2011/084743 A2 | 00 O O 010 O O O 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellcctual Property Organization i 1IN NI A0 AT VY0100 OO O RO A
International Bureau S,/)
sUMPV 10) International Publicati
(43) International Publication Date \'{:/_?___/ (10) International Publication Number
14 July 2011 (14.07.2011) PCT WO 2011/084743 A2

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6F 15/16 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. .. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
PCT/US2010/061321 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
20 December 2010 (20.12.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
.) SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
12/643,099 21 December 2009 (21.12.2009) Us gl\l\/’[[g\g) LER» LS, WMMAZZ’ §$» Isgé IS<IE f/[Z]») TIi»JUTC}
, , Burasian , AZ, BY, KG, KZ, MD, RU, TJ,
(71) Applicant (for all designated States except US): UNISYS TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
CORPORATION; 801 Lakeview Dr., Suite 100, M/S EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
2NW, Blue Bell, PA 19422 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

(72) Imventor: BEALE, Andrew, Ward; 3 Rimani Drive, GW, ML. MR, NE, SN, TD, TG).

Mission Viejo, CA 92692 (US).

(74) Agent: GOEPEL, James; UNISYS CORPORATION, ©ublished:
801 Lakeview Dr., Suite 100, M/S/ 2NW, Blue Bell, PA — without international search report and to be republished
19422 (US). upon receipt of that report (Rule 48.2(g))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: METHOD AND SYSTEM FOR OFFLOADING PROCESSING TASKS TO A FOREIGN COMPUTING ENVIRON-
MENT

(57) Abstract: A method and apparatus for oftloading processing tasks from a first computing environment to a second computing
environment, such as from a first interpreter emulation environment to a second native operating system within which the inter-
preter is running. The oftloading method uses memory queues in the first computing environment that are accessible by the first
computing environment and one or more offload engines residing in the second computing environment. Using the queues, the
first computing environment can allocate and queue a control block for access by a corresponding offload engine. Once the of-
fload engine dequeues the control block and performs the processing task in the control block, the control block is returned for in-
terrogation into the success or failure of the requested processing task. The offload engine is a separate process in a separate com-
puting environment, and does not execute as part of any portion of the first computing environment.

WO 2011/084743 PCT/US2010/061321

METHOD AND SYSTEM FOR OFFLOADING PROCESSING
TASKS TO A FOREIGN COMPUTING ENVIRONMENT

[0001] This application is related to and claims the benefit of U.S. Patent Application
Serial No. entitled “Method and System for Offloading Processing Tasks to
a Foreign Computing Environment”, filed on even date herewith.

BACKGROUND

Field

[0002] The instant disclosure relates generally to computing environments and the
processing tasks within computing environments, and more particularly, to reallocating
or offloading processing tasks and other resources from one computing environment to

another computing environment.

Description of the Related Art

[0003] In the area of computing and computing processes, heterogeneous
computing environments often lead to circumstances where processing tasks can be
performed more efficiently in one computing environment over another computing
environment. For example, in a computing environment where an interpreter is running
as an application within an instantiation of an operating system, the software running
within the interpreter also instantiates, or emulates, an operating system. Thus, it is not
uncommon for algorithms and other processing tasks to run more efficiently in one
operating system or the other based on one or more characteristics of the particular
operating system, such as the available operator set, the speed of execution and/or the
feature set of the particular operating system.

[0004] For example, in existing computer processing architectures, an interpreter
can run as an application inside an operating system executing on a particular
processor. In general, an interpreter is a special class of program that interprets
instructions, e.g., opcodes and operators, that are different than the native instruction
set of the machine upon or application within which the interpreter is executing.
Typically, the interpreter receives the code to be executed and translates the non-native

WO 2011/084743 PCT/US2010/061321

computer instructions, typically written in a high-level programming language, into native
computer instructions.

[0005] As such, the interpreter emulates an instruction set and processor
environment that typically is foreign to the particular processor and operating system.
However, the emulated environment typically is capable of running an emulated (non-
native) operating system. Therefore, it may be advantageous to offload various
processing tasks from one computing environment to another computing environment,
e.g., from the interpreter emulated environment to the operating system computing
environment inside which the interpreter application is running.

[0006] Conventional methods exist for offloading work from one computing
environment to another computing environment. However, such conventional methods,
which typically are network-based processes, vary widely in complexity and
performance. For example, many conventional method invoke one or more external
functions to perform various offloading tasks. However, when offloading tasks from an
emulated computing environment, many conventional approaches require relatively
intimate knowledge of the interpreter, and can be vulnerable to programming errors in
the program library within the native operating system, which could fault the interpreter

itself, and result in a crash of the entire interpreter emulated environment.

SUMMARY

[0007] Disclosed is a method and system for offloading processing tasks from a first
computing environment to a second computing environment, such as from a first
interpreter emulation environment to a second native operating system within which the
interpreter is running. Conventional offloading processes involve command execution
between the first and second computing environments across the network
arrangements existing between the two computing environments. The offloading
method according to an embodiment involves the use of memory queues in the first
computing environment that are accessible by the operating system of the first
computing environment and one or more offload engines that reside in the second

computing environment. In this manner, the offloading method according to an

WO 2011/084743 PCT/US2010/061321

embodiment is based on direct memory access rather than the network connection
access between the two computing environments used in conventional offloading
processes. Using the memory queues, e.g., a request or initiation queue and a results
queue, the first computing environment can allocate and queue a control block in the
initiation queue for access by a corresponding offload engine. Once the offload engine
dequeues the control block and performs the processing task in the control block, the
control block is returned to the results queue for interrogation into the success or failure
of the requested processing task. In this manner, the offload engine is a separate
process in a separate computing environment, and does not execute as part of any
portion of the first computing environment. Therefore, fatal programming errors in an
offload engine will not fault any portion of the first computing environment, thus making
the first computing environment more resilient and reliable. Although the queuing of
offloaded processing tasks will stop when a corresponding offload engine crashes, the

first computing environment will not be adversely affected.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Fig. 1 is a schematic view of a set of heterogeneous computing environments,
including a computing environment having a native operating system being run by a
native processor and a computing environment being run as an emulated environment
within the native operating system, according to a conventional arrangement;

[0009] Fig. 2 is a schematic view of a set of heterogeneous computing environments
according to an embodiment;

[0010] Fig. 3 is a schematic view of an example structure of a queue, e.g., within a
control area, according to an embodiment;

[0011] Fig. 4 is a schematic view of a control block according to an embodiment;
[0012] Fig. 5 is a flow diagram of a method for offloading processing tasks from one
computing environment to another computing environment according to an

embodiment; and

WO 2011/084743 PCT/US2010/061321

[0013] Fig. 6 is a flow diagram of a method for offloading processing tasks from one
computing environment to another computing environment according to an another

embodiment.

