 5 10 15

Pro Phe Pro Trp  
20

<210> 733  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 733  
Gln Pro Phe Pro Gln Gln Pro Phe Pro Trp Gln Pro Gln Gln  
1 5 10 15

Pro Phe Pro Gln  
20

<210> 734  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 734  
Pro Phe Pro Trp Gln Pro Gln Gln Pro Phe Pro Gln Thr Gln Gln Ser  
1 5 10 15

Phe Pro Leu Gln  
20

<210> 735  
<211> 20

30 Mar 2005

2003244771

<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 735  
Pro Phe Pro Gln Thr Gln Gln Ser Phe Pro Leu Gln Pro Gln Gln Pro  
1 5 10 15  
  
Phe Pro Gln Gln  
20  
  
<210> 736  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 736  
Phe Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro  
1 5 10 15  
  
Phe Pro Gln Pro  
20  
  
<210> 737  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 737  
Phe Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Leu Pro Phe  
1 5 10 15  
  
Pro Gln Gln Ser  
20  
  
<210> 738  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 738  
Phe Pro Gln Pro Gln Leu Pro Phe Pro Gln Gln Ser Glu Gln Ile Ile  
1 5 10 15  
  
Pro Gln Gln Leu  
20  
  
<210> 739  
<211> 20  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> peptide  
  
<400> 739  
Pro Gln Gln Ser Glu Gln Ile Ile Pro Gln Gln Leu Gln Gln Pro Phe  
1 5 10 15

2003244771 30 Mar 2005

Pro Leu Gln Pro  
20

<210> 740  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 740  
Pro Gln Gln Leu Gln Gln Pro Phe Pro Leu Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Gln Pro  
20

<210> 741  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 741  
Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Pro Gln  
20

<210> 742  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 742  
Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Pro Gln Gln Pro Ile Pro  
1 5 10 15

Val Gln Pro Gln  
20

<210> 743  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 743  
Pro Gln Pro Gln Gln Pro Ile Pro Val Gln Pro Gln Gln Ser Phe Pro  
1 5 10 15

Gln Gln Ser Gln  
20

<210> 744  
<211> 20  
<212> PRT  
<213> Artificial Sequence

2003244771 30 Mar 2005

<220>  
<223> peptide

<400> 744  
Val Gln Pro Gln Gln Ser Phe Pro Gln Gln Ser Gln Gln Ser Gln Gln  
1 5 10 15

Pro Phe Ala Gln  
20

<210> 745  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 745  
Gln Gln Ser Gln Gln Ser Gln Gln Pro Phe Ala Gln Pro Gln Gln Leu  
1 5 10 15

Phe Pro Glu Leu  
20

<210> 746  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 746  
Pro Phe Ala Gln Pro Gln Gln Leu Phe Pro Glu Leu Gln Gln Pro Ile  
1 5 10 15

Pro Gln Gln Pro  
20

<210> 747  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 747  
Phe Pro Glu Leu Gln Gln Pro Ile Pro Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Leu Gln Pro  
20

<210> 748  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 748  
Pro Gln Gln Pro Gln Gln Pro Phe Pro Leu Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Gln Pro  
20

<210> 749  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 749  
Pro Leu Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Pro Phe  
1 5 10 15

Pro Gln Gln Pro  
20

<210> 750  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 750  
Pro Gln Gln Pro Gln Gln Pro Phe Pro Gln Gln Pro Gln Gln Ser Phe  
1 5 10 15

Pro Gln Gln Pro  
20

<210> 751  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 751  
Pro Gln Gln Pro Gln Gln Ser Phe Pro Gln Gln Pro Gln Gln Pro Tyr  
1 5 10 15

Pro Gln Gln Gln  
20

<210> 752  
<211> 20  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

<400> 752  
Pro Gln Gln Pro Gln Gln Pro Tyr Pro Gln Gln Gln Pro Tyr Gly Ser  
1 5 10 15

Ser Leu Thr Ser  
20

<210> 753  
<211> 16  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> peptide

2003244771 30 Mar 2005

<400> 753  
Pro Gln Gln Gln Pro Tyr Gly Ser Ser Leu Thr Ser Ile Gly Gly Gln  
1 5 10 15

<210> 754

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 754

Ala Arg Gln Leu Asn Pro Ser Asp Gln Glu Leu Gln Ser Pro Gln Gln  
1 5 10 15

Leu Tyr Pro Gln  
20

<210> 755

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 755

Gln Glu Leu Gln Ser Pro Gln Gln Leu Tyr Pro Gln Gln Pro Tyr Pro  
1 5 10 15

Gln Gln Pro Tyr  
20

<210> 756

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 756

Ser Arg Leu Leu Ser Pro Arg Gly Lys Glu Leu His Thr Pro Gln Glu  
1 5 10 15

Gln Phe Pro Gln  
20

<210> 757

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide

<400> 757

Lys Glu Leu His Thr Pro Gln Glu Gln Phe Pro Gln Gln Gln Phe  
1 5 10 15

Pro Gln Pro Gln  
20

<210> 758

<211> 16

<212> PRT

<213> Artificial Sequence

30 Mar 2005

2003244771

<220>  
<223> peptide

<400> 758  
Gln Phe Pro Gln Gln Gln Phe Pro Gln Pro Gln Gln Phe Pro Gln  
1 5 10 15