发明名称
用于加强光合作用的空中系统和方法

摘要
本发明涉及一种用于加强地球上的光合作用的系统，包括卫星（2），该卫星（2）具有aryl用于收集日光的至少一个第一光学组件（3），该第一光学组件的位置是固定的；在尺寸上和惯性上小于第一光学组件（3）的第二光学组件（6），意图为以比所收集的通量密度高的重传通量密度重传所收集的光，并且该第二光学组件具有可调整的取向；能够远程控制的装置，能够调整第二光学组件（6）的取向；以及光发射装置（10），其将收集的光从第一光学组件（3）传送到第二光学组件（6）。第二光学组件重传仅在所规定的约450nm和660nm的频带中重传光。
1. 用于加强地球(T)上的光合作用的方法，所述方法其中:
 - 将至少一个日光重传卫星(2)设置在绕地球(T)的轨道中，包括至少一组以下机载元件:
 - 第一光学组件(3)，其意图用于收集日光，并且该第一光学组件的位置相对于所述重传卫星(2)的结构(5)是固定的；
 - 在尺寸和惯性方面比所述第一光学组件(3)小的第二光学组件(6)，其意图用于比所收集的通量密度高的重传通量密度来重传由所述第一光学组件(3)收集的光，并且能够相对于重传卫星(2)的结构(5)来修改该第二光学组件的取向，从而根据重传哪些光来修改第二光学组件(6)的指向地球(T)的轴(7)的方向；
 - 能远程控制的装置(8)，其能够调整所述第二光学组件(6)的取向；
 - 光传送装置(10)，其被形成为从所述第一光学组件(3)向所述第二光学组件(6)传送由所述第一光学组件(3)收集的任何光，而无论第二光学组件的取向如何；以及
 - 过滤装置，其用于过滤所收集的光，使得第二光学组件(6)仅在分别约450nm和660nm的定义频带中重传光；
 - 所述重传卫星(2)取向为使得至少在重传卫星(2)在地球(T)的给定区域(RE)之上行进时所述重传卫星(2)的所述第一光学组件(3)始终保持指向太阳(S)，从而能够在所述行进时收集日光；以及
 - 远程地调整重传卫星(2)的所述第二光学组件(6)的取向，从而在重传卫星在所述地区(RE)之上行进时将所收集的日光重传到地球(T)的给定区域(Z)，以便加强地球(T)的此区域(Z)上的光合作用。

2. 用于加强地球(T)上的光合作用的空中系统，所述系统(1)包括:
 - 至少一个日光重传卫星(2)，包括至少一组以下机载元件:
 - 第一光学组件(3)，其意图用于收集日光，并且该第一光学组件的位置相对于所述重传卫星(2)的结构(5)是固定的；
 - 在尺寸和惯性方面比所述第一光学组件(3)小的第二光学组件(6)，其意图用于比所收集的通量密度高的重传通量密度来重传由所述第一光学组件(3)收集的光，并且能够相对于重传卫星(2)的结构(5)来修改该第二光学组件的取向，从而根据重传哪些光来修改第二光学组件(6)的指向地球(T)的轴(7)的方向；
 - 能远程控制的装置(8)，其能够调整所述第二光学组件(6)的取向；
 - 光传送装置(10)，其被形成为从所述第一光学组件(3)向所述第二光学组件(6)传送由所述第一光学组件(3)收集的任何光，而无论第二光学组件的取向如何；以及
 - 过滤装置，其用于过滤所收集的光，使得第二光学组件(6)仅在分别约450nm和660nm的定义频带中重传光；
 - 所述重传卫星(2)被设置在绕地球(T)的轨道中，同时被定向为使得至少在重传卫星(2)在地球(T)的给定区域(RE)之上行进时所述第一光学组件(3)始终保持指向太阳(S)，从而能够在所述行进时收集日光；以及
 - 所述重传卫星(2)的控制中心(11)，包括控制装置(12)，所述控制装置(12)能够远程地调整重传卫星(2)的所述第二光学组件(6)的取向并被形成为调整所述取向，使得重传卫星(2)在所述地区之上行进时将所收集的日光重传到地球(T)的给定区域(Z)，所具有
的权利要求书

3. 根据权利要求2所述的系统，
其特征在于，从表面处理并从将适当的材料用于以下元件中的至少一个来实现重传卫星(2)的所述过滤装置；第二光学元件(6)和光传送装置(10)。