DETAILED DESCRIPTION

[0014] In the following description, like reference numerals indicate like components
to enhance the understanding of the disclosed method and system for offloading
computing processes from one computing environment to another computing
environment through the description of the drawings. Also, although specific features,
configurations and arrangements are discussed hereinbelow, it should be understood
that such is done for illustrative purposes only. A person skilled in the relevant art will
recognize that other steps, configurations and arrangements are useful without
departing from the spirit and scope of the disclosure.

[0015] Fig. 1 is a schematic view of a set of heterogeneous computing environments,
e.g., a first computing environment 12 and one or more second computing
environments 14. The first computing environment 12 can be any suitable computing
environment, e.g., the first computing environment 12 can be or include an emulation or
emulated environment 16. The emulated environment 16 typically includes an emulated
processor 18 (i.e., an interpreter), an emulated memory or memory element 22, and an
operating system (OS) 24 that typically resides in the emulated memory 22.

[0016] For example, if the first computing environment 12 includes or involves a
Master Control Program (MCP) environment, the emulated processor 18 is an E-Mode
interpreter, the emulated memory is E-Mode memory, and the operating system 24
within the E-Mode memory is the MCP. As is known in the art, the MCP is a proprietary
operating system used in many Unisys Corporation mainframe computer systems.
[0017] The second computing environment 14 can be any suitable computing
environment, e.g., a computing environment that includes a processor or native
processor 26, a memory or memory device 28, and an operating system or native
operating system 32 residing in the memory 28. Within the second computing
environment 14, the operating system 32 and other portions of the memory 28 may

WO 2011/084743 PCT/US2010/061321

interface with the processor 26 via an interface 34. Also, the second computing
environment 14 can interface with portions of the first computing environment 12 via the
interface 34. Similarly, the emulation or emulated environment 16 can interface with the
processor 26 or other portions of the second computing environment via the interface
34. In this environment, the interface 34 typically is a set of data structures residing in
the emulated memory 22, although other configurations are possible.

[0018] As discussed hereinabove, in an emulated environment, the emulated
processor 18 typically is running as an application within an operating system, e.g.,
within the native operating system of another computing environment. Accordingly, the
emulated environment often is referred to as a non-native environment, and the
operating system 24 running within the emulated memory 22 often is referred to as a
non-native operating system. Therefore, although the first computing environment 12
and the second computing environment 14 are shown as separate entities for purposes
of discussion herein, it should be understood that all or a portion of the emulated
environment 16 typically is part of an application running within the native operating
system 32 within the memory device 28. However, it should be understood that the first
computing environment 12 and the second computing environment 14 can have any
suitable physical or logical coupling arrangement therebetween.

[0019] It should be noted that the directional access from the emulated environment
16 to the second computing environment 14 is unidirectional, while the directional
access from the second computing environment 14 to the emulated environment 16 to
bidirectional. That is, the second computing environment 14 can look into and access
the memory in the emulated computing environment 16, however, the emulated
computing environment 16 can only read from and write to memory locations within the
first computing environment 12 and not memory locations within the second computing
environment 14.

[0020] As discussed hereinabove, certain algorithms and other processing tasks
may run more efficiently within one computing environment, e.g., in the native operating
system 32, than another computing environment, e.g., the emulated environment 16.
Therefore, it may be advantageous to offload various processing tasks from one

computing environment to another computing environment, e.g., from the emulated

WO 2011/084743 PCT/US2010/061321

environment 16 to the operating system computing environment 32 inside which the
emulated environment 16 is running.

[0021] For example, various encryption processing tasks may have industry-
accepted implementations for the native environment but perform poorly in the non-
native environment or would be prohibitively expensive to implement in the non-native
environment. Another exemplary processing task suitable for offloading may be
specialized mathematical calculations where the native environment has hardware
support for floating point acceleration as opposed to relying on emulated floating point
routines within the interpreter. Yet another processing task suitable for offloading could
be the control of specialized hardware, e.g., a stepper motor or other machinery
interfaces, which have drivers provided by the vendors in the native operating system.
With such interfaces, it is often more efficient to abstract the interface to high level and
have the emulated environment request these high level functions via an offload engine,
rather than developing non-native interfaces that tie directly into driver calls, to afford
maximum control in the emulated environment.

[0022] Conventional offload methods in such applications generally are network-
based processes that directly involve process execution by the emulated processor 18
and the ability of the emulated processor 18 to enter program libraries within the native
operating system 32. Accordingly, such approaches require relatively intimate
knowledge of the emulated processor 18. Also, techniques that involve offloaded calls
from within the emulated processor 18 can be vulnerable to programming errors in the
program library within the native operating system 32. Such errors can fault the
emulated processor 18 itself, which can result in a crash of the entire emulated
environment 16. Also, access by the emulated processor 18 to the program libraries
within the native operating system 32 typically involves making use of network
connections therebetween, which can be subject to the overall limitations of the network
environment within which the computing environments reside.

[0023] The inventive methods and apparatus described herein provide for offloading
processing tasks from a first computing environment to a second computing
environment by making use of memory queues in the memory portion of the first

computing environment, which are accessible by the operating system of the first

WO 2011/084743 PCT/US2010/061321

computing environment as well as by one or more offload engines created in the second
computing environment. In general, the first computing environment, e.g., through its
operating system, enqueues processing tasks, in the form of control blocks, within a
request or initiation queue. The processing tasks within the control blocks that are
queued in the initiation queue generally depend on what kind of corresponding offload
engine is serving or will be servicing the queue. The corresponding offload engine
accesses or dequeues the first available control block and processes the request, i.e.,
performs the processing task in the dequeued control block. The offload engine then
places or enqueues into a result queue appropriate information that sufficiently indicates
the offload engine has performed and completed the processing task. The offload
engine then accesses or dequeues the next available control block from the request
queue, performs the processing task therein and enqueues the result queue with
appropriate information that indicates the offload engine has performed and completed
the processing task. This offload engine queuing process continues until all control
blocks from the request queue have been dequeued and processed. In this manner,
compared to conventional offloading methods and arrangements, the inventive methods
and apparatus allow for relatively easy relocation and performance of processing tasks
from the first computing environment to the second computing environment, with less
complexity and less need for specialized knowledge.

[0024] It should be understood that, although the control blocks are dequeued
serially from the request queue, the processing tasks may not be required to be
performed serially. For example, one or more dequeued processing task may be
passed off by the offload engine to another worker thread in such a way that dequeued
processing tasks are performed in parallel.

[0025] Fig. 2 is a schematic view of portions of the first computing environment 12
and the second computing environment 14, showing the memory queues in the first
computing environment 12 and the offload engines in the second computing
environment 14. The memory element 22 of the first computing environment 12
includes one or more control areas located therein. For example, the memory 22
includes a plurality of control areas starting with a first control area 36 and ending with

WO 2011/084743 PCT/US2010/061321

an nth control area 38. The control areas are created or established in any suitable
manner, e.g., as part of the inventive offloading method described herein.

[0026] Each control area includes a request or initiation queue, a result queue, and a
pool queue. For example, the first control area 36 includes a first request or initiation
queue 42 and a first result queue 44. The first control area 36 also can include a first
pool queue 46. Similarly, the nth control area 38 includes an nth request or initiation
gueue 48 and an nth result queue 52. The nth control area 38 also can include an nth
pool queue 54. As will be discussed in greater detail hereinbelow, each queue typically
includes a plurality of control blocks, each of which includes various processing task
information, depending on, among other things, which queue the control block occupies
or has been removed from.

[0027] The second computing environment 14 includes an offload engine that
corresponds to each of the control areas. Thus, in the example computing
environments shown in Fig. 2, the second computing environment 14 includes a
plurality of offload engines starting with a first offload engine 56 that corresponds to the
first control area 36 and ending with an nth offload engine 58 that corresponds to the
nth control area 38. It should be understood that there can be a plurality of second
computing environments, and not all offload engines need to reside in the same second
computing environment. Also, it should be understood that all or a portion of one or
more of the offload engines can be partially or completely configured in the form of
software, e.g., as processing instructions and/or one or more sets of logic or computer
code. In such configuration, the logic or processing instructions typically are stored in a
data storage device, e.g., the memory element 28, and accessed and executed as one
or more applications within the native operating system 32 by the native processor 26.
Alternatively, one or more of the offload engines can be partially or completely
configured in the form of hardware circuitry and/or other hardware components within a
larger device or group of components, e.g., using specialized hardware elements and
logic.

[0028] The offload engines can be instantiated in any suitable manner, e.g., as part
of the inventive offloading method described herein. For example, offload engines can

be created as services or “daemons” in their respective computing environments. Also,

WO 2011/084743 PCT/US2010/061321

if the emulated processor 18 has the means to spawn processes in the second
computing environment 14, offload engines may be instantiated by the emulated
processor 18 under the direction of the non-native instruction stream. Also, an offload
engine can be developed for the purpose of spawning additional offload engines.

[0029] For each control area located in the memory element 22 of the first computing
environment 12, the base of the control area is communicated to its corresponding
offload engine, typically at the time when the offload engine is instantiated. In this
manner, each offload engine has its own dedicated control area, which ensures that one
offload engine will not interfere with another offload engine. Also, in this arrangement,
each control area typically is used only by one offload engine.

[0030] Each control area includes an appropriate data structure that allows for the
proper operation of the control area in conjunction with its corresponding offload engine
in performing the inventive offloading methods described herein. For example, each
control area can include a control word that identifies the particular area of memory
where the control area resides as an offload engine control area, e.g., a Mark Word
control word. Also, each control area can include a control word that contains the
absolute address of the base of the request or initiation queue (e.g., INIT_Q) and a
control word that contains the absolute address of the base of the result queue (e.g.,
RSLT_Q). Also, each control area can include a control word that contains the absolute
address of the base of the pool queue (e.g., POOL_Q). Also, each control area can
include one or more control words that identify certain control blocks within the various
gueues for control block removal, placement, replacement and/or other suitable control
block functions.

[0031] Each control area also can include a control word that the offload engine
corresponding to the control area updates when the offload engine is checking in. Such
updating signifies that the offload engine is capable of receiving control blocks from its
corresponding control area. This control word can be referred to as an Offload Engine
Version Word control word. For example, the particular offload engine stores a value in
the Offload Engine Version Word control word that indicates the revision level of the
offload engine. Also, the offload engine writes the Offload Engine Version Word control

word to zero (0) when the offload engine is terminating. Such action by the offload

WO 2011/084743 PCT/US2010/061321

engine signifies that the offload engine no longer will access the memory portion 22 of
the first computing environment 12.

[0032] The manner in which the control areas are found by their corresponding
offload engine now is discussed. The first computing environment 12, e.g., through its
operating system, is responsible for allocating all control areas, i.e., allocating a
corresponding control area for each of the defined offload engines. Once the portion of
memory for each control area is allocated, the operating system or other appropriate
portion of the first computing environment 12 initializes the Mark Word control word in
each control area with an appropriate initial value or value notation (i.e., literal). Also,
the Offload Engine Version Word control word in each control area initially is set to zero
(0). Similarly, the control words that make up or define the queue structures within each
control area are suitably initialized. If a particular queue is not to be used, its control
words are initialized to zero (0). Once each control area is initialized, its corresponding
offload engine is told of the address of the control area. Typically, the value of this
address is passed to the corresponding offload engine as a command line argument.
Providing the control area address to the corresponding offload engine in this manner
allows different offload engines to connect to different control areas.

[0033] The allocation of the control area within the memory 22 of the first computing
environment 12 typically is established prior to the offloading of processing tasks and
the execution of the offloaded processing tasks. However, alternatively, the operating
system of the first computing environment 12, e.g., in conjunction with an existing
offload engine, can dynamically add control areas during the course of offloading and/or
executing processing tasks. For example, one of the processing tasks, whether
offloaded or not, can be a request for additional queues. Assuming sufficient resources
exist within the memory 22 of the first computing environment 12, the operating system
of the first computing environment 12, in response to the allocation request, can
dynamically allocate the requested control area and pass the address of the new control
area to its corresponding offload engine, e.g., as part of the control block data buffer
that the offload engine would be able to capture and retain.