4. 根据权利要求2至3中的任一项所述的系统，
其特征在于，重传卫星(2)的所述光传送装置(10)包括以下装置中的一个：
——潜望镜；
——一组光学引导件；以及
——至少一个光纤。

5. 根据权利要求2至3中的任一项所述的系统，
其特征在于，控制中心(11)的所述控制装置(12)包括：
——计算单元(15)，其用于确定意图用于所述能远程控制的装置(8)以调整重传卫星(2)的所述第二光学元件(6)的取向的控制命令；以及
——数据发射装置(13)，其被形成经由安装在重传卫星(2)上的协作数据接收装置(14)将所述控制命令传送到所述能远程控制的装置(8)。

6. 根据权利要求2至3中的任一项所述的系统，
其特征在于，所述系统还包括向所述控制中心(11)传送来自客户的请求的服务中心，所述请求涉及加强地球(T)的给定区域(Z)上的光合作用。
用于加强光合作用的空中系统和方法

技术领域
[0001] 本发明涉及日光重传卫星，以及使用这种类型的一个或多个卫星的应用。
[0002] 尽管非排他性地，本发明更特别地旨在特别是在夜里借助日光照亮具有大面积——例如几十平方公里——的地球的地理表面区域。

背景技术
[0003] 已知的是安装在卫星上的纯日光反射器不能照亮地球的此类表面区域，除非使用具有面积非常大、由此假定质量和惯性非常大并且具有从中引出的所有（实现、成本、定位等）问题的反射器。作为例子，如果要照亮地球上的约一百平方公里的表面，则应毫无疑问地提供具有几千平方米数量级的表面面积的反射器，如果将可获得几兆瓦的总功率的话。现在，具有此类表面面积的反射器（反射镜）将不仅难以实现和放入轨道，而且具有如此的惯性使得可能的重新指向将要求强大的推进系统并将相当耗费时间。因此，将难以规律地执行重新指向，使得频繁地修改要照亮的区域将几乎是不可想象的。
[0004] 此外，文献US-5,019,768公开了一种用于从月球向地球传送微波的系统，该系统使用被置于绕地球的轨道中并向地球发送回从月球接收到的辐射的微波反射器。此类反射卫星不能照亮地球的大表面区域。

发明内容
[0005] 本发明旨在补救上述缺点。本发明涉及使得能够向天体重传日光的日光重传卫星，特别是，具有照亮包括地球的此类天体的大表面区域的目的，其中此类区域能够被容易地修改。
[0006] 为此，根据本发明，所述日光重传卫星在其包括至少一组以下机载构件方面是值得注意的：
[0007] 一第一光学组件，其意图用于收集日光，并且该第一光学组件的位置相对于所述重传卫星的结构是固定的；
[0008] 一在尺寸和惯性方面比所述第一光学组件小的第二光学组件，其意图用于以比所收集的通量密度高的重传通量密度来重传由所述第一光学组件收集的光，并且能够相对于重传卫星的结构来修改该第二光学组件的取向，从而根据重传哪些光来修改轴的方向；
[0009] 一能远程控制的装置，其能够调整所述第二光学组件的取向；以及
[0010] 一光传送装置，其被形成为从所述第一光学组件向所述第二光学组件传送由所述第一光学组件收集的任何光，而无论第二光学组件的取向如何。
[0011] 因此，由于光收集功能（由所述第一光学组件实现）和光重传功能（由所述第二光学组件实现）的分离，并且由于光被集中（下文将描述），所以可以不同地实现此类两个光学组件，并且根据要达到的目的——即在大表面区域上重传日光——的最佳特性能够容易地修改此类区域，如下所述。
[0012] 事实上：
因为由于本发明第一光学组件仅仅是旨在收集日光，所以该第一光学组件应简单地指向太阳且不被重新定向，对卫星的位置和取向的措施不频繁的修正就足够了。因此，该第一光学组件可以用非常高的惯性和尺寸来实现，从而使能够收集大量的日光；以及

因为由于本发明第二光学组件的唯一功能包括重传所收集（并集中）的日光，所以该第二光学组件可以用比所述第一光学组件的尺寸和惯性低得多的尺寸和惯性来实现。这允许更容易地相对于卫星的主体修改其取向并提供能够容易地并以低成本调整重传的日光的取向的装置。因此，可以容易地且快速地改变要照明的区域。