[0034] As discussed hereinabove, each control area includes one or more queues,

e.g., a request or initiation queue and a result queue. Each control area also can

10

WO 2011/084743 PCT/US2010/061321

include a pool queue. The manner in which control blocks are transferred from their
respective control area to the control area’s corresponding offload engine (and vice
versa) is via the use of these queues. Each queue in the control area is a contiguous
area of the memory element 22 within the first computing environment 12, and has a
defined size as set forth in the data structure of the particular control area. At any given
point in time, each word in a particular queue has a value of either zero (0), which
indicates that the queue entry is empty, or a positive integer, which indicates the
absolute address of the base of the control block enqueued at that queue location.
[0035] Fig. 3 is a schematic view of an example queue or queue structure 60
according to an embodiment. Typically, the queue structure 60 is the same for all the
queues pointed to by the control area. It should be understood that the data values in
the various slots of the queue structure 60 are example data values shown to
demonstrate a portion of the general operation of the queue structure 60.

[0036] The queue structure 60 includes a plurality of slots or data slots 62, a Q_IN
entry or pointer 64 and a Q_OUT entry or pointer 66. The data slots 62 are configured
to have data values written thereto and read therefrom, e.g., by the queue’s
corresponding offload engine 68. Control blocks are the data entities that are enqueued
to and dequeued from the queue 60. The Q_IN entry 64 points to the data slot where
the next control block will be enqueued. The Q_OUT entry 66 points to the data slot
where the next control block will be dequeued. The offload engine 68 includes an
enqueuer 72 for enqueuing control blocks into the queue structure 60, and a dequeuer
74 for dequeuing control blocks from the queue structure 60. However, it should be
understood that the enqueuer 72 and/or the dequeuer 74 can be standalone devices
external to the offload engine 68, or included as part of another suitable device other
than the offload engine 68.

[0037] As shown in the example queue structure, the Q_IN entry 64 has a value of 6,
which points to the 6th slot (zero relative) of the queue 60, which is shown generally as
a 6th slot 76. In this example, the 6th slot 76 is where the next control block will be
queued. Because the 6th slot 76 currently has a value of zero (0), the 6th slot 76 is
empty and a new control block may be enqueued therein immediately. If the 6th slot 76

(or any other data slot) has a value or data entry that is non-zero, this would mean that

11

WO 2011/084743 PCT/US2010/061321

the dequeuer 74 has not yet dequeued the control block. In such case, the enqueuer
72 would have to wait until the particular data slot has been dequeued before
enqueuing could take place. It should be understood that it is possible for the enqueuer
72 to queue data to some other appropriate location, e.g., to a disk or other appropriate
memory area. However, a non-zero data entry can not be overwritten by the enqueuer
72.

[0038] As also shown in the example queue structure, the Q_OUT entry 66 has a
value of 3, which points to the 3rd slot (zero relative) of the queue 60, which is shown
generally as a slot 78. In this example, the 3rd slot 78 is where the next control block
will be dequeued. In this example, the 3rd slot 78 contains the data value 0x1872 (6258
decimal). This data value points to a control block 82 located at absolute address
0x1872. The dequeuer 74 will dequeue the data slot entry by reading the value from
the 3rd slot (i.e., the data value 0x1872), overwriting the 3rd slot with a value of zero (0),
and incrementing the value of the Q_OUT entry 66 by one (1), taking rollover into
account. If the Q_OUT entry 66 points to a slot 62 that contains a value of zero (0),
then the particular slot is empty and the corresponding offload engine 68 has no queued
control blocks.

[0039] During each of the enqueuing operations, a single control block data entity is
enqueued, and during each of the dequeuing operations, a single control block data
entity is dequeued. Therefore, no locking is required for the queue structure itself.

Also, it is assumed that all queue entries are updated atomically, i.e., the entire value is
fully updated in a single memory cycle. However, an offload engine is free to
multithread control block execution in any suitable manner that the offload engine
deems appropriate, but in such case a single thread should be responsible for handling
a queue.

[0040] Fig. 4 is a schematic view of an exemplary control block 84 according to an
embodiment. The control block 84 is a memory resident data structure that is linear in
nature. The control block 84 has an offload engine independent area 86, an offload
engine dependent area 88, and an area 92 reserved for operating system software use.
The offload engine independent area 86 is identical in structure for all control blocks,

regardless of the type of offload engine that accesses the control block. The offload

12

WO 2011/084743 PCT/US2010/061321

engine dependent area 88 may be dependent on the type and revision of the offload
engine that accesses the corresponding control block. Offload engines are forbidden
from accessing the operating system area 92, which contains items that are meaningful
only to the software that produces and consumes those items, e.g., the operating
system software, such as the MCP.

[0041] Each control block includes an appropriate format for maintaining control
block items therein. For example, each control block can include a control block word
that contains a literal that identifies the type of offload engine for which the particular
control block is targeted, e.g., a MARK control block word. Also, each control block can
include a control block word that contains a data entry that describes the version of the
control block, e.g., a VERSION control block word. For proper operation, the offload
engine targeting the control block and the operating system resident in the control area
computing environment should have identical definitions for control blocks for specific
offload engines at specific revision levels. As long as both entities have identical
definitions, the interaction between the operating system, the offload engine and the
processing of the control block will function properly.

[0042] Also, each control block can include a control block word that contains a
number, typically an integer, that is the directive that the entity that is executing the
corresponding control block is to perform, e.g., a DIRECTIVE control block word. Each
control block can include a control block word that contains a real value, typically a bit
mask, that represents the results of the execution, e.g., a RESULT control block word.
Typically, for a RESULT control block word, a value of zero (0) implies no error in
execution.

[0043] Also, each control block can include a buffer address control block word, e.g.,
BUFF_ADRS, which contains the address of the base of a data buffer associated with
the corresponding control block. Many types of DIRECTIVE(s) pass data from one
entity to the other, and the buffer address control block word contains the address
where the base of this buffer can be located. Each control block also can include a
buffer length control block word, e.g., BUFF_LEN, which describes how many words of
continuous memory are contained within the area pointed to by BUFF_ADRS control

block word. Each control block also can include a buffer valid data control block word,

13

WO 2011/084743 PCT/US2010/061321

e.g., BUFF_DL, which describes how many bytes of data are valid in the area pointed to
by the BUFF_ADRS control block word. The value in the buffer valid data control block
word must be less than or equal to the value in the buffer length control block word
multiplied by the number of bytes per word to ensure that the data referenced does not
overflow the size of the allocated memory.

[0044] Each control block also can include separate control words for the first,
second and last words of the offload engine dependent area 88. Also, each control
block can include separate control words for the first, second and last words of the
operating system dependent area 92.

[0045] Each control block also includes a plurality of timestamp words, such as
control block words containing a timestamp of when the corresponding control block
was inserted into or removed from one of the initiation queue, result or pool queues.
The timestamp words help track the progress of control block execution. Also, because
all of the control blocks live in the memory portion accessible by the operating system,
e.g., the MCP, the state of all the control blocks is readily visible to a diagnostician if an
error occurs and a memory dump is taken. Based on the timestamp information, a
diagnostician can tell when the control block was inserted into which queue and when
the control block was removed from which queue. The timestamp information also
provides a statistical history of the performance of the corresponding offload engine,
e.g., how long it typically takes for a control block to be seen by the offload engine, how
long it takes the offload engine to process the directive, and how long it takes the
operating system to see the control blocks in the result queue after the offload engine
has completed processing.

[0046] Fig. 5 is a flow diagram of a method 100 for offloading processing tasks from
a first computing environment, such as an emulated computing environment with the
MCP operating system, and a second computing environment, according to an
embodiment. Before the method 100 begins, the control areas 36-38 are allocated,
e.g., when configuration information is processed or via a program agent in response to
external stimuli. Once the control areas are allocated, the offload engines 56-58 are
instantiated, e.g., as discussed hereinabove.

14

WO 2011/084743 PCT/US2010/061321

[0047] The offloading method 100 includes a step 102 of allocating a control block
for the initiation queue. In response to a computing performance request, the operating
system within the first computing environment allocates a control block from the
memory area of the computing environment. Allocation of control blocks may be static
or dynamic. In general, a control block should be allocated before it can be initialized
and enqueued for processing. Furthermore, the control block must not be relocated
while under the control of an offload engine.

[0048] The data structure of the allocated control block is initialized and any data
associated with the computing performance request is placed into the data buffer
associated with the control block. The lengths of the control block control words are
updated accordingly to properly reflect the size of the buffer and the size of the data
contained within the buffer. Also, within the control block, the RESULT area is zeroed
and the DIRECTIVE is updated.

[0049] The offloading method 100 also includes a step 104 of enqueuing the control
block into the initiation queue. Within the corresponding control area of the first
computing environment, the control block is enqueued into the corresponding result or
initiation queue. To enqueue the control block into the initiation queue, the queue slot
indexed by the initiation queue insertion index word (IQ_IN) is read by the enqueuer,
e.g., by the operating system of the first computing environment. The initiation queue
insertion index word is the word in the control area that indicates the slot in the initiation
queue in which the next control block is to be placed. If the value of the initiation queue
insertion index word is non-zero, the indexed slot in the initiation queue is full and the
control block can not be queued until the contents of the that slot in the initiation queue
are removed, e.g., by the offload engine. In the case where the indexed slot in the
initiation queue is full, the indexed slot in the initiation queue is polled until such time as
the returned value is zero (0). Alternatively, one or more events that are caused when a
control block is removed from result queue can be monitored to verify that the control
block is removed from the result queue.

[0050] When the control block is able to be queued, the current time is queried and
the appropriate control block word (e.g., a TS_IQ_IN control block word) is updated with

a suitably formatted timestamp value of when the control block was inserted into the

15

WO 2011/084743 PCT/US2010/061321

initiation queue. Next, the address of the control block is written into the slot in the
initiation queue indexed by the initiation queue insertion index word. Finally, the value
of the initiation queue insertion index word is incremented. If the new value of the
initiation queue insertion index word is greater than or equal to the value of a queue
length word (Q_LEN), which indicates the length in words of each and every queue
pointed to by a queue address word, then the value is set to zero (0). At this point, the
control block is queued in the initiation queue.

[0051] The offloading method 100 also includes a step 106 of the offload engine
dequeuing the control block from the initiation queue. The offload engine polls the
initiation queue at the queue slot indexed by the initiation queue extraction index word
(IQ_OUT). The initiation queue extraction index word is the word in the control area
that indicates the slot in the initiation queue from which the next control block is to be
removed. When a non-zero value is returned, the offload engine reads the memory
address within or corresponding to the indexed queue slot. Also, the offload engine
reads and validates the control block’s Mark Word control word and the Offload Engine
Version Word control word. The time of day is read and suitably formatted and the
appropriate control block word (e.g., a TS_|IQ_OUT control block word) is updated with
a suitably formatted timestamp value of when the offload engine dequeued the control
block from the initiation queue.

[0052] The queue slot indexed by the initiation queue extraction index word then is
zeroed and the initiation queue extraction index word (IQ_OUT) word is incremented. If
the new value of the initiation queue extraction index word is greater than or equal to
the value of the queue length word (Q_LEN), then a value of zero (0) is written. At this
point, the offload engine owns the control block.

[0053] The offloading method 100 also includes a step 108 of the offload engine
performing the control block computing request. After the offload engine dequeues the
control block from the initiation queue, the offload engine can perform the control block
computing request. The offload engine reads the DIRECTIVE control block word and
performs the actions requested. The offload engine has a relatively great amount of
flexibility in the manner in which the offload engine executes control blocks. For

example, the offload engine can execute control blocks serially or in parallel. Also, the

16

WO 2011/084743 PCT/US2010/061321

offload engine may choose to execute control blocks out of order, i.e., in an order other
than the order in which the offload engine dequeued the control blocks. Generally, the
offload engine can do whatever the offload engine deems necessary to perform the
DIRECTIVE control block word.

[0054] The offloading method 100 also includes a step 110 of updating the control
block. Once the offload engine completes the performance of the DIRECTIVE control
block word, the offload engine updates the RESULT control block word. As discussed
previously herein, the RESULT control block word contains a value that represents the
results of the execution.

[0055] The offloading method 100 also includes a step 112 of enqueuing the control
block into the result queue. Once the DIRECTIVE control block word is completed and
the offload engine updates the RESULT control block word, the offload engine proceeds
to enqueue the control block into the result queue. The offload engine reads the queue
slot in the result queue that is indexed by the result queue insertion index word
(RQ_IN). The result queue insertion index word is the word in the control area that
indicates the slot in the result queue in which the next control block is to be placed. If
the value read from the indexed result queue slot is not zero, then the offload engine
must wait for the operating system in the first computing environment to dequeue the
control block already queued at indexed result queue slot location. The offload engine
polls the indexed result queue slot until a value of zero (0) is read.