应注意的是，根据本发明的重传卫星不对应于具有两个光学组件的纯中继卫星。事实上，纯中继卫星（仅同样地重新发送接收到的光）将需要相同尺寸的光学组件，而由于本发明，所收集的日光在被重传之前被集中，使得能够提供上述有利特性。

在特定实施例中，所述重传卫星包括用于过滤所收集的日光使得第二光学组件仅在至少一个预定频带中重传光的过滤装置。优先地，从表面处理和从将适当的材料用于重传卫星的以下元件中的至少一个来实现所述过滤装置：第二光学组件和光传送装置。

此外，在特定实施例中，所述光传送装置包括以下装置中的一个：

- 潜望镜；
- 一组光学引导件；以及
- 至少一个光纤。

本发明还涉及一种用于照亮天体，特别是地球的特定区域的方法。

为此，此类方法在以下方面是值得注意的：

- 至少一个日光重传卫星，诸如上述的日光重传卫星，被设置在绕天体的轨道中；
- 此类重传卫星取向为使得所述重传卫星的所述第一光学组件至少在重传卫星在所述天体的给定地区之上行进时始终保持指向太阳，从而能够在此类行进时收集日光；以及
- 远程地调整重传卫星的所述第二光学组件的取向，使得该第二光学组件在重传卫星在所述地区之上行进时将所收集的日光重传到天体的要被照亮的区域内。

本发明还涉及用于加强地球上的光合作用的空中系统。

根据本发明，所述空中系统包括：

- 至少一个日光重传卫星，诸如上述的日光重传卫星，被设置在绕地球的轨道中，取向为使得所述重传卫星的所述第一光学组件至少在重传卫星在地球的给定地区之上行进时始终保持指向太阳，从而能够在此类行进时收集日光；以及
- 优选地提供的用于所述重传卫星的控制中心。具体地，此类控制中心包括控制装置，该控制装置能够远程地调整重传卫星的所述第二光学组件的取向，并被形成为调整此类取向，使得重传卫星在其在所述地区之上行进时在地球的给定区域上重传所收集的日光，所具有的目的是加强此区域上的光合作用。

已知的是，当前地球上和海洋中的光合作用的活动主要由白天/夜晚的日循环和冬季/夏季的年循环来支配。在地球的某些地区中，使用温室来延长时间的生长期。此类温室被用作装置——最常见的化石燃料消耗装置——加热并照亮。某些温室是由来自核电站冷却塔的能量来加热并用来自此类电站的电照明。在所有情况下，此类温室消耗在电
站中产生的能量，并且此类温室实际上专用于提供构建温室所需的装置并为这些温室提供能量的群体。

[0031] 由于根据本发明的上述系统，可以加强地球的任何区域上的光合作用，为此使用免费且可自由使用的能量，即太阳能。

[0032] 在优选实施例中，用于重传卫星的所述过滤装置被形成为过滤所收集的光以便分别在约450nm和660nm的定义频带——对应于用于光合作用的光频率——内重传光。因此，可用于植物和海草的光合作用的太阳光谱的仅该部分被重传到地球。在没有按比例地增加在地面上接收到的紫外和红外辐射的剂量情况下，这能够改善植物和海草的生长。

[0033] 此外，有利地，用于控制中心的所述控制系统包括：

[0034] 一计算单元，其用于确定意图用于调整装置以调整重传卫星的所述第二光学组件的取向的控制命令；以及

[0035] 一数据发射装置，其被形成为经由安装在重传卫星上的协作数据接收装置将所述控制命令传送到所述调整装置。

[0036] 此外，有利地，所述系统还包括向所述控制中心传送客户需求的服务中心，所述客户请求涉及加强地球的至少一个特定区域上的光合作用。此类客户可以是例如计划在加强其耕种地面上的光合作用（包括在晚上）的同时增加其产量的农场公司或合作社。