[0056] Once the offload engine is cleared to enqueue the control block into the result
queue, the time of day is queried and the appropriate control block word (e.g., a

TS _RQ_IN control block word) is updated with a suitably formatted timestamp value to
indicate when the control block was inserted into the result queue. Then, the address of
the control block is written into the result queue slot indexed by the result queue
insertion index word, and the result queue insertion index word is incremented. If the
resultant value of the result queue insertion index word is greater than or equal to the
value of the queue length word, then a value of zero (0) is written into the result queue
insertion index word instead of the incremented value.

[0057] The offloading method 100 also includes a step 114 of dequeuing the control
block from the result queue. Once the offload engine enqueues the control block into

17

WO 2011/084743 PCT/US2010/061321

the result queue, the operating system of the first computing environment can dequeue
the control block from the result queue. The operating system of the first computing
environment polls the result queue by reading the result queue slot indexed by the
result queue extraction index word (RQ_OUT) until the operating system of the first
computing environment reads a non-zero value. The result queue extraction index word
is the word in the control area that indicates the queue slot in the result queue from
which the next control block is to be removed. Upon seeing a non-zero value in the
queue slot indexed by the result queue extraction index word, the operating system of
the first computing environment queries the time of day and writes a suitably formatted
timestamp value into the appropriate control block word (e.g., a TS_RQ_OUT control
block word) to record when this control block was removed from the result queue.
Then, the control block memory address within or corresponding to the indexed queue
slot is read.

[0058] After the control block memory address is read from the indexed queue slot,
the operating system of the first computing environment writes a value of zero (0) into
the indexed queue slot to indicate that the queue slot in the result queue now is free.
Then, the result queue extraction index word is incremented. If the resultant value of
the result queue extraction index word is greater than or equal to the value of the queue
length word, then a value of zero (0) is written into the result queue extraction index
word instead of the incremented value.

[0059] The operating system of the first computing environment is free to do
whatever control block completion processing is needed. Such processing can include
error logging, statistic gathering, buffer deallocation, and any number of cleanup tasks
associated with control blocks for the particular corresponding offload engine.

[0060] Fig. 6 is a flow diagram of a method 120 for offloading processing tasks from
a first computing environment to a second computing environment according to an
another embodiment. For example, the method 120 involves offloading control blocks
that have operating system service requests of the operating system of the first
computing environment. Such offloading operation makes use of pool queues within
the appropriate control block control area and its corresponding offload engine. Typical

operating system service requests can include a request (by an offload engine) for

18

WO 2011/084743 PCT/US2010/061321

additional data upon which to act, a request for an expansion of offload engine
resources (e.g., to increase the size of the queues dynamically), and various network
services from the non-native operating system 24.

[0061] The offloading method 120 includes a step 122 of pre-allocating one or more
control blocks for the pool queue. The pool queue is slightly different than the other
queues as to its intended purpose. With respect to an offload engine requesting a
service of the operating system of the first computing environment, the offload engine is
incapable of requesting such an operating system service without a control block.
Therefore, the operating system of the first computing environment can pre-allocate one
or more control blocks specifically for the corresponding offload engine to request
services of the operating system of the first computing environment.

[0062] The offloading method 120 includes a step 124 of enqueuing the control block
into the pool queue. The control block is enqueued into the pool queue in a suitable
manner, e.g., in a manner similar to enqueuing a control block into the initiation queue,
as discussed hereinabove. For example, to enqueue the control block into the pool
queue, the queue slot indexed by the pool queue insertion index word (PQ_IN) is read
by the enqueuer, e.g., the offload engine. The pool queue insertion index word is the
word in the control area that indicates the slot in the pool queue in which the next
control block is to be placed. If the indexed slot is not full and therefore is able to be
queued, the current time is queried and the appropriate control block word (e.g., a

TS _PQ_IN control block word) is updated with a suitably formatted timestamp value of
when the control block was inserted into the pool queue. The address of the control
block then is written into the pool queue slot indexed by the pool queue insertion index
word. Then, the value of the pool queue insertion index word is incremented and, if the
new value of the pool queue insertion index word is greater than or equal to the value of
the queue length word, then the value is set to zero (0). At this point, the control block
has been queued into the pool queue.

[0063] When an offload engine wishes to request an operating system service from
the operating system of the first computing environment, the offload engine dequeues a
control block from the pool queue (step 126), fills in the appropriate fields (step 128) as
is necessary for enqueuing the control block, and enqueues the control block in the

19

WO 2011/084743 PCT/US2010/061321

operating system service initiation queue (step 132), e.g., in a manner to similar to the
treatment of a control block in the initiation queue by the offload engine, as discussed
hereinabove.

[0064] The offloading method 120 includes a step 134 of dequeuing the control block
from the operating system service initiation queue. The operating system of the first
computing environment polls the operating system service initiation queue at the slot
indexed by the service queue extraction index word (MIQ_OUT). The service queue
extraction index word is the word in the control area that indicates the slot in the
operating system service initiation queue from which the next control block is to be
removed. Upon seeing a valid control block address in the portion of the control area
that contains the absolute address of the base of the operating system service initiation
queue (e.g., an MI_Q control block word) at the queue slot pointed to by the service
initiation queue insertion extraction word (e.g., an MIQ_OUT control block control word),
the operating system of the first computing environment dequeues the control block.
[0065] The offloading method 120 includes a step 136 of the operating system
performing the control block operating system service request. After the operating
system dequeues the control block from the operating system service initiation queue,
the offload engine can perform the control block operating system service request, e.g.,
by reading the DIRECTIVE control block word and performing the service requested.
[0066] The offloading method 120 includes a step 138 of enqueuing the control block
into the operating system service result queue. More specifically, the operating system
enqueues the control block into the portion of the control area that contains the absolute
address of the base of the operating system service result queue (e.g., an MR_Q
control block word) at the queue slot pointed to by the service result queue insertion
index word (e.g., an MRQ_IN control block word).

[0067] The offloading method 120 includes a step 142 of dequeuing the control block
from the operating system service result queue. More specifically, the offload engine,
upon seeing an entry in the operating system service result queue, will dequeue the
control block and examine the RESULT control block word to see if any errors occurred
during the processing of the control block. The offload engine can take appropriate

20

WO 2011/084743 PCT/US2010/061321

action if there were any processing errors. A value of zero (0) in the RESULT control
block word typically implies no error in execution.

[0068] The methods illustrated in FIGs. 5-6 may be implemented in a general, multi-
purpose or single purpose processor. Such a processor will execute instructions, either
at the assembly, compiled or machine-level, to perform that process. Those instructions
can be written by one of ordinary skill in the art following the description of FIGs. 5-6
and stored or transmitted on a computer readable medium. The instructions may also
be created using source code or any other known computer-aided design tool. A
computer readable medium may be any medium capable of carrying those instructions
and includes random access memory (RAM), dynamic RAM (DRAM), flash memory,
read-only memory (ROM), compact disk ROM (CD-ROM), digital video disks (DVDs),
magnetic disks or tapes, optical disks or other disks, silicon memory (e.g., removable,
non-removable, volatile or non-volatile), and the like.

[0069] It will be apparent to those skilled in the art that many changes and
substitutions can be made to the embodiments described herein without departing from
the spirit and scope of the disclosure as defined by the appended claims and their full

scope of equivalents.

21

WO 2011/084743 PCT/US2010/061321

CLAIMS

1. A method for offloading processing tasks from a first computing environment
to at least one second computing environment, wherein the first computing environment
includes an operating system and a memory element that has at least one control area
with an initiation queue and a results queue, wherein the second computing
environment includes at least one offload engine corresponding to the control area, the
method comprising:

allocating by the operating system of the first computing environment a control
block having at least one processing task request therein, wherein the memory element
is configured in such a way that the control area is accessible by the operating system
of the first computing environment and by the corresponding offload engine,

enqueuing by the operating system of the first computing environment the control
block into an available slot in the initiation queue;

wherein the control block is enqueued into the initiation queue in such a
way that the offload engine in the second computing environment can dequeue the
control block, perform the processing task therein, and update the control block to
indicate that the processing task has been completed, and

wherein the results queue is configured in such a way that the offload
engine can enqueue the updated control block into an available slot in the result queue;
and

dequeuing by the operating system of the first computing environment the
enqueued control block from the result queue.

2. The method as recited in claim 1, wherein the method includes the offload
engine performing the processing task in the dequeued control block.

3. The method as recited in claim 2, wherein the control block includes a
DIRECTIVE control block word for execution of the processing task included in the

control block, and wherein the processing task performing step includes reading the

22

WO 2011/084743 PCT/US2010/061321

DIRECTIVE control block word and performing the processing task identified by the
DIRECTIVE control block word.

4. The method as recited in claim 2, wherein the control block includes an
Offload Engine Version Word control word that indicates whether the offload engine is
checking in, the offload engine revision level, or whether the offload engine is
terminating, and wherein the method further comprises the step of the offload engine
updating the Offload Engine Version Word control word to indicate whether the offload
engine is checking in, the offload engine revision level, or whether the offload engine is

terminating.

5. The method as recited in claim 1, wherein the control block initiation queue
enqueuing step includes

reading the slot in the initiation queue indexed by an initiation queue insertion
index word (IQ_IN);

if the value of the indexed slot in the initiation queue is non-zero, polling the
indexed slot in the initiation queue until the value of the indexed slot in the initiation
queue is zero;

if the value of the indexed slot in the initiation queue is zero, writing the address
of the control block into the indexed slot in the initiation queue; and

incrementing the initiation queue insertion index word.

6. The method as recited in claim 1, wherein the method includes updating the

dequeued control block to indicate that the processing task has been completed.

7. The method as recited in claim 6, wherein the control block includes a
RESULTS control block word, and wherein the control block updating step includes
updating the RESULTS control block word in the control block to indicate that the

processing task has been completed.

23

WO 2011/084743 PCT/US2010/061321

8. The method as recited in claim 1, wherein the method includes the offload

engine enqueuing the control block into an available slot in the result queue.

9. The method as recited in claim 8, wherein the control block result queue
enqueuing step includes

the offload engine reading the slot in the result queue indexed by a result queue
insertion index word (RQ_IN);

if the value of the indexed slot in the result queue is non-zero, polling by the
offload engine the indexed slot in the result queue until the value of the indexed slot in
the result queue is zero;

if the value of the indexed slot in the result queue is zero, writing by the offload
engine the address of the control block into the indexed slot in the result queue; and

incrementing the result queue insertion index word.

10. The method as recited in claim 1, wherein the method includes the offload

engine dequeuing the enqueued control block from the initiation queue.

11. The method as recited in claim 10, wherein the control block initiation queue
dequeuing step includes

the offload engine reading the slot in the initiation queue indexed by an initiation
queue extraction index word (IQ_OUT);

if the value of the indexed slot in the initiation queue is zero, polling by the offload
engine the indexed slot in the initiation queue until the value of the indexed slot in the
initiation queue is non-zero;

if the value of the indexed slot in the initiation queue is non-zero, reading by the
offload engine the memory address value in the indexed slot in the initiation queue;

writing a value of zero into the indexed slot in the initiation queue; and

incrementing the initiation queue extraction index word.

12. The method as recited in claim 1, wherein the control block result queue

dequeuing step includes

24

WO 2011/084743 PCT/US2010/061321

reading the slot in the result queue indexed by a result queue extraction index
word (RQ_OUT);

if the value of the indexed slot in the result queue is zero, polling the indexed slot
in the result queue until the value of the indexed slot in the result queue is non-zero;

if the value of the indexed slot in the result queue is non-zero, reading the
memory address value in the indexed slot in the result queue;

writing a value of zero into the indexed slot in the result queue; and

incrementing the result queue extraction index word.

13. The method as recited in claim 1, wherein at least one of the enqueuing step
includes timestamping when the control block is enqueued into the initiation queue, and
the dequeuing step includes timestamping when the control block is dequeued from the

result queue.

14. The method as recited in claim 1, wherein the first computing environment is

coupled to the second computing environment via an interface therebetween.

15. The method as recited in claim 1, wherein the second computing
environment includes an operating system, and wherein the first computing environment
is an emulated computing environment application running within the operating system

of the second computing environment.