附图说明

[0037] 所附图示的图将更好地解释如何能够实现本发明。在这些图中，相似的附图标记涉及相似的部件。

[0038] 图1示意性地示出根据本发明的用于照亮包括地球的天体的区域，特别地用于加强其中的光合作用的系统。

[0039] 图2示意性地示出根据本发明且作为此类系统的一部分的阳光重传卫星。

具体实施方式

[0040] 根据本发明并在图1中示意性地示出的系统1是意图用于用日光照亮包括地球的天体T的区域Z的空中系统。

[0041] 为此，所述系统1包括至少一个日光重传卫星2，该日光重传卫星2被设置在绕此类天体T的轨道中。

[0042] 根据本发明，此类卫星2特别地如所示那样在图2上包括：

[0043] 一光学组件3。其根据卫星2在天体T的给定地区RE之上行进时始终指向太阳S的（收集）轴4定向，以便能够直接收集太阳光的R1形式的光。具有高尺寸和惯性的所述光学组件3的位置相对于卫星2的结构（或主体）5而言是固定的；

[0044] 一具有比所述光学组件3的尺寸和惯性低得多的尺寸和惯性的光学组件6。此类光学组件6根据指向天体T的轴7定向以便在地区RE（例如对应于国家的一部分）之上行进时以辐射R2的形式重传由所述光学组件3收集的光。如下文所述，作为在卫星2上发生的光的会聚的结果，以比所收集的辐射通量密度R1高得多的通量密度来重传此类光。此外，能够相对于卫星2的结构5来修改光学组件6的取向，从而根据重传哪些光来修改轴7的（指向）方向；
[0045] — 如下所述的可远程地控制并能够调整 (亦即修改) 所述光学组件 6 的 (轴 7 的) 取向的装置 8，如混合线形式的线路 9 所示；以及
[0046] — 光传送装置 10，其被形成为使得从光学组件 3 向光学组件 6 传送由光学组件 3 收集的任何光，无论该光学组件 6 的取向如何，目的是由光学组件 6 将所述光重传，如辐射 Ri 所示。
[0047] — 除所述重传卫星 2 之外，所述系统 1 还包括用于此类重传卫星 2 的控制中心 11，优选地在地球 T 上提供。更特别地，此类控制中心 11 包括控制装置 12，该控制装置 12 能够远程地调整重传卫星 2 的所述光学组件 6 的取向并被形成为调整此类取向使得重传卫星 2 当其在地区 RE 之上行进时在地球 T 的给定区域 Z 上重传日光 (根据重传轴 7)，特别地是为了加强此区域 Z 上的光合作用 (区域 Z 例如是位于所述地区 RE 中的耕种区域)。
[0048] — 因此，一方面由于与光重传功能 (由所述光学组件 6 实现) 分离的光收集功能 (由所述光学组件 3 实现)，并且另一方面由于所集中的光，所以两个光学组件 3 和 6 可以不同地实现并且根据要到达的目的 (即在至少一个大表面区域 Z 上重传日光) 的最佳特性还可以容易地对此进行修改。
[0049] — 事实上，
[0050] — 由于光学组件 3 仅仅意图用于收集日光，所以该光学组件 3 应简单地指向太阳 S (当在地区 RE 之上行进时) 并且不应被重新定向，然而可能需要对卫星 2 的位置和取向的某些略不频繁的修正。因此，这可以用非常显著的惯性和尺寸来实现，使得能够收集大量的日光；
[0051] — 并且
[0052] — 仅仅具有重传所收集的 (和集中的) 日光的功能的所述光学组件 6 可以根据比所述光学组件 3 的尺寸和惯性小得多的尺寸和惯性来实现。与卫星 2 的主体 5 相比，这允许容易地修改所述光学组件 6 的取向，并提供能够容易地且以降低的成本调整所述光学组件 6 的取向的装置 8。因此，可以容易地并快速地改变轴 7 的取向，并且因此当卫星 2 在地区 RE 之上行进时照亮天体 T 上区域 Z 的位置。
[0053] — 应注意的是，根据本发明的重传卫星 2 不对应于具有两个光学组件的纯中继卫星。事实上，纯中继卫星 (仅同样地重新发送接收到的光) 将要求相同尺寸的光学组件，而借助于本发明，所收集的日光在被重传之前被集中，这允许提供上述有利特性。
[0054] — 此外，在特定实施例中，重传卫星 2 包括多个光学组件 3 和 / 或多个光学组件 6。
[0055] — 控制中心 11 的所述控制装置 12 包括；
[0056] — 一计算单元 15，其用于确定意图用于所述装置 8 以调整重传卫星 2 的所述光学组件 6 的取向的控制命令；以及
[0057] — 一数据发射装置 13，其被形成为经由例如 TM-TC 类型的电磁波链路 L 将此类控制命令传送到协作数据接收装置 14 (被安装在重传卫星 2 上)。然后，装置 14 将此类控制命令传送到所述装置 8。
[0058] — 所述控制中心 11 还包括更具体地与卫星 2 的装置 17 协作的常见卫星控制装置 16。此类装置 17 可以特别地包括任何卫星的一组常用元件和功能，更具体地意图用于：
[0059] — 一导引卫星 2 的海拔并修正轨道 OR；
[0060] — 一供应必要的电能；以及
说明书

[0061] —保证机载设备的合理热环境。
[0062] 在优选实施例中，
[0063] —所述光学组件 3 包括非常大表面的第一反射镜 19，其被根据轴 4 定向于太阳 S
并将所收集的光聚焦（亦即使其会聚）在与所述光传送装置 10 相关联的第二反射镜 20 上；
以及
[0064] —所述光学组件 6 包括用于重传所收集的光的至少一组类似的装置 21 和 22，即第
一反射镜 21（具有比反射镜 19 小的表面）根据轴 7 定向于天体 T 并且从与所述光传送装
置 10 相关联的第二反射镜 22 接收光并使其发散。
[0065] 由于由组件 6 实现的发散不如由组件 3 实现的会聚那么显著，所以日光在重传的
辐射 R2 中比在所收集的辐射 R1 中更多地被集中，亦即具有高得多的通量密度。
[0066] 来自于光学组件 3 的光的传送借助于作为所述装置 10 的一部分的常用元件发生。若
该装置 10 优选地包括以下装置中的一个：
[0067] ——潜望镜；
[0068] ——一组光学引导件；以及
[0069] —至少一个光纤。
[0070] 可以用诸如碳化硅的材料分若干部分制成所述反射镜 21 和 22，其耐受由于期望的
高通量密度引起的高温。
[0071] 在特定实施例中，所述重传卫星 2 包括用于过滤所收集的光，使得光学组件 6 仅在
至少一个预定频带中重传光的过滤装置。优选地，从在正在使用的反射镜、更具体地为光学
组件 6 的反射镜上进行的表面处理和从将适当的材料用于光传送装置 10 获得所述过滤装
置。
[0072] 根据本发明的系统 1 因此特别适合于照亮任何天体 T，特别是地球亦即有相似如
月球的特殊区域 Z。在特定实施例中，所述系统 1 包括诸如上述重传卫星的多个重传卫星
2，这些重传卫星 2 在同一轨道 OR 上或在不同轨道上绕天体 T 旋转。
[0073] 在优选但非排他性的实施例中，所述系统 1 意图用于对地球 T 的区域 Z 进行照明，
从而加强其中的光合作用。
[0074] 在此类优选实施例中，控制装置 12 意图为远程地调整用于重传卫星 2 的所述光
学组件 6 的取向，使得所述重传卫星 2 当在特定地区 RE 之上行进时在地球 T 的给定区域 Z
上重传所收集的日光，所具有目的在于加强该区域 Z 上的光合作用。
[0075] 因此，根据本优选实施例的系统 1 能够产生补充照明并从而加强地球 T 的任何区
域 Z 上的光合作用，为此目的使用免费且可自由获得的能量、即太阳能。
[0076] 在此类优选实施例中，重传卫星 2 的所述过滤装置被形成为在分别约为 450nm 和
660nm 的定义频带——对应于光合作用所使用的光频率——中重传光。因此，该部分用于
对于植物和/或海草的光合作用的太阳光谱被重传到地球。在不按比例地增加在地面上接收
到的紫外和红外辐射的剂量的情况下，这允许改善植物和/或海草的生长。
[0077] 此外，所述系统 1 还包括由所述控制中心 11 传送来自客户的请求的服务中心（未
示出），所述请求涉及加强地球 T 的特定区域上的光合作用。此类客户可以是例如计划在加
强其耕种地面上的光合作用（包括在晚上）的同时增加其产量的农场公司或合作社。在本优
选实施例中，系统 1 因此允许产生农牧或水产养殖活动的额外发展。
所述服务中心确定卫星(一个或多个)2的操作计划表并保证服务的跟进和相应的帐单。此类服务中心可以位于控制中心11处。
图 2