16. The method as recited in claim 1, wherein the first computing environment
includes a Master Control Program (MCP) environment, and wherein the operating

system in the first computing environment is the MCP operating system.

17. An apparatus for offloading processing tasks between computing
environments, comprising:

a first computing environment having an operating system and a memory
element, wherein the memory element includes at least one control area that has an

initiation queue and a results queue,

25

WO 2011/084743 PCT/US2010/061321

wherein the first computing environment is configured to offload processing tasks
to a second computing environment coupled thereto and having at least one offload
engine therein that corresponds to the control area,
wherein the memory element in the first computing environment is configured in
such a way that the control area is accessible by the operating system of the first
computing environment and by the corresponding offload engine,
wherein the operating system of the first computing environment is configured to
allocate a control block having at least one processing task request
therein,
enqueue the control block into an available slot in the initiation queue,
wherein the control block is enqueued into the initiation queue in
such a way that the offload engine in the second computing environment can dequeue
the control block, perform the processing task therein, and update the control block to
indicate that the processing task has been completed, and
wherein the results queue is configured in such a way that the
offload engine can enqueue the updated control block into an available slot in the result
queue, and

dequeue the enqueued control block from the result queue.

18. The apparatus as recited in claim 17, further comprising the second
computing environment coupled to the first computing environment, wherein the second
computing environment includes the offload engine that corresponds to the control area,
wherein the control block includes a DIRECTIVE control block word for execution of the
processing task included in the control block, and wherein the offload engine is
configured to perform the processing task in the control block by reading the
DIRECTIVE control block word and performing the processing task identified by the
DIRECTIVE control block word.

19. The apparatus as recited in claim 17, further comprising the second

computing environment coupled to the first computing environment, wherein the second

computing environment includes the offload engine that corresponds to the control area,

26

WO 2011/084743 PCT/US2010/061321

wherein the control block includes a RESULTS control block word for indicating that the
processing task in the control block has been completed, and wherein the offload
engine is configured to update the RESULTS control block word to indicate that the
processing task has been completed.

20. The apparatus as recited in claim 17, wherein the first computing
environment is coupled to the second computing environment via an interface
therebetween.

21. The apparatus as recited in claim 17, wherein the second computing
environment includes an operating system, and wherein the first computing environment
is an emulated computing environment application running within the operating system

of the second computing environment.

27

WO 2011/084743

12‘\\

PCT/US2010/061321

1/5

24—

/—14

FIRST COMPUTING SECOND COMPUTING
ENVIRONMENT ~ ~16 ENVIRONMENT
EMULATION
(EMULATED ENVIRONMENT)
18 NATIVE PROCESSOR
EMULATED PROCESSOR
(LE., INTERPRETER) o6
(E.G., E-MODE INTERPRETER)
I 28
22
[MEMORY 32
EMULATED MEMORY
(E.G., E-MODE MEMORY) NATIVE OPERATING
SYSTEM
|| NON-NATIVE 0S

(E.G., MCP)

~—34

FIG. 1

WO 2011/084743

2/5

PCT/US2010/061321

SECOND COMPUTING
ENVIRONMENT

/—14

12 ’\ FIRST COMPUTING
ENVIRONMENT
MEMORY
22— 36
CONTROL AREA 1
42 — | INITIATION QUEUE 1
44—+ RESULTS QUEUE 1
46— POOLQUEUE 1
®
®
[]
In 38
CONTROL AREA n
48 — 1 INITIATION QUEUE n
52 — 11 RESULTS QUEUE n
54— POOL QUEUEn

NATIVE PROCESSOR ™— 26
MEMORY ~— 28
NATIVE OS
L3

OFFLOAD ENGINE 1

L 56

OFFLOAD ENGINE n

L sg

FiIG. 2

WO 2011/084743 PCT/US2010/061321
3/5
r 66
60 3 | Qout
/ 0 — 6 | Q_In
J CONTROL
0 64 BLOCK @
0 82— 0x1872

78 N 0x1872
0x8399A

CONTROL

0x7DDC BLOCK @

] 0x7DDC
76 | 5

_—.<

0

: \ CONTROL

. 62 BLOCK @

0x8399A
0
0
0
0

\ —72 —74
/ /
ENQUEUER DEQUEUER
68— OFFLOAD ENGINE

FiIG. 3

WO 2011/084743 PCT/US2010/061321

4/5

CONTROL BLOCK 84

~— 86
OFFLOAD ENGINE
INDEPENDENT AREA
OPERATING SYSTEM
SOFTWARE AREA
OFFLOAD ENGINE oy
DEPENDENT AREA |—gg

FIG. 4

—
o

ALLOCATE CONTROL BLOCK FOR

N\
INITIATION QUEUE 102
ENQUEUE CONTROL BLOCK ~— 104
INTO INITIATION QUEUE

OFFLOAD ENGINE DEQUEUES CONTROL }~__ 106
BLOCK FROM INITIATION QUEUE

!

OFFLOAD ENGINE PERFORMS
CONTROL BLOCK REQUEST 108

!

UPDATE CONTROL BLOCK ™—110

!

ENQUEUE CONTROL BLOCK ~— 112
INTO RESULT QUEUE

!

DEQUEUE CONTROL BLOCK
FROM RESULT QUEUE 114

FIG. 5

WO 2011/084743 PCT/US2010/061321

5/5

120
PRE-ALLOCATE CONTROL 122
BLOCK FOR POOL QUEUE
ENQUEUE CONTROL BLOCK L 154
INTO POOL QUEUE
OFFLOAD ENGINE DEQUEUES L 16
CONTROL BLOCK FROM POOL QUEUE

OFFLOAD ENGINE UPDATES |
CONTROL BLOCK 128
OFFLOAD ENGINE ENQUEUES CONTROLBLOCK | . o,

INTO OPERATING SYSTEM SERVICE INITIATION QUEUE

OPERATING SYSTEM DEQUEUES CONTROL BLOCK L
FROM OPERATING SYSTEM SERVICE INITIATION QUEUE 134

OPERATING SYSTEM PERFORMS 136
CONTROL BLOCK REQUEST

OPERATING SYSTEM ENQUEUES CONTROL BLOCK

INTO OPERATING SYSTEM SERVICE RESULT QUEUE 138

OFFLOAD ENGINE DEQUEUES CONTROL BLOCK
FROM OPERATING SYSTEM SERVICE RESULT QUEUE

FIG. 6

~— 142

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings

