Title: POLYNUCLEOTIDE CODING FOR AN HOMOLOGUE OF ACYL-COA SYNTHETASE AND ITS USE

The present invention relates to an acyl-CoA synthetase homolog protein from microorganisms of the genus Mortierella, a polynucleotide encoding the protein, and so on. The invention provides polynucleotides comprising an acyl-CoA synthetase...
(57) Abrégé(suite)/Abstract(continued):

homolog protein gene from, e.g., Mortierella alpina, expression vectors comprising these polynucleotides and transformants thereof a method for producing lipids or fatty acids using the transformants, food products containing the lipids or fatty acids produced by the method, etc.
ABSTRACT

The present invention relates to an acyl-CoA synthetase homolog protein from microorganisms of the genus Mortierella, a polynucleotide encoding the protein, and so on. The invention provides polynucleotides comprising an acyl-CoA synthetase homolog protein gene from, e.g., Mortierella alpina, expression vectors comprising these polynucleotides and transformants thereof, a method for producing lipids or fatty acids using the transformants, food products containing the lipids or fatty acids produced by the method, etc.
DESCRIPTION

POLYNUCLEOTIDE ENCODING ACYL-COA SYNTHETASE HOMOLOG AND USE THEREOF

This application is a division of Canadian Application Serial No. 2,787,832 filed February 1, 2011 (parent application).

It should be understood that the expression “the present invention” or the like used in this specification may encompass not only the subject matter of this divisional application, but that of the parent application also.

TECHNICAL FIELD

The present invention relates to a polynucleotide encoding an acyl-CoA synthetase homolog and use thereof.

BACKGROUND ART

Fatty acids containing two or more unsaturated bonds are collectively referred to as polyunsaturated fatty acids (PUFAs) and known to specifically include arachidonic acid (ARA), dihomo-γ-linolenic acid (DGLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), etc. Some of these polyunsaturated fatty acids cannot be synthesized in the animal body. It is therefore necessary to compensate these polyunsaturated fatty acids as essential amino acids from food.

Polyunsaturated fatty acids are widely distributed; for instance, arachidonic acid can be separated from lipids extracted from the adrenal glands and livers of animals. However, polyunsaturated fatty acids contained in animal organs are only in a small quantity and cannot be obtained sufficiently for large supplies when simply extracted or separated from animal organs. For this reason, microbial techniques have been developed for obtaining polyunsaturated fatty acids by cultivation of various microorganisms. Above all, microorganisms of the genus Mortierella are known to produce lipids containing polyunsaturated fatty acids such as arachidonic acid and the like.

Other attempts have also been made to produce polyunsaturated fatty acids in plants. Polyunsaturated fatty acids constitute storage lipids such as triacylglycerols and are known to be accumulated within microorganism mycelia or plant seeds.
Acyl-CoA synthetase (ACS) is an enzyme catalyzing the thioesterification of fatty acids and coenzyme A (CoA) and catalyzes the following reaction.

\[
\text{Fatty acid} + \text{CoASH} + \text{ATP} \rightarrow \text{Acyl-CoA} + \text{AMP} + \text{PPI}
\]

Acyl-CoA produced by ACS is involved in various life phenomena including the biosynthesis and remodeling of lipids, energy production by \(\beta\)-oxidation, acylation of proteins, expression regulation by fatty acids, etc. Furthermore, ACS is reportedly associated with extracellular uptake of fatty acids,
intracellular transport of fatty acids, etc. (Non-Patent Documents 1 and 2). In view of the foregoing, it is considered to control the activity of ACS when polyunsaturated fatty acids or the like are produced by utilizing microorganisms or plants.

In the yeast Saccharomyces cerevisiae used as a model eukaryote, six (6) acyl-CoA synthetase genes (ScFAA1, ScFAA2, ScFAA3, ScFAA4, ScFAT1 and ScFAT2) are known (Non-Patent Document 1). The proteins encoded by these genes are different in substrate specificity, timing of expression, intracellular localization and function.

Patent Document 1 discloses nine (9) genes as the acyl-CoA synthetase gene (ScACS) derived from Schizochytrium sp. Patent Document 1 also discloses an increased production of DPA (n-6) (docosapentanoic acid (n-6)) or DHA when the gene encoding the Schizochytrium sp. PUFA synthase system is co-expressed with ScACS, as compared to the case where the co-expression with ScACS is not involved.

In addition, acyl-CoA synthetase genes derived from animals and plants are also reported (Non-Patent Document 2 and Patent Document 2).

DISCLOSURE OF THE INVENTION

Under the foregoing circumstances, it has been desired to isolate a novel gene that increases the amount of the fatty acids produced in a host cell or changes the composition of fatty acids produced, when the gene is expressed in the host cell.

As a result of extensive investigations, the present inventors have succeeded in cloning a gene encoding an ACS homolog of lipid-producing fungus Mortierella alpina (hereinafter "M. alpina") (MaACS), and accomplished the present invention. That is, the present invention provides the following polynucleotides, proteins, expression vectors, transformants, and a method for producing lipids or lipid compositions and foods, etc. using the transformants, as well as foods produced by the method, etc.
That is, the present invention relates to the following aspects:

[1] A polynucleotide according to any one selected from the group consisting of (a) to (c) below:

(a) a polynucleotide comprising the nucleotide sequence set forth as SEQ ID NO: 51 or 56;

(b) a polynucleotide encoding a protein consisting of the amino acid sequence set forth as SEQ ID NO: 52 or 57;

(c) a polynucleotide encoding a protein consisting of an amino acid sequence wherein 1 to 100 amino acids are deleted, substituted, inserted and/or added in the amino acid sequence SEQ ID NO: 52 or 57, and having an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell;

(d) a polynucleotide encoding a protein having an amino acid sequence having at least 60% identity to the amino acid sequence set forth as SEQ ID NO: 52 or 57, and having an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell; and,

(e) a polynucleotide which hybridizes to a polynucleotide consisting of a nucleotide sequence complementary to the nucleotide sequence set forth as SEQ ID NO: 51 or 56 under stringent conditions, and which encodes a protein having an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell.

[2] The polynucleotide according to aspect [1], which is either one defined in (f) or (g) below:

(f) a polynucleotide encoding a protein consisting of an amino acid sequence wherein 1 to 10 amino acids are deleted, substituted, inserted and/or added in the amino acid sequence set forth as SEQ ID NO: 52 or 57, and having an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell; and,

(g) a polynucleotide encoding a protein having an amino acid sequence having at least 90% identity to the amino acid sequence set forth as SEQ ID NO: 52 or 57, and an acyl-CoA
synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell.

[3] The polynucleotide according to [1] above, comprising the nucleotide sequence set forth as SEQ ID NO: 51 or 56.

[4] The polynucleotide according to [1] above, encoding a protein consisting of the amino acid sequence set forth as SEQ ID NO: 52 or 57.

[5] The polynucleotide according to any one of [1] to [4] above, which is a DNA.

[9] A method for producing a lipid or fatty acid composition, which comprises collecting the lipid or fatty acid composition from the culture of the transformant according to [8] above.

[10] The method according to [9] above, wherein the lipid is a triacylglycerol.

[11] The method according to [9] above, wherein the fatty acid is a polyunsaturated fatty acid having at least 18 carbon atoms.

[12] A food product, pharmaceutical, cosmetic or soap comprising the lipid or fatty acid composition obtained by the production method according to [9] above.

The polynucleotide of the present invention can be used for transformation of an appropriate host cell. The transformant thus produced can be used to produce fatty acid compositions, food products, cosmetics, pharmaceuticals, soaps, etc.

More specifically, the transformant of the present invention provides an extremely high production efficiency of lipids and fatty acids. Accordingly, the present invention can be effectively used to manufacture pharmaceuticals or health foods which require a large quantity of lipids or fatty acids.

BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-1.

FIG. 2A shows the alignment between the genome sequence and CDS sequence of MaACS-1.

FIG. 2B is a continuation from FIG. 2A.

FIG. 3A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-2.

FIG. 3B is a continuation from FIG. 3A.

FIG. 4A shows the alignment between the genome sequence and CDS sequence of MaACS-2.

FIG. 4B is a continuation from FIG. 4A.

FIG. 4C is a continuation from FIG. 4B.

FIG. 5 shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-3.

FIG. 6A shows the alignment between the genome sequence and CDS sequence of MaACS-3.

FIG. 6B is a continuation from FIG. 6A.

FIG. 7A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-4.

FIG. 7B is a continuation from FIG. 7A.

FIG. 8A shows the alignment between the genome sequence and CDS sequence of MaACS-4.

FIG. 8B is a continuation from FIG. 8A.

FIG. 8C is a continuation from FIG. 8B.

FIG. 9A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-5.

FIG. 9B is a continuation from FIG. 9A.

FIG. 10A shows the alignment between the genome sequence and CDS sequence of MaACS-5.

FIG. 10B is a continuation from FIG. 10A.

FIG. 11A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-6.

FIG. 11B is a continuation from FIG. 11A.

FIG. 12A shows the alignment between the genome sequence and CDS sequence of MaACS-6.

FIG. 12B is a continuation from FIG. 12A.

FIG. 13 shows the correspondence between the cDNA sequence and putative
amino acid sequence of MaACS-7.

FIG. 14A shows the alignment between the genome sequence and CDS sequence of MaACS-7.

FIG. 14B is a continuation from FIG. 14A.

FIG. 15A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-8.

FIG. 15B is a continuation from FIG. 15A.

FIG. 16A shows the alignment between the genome sequence and CDS sequence of MaACS-8.

FIG. 16B is a continuation from FIG. 16A.

FIG. 16C is a continuation from FIG. 16B.

FIG. 17 shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-9.

FIG. 18A shows the alignment between the genome sequence and CDS sequence of MaACS-9.

FIG. 18B is a continuation from FIG. 18A.

FIG. 19A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-10.

FIG. 19B is a continuation from FIG. 19A.

FIG. 20A shows the alignment between the genome sequence and CDS sequence of MaACS-10.

FIG. 20B is a continuation from FIG. 20A.

FIG. 20C is a continuation from FIG. 20B.

FIG. 21A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-11.

FIG. 21B is a continuation from FIG. 21A

FIG. 22A shows the alignment between the genome sequence and CDS sequence of MaACS-11.

FIG. 22B is a continuation from FIG. 22A.

FIG. 23A shows the correspondence between the cDNA sequence and putative amino acid sequence of MaACS-12.

FIG. 23B is a continuation from FIG. 23A

FIG. 24A shows the alignment between the genome sequence and CDS sequence of MaACS-12.

FIG. 24B is a continuation from FIG. 24A

FIG. 25A shows the alignment between MaACS having relatively high amino acid sequence homology to S. cerevisiae-derived FAA protein (FAA: fatty
acid activation) and the FAA protein. The single underlined and double underlined sequences denote the ATP-AMP motif and the FACS/VLACS-FATP motif, respectively.

FIG. 25B is a continuation from FIG. 25A.

FIG. 25C is a continuation from FIG. 25B.

FIG. 26A shows the alignment between MaACS having relatively high amino acid sequence homology to S. cerevisiae-derived FAT protein (FAT: fatty acid transferase) and the FAT protein. The single underlined and double underlined sequences denote the ATP-AMP motif and the FACS/VLACS-FATP motif, respectively.

FIG. 26B is a continuation from FIG. 26A.

FIG. 27 shows changes with the passage of time in lipid production (FIG. 27A) and arachidonic acid production (FIG. 27B), per mycelia in MaACS-10-overexpressed M. alpina.

FIG. 28 shows changes with the passage of time in lipid production (FIG. 28A) and arachidonic acid production (FIG. 28B), per mycelia in MaACS-11-overexpressed M. alpina.

BEST MODE FOR CARRYING OUT THE INVENTION

Hereinafter, the present invention is described in detail. The embodiments described below are intended to be presented by way of example merely to describe the invention but not limited only to the following embodiments. The present invention may be implemented in various ways without departing from the gist of the invention.

This application claims priority to the Japanese Patent Application (No. 2010-19967) filed February 1, 2010.

As will be later described in detail in EXAMPLES below, the present inventors have succeeded for the first time in cloning the full-length cDNA of lipid-producing fungus M. alpina-derived ACS homolog genes (MaACS-1–12). The present inventors have also identified the nucleotide sequences of genomic DNAs of MaACS-1–12 from M. alpina and putative amino acid sequences thereof. The ORF sequences, putative amino acid sequences, CDS sequences, cDNA sequences and genome sequences of MaACS-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are SEQ ID NOs: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51 and 56 (hereinafter these sequences are
collectively referred to as "ORF sequences of MaACS-1~12"), SEQ ID NOs: 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52 and 57 (hereinafter these sequences are collectively referred to as "amino acid sequences of MaACS-1~12"), SEQ ID NOs: 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53 and 58 (hereinafter these sequences are collectively referred to as "CDS sequences of MaACS-1~12"), SEQ ID NOs: 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54 and 59 (hereinafter these sequences are collectively referred to as "cDNA sequences of MaACS-1~12") and SEQ ID NOs: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 (hereinafter these sequences are collectively referred to as "genome sequences of MaACS-1~12"), respectively. These polynucleotides and proteins may be obtained by the methods described in EXAMPLES below, known genetic engineering techniques, known methods for synthesis, and so on.

1. Polynucleotide of the Invention

First, the present invention provides the polynucleotide described in any one selected from the group consisting of (a) to (g) below:

(a) a polynucleotide comprising any one nucleotide sequence selected from the group consisting of the ORF sequences of MaACS-1~12;

(b) a polynucleotide comprising any one nucleotide sequence selected from the group consisting of the cDNA sequences of MaACS-1~12;

(c) a polynucleotide encoding a protein consisting of any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12;

(d) a polynucleotide encoding a protein consisting of an amino acid sequence wherein 1 to 100 amino acids are deleted, substituted, inserted and/or added in any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, and having an acyl-CoA synthetase activity or an activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell;

(e) a polynucleotide encoding a protein having an amino acid sequence having at least 60% identity to any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, and having an acyl-CoA synthetase activity or an activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell; and,

(f) a polynucleotide which hybridizes to a polynucleotide consisting of a nucleotide sequence complementary to any one nucleotide sequence selected from the group consisting of the ORF sequences of MaACS-1~12 under stringent
conditions, and which encodes a protein having an acyl-CoA synthetase activity or an activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell; and,

(g) a polynucleotide which hybridizes to a polynucleotide consisting of a nucleotide sequence complementary to any one nucleotide sequence selected from the group consisting of the cDNA sequences of MaACS-1--12 under stringent conditions, and which encodes a protein having an acyl-CoA synthetase activity or an activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell.

As used herein, the term "polynucleotide" means a DNA or RNA.

As used herein, the term "polynucleotide which hybridizes under stringent conditions" refers to a polynucleotide obtained by the colony hybridization method, plaque hybridization method, Southern hybridization method or the like, using as a probe, for example, a polynucleotide consisting of a nucleotide sequence complementary to any one nucleotide sequence selected from the group consisting of the ORF sequences of MaACS-1--12 or any one nucleotide sequence selected from the group consisting of the cDNA sequences of MaACS-1--12, or the whole or part of a polynucleotide consisting of the nucleotide sequence encoding any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1--12. For the methods of hybridization, there are used the methods described in, e.g., "Sambrook & Russell, Molecular Cloning: A Laboratory Manual Vol. 3, Cold Spring Harbor, Laboratory Press 2001," "Ausubel, Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997," etc.

As used herein, the term "stringent conditions" may be any of low stringent conditions, moderate stringent conditions and high stringent conditions. The term "low stringent conditions" are, for example, 5x SSC, 5x Denhardt's solution, 0.5% SDS, 50% formamide at 32°C. The term "moderate stringent conditions" are, for example, 5x SSC, 5x Denhardt's solution, 0.5% SDS, 50% formamide at 42°C, or 5x SSC, 1% SDS, 50 mM Tris-HCl (pH 7.5), 50% formamide at 42°C. The term "high stringent conditions" are, for example, 5x SSC, 5x Denhardt's solution, 0.5% SDS, 50% formamide at 50°C or 0.2 x SSC, 0.1% SDS at 65°C. Under these conditions, a DNA with higher identity is expected to be obtained efficiently at higher temperatures, though multiple factors are involved in hybridization stringency including temperature, probe concentration, probe length, ionic strength, time, salt concentration and others, and a person skilled in the art may appropriately select these factors to achieve similar stringency.

When commercially available kits are used for hybridization, for example,
an Alkphos Direct Labeling and Detection System (GE Healthcare) may be used. In this case, according to the attached protocol, after cultivation with a labeled probe overnight, the membrane is washed with a primary wash buffer containing 0.1% (w/v) SDS at 55°C to detect the hybridized DNA. Alternatively, in producing a probe based on the nucleotide sequence complementary to any one nucleotide sequence selected from the group consisting of the ORF sequences of MaACS-1~12 or any one nucleotide sequence selected from the group consisting of the cDNA sequences of MaACS-1~12, or based on the entire or part of the nucleotide sequence encoding any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, hybridization can be detected with a DIG Nucleic Acid Detection Kit (Roche Diagnostics) when the probe is labeled with digoxigenin (DIG) using a commercially available reagent (e.g., a PCR Labeling Mix (Roche Diagnostics), etc.).

In addition to those described above, other polynucleotides that can be hybridized include DNAs having 50% or higher, 51% or higher, 52% or higher, 53% or higher, 54% or higher, 55% or higher, 56% or higher, 57% or higher, 58% or higher, 59% or higher, 60% or higher, 61% or higher, 62% or higher, 63% or higher, 64% or higher, 65% or higher, 66% or higher, 67% or higher, 68% or higher, 69% or higher, 70% or higher, 71% or higher, 72% or higher, 73% or higher, 74% or higher, 75% or higher, 76% or higher, 77% or higher, 78% or higher, 79% or higher, 80% or higher, 81% or higher, 82% or higher, 83% or higher, 84% or higher, 85% or higher, 86% or higher, 87% or higher, 88% or higher, 89% or higher, 90% or higher, 91% or higher, 92% or higher, 93% or higher, 94% or higher, 95% or higher, 96% or higher, 97% or higher, 98% or higher, 99% or higher, 99.1% or higher, 99.2% or higher, 99.3% or higher, 99.4% or higher, 99.5% or higher, 99.6% or higher, 99.7% or higher, 99.8% or higher or 99.9% or higher identity with the DNA for any one nucleotide sequence selected from the group consisting of the ORF sequences of MaACS-1~12 or for any one nucleotide sequence selected from the group consisting of the cDNA sequences of MaACS-1~12, or with the DNA encoding any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, as calculated by a homology search software, such as FASTA, BLAST, etc. using default parameters.

Identity between amino acid sequences or nucleotide sequences may be determined using FASTA (Science 227 (4693): 1435-1441, (1985)), algorithm BLAST (Basic Local Alignment Search Tool) by Karlin and Altschul (Proc. Natl. Acad. Sci. USA, 87: 2264-2268, 1990; Proc. Natl. Acad. Sci. USA, 90: 5873, 1993). Programs called blastn, blastx, blastp, tblastn and tblastx based on the BLAST
algorithm have been developed (Altschul S. F. et al., J. Mol. Biol. 215: 403, 1990). When a nucleotide sequence is sequenced using blastn, the parameters are, for example, score=100 and wordlength=12. When an amino acid sequence is sequenced using blastp, the parameters are, for example, score=50 and wordlength=3. When BLAST and Gapped BLAST programs are used, default parameters for each of the programs are employed.

The polynucleotides of the present invention described above can be obtained by known genetic engineering techniques or known methods for synthesis.

2. Protein of the Invention

The present invention provides the proteins shown below.

(i) A protein encoded by the polynucleotide of any one of (a) to (g) above.

(ii) A protein comprising any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12.

(iii) A protein consisting of an amino acid sequence wherein one or more amino acids are deleted, substituted, inserted and/or added in any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, and having an acyl-CoA synthetase activity or an activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell.

(iv) A protein having an amino acid sequence having at least 90% identity to any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, and having an acyl-CoA synthetase activity or an activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell.

As used herein, the "protein consisting of an amino acid sequence wherein one or several acids are deleted, substituted, inserted and/or added in any one amino acid sequence selected from the group consisting of the amino acid sequences of
MaACS-1~12, and having an acyl-CoA synthetase activity or an activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell" includes proteins consisting of an amino acid sequence wherein, e.g., 1 to 100, 1 to 90, 1 to 80, 1 to 70, 1 to 60, 1 to 50, 1 to 40, 1 to 39, 1 to 38, 1 to 37, 1 to 36, 1 to 35, 1 to 34, 1 to 33, 1 to 32, 1 to 31, 1 to 30, 1 to 29, 1 to 28, 1 to 27, 1 to 26, 1 to 25, 1 to 24, 1 to 23, 1 to 22, 1 to 21, 1 to 20, 1 to 19, 1 to 18, 1 to 17, 1 to 16, 1 to 15, 1 to 14, 1 to 13, 1 to 12, 1 to 11, 1 to 10, 1 to 9 (1 to several), 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, or one amino acid is/are deleted, substituted, inserted and/or added in any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, and having the acyl-CoA synthetase activity or the activity of increasing the amount and/or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell. In general, the number of deletions, substitutions, insertions, and/or additions is preferably smaller.

Such proteins include a protein having an amino acid sequence having the identity of approximately 60% or higher, 61% or higher, 62% or higher, 63% or higher, 64% or higher, 65% or higher, 66% or higher, 67% or higher, 68% or higher, 69% or higher, 70% or higher, 71% or higher, 72% or higher, 73% or higher, 74% or higher, 75% or higher, 76% or higher, 77% or higher, 78% or higher, 79% or higher, 80% or higher, 81% or higher, 82% or higher, 83% or higher, 84% or higher, 85% or higher, 86% or higher, 87% or higher, 88% or higher, 89% or higher, 90% or higher, 91% or higher, 92% or higher, 93% or higher, 94% or higher, 95% or higher, 96% or higher, 97% or higher, 98% or higher, 99% or higher, 99.1% or higher, 99.2% or higher, 99.3% or higher, 99.4% or higher, 99.5% or higher, 99.6% or higher, 99.7% or higher, 99.8% or higher, or 99.9% or higher, to any one amino acid sequence selected from the group consisting of the amino acid sequences of MaACS-1~12, and having the diacylglycerol acyltransferase activity. As the identity percentage described above is higher, the protein is preferable in general.

The term deletion, substitution, insertion and/or addition of one or more amino acid residues in the amino acid sequence of the protein of the invention is intended to mean that one or more amino acid residues are deleted, substituted, inserted and/or added at optional and one or more positions in the same sequence. Two or more types of deletions, substitutions, insertions and additions may occur at the same time.

Examples of the amino acid residues which are mutually substitutable are given below. Amino acid residues in the same group are mutually substitutable.

Group A: leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic
acid, methionine, o-methylserine, t-butylglycine, t-butyllalanine and
cyclohexylalanine; Group B: aspartic acid, glutamic acid, isoaspartic acid,
isoglutamic acid, 2-aminoacidic acid and 2-aminosuberic acid; Group C: asparagine
and glutamine; Group D: lysine, arginine, ornithine, 2,4-diaminobutanoic acid and
2,3-diaminopropionic acid; Group E: proline, 3-hydroxyproline and
4-hydroxyproline; Group F: serine, threonine and homoserine; and Group G:
phenylalanine and tyrosine.

The protein of the present invention may also be produced by chemical
synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method),
the tBoc method (t-butyloxycarbonyl method), etc. In addition, peptide synthesizers
available from Advanced Automation Peptide Protein Technologies, Perkin Elmer,
Protein Technologies, PerSeptive, Applied Biosystems, SHIMADZU Corp., etc. may
also be used for the chemical synthesis.

The protein encoded by the polynucleotide of the invention and the protein
of the invention are both ACS homolog proteins and considered to have the acyl-CoA
synthetase activity since the ATP-AMP motif and FACS/VLACS-FATP motif, which
are important for the acyl-CoA synthetase activity, are conserved. As used herein,
ATP, AMP, FACS, VLACS and FATP are intended to mean adenosine triphosphate,
adenosine monophosphate, fatty acyl-CoA synthetase, very long chain acyl-CoA
synthetase and fatty acid transport protein, respectively. Specific amino acid
sequences of the ATP-AMP motif and FACS/VLACS-FATP motif contained in the
protein of the present invention are shown in FIGS. 25 and 26 at the single
underlined and double underlined sequences, respectively. With regard to
representative amino acid sequences of the ATP-AMP motif and
FACS/VLACS-FATP motif, reference may be made to databases including pfam, etc.

As used herein, the term "acyl-CoA synthetase activity (ACS activity)" is
intended to mean the activity of promoting the acyl-CoA-forming reaction through
formation of a thioester bond between a fatty acid and coenzyme A (chemical
reaction equation below).

Fatty acid + Coenzyme A → Acyl-CoA + H₂O

The acyl-CoA synthetase activity can be quantitatively confirmed, for
example, by cultivating for a certain period of time host cells, into which the
polypeptide of the present invention is introduced, preparing the lysate of the host
cells, mixing the cell lysate with a labeled fatty acid (e.g., polyunsaturated fatty acid

13
labeled with a radioactive isotope, etc.) and coenzyme A, reacting them for a certain period of time, then extracting free fatty acids with n-heptane, and quantifying the fatty acyl-CoA which is formed during the above reaction and remained in the aqueous fraction, using a scintillation counter. For details of the method for confirming the acyl-CoA synthetase activity, reference may be made to Black P. N., et al. (J. B. C., 272 (8), 4896-4903, 1997). Alternatively, the acyl-CoA synthetase activity may also be assayed by the method described in "Evaluation of ACS Activity" of EXAMPLE 2, which involves no radioactive label.

The "activity of increasing the amount of the fatty acids produced in a host cell when expressed in the host cell" is intended to mean the activity that, when the polynucleotide of the present invention or the polynucleotide encoding the protein of the present invention is introduced (transformed) into a host cell and expressed in the host cell, increases the total fatty acid production, as compared to a reference cell (control) derived from the same strain as the host cell in which the polynucleotide described above is not introduced.

The "activity of changing the composition of the fatty acids produced in a host cell when expressed in the host cell" is intended to mean the activity that, when the polynucleotide of the present invention or the polynucleotide encoding the protein of the present invention is introduced (transformed) into a host cell and expressed in the host cell, changes the amount or ratio of various fatty acids produced, as compared to a reference cell (control) derived from the same strain as the host cell in which the polynucleotide described above is not introduced.

As used herein, the term "fatty acid" is intended to mean an aliphatic monocarboxylic acid (a carboxylic acid having one carboxylic residue and carbon atoms connected to each other in a chain) represented by general formula RCOOH (wherein R is an alkyl). The fatty acid includes a saturated fatty acid having no double bond and an unsaturated fatty acid containing a double bond(s) in the hydrocarbon chain. The fatty acid is preferably an unsaturated fatty acid, and more preferably, a polyunsaturated fatty acid containing a plurality of double bonds in the hydrocarbon chain. The polyunsaturated fatty acid includes preferably an unsaturated fatty acid having carbon atoms of 18 or more, e.g., an unsaturated fatty acid having carbon atoms of 18 or 20, and examples include, but not limited to, oleic acid, linoleic acid, linolenic acid (γ-linolenic acid, dihomo-γ-linolenic acid, etc.), arachidonic acid, and the like. The polyunsaturated fatty acids are particularly preferably linoleic acid, γ-linolenic acid, dihomo-γ-linolenic acid and arachidonic acid, more preferably, linoleic acid, dihomo-γ-linolenic acid and arachidonic acid,
and most preferably, dihomo-γ-linolenic acid and arachidonic acid.

In the present invention, the "host cell" is not particularly limited so long as the cell is capable of expressing the polynucleotide of the invention when the polynucleotide is introduced. The cells include cells derived from mammals (excluding human), insects, plants, fungi, bacteria, etc., preferably cells from plants and fungi, more preferably, cells from fungi, and most preferably, lipid-producing fungi or yeast.

The lipid-producing fungi which can be used are the lipid-producing fungi described in, e.g., MYCOTAXON, Vol. XLIV, No. 2, pp. 257-265 (1992). Specific examples include, but not limited to, microorganisms belonging to the genus Mortierella including microorganisms belonging to the subgenus Mortierella, e.g., Mortierella elongata IFO8570, Mortierella exigua IFO8571, Mortierella hygrophila IFO5941, Mortierella alpina IFO8568, ATCC16266, ATCC32221, ATCC42430, CBS 219.35, CBS224.37, CBS250.53, CBS343.66, CBS527.72, CBS528.72, CBS529.72, CBS608.70 and CBS754.68, etc., or microorganisms belonging to the subgenus Micromucor, e.g., Mortierella isabellina CBS194.28, IFO6336, IFO7824, IFO7873, IFO7874, IFO8286, IFO8308 and IFO7884, Mortierella nana IFO8190, Mortierella ramanniana IFO5426, IFO8186, CBS112.08, CBS212.72, IFO7825, IFO8184, IFO8185 and IFO8287, Mortierella vinacea CBS236.82, etc. Among others, Mortierella alpina is preferable.

Specific examples of the yeast include the genus Saccharomyces, the genus Candida, the genus Zygosaccharomyces, the genus Pichia and the genus Hansenula, and preferably, Saccharomyces cerevisiae in the genus Saccharomyces. In wild strains of yeast such as Saccharomyces cerevisiae, etc., saturated fatty acids or monovalent fatty acids having mainly 18 or less carbon atoms can be synthesized within the cells, but polyunsaturated fatty acids cannot be synthesized therein. For this reason, when yeast such as Saccharomyces cerevisiae, etc. is used as a host cell, it is preferred to impart the ability to synthesize polyunsaturated fatty acids to the yeast cells by genetic engineering, etc. The ability to synthesize polyunsaturated fatty acids can be imparted by introducing a gene encoding a protein derived from an organism that already possesses the ability to synthesize polyunsaturated fatty acids and takes part in fatty acid synthesis.

The "organism that already possesses the ability to synthesize polyunsaturated fatty acids" includes, for example, lipid-producing fungi. Specific examples of the lipid-producing fungi are the same as those given hereinabove.

Examples of the gene encoding a protein derived from an organism that already possesses the ability to synthesize polyunsaturated fatty acids and "gene
encoding the protein that takes part in fatty acid synthesis" include, but not limited to,
\(\Delta 12 \) fatty acid desaturase gene, \(\Delta 6 \) fatty acid desaturase gene, GLELO fatty acid
elongase gene and \(\Delta 5 \) fatty acid desaturase gene, etc. The nucleotide sequences of
\(\Delta 12 \) fatty acid desaturase gene, \(\Delta 6 \) fatty acid desaturase gene, GLELO fatty acid
elongase gene and \(\Delta 5 \) fatty acid desaturase gene are available by having access to
databases including GenBank, etc. For example, in GenBank, Accession No.
AB020033, No. AB020032, No. AB193123 and No. AB188307 are entered to access
the respective sequences.

The genes for fatty acid synthesis-related proteins described above are
inserted into appropriate vectors (e.g., pESC (Stratagene), pYES (Invitrogen), etc.),
which are then introduced into yeast by the electroporation method, the spheroplast
method (Proc. Natl. Acad. Sci. USA, 75 p1929 (1978)), the lithium acetate method (J.
Harbor Laboratory Course Manual, etc.

Fatty acids can be extracted from the host cells transformed by the
polynucleotides of the present invention or the polynucleotide encoding the protein of
the present invention in the following manner. A host cell is cultured and then treated
in a conventional manner, e.g., by centrifugation, filtration, etc. to obtain cultured
cells. The cells are thoroughly washed with water and preferably dried. Drying may
be accomplished by lyophilization, air-drying, etc. Depending upon necessity, the
dried cells are disrupted using a Dynomil or by ultrasonication, and then extracted
with an organic solvent preferably in a nitrogen flow. Examples of the organic
 solvent include ether, hexane, methanol, ethanol, chloroform, dichloromethane,
petroleum ether and so on. Alternatively, good results can also be obtained by
alternating extraction with methanol and petroleum ether or by extraction with a
single-phase solvent system of chloroform-methanol-water. Removal of the organic
solvent from the extract by distillation under reduced pressure may give fatty
acid-containing lipids. The fatty acids extracted may be converted into the methyl
esters by the hydrochloric acid methanol method, etc.

The quantity or ratio of various fatty acids may be determined by analyzing
the fatty acids extracted as described above using various chromatography
techniques. Examples of the chromatography techniques include, but not limited to,
high performance liquid chromatography and gas chromatography, and particularly
preferably, gas chromatography.

3. Vector of the Invention and Vector-Introduced Transformants
In another embodiment, the present invention further provides the expression vector comprising the polynucleotide of the invention.

The vector of the invention is generally constructed to contain an expression cassette comprising:

(i) a promoter that can be transcribed in a host cell;
(ii) any of the polynucleotides defined in (a) to (g) above that is linked to the promoter; and,
(iii) an expression cassette comprising as a component a signal that functions in the host cell with respect to the transcription termination and polyadenylation of RNA molecule.

The vector thus constructed is introduced into a host cell. Examples of host cells which may be appropriately used in the present invention are the same as described above.

In these host cells transformed by the vector of the present invention, the ACS activity is more increased, fatty acids are more produced or the quantity or ratio of various fatty acids contained in the cells are changed, when compared to the host cells which are not transformed by the vector of the present invention.

Any vector is available as the vector used to introduce into the yeast and not particularly limited so long as it is a vector capable of expressing the insert in the yeast cells. The vector includes, e.g., pYE22m (Biosci. Biotech. Biochem., 59, 1221-1228, 1995).

Promoters/terminators for regulating gene expression in host cells may be used in an optional combination as far as they function in the host cells. For example, a promoter of the histone H4.1 gene, a promoter of the glyceraldehyde-3-phosphate dehydrogenase, etc. may be used.

As selection markers used for the transformation, there may be utilized auxotrophic markers (ura5, niaD), hygromycin-resistant gene, zeocin-resistant gene, genecitin-resistant gene (G418r), copper-resistant gene (CUP1) (Marin et al., Proc. Natl. Acad. Sci. USA, 81, 337 1984), cerulenin-resistant gene (fas2m, PDR4) (Junji Inokoshi, et al., Biochemistry, 64, 660, 1992; and Hussain et al., Gene, 101: 149, 1991, respectively), and the like.

For the transformation of host cells, generally known methods may be used. In lipid-producing fungi, the transformation may be performed, e.g., by the electroporation method (Mackenzie, D. A. et al., Appl. Environ. Microbiol., 66,
4655-4661, 2000) and the particle delivery method (the method described in JPA 2005-287403 "Method of Breeding Lipid-Producing Fungus"). On the other hand, the electroporation method, the spheroplast method (Proc. Natl. Acad. Sci. USA, 75 p1929 (1978)) and the lithium acetate method (J. Bacteriology, 153 p163 (1983)) as well as the methods described in Proc. Natl. Acad. Sci. USA, 75 p1929 (1978), Methods in yeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manual, etc) may be used for the transformation of yeast. However, the method for transformation is not limited to those described above.

4. Method for Producing the Lipid or Fatty Acid Composition of the Invention

In another embodiment, the present invention further provides a method for preparing a lipid or fatty acid composition which comprises using the transformant described above.

As used herein, the term "lipid" is intended to mean a simple lipid including a compound (e.g., a glyceride) which is composed of a fatty acid and an alcohol attached via an ester linkage, or its analog (e.g., a cholesterol ester), etc.; a complex lipid in which phosphoric acid, amino acid(s), saccharide(s) or the like are bound to a part of the simple lipid; or a derived lipid which is a hydrolysate of the lipid and is insoluble in water.

As used herein, the term "oil and fat" is intended to mean an ester of glycerol and a fatty acid (glyceride).

The term "fatty acid" is the same as defined above.

The method for extracting the lipid or fatty acid composition of the present invention is the same as the method for extracting fatty acids described above.

Fatty acids can be separated from the above fatty acid-containing lipids in a state of mixed fatty acids or mixed fatty acid esters by concentration and separation in a conventional manner (e.g., urea addition, separation under cooling, column chromatography, etc.).

The lipids produced by the method of the present invention include preferably unsaturated fatty acids, and more preferably, polyunsaturated fatty acids.

Preferred examples of the polyunsaturated fatty acids are unsaturated fatty acids having 18 or more carbon atoms, e.g., unsaturated fatty acids having 18 to 20 carbon atoms, and include, but not limited to, oleic acid, linoleic acid, linolenic acid
(γ-linolenic acid and dihomo-γ-linolenic acid, etc.), arachidonic acid, etc. Particularly preferred polyunsaturated fatty acids are linoleic acid, γ-linoleic acid, dihomo-γ-linoleic acid and arachidonic acid, more preferably, linoleic acid, dihomo-γ-linoleic acid and arachidonic acid, and most preferably, dihomo-γ-linolenic acid and arachidonic acid.

The lipids produced by the method of the present invention and the composition of the fatty acids contained in the lipids may be confirmed by the lipid extraction method or fatty acid separation method described above, or a combination thereof.

The lipid or fatty acid composition obtained by the production method of the present invention can be provided for use in producing, e.g., food products, pharmaceuticals, industrial materials (raw materials for cosmetics, soaps, etc.), which contain oils and fats, in a conventional manner.

In a still other embodiment, the present invention provides a method for preparing food products, cosmetics, pharmaceuticals, soaps, etc. using the transformant of the present invention. The method involves the step of forming lipids or fatty acids using the transformant of the present invention.

Food products, cosmetics, pharmaceuticals, soaps, etc. containing the lipids or fatty acids produced are prepared in a conventional manner. As such, the food products, cosmetics, pharmaceuticals, soaps, etc. produced by the method of the present invention contain the lipids or fatty acids produced using the transformant of the present invention. The present invention further provides the food products, cosmetics, pharmaceuticals, soaps, etc. produced by such a method.

The form of the cosmetic (composition) or pharmaceutical (composition) of the present invention is not particularly limited and may be any form including the state of a solution, paste, gel, solid or powder. The cosmetic composition or pharmaceutical composition of the present invention may also be used as cosmetics or topical agents for the skin, including an oil, lotion, cream, emulsion, gel, shampoo, hair rinse, hair conditioner, enamel, foundation, lipstick, face powder, facial pack, ointment, perfume, powder, eau de cologne, tooth paste, soap, aerosol, cleansing foam, etc., an anti-aging skin care agent, anti-inflammatory agent for the skin, bath agent, medicated tonic, skin beauty essence, sun protectant, or protective and improving agent for skin troubles caused by injury, chapped or cracked skin, etc.

The cosmetic composition of the present invention may further be formulated appropriately with other oils and fats and/or dyes, fragrances, preservatives, surfactants, pigments, antioxidants, etc., if necessary. The formulation ratio of these materials may be appropriately determined by those skilled in the art,
depending upon purpose (for example, oils and fats may be contained in the
composition in 1 to 99.99 wt %, preferably, 5 to 99.99 wt %, and more preferably, 10
to 99.95 wt%). If necessary, the pharmaceutical composition of the present invention
may also contain other pharmaceutically active components (e.g., anti-inflammatory
components) or aid components (e.g., lubricants or vehicle components). Examples
of the other components commonly used in a cosmetic or a skin preparation for
external use include an agent for acne, an agent for preventing dandruff or itching, an
antiperspirant and deodorant agent, an agent for burn injury, an anti-mite and lice
agent, an agent for softening keratin, an agent for xeroderma, an antiviral agent, a
percutaneous absorption promoting agent, and the like.

The food product of the present invention includes a dietary supplement,
health food, functional food, food product for young children, baby food, infant
modified milk, premature infant modified milk, geriatric food, etc. As used herein,
the food or food product is intended to mean a solid, fluid and liquid food as well as
a mixture thereof, and collectively means an edible stuff.

The term dietary supplement refers to food products enriched with specific
nutritional ingredients. The term health food refers to food products which are
healthful or beneficial to health, and encompasses dietary supplements, natural foods,
diet foods, etc. The term functional food refers to a food product for replenishing
nutritional ingredients which assist body control functions and is synonymous with a
food for specified health use. The term food for young children refers to a food
product given to children up to about 6 years old. The term geriatric food refers to a
food product treated to facilitate digestion and absorption when compared to
untreated foods. The term infant modified milk refers to modified milk given to
children up to about one year old. The term premature infant modified milk refers to
modified milk given to premature infants until about 6 months after birth.

The form of these food products includes natural foods (treated with fats and
oils) such as meat, fish and nuts; foods supplemented with fats and oils during
cooking, e.g., Chinese foods, Chinese noodles, soups, etc.; foods prepared using fats
and oils as heating media, e.g., tempura or deep-fried fish and vegetables, deep-fried
foods, fried bean curd, Chinese fried rice, doughnuts, Japanese fried dough cookies
or karinto; fat- and oil-based foods or processed foods supplemented with fats and
oils during processing, e.g., butter, margarine, mayonnaise, dressing, chocolate,
instant noodles, caramel, biscuits, cookies, cakes, ice cream; and foods sprayed or
coated with fats and oils upon finishing, e.g., rice crackers, hard biscuits, sweet bean
paste bread, etc. However, the food product is not limited to foods containing fats
and oils, and other examples include agricultural foods such as bakery products,
noodles, cooked rice, sweets (e.g., candies, chewing gums, gummies, sweet tablets, Japanese sweets), bean curd or tofu and processed products thereof; fermented foods such as Japanese rice wine or sake, medicinal liquor, sweet cooking sherry or mirin, vinegar, soy sauce and bean paste or miso, etc.; livestock food products such as yoghurt, ham, bacon, sausage, etc.; seafood products such as minced and steamed fish cake or kamaboko, deep-fried fish cake or ageten and puffy fish cake or hanpen, etc.; as well as fruit drinks, soft drinks, sports drinks, alcoholic beverages, tea, etc.

The food product of the present invention may also be in the form of pharmaceutical preparations such as capsules, etc., or in the form of a processed food such as natural liquid diets, defined formula diets and elemental diets formulated with the oil and fat of the present invention together with proteins, sugars, trace elements, vitamins, emulsifiers, aroma chemicals, etc., health drinks, enteral nutrients, and the like.

As described above, fatty acids can be efficiently produced by expressing the ACS homolog gene of the present invention in host cells.

Furthermore, the expression level of the gene can be used as an indicator to study conditions for cultivation, cultivation control, etc. for efficient fatty acid production.

EXAMPLES

Hereinafter, the present invention is described in more detail with reference to EXAMPLES but it should be understood that the invention is not deemed to limit the scope of the invention to these EXAMPLES.

[EXAMPLE 1]

Genome Analysis of M. alpina

The M. alpina 1S-4 strain was plated on 100 ml of GY2:1 medium (2% glucose and 1% yeast extract, pH 6.0) followed by shake culture at 28°C for 2 days. The mycelial cells were collected by filtration, and genomic DNA was prepared using DNeasy (QIAGEN). The nucleotide sequence of the genomic DNA described above was determined using a Roche 454 GS FLX Standard. On this occasion, nucleotide sequencing of a fragment library was performed in two runs and nucleotide sequencing of a mate paired library in three runs. The resulting nucleotide sequences were assembled to give 300 supercontigs.

Synthesis of cDNA and Construction of cDNA Library

The M. alpina strain 1S-4 was plated on 100 ml of medium (1.8% glucose,
1% yeast extract, pH 6.0) and precultured for 3 days at 28°C. A 10 L culture vessel (Able Co., Tokyo) was charged with 5 L of medium (1.8% glucose, 1% soybean powder, 0.1% olive oil, 0.01% Adekanol, 0.3% KH₂PO₄, 0.1% Na₂SO₄, 0.05% CaCl₂·2H₂O and 0.05% MgCl₂·6H₂O, pH 6.0), and the whole amount of the pre-cultured product was plated thereon, followed by aerobic spinner culture under conditions of 300 rpm, 1vvm and 26°C for 8 days. On Days 1, 2 and 3 of the cultivation, glucose was added in an amount corresponding to 2%, 2% and 1.5%, respectively. The mycelial cells were collected at each stage on Days 1, 2, 3, 6 and 8 of the cultivation to prepare total RNA by the guanidine hydrochloride/CsCl method.

Using an Oligotex-dT30[®]mRNA Purification Kit (Takara Bio Inc.), poly(A)+RNA was purified from the total RNA. A cDNA library was constructed for each stage using a ZAP-cDNA Gigapack III Gold Cloning Kit (STRATAGENE).

Search for ACS Homolog

Using as a query the amino acid sequences of ScFAA1 (YOR317W), ScFAA2 (YER015W), ScFAA3 (YIL009W), ScFAA4 (YMR246W), ScFAT1 (YBR041W) and ScFAT2 (YBR222C), which are ACS from yeast, a tblastn search was performed against the genome nucleotide sequence of the M. alpina strain 1S-4.

As a result, hits were found in twelve (12) sequences. That is, hit was found on supercontigs containing the sequence shown by SEQ ID NO: 5, SEQ ID NO: 10, SEQ ID NO: 15, SEQ ID NO: 20, SEQ ID NO: 25, SEQ ID NO: 30, SEQ ID NO: 35, SEQ ID NO: 40, SEQ ID NO: 45, SEQ ID NO: 50, SEQ ID NO: 55 or SEQ ID NO: 60. The genes bearing SEQ ID NO: 5, SEQ ID NO: 10, SEQ ID NO: 15, SEQ ID NO: 20, SEQ ID NO: 25, SEQ ID NO: 30, SEQ ID NO: 35, SEQ ID NO: 40, SEQ ID NO: 45, SEQ ID NO: 50, SEQ ID NO: 55 and SEQ ID NO: 60 were designated respectively as MaACS-1, MaACS-2, MaACS-3, MaACS-4, MaACS-5, MaACS-6, MaACS-7, MaACS-8, MaACS-9, MaACS-10, MaACS-11 and MaACS-12.

Cloning of ACS Homolog

For cloning of the cDNAs corresponding to the MaACS-1~12 genes, screening of the cDNA library described above was performed. Probe labeling was performed by PCR using an ExTaq™ (Takara Bio Inc.). That is, digoxigenin (DIG)-labeled amplified DNA probes were prepared using a PCR Labeling Mix (Roche Diagnostics) instead of dNTP mix attached to ExTaq.

Conditions for hybridization were set as follows.

- **Buffer**: 5x SSC, 1% SDS, 50 mM Tris-HCl (pH 7.5), 50% formaldehyde;
Temperature: 42°C (overnight);
Wash conditions: 0.2x SSC, in 0.1% SDS solution (65°C) for 20 mins. x 3

Detection was performed using a DIG Nucleic Acid Detection Kit (Roche Diagnostics). Phage clones were obtained by screening and plasmids were excised from the phage clones by in vivo excision to give the respective plasmid DNAs.

Primers for preparing the probes used for screening of the respective genes, the number of nucleotides in CDS of the respective genes, the number of amino acids in the amino acid sequences deduced from the nucleotide sequences of CDS, and the number of exons and introns by comparison of genomic DNA sequences with CDS sequences are given below.

(1) MaACS-1
Primer ACS-1-1F: 5'-GTCGGCTCCAAGCTTGAATCC-3' (SEQ ID NO: 61)
Primer ACS-1-2R: 5'-GGACAGCTGCCAGCAGCTGGA-3' (SEQ ID NO: 62)
cDNA (SEQ ID NO: 4)
CDS (SEQ ID NO: 3): 1857 bp
ORF (SEQ ID NO: 1): 1854 bp
Amino acid sequence (SEQ ID NO: 2): 618 amino acids (see FIG. 1)
Number of exons: 5, number of introns: 4 (see FIG. 2)

(2) MaACS-2
Primer ACS-2-1F: 5'-GACCACGGAATTCCCCAAAGGCTGC-3' (SEQ ID NO: 63)
Primer ACS-2-2R: 5'-CTTGGTGCGCCCTTGGTCCTGGCCAC-3' (SEQ ID NO: 64)
cDNA (SEQ ID NO: 9)
CDS (SEQ ID NO: 8): 1929 bp
ORF (SEQ ID NO: 6): 1926 bp
Amino acid sequence (SEQ ID NO: 7): 642 amino acids (see FIG. 3)
Number of exons: 8, number of introns: 7 (see FIG. 4)

(3) MaACS-3
Primer ACS-3-1F: 5'-TACAGCTTTTGGCTGTCCCCATC-3' (SEQ ID NO: 65)
Primer ACS-3-2R: 5'-GATGATGGGTGTGCTTGCAAGATC-3' (SEQ ID NO: 66)
 cDNA (SEQ ID NO: 14)
 CDS (SEQ ID NO: 13): 1653 bp
 ORF (SEQ ID NO: 11): 1650 bp
 Amino acid sequence (SEQ ID NO: 12): 550 amino acids (see FIG. 5)
 Number of exons: 9, number of introns: 8 (see FIG. 6)

(4) MaACS-4
 Primer ACS-4-1F: 5'-AACCCAAAGCTGCAGCCAGGCTTGCC-3' (SEQ ID NO: 67)
 Primer ACS-4-2R: 5'-TTACGGCTGATTCTTTTGATGG-3' (SEQ ID NO: 68)
 cDNA (SEQ ID NO: 19)
 CDS (SEQ ID NO: 18): 2067 bp
 ORF (SEQ ID NO: 16): 2064 bp
 Amino acid sequence (SEQ ID NO: 17): 688 amino acids (see FIG. 7)
 Number of exons: 7, number of introns: 6 (see FIG. 8)

(5) MaACS-5
 Primer ACS-5-1F: 5'-GTCGTGCGCCGATGAGACGC-3' (SEQ ID NO: 69)
 Primer ACS-5-2R: 5'-TCAGTGGATCCGTTACCTACAG-3' (SEQ ID NO: 70)
 cDNA (SEQ ID NO: 24)
 CDS (SEQ ID NO: 23): 1980 bp
 ORF (SEQ ID NO: 21): 1977 bp
 Amino acid sequence (SEQ ID NO: 22): 659 amino acids (see FIG. 9)
 Number of exons: 6, number of introns: 5 (see FIG. 10)

(6) MaACS-6
 Primer ACS-6-1F: 5'-CGTCCCCCTCTATGATACATTG-3' (SEQ ID NO: 71)
 Primer ACS-6-2R: 5'-GGGGATGCCAGGACGCAACATCG-3' (SEQ ID NO: 72)
 cDNA (SEQ ID NO: 29)
 CDS (SEQ ID NO: 28): 1980 bp
ORF (SEQ ID NO: 26): 1977 bp
Amino acid sequence (SEQ ID NO: 27): 659 amino acids (see FIG. 11)
Number of introns: at least 5 (see FIG. 12)

(7) MaACS-7
Primer ACS-7-1F: 5'-GGATGCGAACAACAGCGTG-3' (SEQ ID NO: 73)
Primer ACS-7-2R: 5'-GCACCCTCCTCAGAAACAGCCCTC-3' (SEQ ID NO: 74)
cDNA (SEQ ID NO: 34)
CDS (SEQ ID NO: 33): 1827 bp
ORF (SEQ ID NO: 31): 1824 bp
Amino acid sequence (SEQ ID NO: 32): 608 amino acids (see FIG. 13)
Number of exons: 5, number of introns: 4 (see FIG. 14)

(8) MaACS-8
Primer ACS-8-1F: 5'-CAGTCGAGTACATTGTCAACCACG-3' (SEQ ID NO: 75)
Primer ACS-8-2R: 5'-GCGGGAGAGGCGGAGGCACAGC-3' (SEQ ID NO: 76)
cDNA (SEQ ID NO: 39)
CDS (SEQ ID NO: 38): 2079 bp
ORF (SEQ ID NO: 36): 2076 bp
Amino acid sequence (SEQ ID NO: 37): 692 amino acids (see FIG. 15)
Number of exons: 8, number of introns: 7 (see FIG. 16)

(9) MaACS-9
Primer ACS-9-1F: 5'-GTTCATCTTCTGCTGGCTGGTCTC-3' (SEQ ID NO: 77)
Primer ACS-9-2R: 5'-GTTGCGTGTGCACCGGGAATCC-3' (SEQ ID NO: 78)
cDNA (SEQ ID NO: 44)
CDS (SEQ ID NO: 43): 1851 bp
ORF (SEQ ID NO: 41): 1848 bp
Amino acid sequence (SEQ ID NO: 42): 616 amino acids (see FIG. 17)
Number of exons: 5, number of introns: 4 (see FIG. 18)
(10) MaACS-10
Primer ACS-10-1F: 5'-ATGGAAACCTTGGTTAACGGGAAAG-3' (SEQ ID NO: 79)
Primer ACS-10-2R: 5'-TCAGCAAAAGATGGCCCTTGGGCTTG-3' (SEQ ID NO: 80)
cDNA (SEQ ID NO: 49)
CDS (SEQ ID NO: 48): 2076 bp
ORF (SEQ ID NO: 46): 2073 bp
Amino acid sequence (SEQ ID NO: 47): 691 amino acids (see FIG. 19)
Number of exons: 8, number of introns: 7 (see FIG. 20)

(11) MaACS-11
Primer ACS-11-1F: 5'-GTCAAGGGCGAGACTCGCATCC-3' (SEQ ID NO: 81)
Primer ACS-11-2R: 5'-CGGTGACGATGGTCATGGACTGC-3' (SEQ ID NO: 82)
cDNA (SEQ ID NO: 54)
CDS (SEQ ID NO: 53): 2043 bp
ORF (SEQ ID NO: 51): 2040 bp
Amino acid sequence (SEQ ID NO: 52): 680 amino acids (see FIG. 21)
Number of exons: 3, number of introns: 2 (see FIG. 22)

(12) MaACS-12
Primer ACS-12-1F: 5'-GCAGGACCCGCATCCGCGCCGCTCC-3' (SEQ ID NO: 83)
Primer ACS-12-2R: 5'-GACCGTCCTCGCCAGGGTGTCG-3' (SEQ ID NO: 84)
cDNA (SEQ ID NO: 59)
CDS (SEQ ID NO: 58): 2043 bp
ORF (SEQ ID NO: 56): 2040 bp
Amino acid sequence (SEQ ID NO: 57): 680 amino acids (see FIG. 23)
Number of exons: 3, number of introns: 2 (see FIG. 24)

Sequencing Analysis
The identity between the CDS nucleotide sequences of 12 ACS homologs from M. alpina is shown in TABLE 1 and the identity between the amino acid sequences is shown in TABLE 2. MaACS-11 and MaACS-12 showed high identity
of 80.2% in the nucleotide sequence and 84.3% in the amino acid sequence.

TABLE 1 Sequence identity among CDS nucleotide sequences of ACS homologs from M. alpina

<table>
<thead>
<tr>
<th>MaACS-1</th>
<th>MaACS-2</th>
<th>MaACS-3</th>
<th>MaACS-4</th>
<th>MaACS-5</th>
<th>MaACS-6</th>
<th>MaACS-7</th>
<th>MaACS-8</th>
<th>MaACS-9</th>
<th>MaACS-10</th>
<th>MaACS-11</th>
<th>MaACS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>51.3</td>
<td>42.9</td>
<td>45.4</td>
<td>44.7</td>
<td>48.6</td>
<td>48.6</td>
<td>45.6</td>
<td>65.5</td>
<td>44.7</td>
<td>49.2</td>
<td>45.8</td>
</tr>
<tr>
<td>MaACS-2</td>
<td>-</td>
<td>42.4</td>
<td>45.0</td>
<td>48.9</td>
<td>45.7</td>
<td>45.6</td>
<td>44.6</td>
<td>52.5</td>
<td>44.9</td>
<td>44.9</td>
<td>46.0</td>
</tr>
<tr>
<td>MaACS-3</td>
<td>-</td>
<td>38.0</td>
<td>38.2</td>
<td>38.9</td>
<td>43.7</td>
<td>37.5</td>
<td>42.6</td>
<td>41.5</td>
<td>39.0</td>
<td>39.1</td>
<td></td>
</tr>
<tr>
<td>MaACS-4</td>
<td>-</td>
<td>50.4</td>
<td>51.6</td>
<td>43.8</td>
<td>57.7</td>
<td>44.2</td>
<td>47.0</td>
<td>49.7</td>
<td>49.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-5</td>
<td>-</td>
<td>70.8</td>
<td>44.7</td>
<td>53.0</td>
<td>44.9</td>
<td>46.6</td>
<td>48.9</td>
<td>47.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-6</td>
<td>-</td>
<td>46.2</td>
<td>53.0</td>
<td>45.2</td>
<td>47.9</td>
<td>49.2</td>
<td>49.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-7</td>
<td>-</td>
<td>44.2</td>
<td>45.9</td>
<td>42.3</td>
<td>45.0</td>
<td>44.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-8</td>
<td>-</td>
<td>44.3</td>
<td>46.1</td>
<td>50.7</td>
<td>50.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-9</td>
<td>-</td>
<td>42.7</td>
<td>48.2</td>
<td>47.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-10</td>
<td>-</td>
<td>51.8</td>
<td>52.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-11</td>
<td>-</td>
<td>80.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-12</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2 Sequence identity among amino acid sequences of ACS homologs from M. alpina

<table>
<thead>
<tr>
<th>MaACS-1</th>
<th>MaACS-2</th>
<th>MaACS-3</th>
<th>MaACS-4</th>
<th>MaACS-5</th>
<th>MaACS-6</th>
<th>MaACS-7</th>
<th>MaACS-8</th>
<th>MaACS-9</th>
<th>MaACS-10</th>
<th>MaACS-11</th>
<th>MaACS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38.6</td>
<td>17.3</td>
<td>12.9</td>
<td>15.1</td>
<td>15.8</td>
<td>18.0</td>
<td>14.8</td>
<td>17.9</td>
<td>13.5</td>
<td>14.8</td>
<td>15.0</td>
</tr>
<tr>
<td>MaACS-2</td>
<td>-</td>
<td>11.0</td>
<td>14.0</td>
<td>15.4</td>
<td>15.0</td>
<td>17.2</td>
<td>13.2</td>
<td>37.0</td>
<td>12.3</td>
<td>12.7</td>
<td>13.8</td>
</tr>
<tr>
<td>MaACS-3</td>
<td>-</td>
<td>21.7</td>
<td>21.5</td>
<td>20.8</td>
<td>13.3</td>
<td>23.1</td>
<td>15.5</td>
<td>17.7</td>
<td>18.0</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>MaACS-4</td>
<td>-</td>
<td>37.5</td>
<td>37.5</td>
<td>17.0</td>
<td>50.9</td>
<td>15.4</td>
<td>22.8</td>
<td>29.1</td>
<td>26.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-5</td>
<td>-</td>
<td>73.9</td>
<td>17.0</td>
<td>41.2</td>
<td>16.4</td>
<td>25.2</td>
<td>29.1</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-6</td>
<td>-</td>
<td>16.5</td>
<td>29.6</td>
<td>16.5</td>
<td>16.5</td>
<td>15.3</td>
<td>20.9</td>
<td>29.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-7</td>
<td>-</td>
<td>15.5</td>
<td>17.0</td>
<td>15.3</td>
<td>16.0</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-8</td>
<td>-</td>
<td>15.2</td>
<td>24.9</td>
<td>27.8</td>
<td>26.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-9</td>
<td>-</td>
<td>14.1</td>
<td>14.5</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-10</td>
<td>-</td>
<td>32.8</td>
<td>32.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaACS-11</td>
<td>-</td>
<td>84.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using as query sequences the putative amino acid sequences for the CDS sequences of MaACS-1~12, BLASTp search was performed against the amino acid sequences registered in GenBank. The proteins having the amino acid sequence which matched the putative amino acid sequences of MaACS-1~12 with highest score and the identity between these proteins and the putative amino acid sequences of MaACS-1~12 are shown in TABLE 3. The identity of the putative amino acid sequences of MaACS-1~12 with the amino acid sequences of S. cerevisiae-derived acyl-CoA synthetases are also shown in TABLE 4.

TABLE 3 Sequence identity between the amino acid sequences of M. alpina-derived ACS homologs and known amino acid sequences

27
MaACS-1	41.8	71014575	Putative protein from Ustilago maydis
MaACS-2	35.4	71014575	Putative protein from Ustilago maydis
MaACS-3	23.5	71895089	Chick ACS long-chain family member 5
MaACS-4	36.9	115487304	Putative protein from Oryza sativa
MaACS-5	42.5	168085128	Putative protein from Physcomitrella patens
MaACS-6	40.9	13516481	Long-chain acyl-CoA synthetase from Arabidopsis thaliana
MaACS-7	45.7	120612991	Putative protein from Acidovorax avenae subsp. citrulli
MaACS-8	40.0	13516481	Long-chain acyl-CoA synthetase from Arabidopsis thaliana
MaACS-9	37.8	67599044	Putative protein from Aspergillus nidulans
MaACS-10	33.2	171682488	Putative protein from Podospora anserina
MaACS-11	48.8	169854433	Putative protein from Coprinopsis atramentarius
MaACS-12	45.1	156045509	Putative protein from Sclerotinia sclerotiorum

TABLE 4 Comparison of amino acid sequences of *M. alpina*-derived ACS homologs and amino acid sequences of *S. cerevisiae*-derived ACS

<table>
<thead>
<tr>
<th></th>
<th>ScFAA1</th>
<th>ScFAA2</th>
<th>ScFAA3</th>
<th>ScFAA4</th>
<th>ScFAT1</th>
<th>ScFAT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaACS-1</td>
<td>13.8</td>
<td>15.3</td>
<td>13.6</td>
<td>13.5</td>
<td>29.8</td>
<td>18.1</td>
</tr>
<tr>
<td>MaACS-2</td>
<td>12.5</td>
<td>13.6</td>
<td>13.4</td>
<td>13.5</td>
<td>26.3</td>
<td>17.5</td>
</tr>
<tr>
<td>MaACS-3</td>
<td>15.8</td>
<td>14.0</td>
<td>15.0</td>
<td>14.8</td>
<td>13.6</td>
<td>12.9</td>
</tr>
<tr>
<td>MaACS-4</td>
<td>26.3</td>
<td>28.3</td>
<td>23.9</td>
<td>24.2</td>
<td>14.0</td>
<td>16.0</td>
</tr>
<tr>
<td>MaACS-5</td>
<td>25.6</td>
<td>28.2</td>
<td>25.5</td>
<td>25.8</td>
<td>13.2</td>
<td>18.6</td>
</tr>
<tr>
<td>MaACS-6</td>
<td>25.3</td>
<td>28.4</td>
<td>25.8</td>
<td>25.5</td>
<td>13.0</td>
<td>18.1</td>
</tr>
<tr>
<td>MaACS-7</td>
<td>16.5</td>
<td>17.5</td>
<td>16.0</td>
<td>16.9</td>
<td>16.6</td>
<td>20.6</td>
</tr>
<tr>
<td>MaACS-8</td>
<td>23.0</td>
<td>28.0</td>
<td>21.3</td>
<td>22.8</td>
<td>12.2</td>
<td>14.8</td>
</tr>
<tr>
<td>MaACS-9</td>
<td>15.6</td>
<td>15.5</td>
<td>14.3</td>
<td>14.7</td>
<td>30.1</td>
<td>18.3</td>
</tr>
<tr>
<td>MaACS-10</td>
<td>30.8</td>
<td>20.6</td>
<td>30.6</td>
<td>30.6</td>
<td>14.0</td>
<td>14.2</td>
</tr>
<tr>
<td>MaACS-11</td>
<td>39.6</td>
<td>22.6</td>
<td>37.3</td>
<td>38.7</td>
<td>12.9</td>
<td>15.8</td>
</tr>
<tr>
<td>MaACS-12</td>
<td>41.3</td>
<td>22.3</td>
<td>39.8</td>
<td>39.0</td>
<td>14.4</td>
<td>16.2</td>
</tr>
</tbody>
</table>

FIG. 25 shows the alignment between MaACS from MaACS-1~12, which have relatively high amino acid sequence homology to the *S. cerevisiae*-derived FAA proteins, and the FAA proteins. FIG. 26 shows the alignment of the ACS homologs having relatively high amino acid sequence homology to *S. cerevisiae*-derived FAT proteins. The regions of the ATP-AMP motif and FACS/VLACS-FATP motif, which are important motifs for the ACS activity, are highly conserved in both groups shown in FIGS. 25 and 26.

Construction of Expression Vector

Vectors for expressing MaACS-1, MaACS-10, MaACS-11, MaACS-6, MaACS-8 and MaACS-9, respectively, in yeast were constructed as follows, using the expression vector pYE22m (Biosci. Biotech. Biochem., 59, 1221-1228, 1995).

The plasmid containing SEQ ID NO: 29, which was obtained by screening MaACS-6, was digested with restriction enzymes BamHI and XhoI. The resulting DNA fragment of approximately 2.1 kbp was ligated to the DNA fragment obtained
by digestion of vector pYE22m with restriction enzymes BamHI and Sall using a Ligation High (TOYOBO) to give plasmid pYE-ACS-6.

Using the plasmid containing cDNA of MaACS-8 as a template, PCR was performed with the primers below using ExTaq (Takara Bio Inc.). The thus amplified DNA fragment was cloned by a TOPO-TA Cloning Kit (Invitrogen).

Primer EcoRI-ACS-8-F: 5'-GGATCCATGCTTCCCTCAAACGTAAACC-3' (SEQ ID NO: 85)
Primer SmaI-ACS-8-R: 5'-CCCAGGCAAAGAGTTTCTATCTACAGCT-3' (SEQ ID NO: 86)

The nucleotide sequence of the insert was verified and the plasmid containing the correct nucleotide sequence was digested with restriction enzymes EcoRI and SmaI. Using a Ligation High (TOYOBO), the resulting DNA fragment of approximately 2.1 kbp was ligated to the DNA fragment obtained by digesting vector pYE22m with restriction enzymes EcoRII and SmaI to give plasmid pYE-ACS-8.

Using the plasmid containing cDNA of MaACS-9 as a template, PCR was performed with the primers below using ExTaq (Takara Bio Inc.). The thus amplified DNA fragment was cloned by a TOPO-TA Cloning Kit (Invitrogen).

Primer EcoRI-ACS-9-F: 5'-GAATTCATGGTGTCTTCCCACTCG-3' (SEQ ID NO: 87)
Primer BamHI-ACS-9-R: 5'-GGATCCCTACTATAGCCTTGCCCTTGCC-3' (SEQ ID NO: 88)

The nucleotide sequence of the insert was verified and the plasmid containing the correct nucleotide sequence was digested with restriction enzymes EcoRI and BamHI. Using a Ligation High (TOYOBO), the resulting DNA fragment of approximately 2.0 kbp was ligated to the DNA fragment obtained by digesting vector pYE22m with restriction enzymes EcoRII and BamHI to give plasmid pYE-ACS-9.

Using the plasmid containing cDNA of MaACS-1 as a template, PCR was performed with the primers below using ExTaq (Takara Bio Inc.). The thus amplified DNA fragment was cloned by a TOPO-TA Cloning Kit (Invitrogen).

Primer EcoRI-ACS-1-F: 5'-GGATCCATGATGTCAAGCTTGC-3' (SEQ ID NO: 89)
Primer SalI-ACS-1-R: 5’-GTCGACTCAAGCCTGGCTTTGCCGCTGACG-3’ (SEQ ID NO: 90)

The nucleotide sequence of the insert was verified and the plasmid containing the correct nucleotide sequence was digested with restriction enzymes EcoRI and SalI. Using a Ligation High (TOYOBO), the resulting DNA fragment of approximately 1.9 kbp was ligated to the DNA fragment obtained by digesting vector pYE22m with restriction enzymes EcoRI and SalI to give plasmid pYE-ACS-1.

Using the plasmid containing cDNA of MaACS-10 as a template, PCR was performed with the primers below using ExTaq (Takara Bio Inc.). The thus amplified DNA fragment was cloned by a TOPO-TA Cloning Kit (Invitrogen).

Primer ACS-10-1F: 5’-GGATCCATGGAAACCTTTGGTTAACGGAAG-3’ (SEQ ID NO: 91)
Primer KpnI-ACS-10-R: 5’-GGTACCTAGAAGTCTTCCACATCTCCTC-3’ (SEQ ID NO: 92)

The nucleotide sequence of the insert was verified and the plasmid containing the correct nucleotide sequence was digested with restriction enzymes EcoRI and KpnI. Using a Ligation High (TOYOBO), the resulting DNA fragment of approximately 2.1 kbp was ligated to the DNA fragment obtained by digesting vector pYE22m with restriction enzymes EcoRI and KpnI. Plasmid pYE-ACS-10 was obtained by screening for the orientation that the GAPDH promoter of vector pYE22m was located at its 5’ end of CDS of MaACS-10.

Using the plasmid containing cDNA of MaACS-11 as a template, PCR was performed with the primers below using ExTaq (Takara Bio Inc.). The thus amplified DNA fragment was cloned by a TOPO-TA Cloning Kit (Invitrogen).

Primer SacI-ACS-11-F: 5’-GAGCTCATGCAAAATGCTTTACCAGTCAACG-3’ (SEQ ID NO: 93)
Primer BamHI-ACS-11-R: 5’-GGATCCTACTTGGACGCATAGATCTGCTTG-3’ (SEQ ID NO: 94)

The nucleotide sequence of the insert was verified and the plasmid containing the correct nucleotide sequence was digested with restriction enzymes SacI and BamHI. Using a Ligation High (TOYOBO), the resulting DNA fragment of approximately 2.0 kbp was ligated to the DNA fragment obtained by digesting vector.
pYE22m with restriction enzymes SacI and BamHI to give plasmid pYE-ACS-11.

Expression in Yeast

Acquisition of Transformants

The yeast *S. cerevisiae* EH13-15 strain (trp1, MATα) (Appl. Microbiol. Biotechnol., 30, 515-520, 1989) was transformed with plasmids pYE22m, pYE-MaACS-6, pYE-MaACS-8 and pYE-MaACS-9, respectively, by the lithium acetate method. The transformants were screened for the ability to grow on SC-Trp agar medium (2% agar) (per liter, 6.7 g Yeast Nitrogen Base w/o Amino Acids (DIFCO), 20 g glucose, 1.3 g amino acid powders (a mixture of 1.25 g adenine sulfate, 0.6 g arginine, 3 g aspartic acid, 3 g glutamic acid, 0.6 g histidine, 1.8 g leucine, 0.9 g lysine, 0.6 g methionine, 1.5 g phenylalanine, 11.25 g serine, 0.9 g tyrosine, 4.5 g valine, 6 g threonine and 0.6 g uracil).

Cultivation of Yeast

One each from the transformants obtained using the respective plasmids was provided for the following cultivation experiment.

One platinum loop of the yeast was plated on 10 ml of SC-Trp and cultured with shaking for preincubation at 30°C for a day. After 1 ml of the preincubation was added to the SC-Trp medium, main cultivation was performed by shake culturing at 30°C for a day.

Analysis of Fatty Acids in Mycelia

The yeast culture broth was centrifuged to recover the mycellal cells. After washing with 10 ml of sterile water, the mycellal cells were again centrifuged, recovered and lyophilized. The fatty acids in the mycellal cells were converted into the methyl esters by the hydrochloric acid-methanol method followed by extraction with hexane. After hexane was removed by distillation, the fatty acids were analyzed by gas chromatography.

The fatty acid production per medium is shown in TABLE 5. In the strains transformed by ppYE-MaACS-6, pYE-MaACS-8 or pYE-MaACS-9, the fatty acid production per medium was increased as compared to the control which was transformed by pYE22m.

TABLE 5 Fatty Acid Production by Transformant per Medium

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>MaACS-6</th>
<th>MaACS-8</th>
<th>MaACS-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty acid production (mg/L)</td>
<td>135</td>
<td>159</td>
<td>196</td>
<td>187</td>
</tr>
</tbody>
</table>

31
Expression in Arachidonic Acid-Producing Yeast

(1) Breeding of Arachidonic Acid-Producing Yeast Strains

To breed arachidonic acid-producing yeast strain (S. cerevisiae), the following plasmids were constructed.

First, using the cDNA prepared from M. alpina strain 1S-4 as a template, PCR was performed with ExTaq using the primer pair of Δ12-f and Δ12-r, Δ6-f and Δ6-r, GLELO-f and GLELO-r, or Δ5-f and Δ5-r to amplify the Δ12 fatty acid desaturase gene (GenBank Accession No. AB020033) (hereinafter "Δ12 gene"), the Δ6 fatty acid desaturase gene (GenBank Accession No. AB020032) (hereinafter "Δ6 gene"), the GLELO fatty acid elongase gene (GenBank Accession No. AB193123) (hereinafter "GLELO gene") and the Δ5 fatty acid desaturase gene (GenBank Accession No. AB188307) (hereinafter "Δ5 gene") in the M. alpina strain 1S-4.

Δ12-f: 5'-TCTAGAATGGCACCCTCTCCCCACACTATTG-3' (SEQ ID NO: 95)
Δ12-r: 5'-AAGCTTTTACTCTTGAAAAAGACCCAGTC-3' (SEQ ID NO: 96)
Δ6-f: 5'-TCTAGAATGGCTGCTGCTCCCCAGTGAGG-3' (SEQ ID NO: 97)
Δ6-r: 5'-AAGCTTTTACTGTGCTGCTGCTCCCATCTTGG-3' (SEQ ID NO: 98)
GLELO-f: 5'-TCTAGAATGGAGTCTGATTGGAATCC-3' (SEQ ID NO: 99)
GLELO-r: 5'-GAGCTTTTACTGCAACCTTCTTGGGCAATTCG-3' (SEQ ID NO: 100)
Δ5-f: 5'-TCTAGAATGGGTGGCCAGACAGGAAGAAAAAC-3' (SEQ ID NO: 101)
Δ5-r: 5'-AAGCTTTTACTCTTTCTGGAAGACC-3' (SEQ ID NO: 102)

These genes were cloned with the TOPO-TA-Cloning Kit. The clones were confirmed by their nucleotide sequences. The clones containing the nucleotide sequences of the Δ12 gene, Δ6 gene, GLELO gene and Δ5 gene were designated as plasmids pCR-MAΔ12DS (containing the nucleotide sequence of the Δ12 gene), pCR-MAΔ6DS (containing the nucleotide sequence of the Δ6 gene), pCR-MAGLELO (containing the nucleotide sequence of the GLELO gene) and pCR-MAΔ5DS (containing the nucleotide sequence of the Δ5 gene), respectively.

On the other hand, the plasmid pURA34 (JPA 2001-120276) was digested with restriction enzyme HindIII. The resulting DNA fragment of approximately 1.2 kb was inserted into the HindIII site of the vector, which was obtained by digesting pUC18 vector (Takara Bio Inc.) with restriction enzymes EcoRI and SphI, then blunt ending and self ligating said vector. The clone in which the EcoRI site of the vector was located at its 5' end of URA3 was designated as pUC-URA3. Also, the DNA fragment of approximately 2.2 kb, which was obtained by digesting YEp13 with
restriction enzymes Sall and XhoI, was inserted into the Sall site of vector pUC18. The clone in which the EcoRI site of the vector was located at its 5' end of LUE2 was designated as pUC-LEU2.

Next, the plasmid pCR-MAAΔ12DS was digested with restriction enzyme HindIII, followed by blunt ending and further digestion with restriction enzyme XbaI. The resulting DNA fragment of approximately 1.2 kbp was ligated to the DNA fragment of approximately 6.6 kbp, which was obtained by digesting vector pESC-URA (STRATAGENE) with restriction enzyme SacI, blunt ending and further digesting with restriction enzyme SpeI. Thus, the plasmid pESC-U-Δ12 was obtained.

The plasmid pCR-MAAΔ6DS was digested with restriction enzyme XbaI, followed by blunt ending and further digestion with restriction enzyme HindIII. The resulting DNA fragment of approximately 1.6 kbp was ligated to the DNA fragment of approximately 8 kbp, which was obtained by digesting the plasmid pESC-U-Δ12 with restriction enzyme Sall, blunt ending and further digesting with restriction enzyme HindIII, thereby to give the plasmid pESC-U-Δ12:Δ6. This plasmid was partially digested with restriction enzyme PvuII. The resulting fragment of approximately 4.2 kb was inserted into the Smal site of pUC-URA3 to give the plasmid pUC-URA-Δ12:Δ6.

Also, the plasmid pCR-MAGLELO was digested with restriction enzymes XbaI and SacI. The resulting DNA fragment of approximately 0.95 kbp was ligated to the DNA fragment of approximately 7.7 kbp, which was obtained by digesting vector pESC-LEU (STRATAGENE) with restriction enzymes XbaI and SacI. Thus, the plasmid pESC-L-GLELO was obtained. The plasmid pCR-MAAΔ5DS was digested with restriction enzyme XbaI, followed by blunt ending and further digestion with restriction enzyme HindIII. The resulting DNA fragment of approximately 1.3 kbp was ligated to the DNA fragment of approximately 8.7 kbp, which was obtained by digesting the plasmid pESC-L-GLELO with restriction enzyme Apal, blunt ending and further digesting with restriction enzyme HindIII, thereby to give the plasmid pESC-L-GLELO:Δ5. This plasmid was digested with restriction enzyme PvuII and the resulting fragment of approximately 3.2 kbp was inserted into the Smal site of pUC-LEU2 to give plasmid pUC-LEU-GLELO:Δ5. The Saccharomyces cerevisiae strain YPH499 (STRATAGENE) was co-transformed by the plasmid pUC-URA-Δ12:Δ6 and plasmid pUC-LEU-GLELO:Δ5. The transformants were screened for the ability to grow on SC-Leu,Ura agar medium.

Among the transformants thus obtained, random one strain was designated as the strain ARA3-1. By cultivating the strain in a galactose-supplemented medium, the strain became capable of expressing from the GAL1/10 promoter the Δ12 fatty acid.
desaturase gene, the Δ6 fatty acid desaturase gene, the GLELO gene and the Δ5 fatty acid desaturase gene.

(2) Transformation into Arachidonic Acid-Producing Yeast and Analysis

The ARA3-1 strain was transformed by plasmids pYE22m, pYE-ACS-1, pYE-ACS-10 and pYE-ACS-11, respectively. Transformants were screened for the ability to grow on SC-Trp,Leu,Ura agar medium (2 % agar) (per liter, 6.7 g Yeast Nitrogen Base w/o Amino Acids (DIFCO), 20 g glucose and 1.3 g amino acid powders (a mixture of 1.25 g adenine sulfate, 0.6 g arginine, 3 g aspartic acid, 3 g glutamic acid, 0.6 g histidine, 0.9 g lysine, 0.6 g methionine, 1.5 g phenylalanine, 11.25 g serine, 0.9 g tyrosine, 4.5 g valine and 6 g of threonine). Random four strains from the respective plasmid-transfected strains were used for the subsequent cultivation.

These strains were cultivated at 30°C for a day in 10 ml of the

SC-Trp,Leu,Ura liquid medium described above. One milliliter of the culture was plated on 10 ml of SG-Trp,Leu,Ura liquid medium (per liter, 6.7 g Yeast Nitrogen Base w/o Amino Acids (DIFCO), 20 g galactose and 1.3 g amino acid powders (a mixture of 1.25 g adenine sulfate, 0.6 g arginine, 3 g aspartic acid, 3 g glutamic acid, 0.6 g histidine, 0.9 g lysine, 0.6 g methionine, 1.5 g phenylalanine, 11.25 g serine, 0.9 g tyrosine, 4.5 g valine and 6 g of threonine) and then cultivated at 15°C for 6 days.

The mycelial cells were collected, washed with water and then lyophilized. After the fatty acids in the dried mycelial cells were converted to the methyl esters by the hydrochloric acid-methanol method, the analysis of fatty acids was performed by gas chromatography. The ratio of each PUFA to the total fatty acids in the control strain transformed by plasmid pYE22m, and in the strains transformed by each ACS homolog from Mortierella is shown in TABLE 6.

<table>
<thead>
<tr>
<th>TABLE 6</th>
<th>% Ratio of PUFA in ACS homolog expression strains from Mortierella</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>control</td>
</tr>
<tr>
<td>18:2</td>
<td>7.23 ± 0.11</td>
</tr>
<tr>
<td>18:3(n-6)</td>
<td>0.38 ± 0.01</td>
</tr>
<tr>
<td>DGLA</td>
<td>0.41 ± 0.01</td>
</tr>
<tr>
<td>ARA</td>
<td>0.42 ± 0.01</td>
</tr>
</tbody>
</table>

As shown in TABLE 6, the ratio of fatty acids could be modified by expressing the ACS homolog from Mortierella. Particularly in the MaACS-11 expression strain, the ratios of arachidonic acid, linoleic acid and γ-linolenic acid were increased by about 1.8 times, about 1.5 times and about 2.4 times, respectively,
as compared to the control strain. In the MaACS-1 expression strain, the ratio of arachidonic acid was increased by about 1.5 times, as compared to the control strain. Further in the MaACS-10 expression strain, the ratios of linoleic acid and γ-linolenic acid were increased by about 2 times and about 4 times, respectively, as compared to the control strain.

[EXAMPLE 2]
Construction of Expression Vector

Expression Vector for Yeast

The vector pYE-ACS-12 for expressing MaACS-12 in yeast was constructed as follows. Using a plasmid containing the cDNA of MaACS-12 as a template, PCR was performed with the following primers using KOD-Plus-(TOYOBO).

Primer Eco-ACS-G-F: 5'-GAATTCATGACAAAGTGCCTCACCCTCG-3' (SEQ ID NO: 103)
Primer Sma-ACS-G-R: 5'-CCCGGACTTAGGCGGTTCAGTCAAGCTG-3' (SEQ ID NO: 104)

The amplified DNA fragment was cloned using a Zero Blunt TOPO PCR Cloning Kit (Invitrogen). The nucleotide sequence of the insert was verified and the plasmid containing the correct nucleotide sequence was digested with restriction enzymes EcoRI and SmaI. Using a Ligation High (TOYOBO), the resulting DNA fragment of approximately 2 kbp was ligated to the DNA fragment obtained by digesting vector pYE22m with restriction enzyme BamHI and then blunt ending with a Blunting Kit (TAKARA Bio) and further digesting with EcoRI, to give plasmid pYE-ACS-12.

Expression Vector for M. alpina

The vector for expressing MaACS-10 and MaACS-11 in M. alpina was constructed as follows.

First, pUC18 was digested with restriction enzymes EcoRI and HindIII and an adapter obtained by annealing oligo DNA MCS-for-pUC18-F2 with MCS-for-pUC18-R2 was inserted therein to construct plasmid pUC18-RF2.

MCS-for-pUC18-F2:
5'-AATTCATAAGATGGCGCGCTAAACTATTCTAGACTAGGTCGACGGCGCGCCA-3' (SEQ ID NO: 105)
MCS-for-pUC18-R2:
5'-AGCTTGCGCAGGGCTGACCTAGTCTAGAATAGTTTTAGCGGCCGACAT
TTATG-3' (SEQ ID NO: 106)

Using the genome DNA of M. alpina as a template, PCR was performed with the primers Not1-GAPDHt-F and EcoR1-Asc1-GAPDHt-R using KOD-Plus- (Toyobo). The amplified DNA fragment of about 0.5 kbp was cloned using a Zero Blunt TOPO PCR Cloning Kit (Invitrogen). After the nucleotide sequence of the insert was verified, the DNA fragment of about 0.9 kbp obtained by digesting with restriction enzymes NotI and EcoRI was inserted into the NotI and EcoRI site of plasmid pUC18-RF2 to construct plasmid pDG-1.

Not1-GAPDHt-F: 5'-AGCGGCGCCGATAGGGGAGATCGAACC-3' (SEQ ID NO: 107)

EcoR1-Asc1-GAPDHt-R:
5'-AGATCGCGGCGCCATGCACGCGGTCCTTCTCA-3' (SEQ ID NO: 108)

Using the genome of M. alpina as a template, PCR was performed with the primers URA5g-F1 and URA5g-R1 using KOD-Plus- (Toyobo). The amplified DNA fragment was cloned using a Zero Blunt TOPO PCR Cloning Kit (Invitrogen). After the nucleotide sequence of the insert was verified, the DNA fragment of about 2 kbp obtained by digestion with Sall was inserted into the Sall site of plasmid pDG-1. The plasmid that the 5' end of URAS gene inserted was oriented toward the EcoRI side of the vector was designated as the plasmid pDuraG.

URA5g-F1: 5'-GTCGACCAGTGACTGTGTTTGCG-3' (SEQ ID NO: 109)
URA5g-R1: 5'-GTCGACTGGAAGACGACGACG-3' (SEQ ID NO: 110)

Subsequently, PCR was performed with KOD-Plus- (TOYOBO) using the genome of M. alpina as a template and the primers hisHp+URA5-F and
hisHp+Mgt-F. Using an In-Fusion (registered trade name) Advantage PCR Cloning Kit (TAKARA Bio), the amplified DNA fragment of about 1.0 kbp was ligated to the DNA fragment of about 5.3 kbp amplified by PCR with KOD-Plus- (TOYOBO) using pDuraG as a template and the primers pDuraSC-GAPt-F and URA5gDNA-F, to give plasmid pDura-RhG.

hisHp+URA5-F:
5'-GGCAAACTTGTACATGAAGCGAAAGAGAGATTATGAAAACAAGC-3' (SEQ ID NO: 111)
hisHp+MGt-F:
5'-CACTCCCTTTTCTTAATTGGTAGAGAGTTGGGTAGAGT-3' (SEQ ID NO: 112)
pDuracSC-GAPt-F: 5'-TAAGAAAAAGGGAGTGAATCGCATAAGGG-3' (SEQ ID NO: 113)
URA5gDNA-F: 5'-CATGACAAGTTTGGCAGAGATGCG-3' (SEQ ID NO: 114)

Using the plasmid pDUra-RhG as a template, the DNA fragment of about 6.3 kbp was amplified by PCR with KOD-Plus- (TOYOBO) using the primers pDuracSC-GAPt-F and pDurahG-hisp-R.

pDurahG-hisp-R: 5'-ATTGTTGAGAGAGTTGGGTAGAGTG-3' (SEQ ID NO: 115)

Using the plasmid containing cDNA of MaACS-10, the DNA fragment of about 2.1 kbp was amplified by PCR with KOD-Plus- (TOYOBO), using the primers below.

Primer ACS-10+hisp-F:
5'-CACTCTCTCAAACAATATGGAAACCTTGGTTAAGCAGAAGT-3' (SEQ ID NO: 116)
Primer ACS-10+MGt-R:
5'-CACTCCCTTTTCTTACTAGAAGACTTCTCCATCTCCTCAATATC-3' (SEQ ID NO: 117)

The resulting DNA fragment was ligated to the 6.3 kbp DNA fragment described above using an In-Fusion (registered trade name) Advantage PCR Cloning Kit (TAKARA BIO) to give plasmid pDurahRg-ACS-10.

Using the plasmid containing cDNA of MaACS-11 as a template, the 2.1 kbp DNA fragment was amplified by PCR with KOD-Plus- (TOYOBO) using the primers below.

Primer ACS-11+MGt-R:
5'-CACTCCCTTTTCTTATTACCTGGAGCCATAGATCTGCTTG-3' (SEQ ID
NO: 118)
Primer ACS-11+hisp-F:
5'-CACTCTCTCAACAATATGCCAAAGTGCTTTACCGTCAAC-3' (SEQ ID NO: 119)

The resulting DNA fragment was ligated to the 6.3 kbp DNA fragment described above using an In-Fusion (registered trade name) Advantage PCR Cloning Kit (TAKARA BIO) to give the plasmid pDUraRhG-ACS-11.

Evaluation of ACS Activity

The yeast EH13-15 was transformed by plasmids pYE22m, pYE-ACS-5, pYE-ACS-8, pYE-ACS-10, pYE-ACS-11 and pYE-ACS-12, respectively, and random two transformants obtained were cultivated as follows. One platinum loop of the mycelial cells were plated on 10 ml of SC-Trp medium and cultivated with shaking for preincubation at 30°C for a day. After 1% of the preincubation was added to 100 ml of the SD-Trp medium, main cultivation was performed by shake culturing at 28°C for a day.

The crude enzyme solution was prepared as follows. The mycelial cells were collected by centrifugation, washed with water and temporarily stored at -80°C. The mycelial cells were suspended in 5 ml of Buffer B (50 mM sodium sulfate buffer (pH 6.0), 10% glycerol and 0.5 mM PMSF). The mycelial cells were then disrupted with a French press (16 kPa, 3 times). Centrifugation was carried out at 1,500 xg at 4°C for 10 minutes and centrifuged. The supernatant obtained was used as the crude enzyme solution.

The ACS activity was determined by the following procedures based on the description of a reference literature (J.B.C., 272 (8), 1896-4903, 1997). The reaction solution contained 200 mM Tris-HCl (pH7.5), 2.5 mM ATP, 8 mM MgCl₂, 2 mM EDTA, 20 mM NaF, 0.1% TritonX-100, 50 µg/ml fatty acids, 50 µM CoA and 100 µl of the crude enzyme solution (suitably diluted in Buffer B), and was made 500 µl in total. The reaction was carried out at 28°C for 30 minutes. After completion of the reaction, 2.5 ml of stop solution (isopropanol : n-heptane : 1 M sulfuric acid (40: 20: 1)) was added and the mixture was thoroughly agitated. Furthermore, 2 ml of n-heptane was added thereto. After thoroughly mixing them, the mixture was centrifuged to recover the upper layer. Further 2 ml of n-heptane was added to the lower layer and treated in the same manner to recover the upper layer. The upper layers recovered were combined and evaporated to dryness using a centrifugal
concentrator. Then, 50 µl of 0.2 mg/ml tricosanoic acid (23:0) was added thereto as an internal standard. The fatty acids were converted into the methyl esters by the hydrochloric acid-methanol method, followed by fatty acid analysis using gas chromatography. The amount of the fatty acids, which were changed to acyl-CoA and thus distributed into the lower layer by the procedures above, was calculated from the amount of fatty acids detected. The results are shown in the table below. The ACS activity is expressed as the amount of fatty acids distributed into the lower layer by the procedures above, per weight of the protein in the crude enzyme solution. The control is the strain transformed by pYE22m and the others are the transformants in which the expression vectors of the respective genes were introduced.

TABLE 7 ACS Activity on Palmitic Acid

<table>
<thead>
<tr>
<th></th>
<th>MaACS-5</th>
<th>MaACS-10</th>
<th>MaACS-11</th>
<th>MaACS-12</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1</td>
<td>#2</td>
<td>#1</td>
<td>#2</td>
<td>#1</td>
</tr>
<tr>
<td>mg/mg protein</td>
<td>0.26</td>
<td>0.20</td>
<td>0.41</td>
<td>0.34</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.40</td>
<td>0.11</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

When palmitic acid was used as substrate, MaACS-5, MaACS-10, MaACS-11 and MaACS-12 showed the ACS activity of approximately 2 to 4 times the control.

TABLE 8 ACS Activity on Oleic Acid

<table>
<thead>
<tr>
<th></th>
<th>MaACS-10</th>
<th>MaACS-11</th>
<th>MaACS-12</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1</td>
<td>#2</td>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>mg/mg protein</td>
<td>0.25</td>
<td>0.20</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When oleic acid was used as substrate, MaACS-10, MaACS-11 and MaACS-12 showed the ACS activity of approximately twice the control.

TABLE 9 ACS Activity on Linoleic Acid

<table>
<thead>
<tr>
<th></th>
<th>MaACS-5</th>
<th>MaACS-8</th>
<th>MaACS-10</th>
<th>MaACS-11</th>
<th>MaACS-12</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1</td>
<td>#2</td>
<td>#1</td>
<td>#2</td>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>mg/mg protein</td>
<td>0.47</td>
<td>0.42</td>
<td>0.42</td>
<td>0.38</td>
<td>0.54</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.20</td>
<td>0.59</td>
<td>0.78</td>
<td>0.14</td>
<td>0.14</td>
</tr>
</tbody>
</table>

When linoleic acid was used as substrate, MaACS-5, MaACS-8 and MaACS-12 showed the ACS activity of several times (approximately 3, 3 and 6 times, respectively) the control, whereas MaACS-10 and MaACS-11 showed the ACS activity of several tens times (approximately 40 and 20 times, respectively) the
control.

<table>
<thead>
<tr>
<th>TABLE 10</th>
<th>ACS Activity on γ-Linoleic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaACS-5</td>
<td>MaACS-8</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>mg/mg protein</td>
<td>0.16</td>
</tr>
</tbody>
</table>

When γ-linoleic acid was used as substrate, all of MaACS-5, MaACS-8, MaACS-10, MaACS-11 and MaACS-12 showed the ACS activity of approximately 2 to 10 times the control.

<table>
<thead>
<tr>
<th>TABLE 11</th>
<th>ACS Activity on Dihomo-γ-Linoleic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaACS-10</td>
<td>MaACS-11</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>mg/mg protein</td>
<td>4.98</td>
</tr>
</tbody>
</table>

When dihomo-γ-linoleic acid was used as substrate, all of MaACS-10, MaACS-11 and MaACS-12 showed the ACS activity of several tens times (approximately 60 times, 40 times and 30 times, respectively) the control.

<table>
<thead>
<tr>
<th>TABLE 12</th>
<th>ACS Activity on Arachidonic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaACS-10</td>
<td>MaACS-11</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>mg/mg protein</td>
<td>8.12</td>
</tr>
</tbody>
</table>

When arachidonic acid was used as substrate, MaACS-10, MaACS-11 and MaACS-12 showed the ACS activity of several tens times (approximately 90 times, 30 times and 10 times, respectively) the control.

As above, MaACS-10, MaACS-11 and MaACS-12 in particular showed a higher activity on polyunsaturated fatty acids of 20 carbon atoms such as dihomo-γ-linoleic acid or arachidonic acid.

Arachidonic Acid Uptake Activity of ACS-Expressed Yeast

The yeast EH13-15 was transformed by plasmids pYE22m, pYE -ACS-10, pYE -ACS-11 and pYE -ACS-12, respectively, and random two transformants obtained were cultivated as follows. One platinum loop of the cells were plated on 10 ml of SC-Trp medium and cultivated with shaking for preincubation at 30°C for a
day. After 100 μl of the preincubation was added to 10 ml of the SC-Trp medium in which 50 μg/ml of arachidonic acid was supplemented, main cultivation was performed by shake culturing at 25°C for a day. The mycelial cells were collected, lyophilized and subjected to fatty acid analysis. The ratio of arachidonic acid taken up into the mycelial cells to the added arachidonic acid was determined. The results are shown in TABLE 14. The control is the strain transformed by pYE22m and the others are the transformants in which the expression vectors of the respective genes were introduced.

<table>
<thead>
<tr>
<th>TABLE 13</th>
<th>Dry Mycelial Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>MaACS-10</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>%</td>
<td>36.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 14</th>
<th>Ratio of Arachidonic Acid Taken Up into Mycelia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>MaACS-10</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
</tr>
<tr>
<td>mg/10ml</td>
<td>15.30</td>
</tr>
</tbody>
</table>

Acquisition of M. Alpina Transformants

Using as a host the uracil-auxotrophic strain Δura-3 derived from M. alpina strain 1S-4 as described in PCT International Publication Pamphlet WO 2005/019437 entitled "Method of Breeding Lipid-Producing Fungus"), transformation was performed by the particle delivery method using the plasmids pDUraRhG-ACS-10 and pDUraRg-ACS-11, respectively. For screening of the transformants, SC agar medium was used (0.5% Yeast Nitrogen Base w/o Amino Acids and Ammonium Sulfate (Difco), 0.17% ammonium sulfate, 2% glucose, 0.002% adenine, 0.003% tyrosine, 0.0001% methionine, 0.0002% arginine, 0.0002% histidine, 0.0004% lysine, 0.0004% tryptophan, 0.0005% threonine, 0.0006% isoleucine, 0.0006% leucine, 0.0006% phenylalanine, and 2% agar).

Evaluation of M. Alpina Transformants

The transformants obtained were plated on 4 ml of GY medium and cultured with shaking at 28°C for 2 days. The mycelial cells were collected by filtration, and RNA was extracted with an RNeasy Plant Kit (QIAGEN). A SuperScript First Strand System for RT-PCR (Invitrogen) was used to synthesize cDNA. To confirm expression of the respective genes from the introduced constructs, RT-PCR was
performed with the following primer pairs.

ACS10-RT1: 5'-GTCCCGAATGGTTCCCT-3' (SEQ ID NO: 120)
ACS10-RT2: 5'-AGCGGTTTCTACTTGC-3' (SEQ ID NO: 121)
ACS11-RT1: 5'-AACTACAACCGCGTCG-3' (SEQ ID NO: 122)
ACS11-RT2: 5'-CGGCATAAACGCAGAT-3' (SEQ ID NO: 123)

In the transformants that overexpression was confirmed, one transformant each was plated on 10 ml of GY medium (2% glucose and 1% yeast extract) and cultured with shaking at 28°C at 300 rpm for 3 days. The whole volume of the culture was transferred to 500 ml of GY medium (2 L Sakaguchi flask) and shake cultured at 28°C and 120 rpm. Three, seven, ten and twelve days after this day, 5 ml each and 10 ml each were taken and filtered. After the mycelial cells were dried at 120°C, fatty acids were converted into the methyl esters by the hydrochloric acid-methanol method and analyzed by gas chromatography. The fatty acid production and the amount of arachidonic acid produced, per dried mycelial cells were monitored with the passage of time. The transformant host strain Aura-3 was used as control. The results are shown in FIG. 27 (MaACS-10) and FIG. 28 (MaACS-11).

As shown in FIGS. 27 and 28, when MaACS-10 and MaACS-11 were overexpressed in M. alpina, both the amount of fatty acids and the amount of arachidonic acid per mycelia were increased as compared to the control.

INDUSTRIAL APPLICABILITY

The polynucleotide of the present invention is expressed in an appropriate host cell to efficiently produce fatty acids, in particular, polyunsaturated fatty acids. The fatty acids produced in host cells according to the present invention can be used to produce fatty acid compositions, food products, cosmetics, pharmaceuticals, soaps, etc.

[Sequence Listing]
SEQUENCE LISTING IN ELECTRONIC FORM

In accordance with Section 111(1) of the Patent Rules, this description contains a sequence listing in electronic form in ASCII text format (file: 30179-221D1 Seq 17-APR-14 v1.txt).

A copy of the sequence listing in electronic form is available from the Canadian Intellectual Property Office.

The sequences in the sequence listing in electronic form are reproduced in the following table.

SEQUENCE TABLE

110> SUNTORY HOLDINGS LIMITED
120> POLYNUCLEOTIDE ENCODYING ACYL-COA SYNTHETASE HOMOLOG AND USE THEREOF
130> 30179-221D1
140> Division of CA 2,707,832
141> 2011-02-01
150> JP 2010-19967
151> 2010-02-01
160> 123
170> PatentIn version 3.4

210> 1
211> 1854
212> DNA
213> Mortierella alpina

400> 1
atggtacgtg tccctgaagt tgcgtctgag gcccctcccc cagccatgtgtagc tcgggtctcc 60
aagcttccaa tccctgttaga tgtcaagttta gtaaagggcct tgcgtcagtc caagctagtt 120
tacagcgctct cagagaaagaa cgacctggttc aatattcttt atcggttgtaga agagacctgt 180
aagagcgtgcc ctcagccgga agctttggttg tttgaaggcts aactgtcacc ctccagggcc 240
atccagcgag aatggaattg ggtgggacac cggctgtgttt gccaagccag caagcagaggt 300
gagatgcgtgt cgctttctct gcacaaataagg cccaggtttcc ttcactctctgc ctctgacccc 360
aacaagatcc gcgcgtcgggg agcacttcctt ccacacgaaatc ctcgggccaa caccctgtcagc 420
cactcattgg ctacgagcag cgcctcctat ccattctgag atgcgggaact gcagacgccc 480
atttatagtg tcctctgatga aatgtcctgag atgggatattag aagatatattg ctcagggagga 540
tccagcactc acgctttctgg tatacaagtt gaaacccctt aaactgtaga tcggctcttg 600
ccccagatgc tgcgggactt gagccatcct gccgttggtg atcatttgcct ccaggatactt 660
gacagcggcc gtttgccccaa aagcgggacg gttctccctag ctgccagccaa cggcttgagca 720
ccttctctga cgtcctctctg tcaacctctc gcctcctgcc gaaagagacc gcctgtcaca cgcctgctctg 780
ctttacctaa gcctcggcagc tgcctctgga atatgtgtgg cctgggtcag cgggtgcctag 840
gttggtctgag gcgcccggtctt tccactctact ctctcttgag aagaaatcag ggcccaacaag 900
gttcagcggaga tcggatatag gaggagggag gtcggagatt tactgaatgc ctcgctctctct 960
ccctggcagc agacacacag gtagccaggt gcggcatggtgc ggcctagagc tccgctgatgta 1020
<210> 2

<table>
<thead>
<tr>
<th>Met</th>
<th>Asp</th>
<th>Ala</th>
<th>Val</th>
<th>Pro</th>
<th>Ala</th>
<th>Val</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Ile</th>
<th>Pro</th>
<th>Ala</th>
<th>Ala</th>
<th>Ala</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Val</td>
<td>Gly</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Ala</td>
<td>Ile</td>
<td>Pro</td>
<td>Arg</td>
<td>Asp</td>
<td>Val</td>
<td>Lys</td>
<td>Leu</td>
<td>Ala</td>
<td>Lys</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>Ser</td>
<td>Ala</td>
<td>Lys</td>
<td>Leu</td>
<td>Gly</td>
<td>Tyr</td>
<td>Arg</td>
<td>Ser</td>
<td>Tyr</td>
<td>Glu</td>
<td>Lys</td>
<td>Asn</td>
<td>Asp</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ile</td>
<td>Asn</td>
<td>Ile</td>
<td>Ser</td>
<td>Tyr</td>
<td>Arg</td>
<td>Phe</td>
<td>Glu</td>
<td>Glu</td>
<td>Thr</td>
<td>Cys</td>
<td>Lys</td>
<td>His</td>
<td>Pro</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td>Phe</td>
<td>Glu</td>
<td>Gly</td>
<td>Lys</td>
<td>Ser</td>
<td>Tyr</td>
<td>Thr</td>
<td>Phe</td>
<td>Gln</td>
<td>Asp</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Gln</td>
<td>Arg</td>
<td>Glu</td>
<td>Ser</td>
<td>Asn</td>
<td>Arg</td>
<td>Val</td>
<td>Gly</td>
<td>His</td>
<td>Trp</td>
<td>Leu</td>
<td>Ser</td>
<td>Lys</td>
<td>Gly</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Lys</td>
<td>Arg</td>
<td>Glu</td>
<td>Ile</td>
<td>Val</td>
<td>Ser</td>
<td>Leu</td>
<td>Phe</td>
<td>Met</td>
<td>Gln</td>
<td>Asn</td>
<td>Lys</td>
<td>Pro</td>
<td>Glu</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Leu</td>
<td>Phe</td>
<td>Trp</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Asn</td>
<td>Lys</td>
<td>Ile</td>
<td>Gly</td>
<td>Ala</td>
<td>Thr</td>
<td>Gly</td>
<td>Ala</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ile</td>
<td>Asn</td>
<td>Thr</td>
<td>Asn</td>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Pro</td>
<td>Leu</td>
<td>Thr</td>
<td>His</td>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Ile</td>
<td>Leu</td>
<td>Ile</td>
<td>Met</td>
<td>Asp</td>
<td>Ala</td>
<td>Glu</td>
<td>Leu</td>
<td>Pro</td>
<td>Thr</td>
<td>Pro</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Tyr</td>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td>Asp</td>
<td>Glu</td>
<td>Val</td>
<td>Leu</td>
<td>Glu</td>
<td>Met</td>
<td>Gly</td>
<td>Tyr</td>
<td>Gln</td>
<td>Ile</td>
<td>Tyr</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
<td>Gly</td>
<td>Ser</td>
<td>Gln</td>
<td>Gln</td>
<td>His</td>
<td>Ala</td>
<td>Phe</td>
<td>Ala</td>
<td>Thr</td>
<td>Gln</td>
<td>Val</td>
<td>Glu</td>
<td>Leu</td>
<td>**180</td>
<td>185</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gln</td>
<td>Ile</td>
<td>Ser</td>
<td>Asp</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>Arg</td>
<td>Lys</td>
<td>Thr</td>
<td>**195</td>
<td>200</td>
<td>205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Asn</td>
<td>Asp</td>
<td>Ile</td>
<td>Ala</td>
<td>Met</td>
<td>Leu</td>
<td>Ile</td>
<td>Tyr</td>
<td>Thr</td>
<td>Ser</td>
<td>Gly</td>
<td>Thr</td>
<td>Thr</td>
<td>Gly</td>
<td>210</td>
<td>215</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Lys</td>
<td>Ala</td>
<td>Gly</td>
<td>Arg</td>
<td>Phe</td>
<td>Ser</td>
<td>His</td>
<td>Ala</td>
<td>Arg</td>
<td>Asn</td>
<td>Val</td>
<td>Ala</td>
<td>Ala</td>
<td>**225</td>
<td>230</td>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Phe</td>
<td>Trp</td>
<td>Thr</td>
<td>Ser</td>
<td>Phe</td>
<td>Tyr</td>
<td>His</td>
<td>Phe</td>
<td>Ser</td>
<td>Glu</td>
<td>Lys</td>
<td>Asp</td>
<td>Arg</td>
<td>Leu</td>
<td>**245</td>
<td>250</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Leu</td>
<td>Tyr</td>
<td>His</td>
<td>Ser</td>
<td>Gly</td>
<td>Arg</td>
<td>Ile</td>
<td>Cys</td>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Val Ala Trp Val Thr Gly Ala Thr Val Val Leu Ala Arg Lys Phe Ser
275 280 285
Thr Thr Ser Phe Trp Asp Glu Cys Arg Ala Asn Lys Val Thr Val Ile
290 295 300
Gln Tyr Ile Gly Glu Ile Cys Arg Tyr Leu Leu Asn Ala Pro Pro Ser
305 310 315 320
Pro Leu Asp Lys Thr His Thr Ile Arg Met Ala His Gly Asn Gly Met
325 330 335
Arg Pro Asp Val Trp Asn Arg Phe Arg Asp Arg Phe Gly Ile Pro Leu
340 345 350
Ile Gly Glu Trp Tyr Ala Ser Thr Gly Thr Gly Ile Leu Thr Asn
355 360 365
Tyr Asn Thr Gly Pro Asn Gly Ala Gly Ala Ile Gly Tyr Arg Gly Ser
370 375 380
Leu Ala Arg Thr Val Asp Lys Gly Leu Lys Ile Ala Lys Phe Asp Ile
385 390 395 400
Gln Thr Glu Glu Leu Ile Arg Asp Lys Asn Gly Arg Cys Ile Glu Cys
405 410 415
Val Ala Asp Glu Pro Gly Glu Leu Leu Thr Met Ile Asp Ser Ser Asp
420 425 430
Pro Thr Arg Ala Phe Glu Gly Tyr His Lys Asn Ala Gly Ala Asn Ser
435 440 445
Lys Val Val Val Glu Asp Ala Phe Ser Val Gly Asp Glu Tyr Phe Arg
450 455 460
Thr Gly Asp Ile Leu Arg Arg Asp Ala Asp Gly Tyr Phe Tyr Phe Gly
465 470 475 480
Asp Arg Val Gly Asp Thr Phe Arg Trp Lys Ser Glu Asn Val Ser Thr
485 490 495
 Ala Glu Val Ser Glu Val Leu Ser Ala Tyr Pro Asp Cys Ile Glu Val
500 505 510
Asn Val Tyr Gly Val Glu Val Pro Gly His Asp Gly Arg Ala Gly Met
515 520 525
 Ala Ala Ile Val Ser Lys Asp Thr Met Asn Trp Asp Ser Phe Ala Lys
530 535 540
Phe Ala Leu Lys Asn Leu Pro Lys Tyr Ser Val Pro Ile Phe Ile Arg
545 550 555 560
Lys Val Pro Glu Met Glu Ile Thr Gly Thr Phe Lys Gln Arg Lys Val
565 570 575
Glu Leu Val Asn Glu Gly Met Asp Pro Ser Lys Ile Lys Asp Glu Met
580 585 590
Leu Trp Leu Asp Gly His Ser Tyr Arg Pro Phe Lys Glu Ala Glu His
595 600 605
Thr Arg Val Val Ser Gly Lys Ala Arg Leu
610 615

<210> 3
<211> 1857
<212> DNA
<213> Mortierella alpina

<400> 3
atgagatgtg tcctctgcaat tgcgtgtgcg gccatcccccg cagccagatga tgcgggctcc 60
aagcctgcaa tcccccccgtga tgcagagta gcctaaagcc tagtcagtgc caagcagtgt 120
tacaggtctt acqagaacag cgactgatgc aatactcttc atcgattttga agaqacgtgt 180
aagaagcacc ctcatacgcca agcctttgttt tggagagcc aatacgtacac cttcagagcc 240
atccagcgg aatcgaatag gggtggcac ccagtcgatc tggcgtttgt ccctaaggagt caagcagaga 300
<210> 4
<211> 2066
<212> DNA
<223> Mortierella alpina

<400> 4

gagatctgtgt cgctttctcat gcacaaataag ccacagtcttc tctttctctg gccttgactc 360
aacaagatgc ggctcagcgg gcgatcctac caaacaagac tctcgggcca acctctgtaag 420
caaccttgcc gtacggcaac agcatccact cggattatag atggataac agataattgc ccacctcggagg 480
atatatatag gcgtctgtaga aggtccttag atgggatacg agataatcct ctacgagagg 540
tccgacgaac acgcctttgc tacaagagtgt gaaaccttcc aatctcggga tggcggcctgt 600
ccccagagct cgacggaagac aaactccagta aatgatattga ccttgtaagt tttcacaactct 660
ggcaggcgag gtttcgcacc cagttcgacgc tcctccctat gctcggcagga cggcctggca 720
cttttaacct cggcctttct ccaactctgca gaaagaagca gcctctgcatg ccctccgctg 780
ttttaccaaca gtagctggagc tggcctcttga aataggtttg gcctgcttga cggcctgcag 840
gtggctcctcg cgccgcagagtt ttcacactct ctcttcctgg agcaagtcag gcgcaacaca 900
gtacgccgtga tcacaggatatt gaggagaaat cctgcaagtct tactgcaact ctcttccttc 960
ccttggacca acaccaacagc gatccgaatg gcgcatgacc tggcctgtta 1020
tggaacagat gcacagttgc cctctgctac gcgcagaatgta tgcaagcact 1080
tgagggcacc qaatcttgcaac aacaataaac acaggaaccac atggcgcttg gcctgatagga 1140
tacagagctg ccctgaggca aacctgctgag aaggtctctg aagttcggaa gttgcacact 1200
cacaaggag ccatatttcq ccgcacaaat ggtcagtcgca ttgagttgtcg gtcagatgac 1260
cgccgcaagg cgtctcaaac gcgctcaactag atgctcagca cagttcgcatt ccaagggtagc 1320
cataaaatag cagggcagaaa cttccaaagaag gcacgcctcg aagtgcttccg atcggcctgc 1380
caatattttc gcctgctctgc cgacgacgctg atgcttatttc ctcttggctctg 1440
gactcgcttg gagatctctt ccgcctggaa atctgcaaatgc ggtggcctctc 1500
gaggtgccttg cagccatagc ggcctaacag ggttatcgcct ctacgcagcct 1560
ggacacgcgg ccgccccagag cgcttgcagcc atgggcctgc aagctgctodule gagctgggat 1620
gttcttcgca ctggagcact aaaaattcgc ccgaagagtct ctgctgcctg ttctccgccc 1680
aaggtcccactc gagatgagatg tccggagcag gcacgagcagc gaaatgtgctt gtttgagatg gcacctctc 1740
gaggccagag ccggagcacc gcacaaagaca gaaatctgctt ggttgagatg gcacctctcc 1800
cggccctctca aagaggcgga gcatactagag ctgctgcagcg gcacagcag caagttagc 1857
caaacogagq aacttaattcgc tgtacaaatat ggtctcgatcgc ttcaggtgtgtc cgcagatgag 1440
ccggcagagcg cttctagacaa gattgatcga agttgactcc aatcgctcctt ccaaggggtac 1500
catatataag caggtgcgaa ctcgaagaaa gctgctccagc agtcatctac gtttgtggcga 1560
cataatacttc gcacgcggctg gaagtgacctg atgctctgtc gcctggcgttg tccattttgg 1620
gatcgggttg gagatacatt ccgctgagaa ttggaacacgc ttgtaaaccgc gggaggttct 1680
gaagtcggcttg ccgatcataa cggagcctcag gcgaggtttgc tctagcctgc 1740
ggaacagcgg gcgagcgcagc atgtgctgctc atgtctccttca aagggagatg gactggttgg 1800
agttgtccca aagttggcact caaataaatc cccaagagatc cgtgctctttc tttctcgcc 1860
aaagtttccag cagatggtgat taaggcaagcc ttcaagcaac cgaaggtgta aatcgctgcag 1920
gagggcgatgg acgccagcaag gatcagaaag gaaatgtgtgt gtttggatag gcacccctac 1980
cggccctcca aagaggcgga gcatactaga gctgctcagcg gcacacgacg gctttgacga 2040
ataaaatatt ttcggttttgt cccggtgc 2066

<210> 5
<211> 2278
<212> DNA
<213> Mortierella alpina

<400> 5
atggatgctgt tccctgcaagtt tgtgctgtcgc gcacatcgcgc cagcagatgta tgtgcggctcc 60
aagttgctca aaccctgcgtga tgtgaagattga gcttaagggc tagtcaggtcgc caagctaggtt 120
tacaggtctct gcaagacaggt cagactgactc aataactcttt atcgttttta agaagacctgtt 180
aagagaccct ctcctgatcac gccttggagtc ttcgagggcc aatcgcgaac ctctccgaagcc 240
atccagggag gtcgaacaagac aacaaatgtg ccacaagttg acgagatgactgc ctcgaaattt 300
tttaactcaag ataaagctgtt gctaatacgac cacaatcctcc gctgattttca ctaaacccttg 360
actctggaagt tagaatctgcc taaagggtgaa cactctgcttg tgtcataaag ctcgagtgcgg 420
acgcatctct tagcgcgcacgc gcacagctcct ttgtgcaattt gcaacgtcggg aacacacgtt 480
cacatcctaa gcaagaccttg tgtgcataa ctctccgcct gcacacgactg cggagggcggc 540
tgacagccgc aacgctcattg tgcataaactc tcgagtcggg tcgctgaggtg cggcgacgccc 600
ttgcccagaga gtcgccagga gcaaaaacctc gcaaatgata ttcgccatgtt gatttacacc 720
tccggagacg cgctgtctgccc caaagttgag ctcctgcttgc atgctcagccc aacgggtgttg 780
attttataac cctccctccttc ccccccctttt ctctcctattt ttcgtgtgag aatccattctg 840
ttcacactcg aactctctctg atttccttagc cttcttcaca gtcggctgagc ctggctgccgc 900
acctttcttg acgtcttcttc accacttcag cagcgcagatgc gctgctcagtgc gcacgtccgctc 960
ttcttttttc aacactttcct caggtgctggt aactcattgag catgcgacgc aagctctggct 1020
tctttctcact cgaacgcatgt ctgtttctgtc gaaatagtgc ctgctgcttttc cggcgcttacg 1080
ggtggcttcgg ccgcaagatgt ctcttctcttc cttctgccgc ggacaggggc gcagcaacacga 1140
gtgcttccgtg ttccagatag tttggagatatt cttgcgcatac ttactgtgaag cttctccctg 1200
tcccttggac gacagtacaca cgagtcggctg gcgcagctgc gcacgctagtt gcctggctgatg 1260
atggaacagc tgtggagattc tgtgcaggatc ctctcccttc ggcagaaaat atgcaagactg 1320
tgaggccacc ggaaggcttg gccacatgctgc gttcggggtcc cctgggagcc 1380
atatcagaggc tccctgggccat gaaactgtgaa taaggctgtc gcaggagtca gatattggtttg 1440
ccaaacccagag cacattttttgc gttgacaaaaa cttgactgtcgc attgaggttaa agttgcaagt 1500
atattaatta gactttcttttc cagttgctcct gttttctgttc gtcacaaaaa tctgactactt 1560
gottgagccgc ctccataaggt cttgcttgagc gccggagcttg gcagccctgac aatgtgatttg 1620
tcagagcttc caacttctccgc tttcccaggg taccataaaat atgcagagtc gcacccctag 1680
aaagttgctgc aggggtgctttt gtaagttgatc ttcacacgctc agtctctgcc 1740
cagcagacttc gtagctgagc gcctgggcggc ctgctctgc acctagctgg cttctgctgagc 1800
caacaatatt cttgctgtcctc gcagagctgc gcctgacggt atgctctgact tctctcttttg 1860
cgagtgtggt ggtggacttt tcttgagagt cttcaataac gcacgcttttc 1920
taggggtctcc ttgagctgact cagagctggt gtcagctgact gcagctgttcag ctttaagtcg 1980
tggcaagctgg ccggccggagag cgcctcagtg gtttcgcttc aagagaagcc tgaacaggttg 2040
taatgggctcc caaatgcaccc gtaaaatatt gccgagagatgc tctggctgcc tttcctgccg 2100
cagtgcttgaga ttgagggacac gttcagcgct aacagaggttg aactctgttgaa 2160
caggaggaatg gaccogagca aqatcaaqag cqaatacttgat ggcaacctctt 2220
ccccgcccttc aagaggcgcag agctacatag atgctccagc gcacdacca gcgtttaa 2278

<210> 6
<211> 1926
<212> DNA
<213> Mortierella alpina

<400> 6
atggcaagta ccacatcatc aagcaatttg gcttgcttgcg cgttggtctcc catgcacgca 60
aagacattgca gcccttgggtc gacacagcgg acctgcaagc ttcacacagc ttggaggaga 120
aatgcaagata ccgaccttttc tcgggttgcagt ttggttttttag gacacagctc tacacaggg 180
 gagacatggaga ggctgggtcgc acacatttgtag ccaggttcag ccaaaccaaa 240
 aaaaaagggcac taattcttgagt tgcagcagag agtggcttgcg ttgaacagcagc 300
gggaattgttc atatatctttgc acaacagctcc caccgtgcttgc aatccgttaa 360
ggttcattc ctcgggattc acaacatccct tgcagcagcct ctgggaggtac 420
ctggtctccacc aaaaagctggg ccttacagttg tggccttacagct ctgcacatctc 480
aactacgagc ataaggttccg agctcaacttc taacccaaacat ccgggactgcgcgc 540
ggtggttcatg tggctttgtgc ttttttttag taatgcgatc gggcaacatg ctagacccga 600
 ggttctctgg aacagagtgc agaagagcctc tcgggacagcc gctggctggtac 660
accagccggca ccacgagctg cccaaagggct ccagctgtatg gacagttcagc ttgcaacatt 720
ggcctcattc cttaactgtc acaacagctcc gatcggagcgctg cggacagctt gacacggga 780
tgggctgctc ttcactgtcct ccggacagcct atcggagcgcg ggcggactgga 840
tgacaccttg ctgggctcgc catttcacag cggatgactc atgacattgaa gcgttctgta 900
tgacagcttt cgtgactgac cggatagacag cggagatctc gacacccgcc 960
gaaagctggcct gttgagccact acatcattgct gcacacctca gatgctctctaacctt 960
atgggatccag ggctgggtcgc ccagctgtatg gacagttcagc ttgcaacatt 1020
 ggttctctgg aacagagtgc agaagagcctc tcgggacagcc gctggctggtac 1080
accagccggca ccacgagctg cccaaagggct ccagctgtatg gacagttcagc ttgcaacatt 1140
ggcctcattc cttaactgtc acaacagctcc gatcggagcgcg ggcggactgga 1200
gatcttttaca cggagaggct cttccgctgag aagaaagctggc caatggcttt 1260
tggactgtaa cgtgtcagctg gcacacccgcc acagctgtatg gacagttcagc ttgcaacatt 1320
 ggttctctgg aacagagtgc agaagagcctc tcgggacagcc gctggctggtac 1380
accagccggca ccacgagctg cccaaagggct ccagctgtatg gacagttcagc ttgcaacatt 1440
ggcctcattc cttaactgtc acaacagctcc gatcggagcgcg ggcggactgga 1500
 gggacagcttc cgtgtcagctg gcacacccgcc acagctgtatg gacagttcagc ttgcaacatt 1560
accagccggca ccacgagctg cccaaagggct ccagctgtatg gacagttcagc ttgcaacatt 1620
ggcctcattc cttaactgtc acaacagctcc gatcggagcgcg ggcggactgga 1680
tggactgtaa cgtgtcagctg gcacacccgcc acagctgtatg gacagttcagc ttgcaacatt 1740
 gggacagcttc cgtgtcagctg gcacacccgcc acagctgtatg gacagttcagc ttgcaacatt 1800
accagccggca ccacgagctg cccaaagggct ccagctgtatg gacagttcagc ttgcaacatt 1860
ggcctcattc cttaactgtc acaacagctcc gatcggagcgcg ggcggactgga 1920
gggacagcttc cgtgtcagctg gcacacccgcc acagctgtatg gacagttcagc ttgcaacatt 1980

<210> 7
<211> 642
<212> FRT
<213> Mortierella alpina

<400> 7
Met Ala Ser Thr Lys Ser Leu Arg Thr Thr Arg Leu Phe Ala Leu Val Val
1 5 10 15
Ser Met His Ala Lys Asp Leu Arg Pro Thr Ser Arg Ile Gly Thr Ala
20 25 30
Val Phe Thr Thr Gly Ser Arg Asn Asn Ala Arg Ser Gly Leu Ser Leu
35 40 45

48
<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>Trp</td>
<td>Arg</td>
</tr>
<tr>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>Asn</td>
<td>Asn</td>
</tr>
<tr>
<td>Asp</td>
<td>Ala</td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Glu</td>
<td>Trp</td>
</tr>
<tr>
<td>Glu</td>
<td>Val</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td>His</td>
<td>Phe</td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>Met</td>
</tr>
<tr>
<td>Pro</td>
<td>Ile</td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td>Asn</td>
<td>Lys</td>
</tr>
<tr>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>Tyr</td>
<td>Phe</td>
</tr>
<tr>
<td>Phe</td>
<td>Ala</td>
</tr>
</tbody>
</table>
Ser Thr Ala Glu Ile Ala Asp Thr Ile Gly Arg Val Glu Gly Val Ala
500 505 510
Ser Cys Thr Val Tyr Gly Val Ser Val Pro Gly Met Asp Gly Arg Ala
515 520 525
Gly Met Ala Ala Leu Val Leu Lys Asn Ser Ile Val Glu Met Ala Gly
530 535 540
Gly Ser Glu Ala Lys Phe His Val Asp Glu Ala Ala Leu Asn Ala Phe
545 550 555 560
Leu Arg Asp Leu Ser Lys Asp Val Val Lys Lys Leu Pro Ala Tyr Ala
565 570 575
Ile Pro Arg Phe Leu Arg Ile Ala Glu Glu Leu Glu Thr Thr Gly
580 585 590
Thr Phe Lys Asn Lys Lys Val Glu Leu Lys Gly Gly Phe Asp Leu
595 600 605
Gly Lys Val Lys Glu Arg Leu Tyr Trp Trp Thr Pro Lys Gly Glu Tyr
610 615 620
Ala Pro Phe Gly Val Ala Glu Asn Glu Glu Asn Gly Leu Arg Ala
625 630 635 640
Arg Leu

<210> 8
<211> 1929
<212> DNA
<213> Mortierella alpina

<400> 8
atggcaagtga ccaaatcact aaggacttgg cgttggctcg cgttggtctc catgcacgcc
60
aaagacttga ggcttgggttc gagaatacggg acctgacgtct ttacaaacag ttccaggaac
120
aatgccagat cctgttgcct tttctggccc ggtgagcttg acagcagctc tacatcagga
180
gaagcttgga gtctggtctcc aacaggttgg cccatgtgtg tgcgcctcaaa ggaactcaca
240
aaagaggcc gccagctgcc acatcgtct ggtatacgct gcgcctctct ggcgttgctgct
300
gcgcttcca agaatacggt ttgatatcgct ttacatcagta aacagcattg agggcctgtt
360
cctgtctat ccattttaagc gtgtctgctc ggtgcagcccagtctgaatcattg cagatgctgca
420
ccattctcga caagagactg tcagagaggtg tggatctcccg acccgcacag cttgatttac
480
accacccgga cccagcagatt ccagacgcgt ctgctacatag ccgggatttg aagttcatctg
540
gctgcgtact ttaattgccc ttatacgccag aagccaggtt ttccatatcaaca
600
tccgccatct atcattgcgc ggagctgctt atgggtcgct ggcacgccg ccacgccgcca
660
tgacccatag tcgctgagcc agaatcctccg tgaccgactata aggctgcgcc gcgctcctgc
720
gaaagcctcc tcgctccaaag gataaaggtg tggatgctctc ttcgccgcaaa gagttcttggc
780
gatgttgggg caaagtttcca ggaagacttcact atatcctcaat ataagaaggatatg gattacccca
840
gtgcgtactt cctcagctgcgg tggagggcttt ctttgctgccctgg gattaggtgg tggcttttgg
900
gacctgcag tcagggactc cgcggcggttg cacactcccg cgcgtcacag ccacagtcc
960
gagaactccac tcgcagaggg ttggtctctc ggaggtgtct gttgagctggg ccacggcaag gtcagcgc
1020

gatgttgggg caaagtttcca ggaagacttcact atatcctcaat ataagaaggatatg gattacccca
1080
tagacgtcag gcggacggct gctgcgagtcg aagctgcgagg tggagttgcgc gcaccgccgg cgcagctc
1140
tgctgctcgg gcctggtcttc ggcgcagagt aacgctgctgc tggcaacag gttggtgcgc
1200
gacttgcag gcggaggttc tggagagtgctg cgcgttgtgc gcaccgccgg cgcagctc
1260
tcggggcttt gcattgcaaa gcgcgcggtt ggcctgactag aagctgcgagg tggagttgcgc gcaccgccgg
1320
gctgggtatt tgcgctgcag tcgagtcgttg aagccagcgtc tggagttgcgc gcaccgccgg cgcagctc
1380
aagagcagcag ttgctgcagtc gcgcgcggtt ggcctgactag aagctgcgagg tggagttgcgc gcaccgccgg
1440
ttgctgcagtc gcgcgcggtt ggcctgactag aagctgcgagg tggagttgcgc gcaccgccgg cgcagctc
1500
attgacgacag gacgagttgc gcgcgcggtt ggcctgactag aagctgcgagg tggagttgcgc gcaccgccgg
1560
gtccggcagc gggagtggtgc gcgcgcggtt ggcctgactag aagctgcgagg tggagttgcgc gcaccgccgg
1620
caagagcagcag tgcgctgcagtc gcgcgcggtt ggcctgactag aagctgcgagg tggagttgcgc gcaccgccgg
1680
ttcggtggatt tgcgctgcag tcgagtcgttg aagccagcgtc tggagttgcgc gcaccgccgg cgcagctc
1740
ctggccttcgc cgcgcggtt ggcctgactag aagctgcgagg tggagttgcgc gcaccgccgg cgcagctc
1800
<210> 9
<211> 2135
<212> DNA
<213> Mortierella alpina

<400> 9
atcgcctcatt gcccagtcgc tcaagtcggt gatcggcgtc ctgctggctt 180
actcctcttt gcccagtcgc tcaagtcggt gatcggcgtc ctgctggctt 1920
ctgctgtaag ttctctcttt gcccagtcgc tcaagtcggt gatcggcgtc 1929

<210> 10
<211> 3041
<212> DNA
<213> Mortierella alpina

<220> misc_feature
<210> 11
<211> 1650
<212> DNA
<213> Mortierella alpina

<400> 11
atggaagacgg atgtctttac catcgctttg accatcgcca tcgcccactg gtctggctttg 60
gtcaaatcga acgaaaagaq gcctgacctg catcgctcc tcgtcgggca gcacattgct 120
gtcaggacac cttgaaagcg gggcgccgca tgcgggcatg gtgtctgcag cgttgggcat 180
gggacagtgg tgcgaagcgg cccagagcag aaataaaga atctgcacga tgcgggtcag 240
actctctagt ccgctgactcg cagcaggacc cagctgcttg tttgtgctgg cagcttccat 300
gcgttgaacg acatccaagt tgaacagtcc atgtggctttg actgagacg 360
tcgctgaagc caacagcact tcgggcaagt tggggtcttg caggatacag 420
tactaattcg agatgtcttg gttgtcaagcag gcatctctag gtatacgacttg gttgtgcgtc 480
cccatctcatg atcttggagaa caacagcact tcgggctattg tagttagacca gacgaacgct 540
aagggcatca taattctcaca aaaggtgcttg tcctctatgc tgcactccttt ctgcaggctg 600
cacacacctc aqacaatctat cattgcagaga atctcagact acacagtgagc gatggaatgg 660
gcagcagcgc atggagtggga acgcgctcaggt cggaccttgct gggatcctcg 720
actctctcttg gcctcctcctg gggcttggtt gcctggtctcg cctgatcagcct cctgtctctc 780
aagtcttcttg gcctccctcag aagggctagt ttcctccagt cccacactgt cgcggcgaggt 840
actgcttctcc cgggagctact ccgggcaaga aagggctatttt atctctcctag tgcgttcatg 900
tctcatctttt ccacactgagat gttctccctct gttctctcttg cggagccctag catctccttg 960
ggaggtgttcg tgtgctttctg atctgggttgg atgagaagagtt ttttctattgattgc 1020
tctgcagcac gatctctacag aagcagcaccc atctctcttg aagatcctcatc cgaaggacctt 1080
cagtctgcaggt atggcagacgg ctctctctcg gggcttggtt cggaccttta atggccata 1140
cctcaagctg gcacaatctat ttcacaagag atctggtgact gggagggagtc 1200
cgcagcacccc cggagtctcaggt cgttcgctca ttcacaagag atggcagacggct 1260
agctggatt atacatagag cggagtgggtc atctgcacgtc tgcagaagag atggccata 1320
gagaggtgcag gatctgtgctg atggcagacgg cagctgccatg atcctgctagc acctactatt 1380
ggcagcagcgg tgggctgtaa gcgagtagtct atctggtgctca cgggtcttctag 1440
agctggactag cgcaccccgag cgcagtctgtg ccgcagcagc gggtcttctag 1500
ggcctcattgc ttcgcttccag cgcagcagcgg cggagtcatgc cgggtctttcg 1560
tcaggctacg ggcgcttcag cagcactgagat gttctccctct cgaagagagtc 1620
agacagcgag ctggcgagat ctgcacgctcgt 1650

<210> 12
<211> 550
<212> PRT
<213> Mortierella alpina

<400> 12
Met Glu Thr Asp Ala Leu Thr Ile Ala Leu Thr Ile Ala Ile Ala Ile
1 5 10 15
Val Leu Ala Leu Val Lys Phe Asn Glu Lys Glu Pro Asp Leu His Pro
20 25 30
Leu Leu Leu Gly Gln Gln Ser Ser Val Thr Pro Ile Arg Asn Glu Gly
35 40 45
Glu Ser Val Ile His Arg Ser Lys Thr Val Pro His Gly Thr Leu Leu
50 55 60
Thr Lys Arg Pro Ser Glu Lys Ile Lys Thr Leu His Asp Val Trp Gln
65 70 75 80
Thr Gly Ala Ala Val Asn Pro Ala Gly Arg Ser Leu Met Phe Met Leu
85 90 95
Gln Asn Gln Phe Ala Phe Ile Glu Ala Thr Tyr Glu Glu Val Asn Arg
100 105 110

53
Arg Ile Gly Gly Phe Gly Thr Gly Phe Val Lys Ala Thr Gly Leu Lys
115 120 125
Pro Lys Thr Asp Thr Pro Val Gly Ile Phe Met Pro Tyr Ser Gln Glu
130 135 140
Ser Phe Val Ala Gln Gln Ala Phe Tyr Arg Tyr Ser Phe Val Ala Val
145 150 155 160
Pro Ile His Asp Leu Arg Asn Asp Leu Leu Val Glu Val Val Asp
165 170 175
Gln Thr Lys Leu Lys Ala Ile Ile Ser Gln Val Leu Leu Pro Leu
180 185 190
Leu Leu Gln Ser Leu Leu Glu Cys Pro Thr Ile Lys Thr Ile Ile Met
195 200 205
Ala Gly Ile Tyr Ile Ser Glu Gln Glu Leu Met Ala Ala Gln His
210 215 220
Gly Val Lys Leu Leu Lys Phe Ala Ala Val Glu Tyr Glu Gly Ser Ser
225 230 235 240
Thr Leu Met Glu Pro Val Gln Pro Asp Pro Glu Asp Val Ala Met Ile
245 250 255
Asn Tyr Asn Thr Lys Ser Ser Ser Leu Ser Leu Gly Val Met Leu Thr
260 265 270
His Ala Asn Leu Ile Ala Ala Met Thr Ala Phe Thr Glu Ser Leu Pro
275 280 285
Ala Lys Arg Phe Ser Ser Lys Asp Arg Leu Leu Ser His Phe Ser
290 295 300
Asn Gly Asp Val Ile Ser Val Phe Met Ser Ser Ala Ile Ile Leu Met
305 310 315 320
Gly Gly Ser Leu Val Phe Pro Ser Gly Leu Met Lys Asn Val Leu His
325 330 335
Asp Ser Gln Ala Ser Ala Pro Thr Ile Phe Ala Ser Thr Pro Ile Ile
340 345 350
Leu Glu Lys Ile His Glu Ala Leu Gln Leu Thr Tyr Gly Glu Gly Ser
355 360 365
Met Phe Arg Arg Gly Phe Ala Ala Lys Leu Ala Ile Leu Gln Ala Gly
370 375 380
Arg Ile Thr Thr Thr Ser Leu Trp Asp Leu Ile Gly Leu Gly Glu Val
385 390 395 400
Arg Ser Leu Gly Gly Lys Val Arg Met Val Val Thr Thr His Pro
405 410
Thr Lys Pro Glu Thr Leu Asp Tyr Ile Arg Ala Ala Met Gly Ile His
420 425 430
Val Ile Thr Thr Tyr Gly Arg Thr Glu Thr Ser Gly Ile Val Thr Ala
435 440 445
Arg Asn Met Leu Asp Tyr Ala Asn Ala Pro His Leu Gly Pro Pro Val
450 455 460
Gly Cys Asn Glu Val Lys Leu Val Asp Val Ala Ala Gly Phe Thr
465 470 475 480
Ser Ala Asp Glu Pro Asn Pro Arg Gly Glu Ile Leu Ile Arg Gly Pro
485 490
Asn Val Met Lys Gly Tyr Tyr Lys Lys Pro Gly Ala Thr Ser Thr Ala
500 505 510
Ile Asp Glu Gly Gly Trp Phe His Ser Gly Glu Leu Gly Thr Phe His
515 520 525
Ser Asn Gly Thr Leu Asp Val Leu Gly Lys Lys Thr Lys Ser
530 535
Ala Val Gly Ser Pro Ser
545 550

54
<210> 13
<211> 1653
<212> DNA
<213> Mortierella alpina

<400> 13
atggaacacgg atgctctttac catcgccttg accactgcacca tcggcactgct gctggctttg 60
gcataatcga acgaaaaaga gctggaacctt catcgcctcc tgtcgggcca gcaatcgctt 120
gtcagcctcc ttggagaacc gcggcagctgc tttatcctata gatccaaagat gttgccaccc 180
ggagctcatgc tgtacggccgc ctggagaggg gaaatacaagag gctgcgtgca gttcgtcggcc 240
actggaagcag catccgcaacca acgcggctcag aaggtgtactt tttatacagca gaaacaattt 300
agaattaagag aacaagaggt caagagctctg gaggagggcc cggagcagc 360
ttgaggaagg aacaagaggt caagagctctg gaggagggcc cggagcagc 420
tacctctcaaa aagcggtacag gcattcacat gatcaagcatt gttgtgctgtg 480
caggttagga atcgtgcccc ctaaccgttct gttgtgctgtg 540
aacgcataca aggagtcttc aagaagtgct cctatattgc gcatacctttg gaaatacaagtg 600
ccaccgtctt catccttctcc ctaaccgttct gttgtgctgtg 660
ccagcagctc aacgtgactaattttc gggaggccccat ggaataatggc gaaatacaac 720
agtctgctgct tgaactgcctt gggaggccccat ggaataatggc gaaatacaac 780
aagtctgctt gggaggccccat ggaataatggc gaaatacaac 840
actcgcctcaag aggcggtcat tcgctcgtctt gggaggccccat ggaataatggc gaaatacaac 900
tctccctttt ctaaccgactc tgtcttctcc gggaggccccat ggaataatggc gaaatacaac 960
gggaggccccat gggaggccccat ggaataatggc gaaatacaac 1020
ttcacccttgc aaccagccactc atcattttgc gggaggccccat ggaataatggc gaaatacaac 1080
caagctcagtgt cttgctcgtctt gggaggccccat ggaataatggc gaaatacaac 1140
ctctctacgtctc ggttgggttaa agggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1200
ctcccttacttgt gcgcgcgcgccccat ggaataatggc gaaatacaac 1260
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1320
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1380
tcagctgctgctt gggaggccccat ggaataatggc gaaatacaac 1440
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1500
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1560
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1620
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1680
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1740

caggtgactgctt gggaggccccat ggaataatggc gaaatacaac 1800
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1860
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1920
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 1980
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2040
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2100
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2160
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2220
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2280
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2340
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2400
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2460
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2520
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2580
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2640
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2700
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2760
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2820
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2880
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 2940
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3000
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3060
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3120
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3180
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3240
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3300
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3360
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3420
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3480
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3540
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3600
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3660
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3720
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3780
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3840
agggagagac aagggagagac atcattttgc gggaggccccat ggaataatggc gaaatacaac 3900
<210> 15
<211> 2391
<212> DNA
<213> Mortierella alpina

<400> 15
atggaacagg agtcgtttac cactgccttg accctcgccca tcggcactgt gcgtgctttg 60
gccaataaca acgaaaaaga gctcggacct ctacgcctcct tgtcccggca gcaatcgtctct 120
gtacgacggt tcggagccgc ggcgcgcggg gccgaagctt gttattacc aatccacagctg 180
gggacctgct cgggagcgag aaaaactaaga aatccacagct tgtgcggcag cgggacacagc 240
acctggtact gcgtcgtccg cgtgcggcttgt tggagttcct cggcggcggt gggagcagctg 300
gcgctcatt gcgtgctgtg gcgtcggcttgt tggagttcct cggcggcggt gggagcagctg 360
cgcaggtgtc acctctggtg gattccattg cctttcctgg ggtgggtctg gggagcagctg 420
gattcgttag cctttcctgg ggtgggtctg gggagcagctg 480
ttcattggtt ccaagcagcc agttgccgtg gacgatcagt ggtttgccga 540
aaggcaacac ggcgctagcc cggccagtcg cggcggctagt ggtttgccga 600
cagtctgtg cgggctagcc cggccagtcg cggcggctagt ggtttgccga 660
gagccagggt tttgtcctct cgcgcgctct tttgtcctct gttgacgcgg cggcgcgggt 720
gtgacgtata ctttctggct tttgcctgtct tttgcctgtct gttgacgcgg cggcgcgggt 780
cgggctggtg gattccattt ctcggagctc gctttcctgg ggtgggtctg 840
cggacttctt gttgacgcgg cctttcctgg ggtgggtctg gggagcagctg 900
aatccactac tccagcggag acgtcggaaat gcggatccac gttggtttaa agctgctctaa 960
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1020
tttgacgctc gattacgctc tccagcggag acgtcggaaat gcggatccac gttggtttaa 1080
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1140
tttgacgctc gattacgctc tccagcggag acgtcggaaat gcggatccac gttggtttaa 1200
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1260
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1320
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1380
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1440
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1500
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1560
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1620
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1680
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1740
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1800
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1860
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1920
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 1980
atgccccgca gttggtttaa ggtgggtctg gggagcagctg 2040
cttttgacgc aatgtgcagct tggctttaca aagcgcagcag aggcgacggca acagcagcagq 2100
gtaaggaggt ctattctcctc tgtgctctcat ggccgctatgg aaagctctaa atcttggtgat 2160
tctactctcag cacagttattt tatattgaca acaaatattt gtgcctcagat ccctattccga 2220
gggcccaaatcg tgcctgaagg ttcattcaacag ctgctcagctc ccctttacttgc 2280
gaggaagagct ggtctcagtc aagggagcagc gcaccaagctt acctttaagct cacttttagac 2340
gtgtttgcca agaagaagag cagcaagtctg cgagcgttgc tccagctgctc aacagcctgtg 2391

<210> 16
<211> 2064
<212> DNA
<213> Mortierella alpina

<400> 16
atgtccctcgc accagaagcgc ccagctcgtg gacgctcagc gcaccgctgga accagcagcag 60
atccgcatct atccgctcagcg aatgctcctc tgccgctcctc acccaggcccag 120
cgcactcatca agaagttctcg gtgcctcctcg ccggccagag ggctgctcactt 180
gcaccgcttg ttgacgttcg aatgctctctg ccgccgcttcg ggtgccgcttcg 240
cacaggttgac ccacgctcgtg cagcaagctg cagcctgcctg ggttgccgcttcg 300
cataagggcg ttccattgctc tgccacccgg ggcggcagttg gtgtggtgggt aatcctttggcc 360
atcaccgctac ccagctctcg ccagctctcg ccggcgttctgc cggctcctcctgctcctccttcg 420
gtgccgctcct gccctgctctg gtgcctcctcg ccggccagag ggctgctcactt 480
gggccctcgct aatgctctctg ccgccgcttcg ggtgccgcttcg 540
atccgctcctc ccacgctcgtg gacgctcagc gcaccgctgga accagcagcag 600
acacccaccc tatggtgctct gcacgctcgtg cagcctgcctg ggttgccgcttcg 660
tttttgctag aatgctctctg ccgccgcttcg ggtgccgcttcg 720
acacccaccc ataggtgctct gcacgctcgtg cagcctgcctg ggttgccgcttcg 780
cttctgctcg ccagctctcg ccagctctcg ccggcgttctgc cggctcctcctgctcctccttcg 840
gtgccgctcct gccctgctctg gtgcctcctcg ccggccagag ggctgctcactt 900
atccgctcctc ccacgctcgtg gacgctcagc gcaccgctgga accagcagcag 960
cagaccctct gccctgctctg gtgcctcctcg ccggccagag ggctgctcactt 1020
tgttagccgg gcctgctctg gtgcctcctcg ccggccagag ggctgctcactt 1080
gcaccgctcct gcaccgctcct gcaccgctcct gcaccgctcct gcaccgctcct gcaccgctcct 1140
cacacccact catgctggacgc atctcctctc ccagctttggc ctgagctgctc gcgggacgcaat 1200
gtgactcctct ggctgctctc ctgctccgctg atctcctggc atctgctgctct 1260
gtcctctcct ctcgctcagc tggctcctcg atgcctctctg ggtgccgcttcg 1320
acacccaccc ataggtgctct gcacgctcgtg cagcctgcctg ggttgccgcttcg 1380
agatcctttgg ccagctctcg ccagctctcg ccggcgttctgc cggctcctcctgctcctccttcg 1440
gtggccctcg cccctgctctg gtgcctcctcg ccggccagag ggctgctcactt 1500
agacccaccc gcgcagctct gcgcagctct gcgcagctct gcgcagctct gcgcagctct 1560
agagccagcg gcgcagctct gcgcagctct gcgcagctct gcgcagctct gcgcagctct 1620
gggacaccc ataggtgctct gcacgctcgtg cagcctgcctg ggttgccgcttcg 1680
ccacccaccc ataggtgctct gcacgctcgtg cagcctgcctg ggttgccgcttcg 1740
gtcctctgcg ccctccagct ccctctctct gcgcagctct gcgcagctct gcgcagctct 1800
agagccagcg gcgcagctct gcgcagctct gcgcagctct gcgcagctct gcgcagctct 1860
ccacccaccc ataggtgctct gcacgctcgtg cagcctgcctg ggttgccgcttcg 1920
atcctcgctg aatgctctcg ccgcagctct gcgcagctct gcgcagctct gcgcagctct 1980
atccagccac ccctgctctc ccgagctcgc ccgcagctct gcgcagctct gcgcagctct 2040
atcctcctcg ccctcagctct gcgcagctct gcgcagctct gcgcagctct gcgcagctct 2064
<400> 17
Met Ser Leu Asp Gln Asn Ala Gln Ser Val Glu Leu Pro Gly Thr Arg
1 5 10 15
Gln Pro Gly Gln Thr Gly Ile Tyr Arg Arg Lys Gly Phe Glu Asn Ala
20 25 30
Leu Leu Ala Val Pro Pro Ser Arg Pro His Ile Lys Thr Ile Tyr Asp
35 40 45
 Ala Phe Gln His Gly Leu Lys Leu Asn Pro Asn Gly Ala Ala Leu Gly
50 55 60
Ser Arg Val Tyr Asp Pro Val Thr Asp Thr Phe Gly Gly Tyr Val Trp
65 70 75 80
Gln Thr Tyr Ala Gln Val Asn Asp Arg Ile Thr Arg Phe Gly Ser Gly
85 90 95
Leu Val Lys Ile His Lys Asp Val His Gly Leu Ala Thr Val Gly Gin
100 105 110
Lys Trp Ser Leu Gly Ile Trp Ala Ile Asn Arg Pro Glu Trp Thr Ile
115 120 125
 Ala Ser Glu Ala Cys Ser Ala Tyr Asn Leu Val Ser Val Gly Leu Tyr
130 135 140
Asp Thr Leu Gly Pro Glu Ala Val Thr Tyr Gly Ile Asn His Ala Glu
145 150 155 160
Cys Ser Ile Val Thr Ser Val Asp His Ile Ala Thr Leu Leu Asn
165 170 175
Glu Ser Ser Lys Met Pro Gly Leu Lys Ile Ile Ile Ser Met Asp Asp
180 185 190
Leu Asp Thr Gly Arg Ala Gly Pro Gly Leu Ala Pro Thr Gly Thr Ile
195 200 205
Leu Arg Thr Tyr Ala Gln Asp Lys Gly Val Leu Leu Tyr Asp Trp Ser
210 215 220
Glu Val Glu Ala Val Gly Ile Gln His Gly Arg Lys His Thr Pro Pro
225 230 235 240
Thr Ser Ser Asp Ala Tyr Thr Ile Cys Tyr Thr Ser Gly Thr Thr Gly
245 250 255
Leu Pro Lys Gly Ala Ile Thr His Gly Asn Leu Ile Ala Leu Leu
260 265 270
Ala Ser Ser Asp Val Ala Thr Pro Val Leu Ala Asp Asp Cys Leu Ile
275 280 285
Ser Phe Leu Pro Leu Pro His Val Phe Gly Arg Val Met Glu Leu Phe
290 295 300
Ala Met Ala Ala Gly Gly Lys Ile Gly Tyr Ser Thr Gly Asp Pro Leu
305 310 315 320
Arg Leu Leu Glu Asp Val Ser His Leu Lys Pro Ser Ile Phe Pro Ala
325 330 335
Val Pro Arg Leu Leu Asn Arg Val Tyr Ala Lys Val Tyr Ala Leu Thr
340 345 350
Val Gly Ala Pro Gly Leu Thr Gly Ala Leu Ala Arg Arg Gly Leu Ala
355 360 365
Thr Lys Leu Thr Asn Leu Arg Glu Gly Lys Gly Phe His His Pro Leu
370 375 380
Trp Asp Arg Ile Leu Phe Ser Lys Val Lys Gin Ala Leu Gly Gly Asn
385 390 395 400
Val Arg Leu Met Leu Thr Ala Ser Ala Pro Ile Ser Ala Glu Ile Leu
405 410 415
Glu Phe Val Arg Val Ala Phe Cys Cys Glu Val Val Glu Ala Tyr Gly
420 425 430
Gln Thr Glu Gly Gly Gly Ala Ala Thr Asn Thr Val Ile Gly Glu Thr
435 440 445
58
Glu Ala Gly His Val Gly Pro Pro Gln Ala Cys Cys Glu Ile Lys Leu
450 455 460
Val Asp Val Pro Glu Leu Asn Tyr Phe Ala Thr Asp Lys Pro Phe Pro
465 470 475 480
Arg Gly Glu Ile Cys Val Arg Gly Pro Gly Val Ile Pro Gly Tyr Leu
485 490 495
Lys Asp Glu Ala Lys Thr Lys Glu Thr Ile Asp Glu Glu Gly Trp Leu
500 505 510
His Ser Gly Asp Ile Ala Ile Met Ser Gly Lys Gly Thr Val Thr Ile
520 525
Ile Asp Arg Lys Asn Val Phe Lys Leu Ser Glu Gly Glu Tyr Ile
530 535 540
Ala Ala Glu Asn Ile Gly Arg Phe Leu Ser Lys Val Pro Phe Ile
545 550 555 560
Gln Gln Ile Leu Val His Gly Asp Ser Thr Glu Ser Cys Leu Val Ala
565 570 575
Ile Leu Ile Pro Glu Pro Glu Ala Phe Ile Pro Phe Val Asn Lys Val
580 585 590
Leu Glu Asn Val Asn Leu Gln Pro Gly Asp Leu Ala Ala Tyr Arg Lys
595 600 605
Ile Val Asn Asn Pro Lys Leu Arg Gln Ala Val Leu Lys Glu Leu Ile
610 615 620
Lys Ala Gly Lys Asp Ala Gly Leu Lys Gly Phe Glu Ile Pro Lys Ala
625 630 635 640
Ile Leu Leu Leu Glu Ser Glu Ala Phe Thr Val Glu Asp Lys Met Thr
645 650 655
Pro Thr Phe Lys Ile Lys Arg His Pro Val Val Gln Ala Tyr Arg Glu
660 665 670
Gln Leu Thr Ala Leu Tyr Asn Glu Ile Glu His Lys Glu Ser Leu
675 680 685

<210> 18
<211> 2067
<212> DNA
<213> Mortierella alpina

<400> 18
atgtccacag cccagaacgc ccaatgtaatt gagctcccaag gaccgctcgcg accaggcgca
60
acagccatct atgcccgcga aaggcttcag aatgctcttc tcggctccgc accagcagca
120
cgccacatca agagcactca ctagcttctc cacaagctcg tgaagctttaa tcggctccga
180
gcgtccctgg gcaccgccag tgtacgacccg tgtacgacccg accttggagc acatgttggc
240
cagacgttag cacaggtaaa cctagcctagc actgtgatt gcacattcag gctcatttga
300
cataagggcc tccagttttc cggccactgt gcgcaagagc ggtgcttctc aatgcttggc
360
atcaacgacc ccagtggtag cagctgctcc gaggcttgtg cgccctcaca cctgttttcc
420
gtgtagcatttt cagacttttt gcgaccgcag gctgtgttttt actggattaa tcaacgtgag
480
tcgccacttt gtcgtaaacc tgtgtgttcct atcggcaacgc tcggctacca acatcatttt
540
atcgcctgggc tccaaatcat cagacgaagt gatggactcg atactggagc acagcgccca
600
ggagtccctc cccacgctcgac cccactcaca gctttggttg cggccacaaa ggtctacttt
660
tatgattttg ctcgagggta agcgcctcggt attcaagtct cgaagacaag caacccaaaa
720
acccctccgg accagatatct gatgtgtctat aacagcggga caacagcttt gccaaagagc
780
gcatttggg ccatggcagaa cttgatgcgg cttttggtcct ccaagtgtat gcggccacca
840
tcgctggtgc agacggtctg catggctcctct ttcgccctcgct ctcagcggctc tctgctgagtgc
900
atcggagctct tcggcatgag gcgcagggag cagagtgtgttt cagacagcgg gcaccccttg
960
cgtctcttttat ggcaggtctgc gcaccaaatg ccccactctc tccccctctgc gcgccagctc
1020
cctgaccgcc ctgtatgcga gcaggtgtgc gcacacacgg gcacccgctgc gcaccccgctg
1080
gcacccgctgc gcacccgagtt gcacccgggc ctcaccaaat tggagaggg caagagtctc
1140
<210> 20
<211> 2801
<212> DNA
<213> Mortierella alpina

<400> 20

atgtcctctcg accagaagcgc ccagctccggt tactgtcctag gagctccctcagt gacgcgggcc gacacggccag 60
cagtgtaacca ggcgagacgt ccggttcctcac ccgacagag gataacattac cagccggttgctg ctcgggcacc 120
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 180
cctctggttca gggcgtcctcgc gacacaaaag caagccaggc cgaactaactct atttatttatg ccggtctctct 240
acccctggtcg acctgctctgg accggtgaggagt gatggctggtc cggctggtgtc cggcactgacct cggctggtgtc 300
acccctggtcg gatggctggtc cggctggtgtc cggcactgacct cggctggtgtc cggcactgacct cggctggtgtc 360
acccctggtcg gatggctggtc cggctggtgtc cggcactgacct cggctggtgtc cggcactgacct cggctggtgtc 420
acccctggtcg gatggctggtc cggctggtgtc cggcactgacct cggctggtgtc cggcactgacct cggctggtgtc 480
acccctggtcg gatggctggtc cggctggtgtc cggcactgacct cggctggtgtc cggcactgacct cggctggtgtc 540
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 600
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 660
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 720
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 780
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgcacctgtaaagcttgattctctgaggatc 840
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgcacctgtaaagcttgattctctgaggatc 900
tggaacatgagg ggcagctccttg cctctggttca cttgggtatgcacctgtaaagcttgattctctgaggatc 960
atggtggttta tgcacataata cagcagcttg aagcttttgc aagcttttgc aagcttttgc aagcttttgc aagcttttgc 1020
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1080
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1140
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1200
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1260
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1320
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1380
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1440
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1500
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1560
cctctggttca cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1620
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1680
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1740
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1800
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1860
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1920
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 1980
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2040
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2100
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2160
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2220
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2280
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2340
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2400
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2460
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2520
acacgcatgtg tgtacggttaa cttgggtatgc acctgttaacg aggacctgcag ggcgctctgctcg 2580
<210> 21
<211> 1977
<212> DNA
<213> Mortierella alpina

<400> 21
atgacccacc aattgtactc catcgaagt g gcagggacgc ccagagttcc ggcgcagggc 60
aaacctgcgg gcagcgttcc cagcgcagac aacctgctcc agagctatca gtcctctcaag 120
gggcaaggttc catcaccacc tctatagtgag aaaccttttg aggccatcca gcgcctcagag 180
gggagaaagt tttctgagcc cgcgcccctag gttcgaatct tggcagatg caggtcag 240
ctaaacctca cggcgcgttca gggaaagtgtc gcaccaacctt ggctggtgctc catcaccagt 300
ggcctgaaga tcagctcgaac cttccctccttc tccttcctca aacgaccgca atggcacaatg 360
agtgactgct cagcgcctac gtcaccatct aacccgtcgc gcgtttaagaa gtcctctgagc 420
gtcctgcca caagcatactg cgcctcagtc agagacacat gcgcgcagtc gcgcctcagc 480
gataaaacgt cagcgcctgc aaacctgtaaa tcaacctctgc gcacacctaa gcacacttgc 540
ggtaatcgtgg cgcctgaaga gcgcctgcttg gtcgacaggtta gggaaatgg aatccacactc 600
gttgcgctgta gcagctcgaag acggaatggc tcgaacaccc cggccgagcg acacccctca 660
acagccgagg acgctcgcac catcgcctac acgtgagagaa cgcctcagga accaaagggc 720
gcccaatctg caacccacaaa cttctctggct gcgcctcagtc gttcctctat gatgccaagag 780
ccaccacag gttccctcacc ctcgacggct gacactcaac tattttctca ggcctccggca 840
cattggttctg agcgttttgtc tcagccttgtc atgtatcttc gcgcagctcg gattggtgtct 900
taccaacagag acaatcttcga gotactgcgtat gatggtcgca ttcgcgcgct tcaacctccc 960
gttgctcttc cagcactcctt taaaggatat tccgacaagg tctctcgagg gtggaaagcc 1020
aagggcctct gcagcactcg tctaatcacc gcgcctccttg aacccagagaa ggtcaatttg 1080
aaacgagcta tcctggagca cgcgcacctg gatcgcctcg tattttgtgc aatcctgctg 1140
cgactcctgt gcgaagatcga gaatttgcgt ggcgtggctcg cccctactag cccgagatctc 1200
atggatctcc tcggctctttc tcggctggttc gcgttccttg aagctttagg acgacggcag 1260
caagctctgt cttgctgtat gagctcagaa ggtgacttga cctcggttca aqggggccgc 1320
ccctcgctgt gcgagctcag gcgacgctta gacagttttg cagatcacta cacaagccgct 1380
ggacaagcct gcctcgctgg gcagaactag ttccggctgg gcctcgttcct tcggatcttt 1440
tacaaagctc caagcgaaca agaggagaca ctggagcacc aagggatggc aaagcacgttga 1500
gagctggttgt aatgggagca ccgctgcggc ttggttgtga tcgcagcgtt ccacaacctt 1560
ctcaagttgg ctcgaaggca ataactttcga cctgaagaag tgcgagccttg cctgccccaa 1620
caaatcctgg cgccggccct gcagctttctc gagcagcact tctaaagggg 1680
ggtgctctgg cccagctggga gcaccaaatcg cttgggggcc aagcaccattg ccttgagagc 1740
aagaagctatg aagaactcatg ccgctcactc gcgttcagga aacacttgcct gaagagctct 1800
aagaagcttg gcgttcagga gggcttttag aatagggaag cttctacgta 1860
acgcggagag aatttctcaat tgccaagatg cttttgtcac ccacatcaca gtctgaagaga 1920
ccacccggac aaggaagta catcgcggcag atggagcttgag tcgatatacg ccacatcacc 1977

<210> 22
<211> 659
<212> PRT
<213> Mortierella alpina

<400> 22
Met Thr Thr Gln Leu Tyr Ser Ile Glu Val Ala Gly Ser Pro Glu Ile
1 5 10 15
Pro Gly Glu Gly Lys Pro Arg Arg Ser Val Leu Ser Pro Asp Lys Leu
20 25 30
Val Gln Ser Tyr Gln Ser Phe Lys Gly Asp Gly Ser Ile Thr Thr Leu
35 40 45
Tyr Glu Asn Phe Leu Glu Gly Ile Gln Arg Ser Glu Gly Gly Glu Phe
50 55 60
Leu Gly His Arg Pro Ile Val Asp Val Ala Gln Pro Tyr Glu Trp
65 70 75 80
Leu Ser Tyr Thr Arg Val Gln Glu Arg Val Ala Asn Phe Gly Ala Gly
85 90 95
Leu Ile Gln Leu Gly Leu Lys Val Asp Ser Asn Phe Gly Ile Phe Ser
100 105 110
Ile Asn Arg Pro Glu Trp Thr Met Ser Glu Leu Ala Gly Tyr Met Tyr
115 120 125
Asn Phe Thr Ser Val Pro Leu Tyr Asp Thr Leu Gly Val Ser Ala Ile
130 135 140
Glu Tyr Ile Val Asn Gin Thr Glu Met Glu Thr Ile Ile Ala Ser Ala
145 150 155 160
Asp Lys Ala Ser Ile Leu Leu Asn Met Lys Ser Thr Leu Pro Thr Leu
165 170 175
Lys Asn Ile Val Met Gly Ser Leu Glu Asp Ala Leu Val Val Glu
180 185 190
Gly Arg Glu Met Asp Ile His Ile Val Ala Trp Ser Asp Val Glu Arg
195 200 205
Asp Gly Phe Asn Asn Pro Ala Pro Ala Asn Pro Pro Thr Pro Asp Asp
210 215 220
Val Ala Thr Ile Cys Tyr Thr Ser Gly Thr Thr Gly Thr Pro Lys Gly
225 230 235 240
Ala Ile Leu Thr His Lys Asn Phe Val Ala Gly Leu Ala Ser Phe His
245 250 255
Met Met Ala Lys His Gin Lys Phe Phe Ile Pro Ser Ser Val Asp Thr
260 265 270
His Ile Ser Tyr Leu Pro Leu Ala His Val Phe Glu Arg Leu Ser Gin
275 280 285
Ala Val Met Ile Ser Gly Ala Ala Arg Ile Gly Tyr Tyr Gin Gly Asp
290 295 300
Thr Leu Lys Leu Leu Asp Asp Val Ala Ile Leu Gln Pro Thr Ile Phe
305 310 315 320
Val Ser Val Pro Arg Leu Phe Asn Arg Ile Tyr Asp Lys Val Leu Ala
325 330 335
Gly Val Lys Ala Lys Gly Gly Leu Ala Ala Phe Leu Phe Asn Arg Ala
340 345 350
Phe Glu Thr Lys Lys Ala Asn Leu Lys Arg Gly Ile Leu Glu His Ala
355 360 365
Ile Trp Asp Arg Leu Val Phe Gly Ala Ile Arg Ala Arg Leu Gly Gly
370 375 380
Lys Val Lys His Ile Val Ser Gly Ser Ala Pro Ile Ala Pro Asp Val
385 390 395 400
Met Asp Phe Leu Arg Ile Cys Phe Ser Ala Asp Val Tyr Glu Gly Tyr
405 410 415
Gly Gin Thr Glu Gin Ala Ala Gly Leu Cys Met Ser Tyr Arg Gly Asp
420 425 430
Leu Thr Ser Gly Gin Val Gly Pro Pro Gin Leu Cys Val Glu Val Lys
435 440 445
Leu Arg Asp Val Pro Asp Met His Tyr Thr Ser Gin Asp Lys Pro Arg
450 455 460
Pro Arg Gly Glu Ile Met Leu Arg Gly His Ser Val Phe Lys Gly Tyr
465 470 475 480

63
Tyr Lys Ala Pro Lys Gln Thr Glu Glu Thr Leu Asp Ala Gln Gly Trp
485 490 495
Ala Ser Thr Gly Asp Val Gly Glu Trp Asp Glu Arg Gly Arg Leu Val
500 505 510
Val Ile Asp Arg Val Lys Asn Ile Phe Lys Leu Ala Gln Gly Glu Tyr
515 520 525
Ile Ala Pro Glu Lys Ile Glu Ala Val Leu Ala Lys His Tyr Leu Val
530 535 540
Ala Gln Val Phe Val Tyr Gly Asp Ser Phe Gln Ala Thr Leu Val Gly
545 550 555 560
Val Val Val Pro Asp Ala Glu Thr Leu Lys Pro Trp Ala Asp Asp His
565 570 575
Gly Leu Gly Gly Lys Ser Tyr Glu Glu Leu Cys Ala His Pro Ala Val
580 585 590
Lys Glu Thr Leu Leu Lys Glu Leu Gln Phe Gly Arg Glu Asn Asp
595 600 605
Leu Lys Gly Phe Glu Ile Leu Lys Asn Ile His Val Thr Ala Glu Gln
610 615 620
Phe Ser Ile Glu Asn Asp Leu Thr Pro Thr Phe Lys Leu Lys Arg
625 630 635 640
His Thr Ala Lys Gly Lys Tyr Ile Ala Glu Ile Glu Leu Met Tyr Asn
645 650 655
Gly Ile His

<210> 23
<211> 1980
<212> DNA
<213> Mortierella alpina

<400> 23
atgaccacc c aattgatc t cacgaaggt g cacggaagcc ccagagattc ccgagaaggg cc 60
aaacctcggc cagccgtttc cacccagag cc aacctgctc agagctatcc ctgatttcag 120
gccgactcct cctatccacc tcctatagag aacttttttg agggcatcact gcgcctcag 180
ggaggaggt ttcctcagca ccgcggcaac atgcacaaatgt tagtgcagag gtgcaagtaa 240
tcaagtcgca cggcagctcc cgcacaaaaag gcggagcggc gcagcaatgc gcgcctcctg 300
ggcctgaaag gtcgcctgaa aatctggctc ctttccacac acagccgagc atggcaactg 360
agttgacgcc ggcgcagctg cctatacctc tcaactgcgtc ggttcttcgc cgcctcgcg 420
gttgcgggca tgcagccatt ctttatacag caagcagatt gccagcctgg ctcgccctgct 480
gattaacgcg cagctgttta aaatcctgaa tcaactgcgtc gggactactc gaacactgcc 540
gtttaggct cagcctggaag ggcccggcgtt tgcagcgcct gggaaagttga tattcactct 600
gttgctcggta gtcgctgctt ggcggctgc gttgcactgc gcgtctgagc gttgcactgc 660
acacccggcc agctgcggcc cagctgctgc acgcagcggga cagcggccca ggcctgctt 720
gcaatctctg gccaacaaaa ctcttcgagc ggctgtgctc gcttgtgctc ctctgctgc 780
caccaaaagt ttctctcctc ctcgggcttc gcaacatcct tattcactct ggcctgcctc 840
cattgagggct ggcgttcccg gctgcatgtg atatgtttct gcgcgctgctg gatttggtg 900
tacacccgag aacacttgaa gctctcagtt gattggtgca tcttccgcct cacccatttt 960
tgttgctgctg cagcactttt ttaacagatt tccagcagag ttcctgcggt gttggaagcc 1020
aagggcgctg tcgctgcttt ctttatcaca cgcgttcttt aacccagaag gctaatattg 1080
aaccgctga tactgggcca cgccactttg gattgcagtt tatgcttggt aatctggcgcg 1140
cgacagtctgg gcacagttgc gcatatggcc ttcgagccag cccgctacag 1200
atgatttttct ttcagcagtt cttctcacac gcgtctggcg aaggttactg acacagcgag 1260
cagcgtctgtg gttgtgctag gcgtctacga gctctgctct gcctgctacc cttggagacc 1320
cctctgctgt cgctgctggt gacgctgcatgc gctcgccgcc attgctttctt ccagggcacc 1380
gacagctgccgc gctggctgcgg ggcagactgg cgctgctgctc ccacagggct taccagctcc 1440
tacaggtgct cagcagccaa cagggcgccag cttgcgcgcag agggtagggc aggctgctcc 1500
gcaatggctg aatgggagca gcgtgggccc ttgctggctc tgcagcctgt ccacacattc 1560
ttcaagttgg ctcaaggcga atacattgcga cctgaaagaga tcgaagcctgt cctgqccaaat 1620
cactaaccttg tcgcccaagt ctttgctctcc gagaactccc tccaagcgcact attgqggtgga 1680
gttgtqtcgct ccqatqccqqa gacqcttaaq cctgqgqccqg atgaccatcgg ccttgagagqc 1740
aaagactatag aagacattag cgccctacccc gcgtgaacaa aaactccttg gaagaggtcct 1800
aaagqattgg tgtcggagaat tgaagctgag ggcgttqtgaga tattgaagaac cattcatgta 1860
acgqcqgacg aactttcctaa tgagaatcga ttttqgacac ccacacttcaac gcgtgaaagaga 1920
cacaccqgccg aagagagta catcqgcqcg agttgagctga tttgtaacgaa gattcaactga 1980

<210> 24
<211> DNA
<212> Mortierella alpina

<400> 24

ttttttttttt tttttttttct ttcotttcccc ttttcttcct ttcottccccca cgcctgctgct cgtaactcaag 60
cctccgctgcc aacctctcgct cccttcagct cgtgacttca cggattcactat tctctccctgaa 120
cctccgctgcc aacctctcgct cccttcagct cgtgacttca cggattcactat tctctccctg 180
aacctgqaccc cagcgcgacag atccctgggcgc agggcaaccc tcgggacqgac gttcttcagcc 240
ccagaccaac ccqctgccagct tcaatcctcaac tcaagcgcgct tcgqacacaccc acaccctttc 300
atgacatctt ttggqgagcc gcataccgtct cagagggcagc agatttctct gcgggacacgc 360
ccatgcgctgag taaagcctagcc gcacccgqcatg atggcttgaac ctcacacqgct gtcgagacac 420
gtgctcgccca aatctggqccct gcagcttcctcc cggtgagagct ggaaagcgac gcqagacgctt 480
gctcttttct ccotcctgctcg gcqgacacatcg gcacccggtqgc aqatcagqatc 540
actcttacatg tgtcggccgct ccgqagtgcgcttg gcqagacgctcg aqatcagqatc 600
atcgagccgct gcagagacgc atcatcctgcg cgctgtqgata acgcttcqgct cttgtaacca 660
tgccacactatcgctggagtcgcctgcagccaaacatggtttttttttt 720
ctgqttgqctga ggagtgagaa atggatccat acatctgtgc gttgattgac gcggagacgc 780
atgctgccctaatc ccagcgcgacg gcgtgcctgcagcgc ggagacacgt gcacccgacttct 840
gtcagacgcct gcqagcatgcc ctcgagctcggt gtttacacag gcggagacacgt gcacccgacttct 900
tgcgtgcgactg ctgcagttttt ggatttttctctgc gagcgcgccttc gcgccqgqactc 960
gccggtgacac gcacccggtcc ttgctgttctt gcagqagagc gcggagacacgt gcacccgacttct 1020
cgtgttatgta ttcctggcgact gcqgctgccttc qagtacacag gcggagacacgt gcacccgacttct 1080
tcqgatagctgt gcagacgctctg ccqcttccctgc gcgctgqgactcg cttttctcttc gtcqagagac 1140
gagattacgc ccagqgtgctt ccagctgtctgg acqctggcagc gcggagacacgt gcacccgacttct 1200
tcaccagctgcc tttgmaaccc caagaggtcct atttgqaaccc gcacacqacgt gcacccgacttct 1260
tcctggqgtctg actctgatctgt ccqcttcagcct gcqggtqgacatt tcqgatgctgcg 1320
ttgctctgctc ttaggctgctc cgcagcctgcgc gtttgctgtctgc gcqagagacgqgc gcggagacacgt gcacccgacttct 1380
agacagtqgc ccagqgtgatct gcqggtqgacatt tcqgatgctgcg 1440
acagagtgatg tctgagcctgc gttgcagctgt gcgctgcctgct gcqagagacgqgc gcggagacacgt gcacccgacttct 1500
tcgagacqctgcgcctgcgc gcagctgcctgct gcqagagacgqgc gcggagacacgt gcacccgacttct 1560
tcctgctctgc gcqagagacgqgc gcggagacacgt gcacccgacttct 1620
agacagtqgc ccagqgtgatct gcqggtqgacatt tcqgatgctgcg 1680
gcqcgctgttg gttgcagctgc gcqgtgqggtgqcacctgctgcgc gcqagagacgqgc gcggagacacgt gcacccgacttct 1740
ttgcqactgct gcagqatgtgtgc gggagcgctgcgc gcqagagacgqgc gcggagacacgt gcacccgacttct 1800
tcgcctgttcag gcacccggtcctgcgc gcqagagacgqgc gcggagacacgt gcacccgacttct 1860
acagagtgatg tctgagcctgc gttgcagctgt gcgctgcctgct gcqagagacgqgc gcggagacacgt gcacccgacttct 1920
atcctgcgct gcqagagacgqgc gcggagacacgt gcacccgacttct 1980
atcgatcgtt ccaagccqactgc gcqagagacgqgc gcggagacacgt gcacccgacttct 2040
agacagtqgc ccagqgtgatct gcqggtqgacatt tcqgatgctgcg 2100
agacagtqgc ccagqgtgatct gcqggtqgacatt tcqgatgctgcg 2160
agacagtqgc ccagqgtgatct gcqggtqgacatt tcqgatgctgcg 2220
agacagtqgc ccagqgtgatct gcqggtqgacatt tcqgatgctgcg 2280
agacagtqgc ccagqgtgatct gcqggtqgacatt tcqgatgctgcg 2340
DNA

Mortierella alpina

atgaccaccoc ccctattgtaac atcatgaggg tggcgcggcc cacagatatc cgggcaaqggg 60
aatacctggtg cggcggctgct cgaagcagag ctaacgatcac agactgaagtc gcggctgctgc 120
gtgcctgctgct cgcctgctgg cgggcgggct ggccggctgct tggcggcggct ggcgggctga 180
acgctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 240
agtgcctgctt gtcagtcctt gtcgtcatac gctcctgctt gtcagtgctgct tgcctgctgct 300
ggtgcctgctt gtcagtcctt gtcgtcatac gctcctgctt gtcagtgctgct tgcctgctgct 360
gtcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 420
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 480
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 540
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 600
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 660
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 720
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 780
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 840
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 900
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 960
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1020
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1080
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1140
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1200
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1260
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1320
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1380
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1440
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1500
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1560
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1620
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1680
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1740
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1800
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1860
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1920
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 1980
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2040
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2100
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2160
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2220
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2280
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2340
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2400
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2460
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2520
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2580
tggcctgctgct cagctgctgct tgcctgctgct cggcggcggct gcggcgggct gcggcggcggct 2586
<400> 26
atggtctacct aaatgtacct ggtgtgctgtc ccttccatgacc ccagctctgcc cccagacattcc cgaggcaaggg cggccag 60
aagcggccgaa gtatagtgctg ttctgcaagac aagctctgtgg agaactaccoc ctcagttgga cggcagagtcg 120
gcacggtccaa cgatcggcagc cctgctcaagc aatntcctaa aagsctctttc cttgctccagt ggagggtta 180
ggcgcctcatt ttggtgccca tcgtctctgt gtagaaggcc aagctctccgg ttctaatggt cggccagagtcg 240
caatcgtgatg tccagctcttc caaacgctgtg agccaggctg gcgctgctcg ggtgcctaccc cggccagagtcg 300
ggtcttgtgc caaagcaccaaa ccctgctcttc ttctcctacta aacgcgcctggt gttgctgtgc gtgctgctcg 360
agttgcagttg ctggtcattt
Val Val Val Pro Asp Ala Glu Thr Leu Lys Leu Trp Ala Lys Glu Asn
565 570
Lys Leu Gly Asp Lys Ser Tyr Glu Glu Leu Cys Ala Leu Pro Gln Leu
580 585 590
Arg Thr Thr Leu Gln Lys Glu Leu Ala Thr Phe Gly Lys Glu Ser Asp
595 600 605
Leu Lys Gly Phe Glu Ile Pro Lys Asn Ile His Val Ile Ser Glu Gln
610 615 620
Phe Ser Ile Glu Asn Asp Leu Leu Thr Pro Thr Phe Lys Leu Lys Arg
625 630 635 640
His Ala Ala Lys Glu Lys Tyr Asn Ala Glu Ile Asp Arg Met Tyr Ala
645 650 655
Glu Ile Ala

<210> 28
<211> DNA
<212> 1980
<213> Mortierella alpina

<400> 28
atgctactcc aatgtactct ggttgtcgttc cccacaacgc ccacacttcc ccgcagctggc 60
aagccgccgc tattaatgtct ttttgcggag aaagcttcctg agaacttccc ctcaacttga 120
ccagttctaa ccctggcata ctttacattg gctgttgtcc tgcgtacctg 180
gcgtgtgctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 240
cagtctctct ccaaccactg cccacctgcccc caggctctct cgcgtctctct 300
gtgcgtgctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 360
atgcgtgggg ttataacatct atgtgtctct caagccggtt ccacgtctctt 420
gcacgttcgg tcacatctct cgcctcctcc gccctctcct gccctctcct 480
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag 540
tacacctgcc cggcttttgg tttttttttt tttttttttt tttttttttt tttttttttt 600
gagcggaggg atatgtctct ctggagctct ttttgcggag gcgtgcgcgg ggcttggggg 660
aagccgccgc tattaatgtct ttttgcggag aaagcttcctg agaacttccc ctcaacttga 720
gcgtgtgctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 780
cagtctctct ccaaccactg cccacctgcccc caggctctct cgcgtctctct 840
cagtctctct ccaaccactg cccacctgcccc caggctctct cgcgtctctct 900
tacacctgcc cggcttttgg tttttttttt tttttttttt tttttttttt tttttttttt 960
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1020
gagcggaggg atatgtctct ttttgcggag gcgtgcgcgg gcgtgcgcgg gcgtgcgcgg 1080
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1140
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1200
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1260
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1320
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1380
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1440
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1500
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1560
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1620
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1680
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1740
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1800
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1860
gcgtgtttgg cactgtctct atgcggcttt ggcggcgcgt ttttgcggag gcgtgcgcgg 1920
cagctctct gcacgtctct gcacgtctct gcacgtctct gcacgtctct gcacgtctct 1980
<210> 29
<211> 2113
<212> DNA
<213> Mortierella alpina

<400> 29

ttttccaccc ttccccctggc tgcgctcttgcc tgcacaactcc tactggtcctt tctggtcttttat accatccacc 60
cctctaagcc cggccacctcg ccggcaaacct ccattgcgaacc acacccgaaat ggctgatccca 120
atgtactcg gttgtgtccgc caacagccccc ccaatttcccc cggagaagcc gcccggccgtt 180
aggtgtcttt gtctagacgaa ctctcctggag aactacccect caagtggaagc aggtctcaacg 240
atccagaccc ttgatcagag ccctccctggct ggtggtgtcct cgtccacgag cggccacctcc 300
ttggccactg gcctcgtctattg gaatgcccag ctcctcagcct acaaggggcct cggctatgtgc 360
gattgccaga gcagtttgtaac gcttatccgct gccggtgttcgt ccctatccttg ccctgctctca 420
aagcagaaac ccggatatctt ctctataaac ccgggctggtt gacccactgag tgaaggctttg 480
ggttatatat gcacataacc cagcgttcccc ctctatgata cattggagat cggccgctac 540
ggtatatccg cttaacagac cgtattcttg acatcattg atcctggtccca ccaacttttct 600
attacccgct acatgaactc acgactcttca accggtctga caagtttggt gcattttcgc 660
tttactgagc ctcctgtcgcg agaggtaag agagcctacca tcaacacatttg atctcctgacc 720
aggtcctgaa gagaaggtcctc ttggcggctct cttggaagcc ggcagccccc acgggagggc 780
atgcacctca ctcctgttacc atctggaacc atctgaaggg ccaagggctc ctatcctgacc 840
cacacagact tttgtgccac tacgctctca ttcacatcga tttggaagcc tgtcaggttc 900
ttcacctctt cgcctgctgca acacatgtta tcacatcagc ttggccacca gtcctgtgac 960
cgcctttgcc agggctgtatg gacgtccggcg ggtggctgtta cttggttacta ccaggaaggt 1020
aacgtaagac tgcgtgcgagc tttgctcgtgat cttgactccag ccaactttgc atcgctgtcc 1080
cggctccttt aacgcctatca cgacaagctgg ctctggcctcg tcaagggccag ggtggctac 1140
gccgcctctt cctttaaacc cccataataa ccgaaaggg ccacacttgcc gaaagggttc 1200
ctttgacatt cgcctgctga caacgtcttc tttgagacgc ttcgcggcgc atgggtggttc 1260
aaggttaagc acacgtctgc cccctcttct ctatgtgtat gttatttttc 1320
cgcactctcg ctacgctgtga tgtgtatgag ggtatttgcc agacgggaca ggcacgcgca 1380
tttactgtga gctatgctcg tgaattttcg ccagggaggg ttcgcgccac tcaacgttgc 1440
acagggcgca atggtgagga catcctcttg attgaactata gcaggggaga caagctcttc 1500
ccccctggag aatacagcct tgcggagaaa tctgtttgctct aaggttatata ccaggaaccc 1560
aagcagactg aagaaacatt ggtagtctcg ccggtgtctca gttccggag cgttgacag 1620
tgggaagcc cccctgctgtc ggtgtctctt gatgcggctca aagaaacatt caagttggcc 1680
cacagagacct atatgtgcgc tgaacagatc gaggctgtcg tcgccaagca ctctctcttt 1740
gccacagatt ttgtctcttg gcacactccg cagggaccac tggcttcggt ggttttctttcc 1800
gattcttgag cgcctcaagtt tgtggcttaa gaaacagacc ttggggcaca ccgctacag 1860
gaggctctgc ctctcctcgc ccgcttggag ccacccttcaaa agggctttg gacttttttc 1920
aaagaactcg gttctgagctt ctctctctct ctctctctct ccctatacttg ctctctctct 1980
ccccacattg aagagcctcg ccctgagcct ttagacccct atctccaccg tgaagccagc tgccgtccaa 2040
gagaagacta ccggccagaa ccggcggctag tatgctcagaa tttccttaata aaataataa 2100
tttggtatc catt
<210> 31
<211> 1824
<212> DNA
<213> Mortierella alpina

<400> 31
atgcacattc tgaagtcacg aagacccttc tacaggttgt tcttcaaccg aagggagacct 60
ttgccgagc gcgtgcttgc gctttgcttgc ggctgtgagc cagtctctag gacgtctacc 120
tgttctgagc cacttcaagg cagcttcgag aactggagct gagaacgatt gacgtctacc 180
tctgtaagtt gcctggagct gaagcagctg gactttgaag cagccttgct 240
caggacccc aacttgagtt ctcttttgct aacttgagtt ctcttttgct 300
cggctgagc cggctgagc cggctgagc cggctgagc cggctgagc cggctgagc 360
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 420
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 480
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 540
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 600
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 660
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 720
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 780
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 840
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 900
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 960
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1020
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1080
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1140
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1200
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1260
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1320
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1380
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1440
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1500
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1560
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1620
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1680
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1740
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1800
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1860
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1920
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 1980
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2040
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2100
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2160
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2220
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2280
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2340
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2400
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2460
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2520
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2580
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 2581
<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>His</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td>Ile</td>
<td>Ala</td>
<td>Thr</td>
<td>Arg</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Val</td>
<td>Arg</td>
<td>Arg</td>
<td>Pro</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Arg</td>
<td>Asn</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Gln</td>
<td>Asp</td>
<td>Leu</td>
<td>His</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Cys</td>
<td>Arg</td>
<td>Gly</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Trp</td>
<td>Met</td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Lys</td>
<td>Ser</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>Val</td>
<td>Tyr</td>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>
Glu Lys Leu Pro Ser Leu Arg Gln Val Ile Val Phe Asp Asn Gly Ser
195 200 205
Gln Val Pro Glu Thr Ala Lys Leu Lys Gly Leu Thr Lys Tyr Gln Asp
210 215 220
Leu Leu Ile Lys Asn Pro Ser Thr Ala Val Asp Gly Ala Leu Glu Lys
225 230 235 240
Glu Arg Leu Ala Ile Asp Asn Arg Asp Ile Ile Asn Leu Gln Phe Thr
245 250 255
Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Ser Leu Ser His Arg Asn
260 265 270
Ile Leu Asn Asn Gly Ile His Ile Gly Asp Asn Met Arg Leu Thr Glu
275 280 285
Lys Asp Leu Leu Cys Cys Pro Val Pro Leu Phe His Cys Phe Gly Leu
290 295 300
Val Leu Ala Ser Leu Ala Ala Met Thr His Gly Ala Gly Ile Ile Tyr
305 310 315 320
Pro Ser Gln Ser Phe Asp Ala Glu Ala Thr Arg Ala Val Ser Glu
325 330 335
Glu Gly Ala Thr Ala Leu His Gly Val Pro Thr Met Leu Leu Glu Glu
340 345 350
Met Asn His Pro Asn Phe Ala Lys Tyr Asn Leu Ser Thr Leu Arg Thr
355 360 365
Gly Ile Ala Ala Gly Ser Pro Val Pro Ile Glu Val Met Lys Asn Val
370 375 380
Gln Thr Lys Met Asn Leu Lys Glu Leu Thr Ile Cys Tyr Gly Met Thr
385 390 395 400
Glu Thr Ser Pro Val Ser Phe Met Thr Leu Thr Thr Asp Glu Leu Arg
405 410 415
Asp Arg Cys Glu Thr Val Gly Arg Ile Met Pro His Leu Glu Ala Lys
420 425 430
Val Val Asn Pro Glu Thr Gly Glu Thr Leu Pro Val Asn Ser Ser Gly
435 440 445
Glu Leu Cys Thr Arg Gly Tyr Ala Val Met Glu Gly Gly Tyr Trp Arg
450 455 460
Ser Gln Gln Glu Gln Thr Asp Ala Val Val Asp Lys Asp Gly Trp Met His
465 470 475 480
Thr Gly Asp Thr Ala Leu Asp Asp Arg Gly Phe Cys Arg Ile Asp
485 490 495
Gly Arg Ile Lys Asp Met Val Ile Arg Gly Gly Glu Lys Ile His Pro
500 505 510
Val Glu Val Glu Asn Cys Leu Phe Glu Met Asp Gly Val Lys Asn Val
515 520 525
Ser Val Ile Gly Val Pro Asp Lys Arg Tyr Gly Glu Gln Val Cys Ala
530 535 540
Trp Ile Ser Thr Lys Asp Gly Lys Thr Val Ser Leu Glu Ala Val Gin
545 550 555 560
Lys Phe Cys Glu Gly Lys Ile Ala His Tyr Lys Val Pro Arg Tyr Val
565 570 575
Val Val Val Glu Ser Asn Glu Phe Pro Thr Thr Pro Ser Gly Lys Ile
580 585 590
Gln Lys Asn Val Met Arg Glu Leu Thr Lys Ala Lys Leu Glu Leu Pro
595 600 605

<210> 33
<211> 1827

73
<212> DNA
<213> Mortierella alpina

<400> 33
atgcagcttc tgcagtggca c aagacgagtct cccagcggctt ctcacacgagt aagagcagct 60
ttcggcgcaca cggcgccttt tgcgcatcgt acattcacgg tgcgctagcgt 120
tcgccggtct cgctggtgct caccagctcg cggccggcagc ggtctgctagcgt 180
ttcgctggtc ccggcgactt ccggcggtct cgtggtgctc gccggtggtc 240
tcggggtcct ccggcggtct cgtggtgctc gccggtggtc 300
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 360
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 420
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 480
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 540
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 600
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 660
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 720
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 780
ttcgctggtc ccggcggtct cgtggtgctc gccggtggtc 840

<210> 34
<211> 2087
<212> DNA
<213> Mortierella alpina

<400> 34
ggacgaagcc tcagcttcag cattccctcct ccagcgtgctg acactctccct ccacactccct 60
ttaaggctct ccagcgtgctg acactctccct ccacactccct ccacactccct ccacactccct 120
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 180
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 240
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 300
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 360
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 420
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 480
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 540
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 600
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 660
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 720
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 780
ttcagccgact ccacactccct ccacactccct ccacactccct ccacactccct ccacactccct 840

74
<210> 35
<211> 2242
<212> DNA
<213> Mortierella alpina

<400> 35
atgcacactt tgaatgcacc aagacacttc ttcagaggctgt ctccaaaaacg tttcagagcct 60
atggctgtact gcggctggtgc gcatctgcttct cagccccacg cacggagctt gaaacgctgggt 120
cagtcagttt attcactgct aggctggggt ggttgagcct ttctgccttttc 180
tggtggggc atggctggcc gctgctgtgg gattctggcg gcctgtttcttg 240
cagtctggac aacagagcag cggctgagtt cttggttggc gcgtgtggtc 300
ttcctcagct cagctgagtt cttggtttctt aaggtttgggg gattctggcc 360
tataagttt cggctggggt gattctggcc gcgtgtggtc 420
gagagtccag cggctggggt gattctggcc gcgtgtggtc 480
gtaagttt cggctggggt gattctggcc gcgtgtggtc 540
aatctctggag catctgagtt cttggtttctt aaggtttgggg gattctggcc 600
tttggttgtc ttcctcagct cagctgagtt cttggtttctt aaggtttgggg gattctggcc 660
ttctcttcg cagctgagtt cttggtttctt aaggtttgggg gattctggcc 720
ttcctcagct cagctgagtt cttggtttctt aaggtttgggg gattctggcc 780
aatctcttg cggctggggt gattctggcc gcgtgtggtc 840
tggggcagtc cggctggggt gattctggcc gcgtgtggtc 900
aatctcttg cggctggggt gattctggcc gcgtgtggtc 960
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1020
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1080
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1140
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1200
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1260
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1320
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1380
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1440
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1500
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1560
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1620
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1680
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1740
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1800
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1860
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1920
aatctcttg cggctggggt gattctggcc gcgtgtggtc 1980
aatctcttg cggctggggt gattctggcc gcgtgtggtc 2040
aatctcttg cggctggggt gattctggcc gcgtgtggtc 2087
<210> 36
<211> 2076
<212> DNA
<213> Mortierella alpina

<400> 36

atgccttct ctcaaaaagta caaacctcagc aacgcagagt ggctggctcgg tggcactcgg 60
daacgcgctgg tcgaaccgcc ctaacacatc ggcgcctcag gcggctcatc gctgctctct tcggcaacac 120
tenccgctgg gcggctcatc gctgctctct tcggcaacac 180

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 240
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 300
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 360
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 420
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 480
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 540
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 600
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 660
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 720
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 780
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 840
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 900
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 960
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1020
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1080
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1140
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1200
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1260
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1320
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1380
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1440
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1500
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1560
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1620
tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1680

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1740

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1800

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1860

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1920

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 1980

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 2040

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 2100

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 2160

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 2220

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 2282

tggctgcctgg ggtggctgcct ggctgctgcct ggctgctgcct ggctgctgcct ggctgctgcct 2342

<210> 37
<211> 692

76
<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe Lys Lys Tyr Asn Leu Asp Lys Gln Ser Val Glu Val</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>Pro Gly Thr Arg Lys Pro Gly Ala Ser Gly His Tyr Arg His Ala Ala</td>
<td>20 25 30</td>
</tr>
<tr>
<td>Tyr Gly Asp Ala Leu Val Thr Asn Ile Arg Glu Ala Pro His Ile Glu</td>
<td>35 40 45</td>
</tr>
<tr>
<td>Thr Leu Tyr Asp Met Trp Gln Asn Ser Val Thr Lys Tyr Gly Gly Asn</td>
<td>50 55 60</td>
</tr>
<tr>
<td>Asp Phe Leu Gly His Arg Pro Phe Asn Thr Val Ala Gin Thr Tyr Gly</td>
<td>65 70 75 80</td>
</tr>
<tr>
<td>Gly Tyr Ser Trp Glu Thr Tyr Arg Glu Ile Asn Gin Arg Val Asn Ala</td>
<td>85 90 95</td>
</tr>
<tr>
<td>Phe Gly Ser Gly Ile Met His Leu Asn Glu Val Ile Leu Gly Asn Arg</td>
<td>100 105 110</td>
</tr>
<tr>
<td>Gln Leu Asn Arg Trp Ala Leu Gly Ile Trp Ser His Gly Arg Pro Glu</td>
<td>115 120 125</td>
</tr>
<tr>
<td>Trp Phe Ile Thr Glu Met Ser Cys Asn Cys Tyr Asn Leu Ile Ser Val</td>
<td>130 135 140</td>
</tr>
<tr>
<td>Ala Leu Tyr Asp Thr Leu Gly Pro Asp Ala Val Glu Tyr Ile Val Asn</td>
<td>145 150 155 160</td>
</tr>
<tr>
<td>His Ala Glu Ile Glu Ile Val Ser Ser Ala Asn His Ile Ala Ser</td>
<td>165 170 175</td>
</tr>
<tr>
<td>Leu Leu Glu Asn Ala Glu Lys Leu Pro Lys Leu Lys Ala Ile Val Ser</td>
<td>180 185 190</td>
</tr>
<tr>
<td>Met Asp Ala Leu His Asp Thr Val Pro Val Pro Gly Ala Thr Ser Ala</td>
<td>195 200 205</td>
</tr>
<tr>
<td>Ala Gln Val Leu Arg Ala Trp Gly Ala Gln Lys Gly Ile Lys Val Tyr</td>
<td>210 215 220</td>
</tr>
<tr>
<td>Asp Phe Asn Glu Ile Glu Ser Leu Gly Ala Glu Phe Pro Arg Lys His</td>
<td>225 230 235 240</td>
</tr>
<tr>
<td>Leu Pro Pro Thr Ala Asp Glu Val Ala Ser Ile Cys Tyr Thr Ser Gly</td>
<td>245 250 255</td>
</tr>
<tr>
<td>Thr Thr Gly Gln Pro Lys Gly Ala Met Leu Thr His Arg Asn Phe Val</td>
<td>260 265 270</td>
</tr>
<tr>
<td>Ala Thr Val Gly Thr Asn Arg Glu Gly Met Leu Leu Thr Glu Asp Asp</td>
<td>275 280 285</td>
</tr>
<tr>
<td>Val Leu Ile Ser Phe Leu Pro Leu Ala His Ile Met Gly Arg Val Ile</td>
<td>290 295 300</td>
</tr>
<tr>
<td>Asp Thr Cys Ser Met Tyr Ser Gly Gly Lys Ile Gly Tyr Phe Arg Gly</td>
<td>305 310 315 320</td>
</tr>
<tr>
<td>Asp Ile Leu Leu Leu Glu Asp Val Ala Glu Leu Arg Pro Thr Phe</td>
<td>325 330 335</td>
</tr>
<tr>
<td>Phe Pro Ala Val Pro Arg Leu Leu Asn Arg Ile Tyr Ala Lys Leu Val</td>
<td>340 345 350</td>
</tr>
<tr>
<td>Ala Ser Thr Ile Glu Ala Pro Gly Leu Val Gly Ala Leu Ala Arg Arg</td>
<td>355 360 365</td>
</tr>
<tr>
<td>Gly Val Ala Ala Lys Met Ala Asn Leu Ala Ala Gly Lys Gly Val Asn</td>
<td>370 375 380</td>
</tr>
<tr>
<td>His Ala Leu Trp Asp Arg Leu Leu Phe Asn Lys Val Lys Met Ala Leu</td>
<td>385 390 395 400</td>
</tr>
<tr>
<td>Gly Gly Arg Val Gin Val Ile Leu Thr Gly Ser Ala Pro Ile Ala Lys</td>
<td>405 410 415</td>
</tr>
<tr>
<td>Peptide</td>
<td>Sequence</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Glu Val Leu Ser Phe Leu Arg Ile Ala Phe Gly Cys Val Val Leu Glu</td>
<td>420</td>
</tr>
<tr>
<td>Gly Tyr Gly Ser Thr Glu Gly Met Ala Thr Ala Thr Ile Thr Met Ala</td>
<td>435</td>
</tr>
<tr>
<td>Asp Glu Tyr Ile Pro Gly His Ile Gly Cys Pro Arg Ala Gly Cys Glu</td>
<td>450</td>
</tr>
<tr>
<td>Leu Lys Leu Val Asp Val Pro Ala Met Asn Tyr Leu Ser Thr Asp Glu</td>
<td>470</td>
</tr>
<tr>
<td>Pro Tyr Pro Arg Gly Glu Ile Trp Ile Arg Gly Asp Thr Val Phe Lys</td>
<td>485</td>
</tr>
<tr>
<td>Gly Tyr Phe Lys Asp Glu Lys Asn Thr Ser Glu Thr Ile Asp Ser Glu</td>
<td>500</td>
</tr>
<tr>
<td>Gly Trp Leu Ala Thr Gly Asp Ile Gly Phe Val Asp Lys Arg Gly Cys</td>
<td>515</td>
</tr>
<tr>
<td>Phe Thr Ile Ile Asp Arg Lys Asn Ile Phe Lys Leu Ala Gln Gly</td>
<td>530</td>
</tr>
<tr>
<td>Glu Tyr Ile Ala Pro Glu Lys Ile Glu Asn Val Leu Gly Ala Arg Cys</td>
<td>545</td>
</tr>
<tr>
<td>Asn Leu Val Gln Gln Ile Tyr Val His Gly Asp Ser Leu Glu Ser Thr</td>
<td>550</td>
</tr>
<tr>
<td>Leu Val Ala Val Leu Ile Pro Glu Pro Glu Thr Phe Leu Pro Phe Ala</td>
<td>565</td>
</tr>
<tr>
<td>Asn Ala Ile Ala Gly Ala Ser Val Thr Ala Gly Asp Val Glu Gly Leu</td>
<td>580</td>
</tr>
<tr>
<td>Asn Lys Leu Cys Gln Asp Pro Lys Val Lys Ile Ala Val Leu Lys Glu</td>
<td>600</td>
</tr>
<tr>
<td>Leu Glu Lys Ala Gly Ala Gly Ala Met Arg Gly Phe Glu Phe Val</td>
<td>615</td>
</tr>
<tr>
<td>Lys Arg Val His Leu Thr Thr Asp Ala Phe Ser Val Asp Asn Gly Met</td>
<td>630</td>
</tr>
<tr>
<td>Met Thr Pro Thr Phe Lys Val Arg Arg Pro Glu Val Ala Glu His Phe</td>
<td>645</td>
</tr>
<tr>
<td>Arg Glu Gln Ile Thr Ala Met Tyr Lys Glu Ile Asn Ala Ser Thr Pro</td>
<td>660</td>
</tr>
<tr>
<td>Val Ala Lys Leu</td>
<td>680</td>
</tr>
</tbody>
</table>

<210> 38
<211> 2079
<212> DNA
<213> Mortierella alpina

<400> 38

<table>
<thead>
<tr>
<th>DNA Sequence</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>atgccccctcct tcacaaaagta caacctcagc aagcagagtg ttgaggtcctt cggcactctgg</td>
<td>60</td>
</tr>
<tr>
<td>aagcctggcg ccctcagccc tacagacat ggcgccctacg gcgtatgctt cttcaccacaac</td>
<td>120</td>
</tr>
<tr>
<td>atccgtcagg cccctcataat cgaactcctt taccagacatg gcgcagactgtag gcggcaggaag</td>
<td>180</td>
</tr>
<tr>
<td>ttagccgcca atgaacttttt gggcaccagtct cctcctcaca cttgggcccc gacotatggt</td>
<td>240</td>
</tr>
<tr>
<td>ggccacactg ccgacagctt cggccagatg aacccagcgc ttaactggctt cggccagcttg</td>
<td>300</td>
</tr>
<tr>
<td>atctagcacc tgacagcagt gatcctcggc aacccgcca gcctcctcgc ttaacctggctt cggccagcttg</td>
<td>360</td>
</tr>
<tr>
<td>atctcctcct acggctcgcct tgaatggttcc attacggaga tgacgatgac ccgtcaccag</td>
<td>420</td>
</tr>
<tr>
<td>ctcaatttctc cggtcattgta ccgacacccct ggacccatgtc cccgctgactt ccgtccac</td>
<td>480</td>
</tr>
<tr>
<td>cgcgcgaga ttgacagtgg ctgctcctagc tggccacata tgcctccttt gcgtcagaga</td>
<td>540</td>
</tr>
<tr>
<td>gcgcgagggc tcctccagcct caagggcatt gtcgcagctg atcgctcctca cgatcaccg</td>
<td>600</td>
</tr>
<tr>
<td>cgcgcctccg ggccacaccc ggccagcagc ccgctctctgt ccctggggct gcctgcagagc</td>
<td>660</td>
</tr>
<tr>
<td>atcaraggtt atcaacctttaa ccgagttgag gcctccaggt cggagtctcgc ccgctcctcc gcgcagtgcag</td>
<td>720</td>
</tr>
<tr>
<td>cgcctcctca cgcgtgatga ggccctctcc atccgctca ccctcgcagc caccgctcag</td>
<td>780</td>
</tr>
</tbody>
</table>
<210> 39
<211> 2288
<212> DNA
<213> Mortierella alpina

<400> 39
tgcctttctc ttccttctca ccccttcctc ttcctttctt tccccctctc tcccccttctt ccccccttct tcccctttc tcccctttc tcccctttc tcccctttc tcccctttc 60
tatgctttct cactccctct acatccctct atctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 120
acaaatctct tattcatcct aacaatcctct atctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 180
agatctttta ggttcttttg gcatcttttt atctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 240
tcatcttcct tacatctctct atctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 300
acatctttta ggttcttttt ggtttcttttt atctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 360
tcatcttctc ttcatctctct ctctctctct 420
agatctttta ggttcttttt ggtttcttttt atctctctct ctctctctct 480
gcatcttctc tacatctctct atctctctct ctctctctct 540
cgcccttttt ttttttttttt 600
tcatcttctc ttcatctctct ctctctctct 660
agatctttta ggttcttttt ggtttcttttt atctctctct ctctctctct 720
gcatctttta ggttcttttt ggtttcttttt atctctctct ctctctctct 780
tcatcttctc ttcatctctct ctctctctct 840
tcgcttcttc ggttcttttt ggtttcttttt atctctctct ctctctctct 900
gtcacaccct ttggacttcct ggttcttttt ggtttcttttt atctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 960
ctgcacctct ggttcttttt ggtttcttttt atctctctct ctctctctct 1020
}

79
acactgtttt caaaggaatac ttcgaaggacg aagaagaacac tagtgagacct atcgactcgg 1680
aaggctggcg cgctaccqgt gtatggtagt tttcggtaaa ggcggagatgc tttacgatca 1740
ttgacccgca caagaacctac ttcgaagttg cacaaggtgta atacattgcgc cctgaaaaga 1800
ttgagacga ttggccgaac ggtgcaactc tggatacggc gatcattgatg ttaggggtttt 1860
gcttgagtc ccaacgtagtc gcaagtctta ttccgagagcc cgagaccttc gtcgccctcg 1920
egaatgcct gcgtcgactc tgggagattg ttaggggttta aacaagagtt 1980
gcacaagctc caagctggtga actgcgcggt tctaggagttt ggagaagggcc ggaaagggcc 2040
gtcggctgcgc gcggattcag ttcgtagagac gtcgactcct gacgacccct gccttcctcg 2100
tgcaacaccc cgctagctga ccctacttcat agtggctcgt cgccacaacat ggcgacgatt 2160
tcagggagca aatacgggat atgataaagc agatcaatgc ctggcagctct gtgctcacaatg 2220
tgtqagtata gaaccttcttg ccccttiatta ccccttggaat aagaagttgac acgctggtttg 2280
atcagacac
2288

<210> 40
<211> 2816
<212> DNA
<213> Mortierella alpina

<400> 40
atgcctcctc tcaaaaagta caacccgacac aacgcagagtg ttgagttcgg tggcacactg 60
aagcttcggcg cttcaggccaa gttggatagt ggtcctagtg acctcaactgt tgcggcaacgc 120
taccatagaa atcgagacga ttcatttgcct ttcaccttct ccaagagccc 180
ttaccagacg cctctcttcg acaatgcacctt tcggagaggg ccccttcgatc 240
gaaacgcgtt aagagaatgtg gcagccaggt aagttgattc cccgagacct gcggcaaccttt 300
ttacgctggct tcgcttcgca aagaccgtag acgtctgtct cccacaaatc ccctacagct 360
tcagctgagca caagataggg cgcctaggaac ttcttggtgct accgctccct ccacactcgtt 420
gcccaagacct atgctggctca cagttgtaggc acgtacccgc agatataaaca cggcttaaaat 480
gctttgggcc gcttgatcag gcacccatga aaggtgatcc tcgcgcaacgc cagctttcag 540
tgcggcgcgtg tcggccgctc gttcctccgg ggccacaaag gcctacatgg cggcttcaac 600
tgcaacagctc ttggcagatc atgggtgactg cttggggcag cttgctgggt 660
gagttcttcg tcacacacagc gqagatgatcg atttggttct ccagttgtaa gtcgctttttct 720
ttttttttgc atgggctctc gcctgtgtgc ctcgcagttga aacctataat gtctttctgtat 780
ctctctctct gcctcctctc ccacactttc cccctctccct cccggtgcttt 840
gactctatat gcgcagcaac gcctacccct atctgctcct ttggcctgag aacgcggcag cggctgcaaca 900
gcccaagccg actgctcgag ccctacacct cccgtggctgc ccggggccac 960
ttcctggccgc ccagctcttc gcgccttgggc gcacacacaaag gcctacatgg cggcttcaac 1020
tacgcagatgg ggcctcctcg gtcggcagttt cccaacgaca ccctcctgcct ccacagccgta 1080
tgagttcttcg tcacacacagc gqagatgatcg atttggttct ccagttgtaa gtcgctttttct 1140
cctctattga gcagttggcc gqagatgatcg attttgtgct tggaaaccct cattcataac 1200
cgttgctatt atagaagagg gcctcttcct cccacaaaaa cttttttgtcg actcgttgta 1260
ccacccgccc ggccgctcttg ttcacagtgc agacagttgc cttttttttc gttacgtgttttt 1320
gagaagctga aatcagacac gcagttgtaaa gcagcagatg agccgactac ccaatggcca 1380
atgcctcctc tccctggcttc tcgtttaacc aatgggtatgt cttttttttc gttacgtgttttt 1440
tggagacggct cttgctcagtt gcaggttgtg cagcggctttt tgcgctgtcg gcgttcacatla 1500
gagatattttc tttctggcttc gcagacgttg ccggccagct gccttagcct gcctcacttt 1560
tgcgctggcgt gcctagggcc gcagcaggttc agttgctcgg ctcctatcag gcgctgcccg 1620
tggctggcgcgt gcctagggcc gcagcaggttc agttgctcgg ctcctatcag gcgctgcccg 1740
gaaaggttgt gcacacacgcct gttgctggcgcgt gcctagggcc gcagcaggttc agttgctcgg 1860
gctctgctcagtt gcaggttgtg cttttttttt gggctgcctttt gttacgtgttttt 1920
gtggagcccg cttgccattg ctcctatcag gcgctgtcgtt gcctcacttt 1980
agtacatcct gcctagggcc gcagcaggttc agttgctcgg ctcctatcag gcgctgcccg 2040
tggctggcgcgt gcctagggcc gcagcaggttc agttgctcgg ctcctatcag gcgctgcccg 2100
agtacatcct gcctagggcc gcagcaggttc agttgctcgg ctcctatcag gcgctgcccg 2160
aggggtgtgct gcctagggcc gcagcaggttc agttgctcgg ctcctatcag gcgctgcccg 2220
<210> 41
<211> 1846
<212> DNA
<213> Mortierella alpina

<400> 41
atggtgcttc tcctcaagtct gtcagcttgact gcctccagctg cctggctatgct gcctcaagatg gactgtcctgc 60
tcggcacttc ctctgggataa gaagaggctg atgctttctaa ttcggagccaa ccagtttacatc 120
agcagccGGG aaaaaagcaag ggcgttccaaac atgacagctcg ctctgcaactgc 180
agtctagctc acagagcttc caggagccct gcctagctgt gatgcaagctc 240
cagctgcagg ctgcaagatgg caggggttga aaggcttctct atcggagctcg 300
atcgagtGCG atcctgcctact gcctcgtgctcg ctctggtcgcct cgggttccttc 360
aagattggagccccctcaggtcgccccctccttcttgccctgccccctccc 420
tctctccgaga cagccacggct gtatcaggtgc atcggagctgg gcctcctgtgt 480
gcggagccag caggtgctacct acagctggctg atcagctggcc taggtatgctg 540
gcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 600
caccctccgc atcgccgctca caggtgctacct acagctggctg atcagctggcc taggtatgctg 660
acagctgccgG caggtgctacct acagctggctg atcagctggcc taggtatgctg 720
tcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 780
tcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 840
tcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 900
tgatagtctt atctgggataa ttcgctgccccct cgggggtccctgc 960
gcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1020
caccctccgc atcgccgctca caggtgctacct acagctggctg atcagctggcc taggtatgctg 1080
acagctgccgG caggtgctacct acagctggctg atcagctggcc taggtatgctg 1140
tcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1200
gcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1260
gcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1320
acacgggctcaagag ggcgttccaaac atgacagctcg ctctgcaactgc 1380
agtctagctc acagagcttc caggagccct gcctagctgt gatgcaagctc 1440
cagctgcagg ctgcaagatgg caggggttga aaggcttctct atcggagctcg 1500
atcgagtGCG atcctgcctact gcctcgtgctcg ctctggtcgcct cgggttccttc 1560
gcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1620
gcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1680
gcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1740
acagctgccgG caggtgctacct acagctggctg atcagctggcc taggtatgctg 1800
tcggagccacag caggtgctacct acagctggctg atcagctggcc taggtatgctg 1848

<210> 42
<211> 616
<212> PRT
<213> Mortierella alpina

81
Met Val Ala Leu Pro Leu Val Ala Ala Ala Val Pro Ala Ala Ala Met Tyr
1 5 10 15
Val Ser Ser Lys Leu Ala Leu Pro Arg Asp Met Lys Leu Ile Lys Ser
20 25 30
Leu Ile Gly Ala Lys Met Ala Tyr Ser Ala Met Glu Lys Asn Asp Ala
35 40 45
Leu Asn Leu Thr Leu Arg Phe Asp Glu Cys Tyr Arg Lys Tyr Pro Asp
50 55 60
Arg Glu Ala Leu Val Phe Glu Gly Lys Ser Tyr Ser Phe Arg Asp Ile
65 70 75 80
Gln Leu Ala Ser Asn Arg Cys Gly Asn Trp Leu Leu Ala Lys Gly Ile
85 90 95
Lys Arg Gly Asp Ile Val Ser Leu Phe Met Leu Asn Arg Pro Glu Phe
100 105 110
Ile Phe Cys Trp Leu Gly Leu Asn Lys Ile Gly Ala Thr Gly Ala Phe
115 120 125
Ile Asn Thr Asn Leu Thr Gly Lys Pro Leu Thr His Ser Leu Arg Thr
130 135 140
Ala Thr Ser Ser Met Leu Ile Met Asp Thr Glu Leu Thr Asp Ala Ile
145 150 155 160
Ala Asn Ser Leu Asp Glu Ile Gln Glu Met Gly Tyr Ser Ile Tyr Ser
165 170 175
Tyr Gly Pro Glu Ala Val Asp Phe Ala Thr Pro Met Asp Ile Ser Gln
180 185 190
Val Pro Asp Thr Asp Thr Pro Glu His Leu Arg Arg Asn Thr Thr Ala
195 200 205
Asp Asp Ile Ala Met Leu Ile Tyr Thr Ser Gly Thr Thr Gly Leu Pro
210 215 220
Lys Ala Gly Arg Val Ser His Ala Arg Ala Ser Met Gly Pro Glu Phe
225 230 235 240
Trp Asn Arg Phe Tyr His Phe Ser Glu Ser Asp Arg Val Tyr Leu Ser
245 250 255
Leu Pro Leu Tyr His Ser Ala Gly Ala Ile Leu Gly Val Ile Ala Cys
260 265 270
Trp Thr Ser Gly Ala Thr Leu Ile Leu Ala Arg Lys Phe Ser Ala Thr
275 280 285
His Phe Trp Glu Asp Cys Arg Val Asn Ala Thr Val Ile Gln Tyr
290 295 300
Ile Gly Ile Cys Arg Tyr Leu Leu Asn Thr Pro Glu Ser Pro Leu
305 310 315 320
Asp Lys Ala His Ser Ile Arg Leu Ala His Gly Asn Gly Met Arg Pro
325 330 335
Asp Val Trp Thr Arg Phe Arg Asp Arg Phe Gly Ile Pro Leu Ile Gly
340 345 350
Glu Trp Tyr Ala Ser Thr Glu Gly Thr Gly Ala Leu Ser Asn Tyr Asn
355 360 365
Thr Gly Pro Gly Gly Ala Gly Ala Gly Tyr Arg Gly Thr Leu Ala
370 375 380
Arg Ala Leu Asp Lys Gly Leu Arg Ile Ala Arg Phe Asp Val Gln Thr
385 390 395 400
Glu Leu Val Arg Asp Lys Asn Gly Tyr Cys Ile Glu Cys Lys Pro
405 410 415
Gly Glu Pro Gly Glu Leu Leu Thr Leu Val Asp Ala Lys Glu Pro Asn
420 425 430
Lys Asp Phe Lys Gly Tyr His Gln Asn Gln Ala Ala Thr Asn Lys Lys
435 440 445
<210> 43
<211> 1851
<212> DNA
<213> Mortierella alpina

<400> 43

atggttgctc tcocactcgt cgcacagcgt gtccccagcgt ccatgtatgt gagctcaag 60
ctggcacttc ctgctgattg gaagttggt aaagagatcg tcggagccaa gatgacctac 120
agttgcctgg aagaagacg caaaccctcaac cgtcactccc gccctgacga agtctacg 180
aagtctctgc accgtgac ccctcctcttc gaggcaaat cctatccttc cgctgatatt 240
cagctgtctg ccacacactg ccgacgatcg ttcgagccca aagggatca gacggagatt 300
tctattgcgc ttctcagttt gaacagccga gaccttcac ccgtcctgct ggttgtcatac 360
aagattggg ccacgcttgc cttcatcaac accaacatta cgggcaacac ccgtacacat 420
tccacctgga cgacacgctg cttcagtttg aatcggagca cggagttgag acggcgact 480
gccaaccttc tcgtagtgat ctcggagatg ggtctattca aatctcctta cggagccca 540
gccggtttct ttctgcaccc cggagratat ccgcgtgacc cagacacgga taacacccga 600
cacgtgctgc gcacacgagc ccgcgagctg attgctagtc ttcctcatac ctcggtacct 660
actgtccttc ccaagcgccg tcctgcctct catcgccgct cctcattgcg acctttgattt 720
tgaaaccagc ctcattaacc aggaggttat atctgtcctt gcccctgtac 780
cacagctgtc gcaccctctg ggaggtagtt gttcttggga cctctgagac aacctttgatac 840
cgtgccccga aattttccttc cggctgtaatt tggccgtaga gccgctgtaa cacaacacact 900
tgtcttatt ctaatacttc cggctgtaatt tggccgtaga gccgctgtaa cacaacacact 960
gacaagacgc aagcctgtac ccgctatcag gttggtgca tcgagtttgc ggatattggg 1020
cgcttcagag atcggctcgg ctacccctgt attggcagct ggtatgcatt gctgcttttg 1080
acgttagctt ctcgcttaaa taccagcagg ccggcgcggg cctgacgctt gattacccctc 1140
gtacttcccg ccagaggttt gattcacttt gttttttttt cttatttcc cggcgcgcgg 1200
gagaagctt cttcgtgtaa caccctcttc ggttcgagag ggtttttttt cttttttttt 1260
aaccagcagc caggcaacac aaagattttt taaatttttt cttttttttt ggtttttttt 1320
attccgctt cggctcagtt cggctttttt cttgcttcttt ttcgcttttt ttcgcttttt 1380
accacgcg cgtgcgcttc cttttaattt ggtttttttt cttttttttt ggtttttttt 1440
aacggacgct cggctcagtt cggctttttt cttgcttcttt ttcgcttttt ttcgcttttt 1500
ctctcctttt cttttaattt ggtttttttt cttttttttt ggtttttttt 1560

<210> 44
<211> 2017
<212> DNA
<213> Mortierella alpina

<400> 44
tcgctatccta tcaccccctca ctccccacctc cgcaacctgg tcttctcttc tctttctct 60
tctccacctgt cgcaacctgg tcttctcttc ttaaccacca gccatctgac accagatgtg 120
tgtctccccag cacgtgccag acggccagatg ttctgtgccg aaccgacacca cccataacgc 180
tgaccggccag ggatgcatgt tgattaagag cttgatccga gccaagatgg cctacagttg 240
catggaagac ccaggaagacc tccacagtgc actccgtctc tgcagagctg acccgacgtg 300
tctggaagact gccgaccttgct cttcttgagg gcataactaat tctttcctcg ataattcagc 360
tgcttcaccac gcagcggcag acctgctttcg ggtgacagag atcaagcgcg gatatactgt 420
tctccttccat ctgagcaaa gcagcggcag acctgctttcg ggtgacagag atcaagcgcg gatatactgt 480
tggagcgacct gccgcttccaa tcaatccacca cttctacggcg gaaaccctga acacatctct 540
tcccgcaacgc acggcgcttccaa tcaatccacca cttctacggcg gaaaccctga acacatctct 600
tccggctgtgc gcagatccag tccaggtgctc tctctcgacac cagacaacac ccacaaacct 660
tggtgctggcgg gccggcctgta gcgtccgctggt tacgcagctc attcgggtgag 720
ttgctccggag ggccggcgag atcagcaagct gcattccatc tacacccctg gaactacctcg 780
tctctgccagg gcgcgggtgtc tctctctctc gcagcagcag gcacagcagc acacatctct 840
tcctgactttc caaaccatgt agagcagcag gccttctctg tctctctctc gcagcagcag gcacagcagc acacatctct 900
tgctgctggcgc atctttggag gtatttgcct tgggccctcg ggaactaccc tctctctctc gcagcagcag gcacagcagc acacatctct 960
tggcggcgac tcctctctct tttggtggct gcgtctggcc ggaacterct gttctctctc gcagcagcag gcacagcagc acacatctct 1020
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1080
tggcggcgac tcctctctct tttggtggct gcgtctggcc ggaacterct gttctctctc gcagcagcag gcacagcagc acacatctct 1140
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1200
tggcggcgac tcctctctct tttggtggct gcgtctggcc ggaacterct gttctctctc gcagcagcag gcacagcagc acacatctct 1260
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1320
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1380
tggcggcgac tcctctctct tttggtggct gcgtctggcc ggaacterct gttctctctc gcagcagcag gcacagcagc acacatctct 1440
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1500
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1560
tggcggcgac tcctctctct tttggtggct gcgtctggcc ggaacterct gttctctctc gcagcagcag gcacagcagc acacatctct 1620
tgccgatatcg cggagacttc ccotcctga tagttcatgtg cggagacttc ccotcctga tagttcatgtg 1680
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1740
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1800
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1860
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1920
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 1980
tccactacgtt ggcaaatctct gctcactacgc cggagacttc ccotcctga tagttcatgtg 2040

cacagcagcag gcacagcagc acacatctct taccctcgtt gcctcatt

<210> 45
<211> 2345
<212> DNA
<213> Mortierella alpina

<400> 45
atgggatggtg aaggaacacgc gatcgcctcg gctcagcctcg acactctcgtc taatctgatc 60
tccacagcttc cttatcaatt cacaagaa gaaaaaaga gaagagagag aatattacac 120
atgctctcct cccctctgtgc gatgcgccttc tccacactgct cgcagcagc gtccccagctg 180

84
coatatgatg gacgctcaaag ctcggcaactt ctccqggatat gaagttgatt aagacgttgaa
tccggagccaa gatgctcctg acgtctgcat gtactgccaa aagacgcttg 240
tcggagccaa gatgctcctg acgtctgcat gtactgccaa aagacgcttg 300
tgggctaacgc gatgctcctg acgtctgcat gtactgccaa aagacgcttg 360
tcgctggttg cagctgaatgg gcgtttgatt aagacgcttg 420
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 480
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 540
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 600
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 660
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 720
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 780
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 840
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 900
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 960
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1020
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1080
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1140
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1200
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1260
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1320
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1380
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1440
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1500
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1560
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1620
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1680
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1740
tctgctggttg cagctgaatgg gcgtttgatt aagacgcttg 1800
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 1860
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 1920
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 1980
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 2040
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 2100
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 2160
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 2220
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 2280
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 2340
acbagaiccac gcaaaacaaat cctacatgtgt ctatgtgtgtg aacaagcagcg 2345

<210> 46
<211> 2073
<212> DNA
<213> Mortierella alpina

<400> 46
atgggaacctt tgttactaagcg aagattacagcg gctgagatcag aagaggtgca taacatctat 60
tcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 120
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 180
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 240
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 300
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 360
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 420
atccaccttt gcgctgaatgg gcgtttgatt aagacgcttg 480
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 540
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 600
ttcggcattcct ccctttcctg gctgactcgaa ccggttgaat gtaacatcatt tgcctgactat 660
atccaccttt gcgctgaatgg gcgtttgatt aagacgcttg 720

85
<table>
<thead>
<tr>
<th>Met</th>
<th>Glu</th>
<th>Thr</th>
<th>Leu</th>
<th>Val</th>
<th>Asn</th>
<th>Gly</th>
<th>Lys</th>
<th>Tyr</th>
<th>Ala</th>
<th>Val</th>
<th>Glu</th>
<th>Tyr</th>
<th>Asp</th>
<th>Glu</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>His</td>
<td>Ile</td>
<td>Tyr</td>
<td>Arg</td>
<td>Asn</td>
<td>Val</td>
<td>Met</td>
<td>Ala</td>
<td>Thr</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
<td>Arg</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Met</td>
<td>Pro</td>
<td>Pro</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Asp</td>
<td>Arg</td>
<td>Ile</td>
<td>Lys</td>
<td>Gly</td>
<td>Arg</td>
<td>Thr</td>
<td>Met</td>
<td>Ala</td>
<td>His</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Glu</td>
<td>Tyr</td>
<td>Met</td>
<td>Ala</td>
<td>Asn</td>
<td>Thr</td>
<td>Tyr</td>
<td>Glu</td>
<td>Asp</td>
<td>Lys</td>
<td>Asp</td>
<td>Ala</td>
<td>Met</td>
<td>Gly</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Asp</td>
<td>Ile</td>
<td>Lys</td>
<td>Val</td>
<td>His</td>
<td>Lys</td>
<td>Val</td>
<td>Glu</td>
<td>Lys</td>
<td>Gln</td>
<td>Ala</td>
<td>Ala</td>
<td>Asn</td>
<td>Pro</td>
<td>65</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Glu</td>
<td>Lys</td>
<td>Pro</td>
<td>Lys</td>
<td>Thr</td>
<td>Trp</td>
<td>Ile</td>
<td>Thr</td>
<td>Tyr</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
<td>Asp</td>
<td>Tyr</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Met</td>
<td>Ser</td>
<td>Tyr</td>
<td>Arg</td>
<td>Gln</td>
<td>Ala</td>
<td>Lys</td>
<td>Asn</td>
<td>Tyr</td>
<td>Ala</td>
<td>Asp</td>
<td>Arg</td>
<td>Val</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ile</td>
<td>Thr</td>
<td>Arg</td>
<td>Leu</td>
<td>Gly</td>
<td>Val</td>
<td>Glu</td>
<td>Lys</td>
<td>Gly</td>
<td>Asp</td>
<td>Phe</td>
<td>Val</td>
<td>Met</td>
<td>Ile</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Thr</td>
<td>Cys</td>
<td>Pro</td>
<td>Glu</td>
<td>Trp</td>
<td>Phe</td>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
<td>His</td>
<td>Gly</td>
<td>Cys</td>
<td>Phe</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Ser</td>
<td>Val</td>
<td>Thr</td>
<td>Ile</td>
<td>Val</td>
<td>Thr</td>
<td>Ala</td>
<td>Tyr</td>
<td>Asp</td>
<td>Ser</td>
<td>Ser</td>
<td>Met</td>
<td>Asp</td>
<td>Glu</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Gln</td>
<td>Phe</td>
<td>Ile</td>
<td>Val</td>
<td>Asp</td>
<td>Ser</td>
<td>Gln</td>
<td>Ser</td>
<td>Gln</td>
<td>Pro</td>
<td>Lys</td>
<td>Ala</td>
<td>Ile</td>
<td>Phe</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Thr</td>
<td>Leu</td>
<td>Val</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Met</td>
<td>Gln</td>
<td>Lys</td>
<td>Gly</td>
<td>Asn</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Ala</td>
<td>Val</td>
<td>Ile</td>
<td>Tyr</td>
<td>Thr</td>
<td>Gly</td>
<td>Glu</td>
<td>Trp</td>
<td>Glu</td>
<td>Val</td>
<td>Thr</td>
<td>Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>Amino Acid</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Lys</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>His 2</td>
<td>Lys</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Ser 1</td>
<td>Gly</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Gln 1</td>
<td>Asp</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Ile 1</td>
<td>Tyr</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>Thr 1</td>
<td>Ser</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>His 1</td>
<td>Gly</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>His</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Arg 1</td>
<td>Ser</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Val 1</td>
<td>Leu</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Tyr</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Val</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Thr</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Gly</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Arg 1</td>
<td>Ser</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>Val 1</td>
<td>Asp</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Lys 1</td>
<td>Gly</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>Arg 1</td>
<td>Arg</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Gly</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Tyr</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>Lys 1</td>
<td>Leu</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>Val 1</td>
<td>Thr</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Arg 1</td>
<td>Ser</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>Gly 1</td>
<td>Asp</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Ile 1</td>
<td>Tyr</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>Gly 1</td>
<td>Asp</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>Thr 1</td>
<td>Pro</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Val</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Leu 1</td>
<td>Gly</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>Tyr 1</td>
<td>Leu</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Cys</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Gly 1</td>
<td>Tyr</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Val 1</td>
<td>Pro</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Tyr</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Ser</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>Val 1</td>
<td>Thr</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>Gly 1</td>
<td>Asp</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>Thr 1</td>
<td>Gly</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>Val 1</td>
<td>Tyr</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Ser</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>Gly 1</td>
<td>Asp</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>Thr 1</td>
<td>Pro</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Pro</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>505</td>
<td></td>
</tr>
<tr>
<td>Leu 1</td>
<td>Asp</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>Thr 1</td>
<td>Gly</td>
<td>515</td>
<td></td>
</tr>
<tr>
<td>Thr 1</td>
<td>Asp</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Gly</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>Lys 1</td>
<td>Val</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>Val 1</td>
<td>Gly</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Asp</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Thr</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td>Gly 1</td>
<td>Thr</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Val</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>Lys 1</td>
<td>Ser</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>Tyr 1</td>
<td>Gly</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>Tyr 1</td>
<td>Asp</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Asp</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>Tyr 1</td>
<td>Ser</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Lys</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Asp</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Lys</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Lys</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Lys</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>Met 1</td>
<td>Ser</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>635</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Asp</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>Ala 1</td>
<td>Ser</td>
<td>645</td>
<td></td>
</tr>
</tbody>
</table>

87
Ser Asp Trp Met Thr Asn Gly Phe Met Thr Ser Ser Ser Ser Lys Val Lys 660 665 670
Arg Arg Glu Val Arg Lys Ala His Asn Lys Asp Ile Glu Glu Met Trp 675 680 685
Lys Lys Phe 690

<210> 48
<211> 2076
<212> DNA
<213> Mortierella alpina

<400> 48
atggaaacct ctggttaaccg gaaagtatgcg gtcgaagtacg agcgaagtga tccaatctat 60
cggcaagtcc gcgatcaagg cggcctctcc gacaagccata tcagcatac tctacatct 120
aagggccca ccatgcccac ctccttggag tatatgcccc caacccatac agacaaagac 180
gccatgaggc ggcgaactat tataagagtc cacaagttcg agaagccagc tcggcaatct 240
gcgcgaagac gcagactctg tgaaccttct gcagctcctg ctacacact gatgtgcatc 300
cgcagacccc agaactacgg agatcaagtt gccttggcatt tcacaaaccc ttgaggtgag 360
aagggagact tttgctatgc ctttctgctg acaagtccgg aatgtctct tcagcagcat 420
ggtgactctg cgcgctagct gacatcagtg accgctctcc acgcaatgca cagagctg 480
attcaggtta ttggcagctg gtccccagccc aagccacact ttgtctgatg gcacacagtc tctbtcacgctc 540
ccttgagtttt gctcaacctct gccagcggg gacaagtgtg tcaagccacag tctttacac 600
ggctcacagtt ggcagagctc gcagcattac agaaagatgg agcaagttag tcacacagtc 660
ttgatggtgggg ttcctatctcg gcaacataag agaccaagat cagccttaca ggccagagc 720
ttcggcagga aggccgttcc gagatcatct ggagatgctg agagcgttca ggagacagac 780
zagcggctat aggccgctcg ggatctattc gctcctgatt tgattacact ttcggctgac 840
ggtagctacca agggcctcga gcggccttcag tcggcagctc gggcagctgc ttcggcttc 900
ggctagcagc ggctggtgctg tctagagga tcggcagctc ggaaggtcgc ggcagcagtc 960
tttggagcctg tcctctgctg gtaattcgtgc atcttcgatt tcgagcgcgtcg agggtgcg 1020
gattcgtgca ggcctgatgc tgctgaaggc ttcgctcagtc cgcgggagtc tccgaagcctg 1080
agctcgatcg gcgtggtgctg tctagaagga cggccgctcg ccgacgctgc ttcagcagcct 1140
atctgcattg gggtgggttc gcttcggcct gcttcgacaag ccagcctgcg gttgagctgc 1200
tctggtacact ttgcacaccc gacatgttgg ctcgttgtgtg ttgtaggcac gcagcagtcg 1260
gtgagagcag ggcgctgctc agoagcttctc aagggcgggg gatctggtga ggcgctgcca 1320
cgggtttgtag gcctgctcct gccagcgtgc gcgtgcctgc cgtggggtcg ccgacgagct 1380
gctaccagtg tggatgccag agctggttcc acggcagagc gatttcgaga cgggtgtgct 1440
gattggtgcgc ctcgtgcacct gcgctggttc cgcgtctgct gcgcggtgct gggcaggtcg 1500
gggcaggtct gccgctgctg gctgtgcgag gcgtgcctgc cgtggggtcg ccgacgagct 1560
gaacgagac gcggcctcag atggtgcgc agctggttcc acggcagagc gatttcgaga cgggtgtgct 1620
gagcagctag ctcggcgcct gcggttccag gcgcggtgct gggcaggtcg ccgacgagct 1680
gctggggtgct cggaggagc aggcgcgccg gacatctggt gcgctggttc cgcgtctgct 1740
gagcagctag ctcggcgcct gcggttccag gcgcggtgct gggcaggtcg ccgacgagct 1800
gacatctggt gcgctggttc cgcgtctgct gcgctggttc cgcgtctgct gcgctggttc 1860
ggcgctgctg cggaggagc gcgcggtgct gcgctggttc cgcgtctgct gcgctggttc 1920
gagcagctag ctcggcgcct gcggttccag gcgcggtgct gggcaggtcg ccgacgagct 1980
gacatctggt gcgctggttc cgcgtctgct gcgctggttc cgcgtctgct gcgctggttc 2040
gagcagctag ctcggcgcct gcggttccag gcgcggtgct gggcaggtcg ccgacgagct 2076

<210> 49
<211> 2170
<212> DNA
<213> Mortierella alpina

88
ttaaacggata cactttcttttt tctacccatact cacaagtaaa gaccaacatgg aaccccttggt 60
taacggaagct tgtctgctccg ttttggagctt ggcggctgagc tgcgctgaccc gctcatctccac acgcctagcc 80
ttagggccttaacctcctc ctgccggctgg ctcgcttgcac ctgggcccaag gtttcatgctt cgtctgtcgtcctga 80
tagggcgctgg cctggcaacag acggccctcctg tcaacgcgggt tcaagctgtgg ctgacaatgcc 100
ttaaacggtct tgtctgctaccc gctggggcctg ctacgctctgg gttccatgtct cttgcttctgcggctcctg 120
tttaacggct tttaaagctgct gttctgctgg cttgctgaccc gctgcaagctgc ttcgctgctgcttcctgct 100
<400> 50
<210> 50
<211> 5236
<212> DNA
<213> Mortierella alpina

atggaacactg tttgtaacggt aagatgatcgc gttcagatccg tgcaggtgcag accagagtcgg ttcacatcctat 60
cgcgcaacgc cttgcgctctc gcgaagaggc tttgtgctgg cgtgcagagcc accacacgagc taccacatcctat 90
tttgtaacgggc cttggtgctttt gccgtctggg gccagacgcttc cgcgttgtggt cggctgctgccc 120
tttgtaacggg cttggtgctttt gccgtctggg gccagacgcttc cgcgttgtggt cggctgctgccc 120
<400> 50
<210> 50
<211> 5236
<212> DNA
<213> Mortierella alpina
<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>1</td>
</tr>
<tr>
<td>Pro</td>
<td>2</td>
</tr>
<tr>
<td>Lys</td>
<td>3</td>
</tr>
<tr>
<td>Cys</td>
<td>4</td>
</tr>
<tr>
<td>Phe</td>
<td>5</td>
</tr>
<tr>
<td>Thr</td>
<td>6</td>
</tr>
<tr>
<td>Val</td>
<td>7</td>
</tr>
<tr>
<td>Asn</td>
<td>8</td>
</tr>
<tr>
<td>Val</td>
<td>9</td>
</tr>
<tr>
<td>Gly</td>
<td>10</td>
</tr>
<tr>
<td>Pro</td>
<td>11</td>
</tr>
<tr>
<td>Gly</td>
<td>12</td>
</tr>
<tr>
<td>Pro</td>
<td>13</td>
</tr>
<tr>
<td>Gly</td>
<td>14</td>
</tr>
<tr>
<td>Val</td>
<td>15</td>
</tr>
<tr>
<td>Gly</td>
<td>16</td>
</tr>
</tbody>
</table>

Secondary Structure

- **α-helix**: From position 1 to position 10
- **β-sheet**: From position 11 to position 15

Helix Propensities

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Helix Propensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>1</td>
</tr>
<tr>
<td>Pro</td>
<td>2</td>
</tr>
<tr>
<td>Lys</td>
<td>3</td>
</tr>
<tr>
<td>Cys</td>
<td>4</td>
</tr>
<tr>
<td>Phe</td>
<td>5</td>
</tr>
<tr>
<td>Thr</td>
<td>6</td>
</tr>
<tr>
<td>Val</td>
<td>7</td>
</tr>
<tr>
<td>Asn</td>
<td>8</td>
</tr>
<tr>
<td>Val</td>
<td>9</td>
</tr>
<tr>
<td>Gly</td>
<td>10</td>
</tr>
<tr>
<td>Pro</td>
<td>11</td>
</tr>
<tr>
<td>Gly</td>
<td>12</td>
</tr>
<tr>
<td>Pro</td>
<td>13</td>
</tr>
<tr>
<td>Gly</td>
<td>14</td>
</tr>
<tr>
<td>Val</td>
<td>15</td>
</tr>
<tr>
<td>Gly</td>
<td>16</td>
</tr>
</tbody>
</table>

Tertiary Structure

- **_α_**: From position 1 to position 10
- **_β_**: From position 11 to position 15

Overall Structure

- **Coiled-Coil**: From position 1 to position 15
Gly Leu Leu His Ser Met Asn Glu Ala Glu Val Gly Thr Ala Tyr Thr
165 170 175
Asn Ala Asp Leu Ile Lys Thr Met Thr Asn Val Ser Gly Arg Cys Pro
180 185 190
Thr Leu Lys Arg Ile Val Tyr Asp Gly Glu Ala Asn Ala Ala Asp Val
195 200 205
Ile Ala Leu Gln Thr Ala His Pro His Leu Gln Leu Ile Thr Leu Glu
210 215 220
Glu Leu Lys Glu Leu Gly Val Asp His Pro Val Glu Pro Thr Pro Pro
225 230 235 240
Thr Ala Glu Asp Cys Ser Cys Ile Met Tyr Thr Ser Gly Ser Thr Gly
245 250 255
Asn Pro Lys Gly Val Ile Leu Thr His Gly Asn Leu Ala Ala Ala Ile
260 265 270
Gly Gly Val Asn Lys Met Leu Glu Lys Tyr Ile Arg Glu Gly Asp Val
275 280 285
Leu Leu Ala Tyr Leu Pro Leu Ala His Val Leu Glu Phe Met Val Glu
290 295 300
Asn Leu Cys Leu Phe Trp Gly Val Thr Leu Gly Tyr Gly Thr Val Arg
305 310 315 320
Thr Leu Thr Asp Ala Ser Val Arg Glu Cys Gln Gly Asp Ile Lys Glu
325 330 335
Leu Arg Pro Thr Leu Met Thr Gly Val Pro Ala Val Trp Glu Thr Ile
340 345 350
Arg Lys Gly Val Leu Ala Gln Val Asn Gln Gly Ser Pro Leu Val Gin
355 360 365
Ser Val Phe Asn Ala Ala Leu Asn Ala Lys Ala Trp Cys Met Asp Arg
370 375 380
Lys Leu Ala Leu Thr Gly Ile Phe Asp Thr Val Val Phe Asn Lys
385 390 395 400
Val Arg Gln Gln Thr Gly Lys Arg Leu Arg Tyr Ala Leu Ser Gly Gin
405 410 415
Ala Pro Ile Ser Glu Gln Thr Glu Gin Arg Phe Leu Thr Thr Ala Leu Cys
420 425 430
Pro Ile Leu Gln Ala Tyr Gly Met Thr Glu Ser Cys Gly Met Cys Ser
435 440 445
Ile Met Thr Pro Glu Ala Phe Asn Tyr Asn Arg Val Gly Ser Pro Val
450 455 460
Pro Cys Thr Glu Val Lys Leu Val Asp Val Pro Asp Ala Gly Tyr Phe
465 470 475 480
Ser Thr Asp Ser Pro Arg Pro Arg Gly Glu Ile Trp Ile Arg Gly Pro
485 490 495
Ser Ile Thr Ser Gly Tyr Phe Lys Asn Ala Glu Glu Thr Ser Ala Ala
500 505 510
Ile Thr Glu Asp Arg Trp Leu Lys Thr Gly Asp Ile Gly Glu Trp His
515 520 525
Ala Asp Gly Thr Leu Ser Val Ile Asp Arg Lys Lys Asn Leu Val Lys
530 535 540
Leu Ser His Gly Glu Tyr Ile Ala Leu Glu Lys Leu Glu Ser Val Tyr
545 550 555 560
Lys Ser Thr Ala Tyr Cys Asn Asn Ile Cys Val Tyr Ala Asp Ser Met
565 570 575
Gln Asn Lys Pro Val Ala Leu Ile Val Ala Ser Glu Pro Arg Ile Leu
580 585 590
Glu Leu Ala Lys Ala Lys Gly Leu Glu Ser Arg Asp Phe Ala Val Leu
595 600 605
Cys His Asp Lys Val Ile Ile Lys Ala Val Leu Asp Ala Cys Leu Ala
610 615 620
Thr Ala Lys Ala Gly Leu Lys Pro Ala Glu Leu Leu Gln Gly Val
625 630 635 640
Tyr Leu Glu Ser Glu Glu Trp Thr Ala Gln Gly Gly Leu Leu Thr Ala
645 650 655
Ala Gln Lys Leu Lys Arg Lys Glu Ile Asn Gln Ala Tyr Ala Asp Gln
660 665 670
Ile Lys Gln Ile Tyr Gly Ser Lys
675 680

<210> 53
<211> DNA
<213> Mortierella alpina

<400> 53
atgcgaatcg gttttaccgt caaagtcggc ccgaggagcg tcaagggcga gactgctcatc 60
cgctgcctca tcaagcgccgt gcaacaaactc atggactcacc cctcaagcga catcaagacc 120
tgcaagcagt gctcagcagc ctctgcaacc tctgccgcca aacctcaagc catgctgctac 180
ccggagagtt gcagaagagaa aaggaagatga ccaagatgtg caagggcagag 240
tctggcaacc cctcggcact ccacagatct gctgtaagct cctctgtccc 300
tacccagcaac ccagctgctat gatcaagctgc atggagaagtg ctggctgcagta 360
ggacgcaatt caggaagacac gctttgttgct tcacagatgtg ccagcaggaatgtgctgct 420
cgctggtcgcct tcacagctgcct catcagatctc gcctcggctagt tcagcagcttt 480
ggagttgctgc actgagatgg ccagggccgag tgggaaagcg ccattcaagcag 540
tatcagacca ttcagcgaccc gcctgagacc tgtctcagttct tctcctctcctg 600
gcgttctccag ccctctttgtc tgtctcctccgc cctcggaaagcc aacgtgaccc 720
taccaactctgg atggagctgac gcgatgcaag cggctcgagt tggatgactgtgagc 780
gtcttcgacat ttcgtcagctgc acagcgttcag aggttcagatggc ggatcagcttg 840
aatgtcactgc gcaagctggtg tgtctctcgtc tctctcgagtcgtgcttgtcg 900
tttacgaggtg gagggcagagc gctttctccgt gggtgcagccat cttgtatgagc 960
acgctgctgcct atggagcatgtc gcttctcaggtc tccagctgcctg tcaaggaatt 1020
cgctgctcatt tttggaagagc aagttacttg cctcggataagg ccgacccatgc 1080
aaccagagttt ccctctcttgcat tcacccatgtgc ttcacagcggcg tctgcaagcc 1140
tcgctgacact gcaacctagc cggcaggtgc acaacatgtgg ctaacagcttg 1200
gtcttctgctg gcttttgcacct ttcgcggtgct ccgctgagtc ccaagctgctg 1260
cggagacccgc aggctctggcc gacaacagcg tctgctctctc ttctcagacgc 1320
actggtcactg gccggtcgctg ctcgagcttg ctctcagcttg tggatgatgagc 1380
gggttcgctcg ctcaggctgtc aggttcagatgc tcctcagctgc ttcacagcggc 1440
tgcggagact ggcgctgctgc tgtcttgcaggtc atttgagttg cgcgtgaccc 1500
ggatcactgtc aacacgctctg ccagctcttgc agctctccatg ccagaccccttc 1560
actgagatga ttcgagaagtc gcagttcagag gcgctctgtg ccggataagtc 1620
aatctgtgac attgttgcag ggctgagatgg ccgatgttgtg ctgcagcgctg 1680
aagacgaggc ctttctggcct ccagacagct cgggctgttgct atgtgacggc 1740
tgggtctcaggt gagaagctggc atgggttggtgc ctctggcacc aacacccctg 1800
ggacctgccag acttggagtt gcctcggctcg cttttgagggc ccggtggtcttg cagaggtgtgg 1860
gcgtggcctcg cgcgctgcctg ccagagctggc ccagcttgcagtc gttgagcgcttg 1920	taaccttgcgt gctgagctgag gacgctgctcg gccggtttagtgc ttgactgcgc tccagagatcc 1980
aagcggagag aatcatacag gccggtttagtgc ccagagctgcctg cgggtaagtc 2040
taa

<210> 54
<211> 2052

93
CA 02851105 2014-05-08

DNA

Mortierella alpina

54

catgcgcaag tggtttaccc tcaacgtccgg ccccgaggagc gtcaaggccg agactgcgat 60
cgcctgccct atcggacgac tggcaaaacc ccaatgacgc ccatgaacga acatcaagac 120
catggccagt gttggcctcgt actgtgcccag actgtgcccc acatccaaqg ccatggccta 180
cacggcgcatt gtaattgtag tgcagggagt gaaattccagag aacagctccg cgtgggaggt 240
gcctgtcgaag gaaagggagt cttgaaagat cttcaatcag tccggctcag acatctctag 300
tctacaggcc acaagcagcc tattgaaagt ggtgcgctcag agtgggtggt 360
tgacgcccaag gagaggtcatc cggcgtctcg ttcaccagct gcacaggtgc gtcgctgcgc 420
tcattggctat catgcaaggt cgtgcagcgt gattacatct tggccaggaag 480
aggtattgctg cactcggatg acggagccga gttgggaacag gcctcaagcag acgtctgttt 540
gatacaagca atagacccag ttcgagagcg cttgcccacc ctaagagagc tgcctcttag 600
cgcgcagacc aacgacagcc aacagtgacgc ctctcaagcg gcccgaacgc acccttcggt 660
taacactctgt gaggacgtcg aagcagctcg tggccctcag cccttttagc accttcctgc 720
caacagtgcag ggtggagtag catttggtgc taacgagcag accttgcgaa acccttcggt 780
agctacattc actcagccca aacacatgcc cgcaccttggc ggggttaaa acagttgcgt 840
aaatgcaattcg caagcagcgg atggtggtctg tgcctctcct ccccttgcag acgctttgca 900
atattgtagt gaaacaggtc gttccttggag tggctgtgaac ggtgtaagct gtaagggtcgc 960
cacgctgcaag gatttgccttg tcgtcggagt ccaagaggt tatcaagagat tgcggccgct 1020
gctctttagac gcggcttcag cagttgtgga gacacccagc aaaggtgttc tgcgcgcaag 1080
aaaaacgggt attcctcgttg ttcatcacttc ctcagccgcgt ctcaggttag cccagggctg 1140
gttcatgcga gaaacactag gcgtcgtcag tggccaggtc gacactgtgg tgcgctcaaa 1200
ggccgcctac ctaaggtctgg cagctgctcgg cggcctgcgc ggcgttccct 1260
ccagagacgc cagcgctctct tggccgagag acctgctgcct atcccagagag ccatgtgcat 1320
caagtctgcag tggccgctag gctcggtcat gacccgtagc ggttccagct acaacgcgtg 1380
cggctcccttg ttcggcttcag caagaggtga gtgcgttcag cggcctgcgc ggcgttccct 1440
tggctactct gtcgcggcgc ctccttagtg gattttgtga gcggcctcac ccacactcct 1500
tggctactct ccaaggaggt cagaggtctgg gcggcctcac ccacactcct 1560
gacctaggtc attcctccttc ctcagcagtc gattttgtga gcggcctcac ccacactcct 1620
aagagttgtcc atggaggtga cattccattc gaaacacttg aagcctgtt 1680
caagagacgc gctctgctgc acaacacttg cttttagcgc gatccatgc aacaagagcc 1740
ctgcttggtg atggcggctg gataccagcc atctctgccg gccgtgcgagt cggaggcgct 1800
ggacagccgc gcccttgctgcgt cagctgctgc gcataagggag atcccagagag cggctgctgc 1860
cgctgctgcgc aaaaaagcttg ctcagcagcc gcgcaggtcg gccgcttcg tcgcgggtgt 1920
gtccctgcag tcgtgagagc gcggctctgc agcgcgttgg tggctgtgct ctcagaaatt 1980
gagaagccag gaattcaaccc agctttgcac gcacagatac tgcggctcata gcggaggagt 2040
gtaaatgtc ac 2052

55

2569

DNA

Mortierella alpina

misc_feature

(557),..(767)

n is a, c, g, or t

55

atgcgcaag tggtttaccc tcaacgtccgg ccccgaggagc gtcaaggccg gactgctgcgat 60
ctgctgcgc ataaggctcgc gccggcagag gcggcagcag tcagccggcg gactgctgcgat 120
ctgctgcgc ataaggctcgc gccggcagag gcggcagcag tcagccggcg gactgctgcgat 180
ctgctgcgc ataaggctcgc gccggcagag gcggcagcag tcagccggcg gactgctgcgat 240
ctgctgcgc ataaggctcgc gccggcagag gcggcagcag tcagccggcg gactgctgcgat 300
atcaacctcg aggaagctgaa gcagctcgga gtggacaacc ctgtcgcccc aacocctctct 720
gctgcaaggg actactgtctg cactatgtc actctgggtat gcagcttgaa cacccaaaagga 780
gtgagtggta cccactgaaac ccctgtggtct gcctagcagag gtggagaaga aaggtgcaca 840
aagtaacgtg acaggagaga cgttctggtc cgtactgtgg ctctgtgtaa cgtttgctag 900
ttcctctgct caaacgctct ctcctctctgg ggtggtggtct tggctcactcg tactcctgcg 960
acacttagctg acctgtcctagt cgctgtcgtg caggggtgata tcaaggtgtg gcgccttaca 1020
ttgtggacgc gcggtctcttg ctggtgagga aggattcgtg aggaggtgtt ggtcatagtt 1080
tcccagggct cccctctgtt tcaaaagact ttcactgtctg ctttcagcgc cagccggctgg 1140
tgcctggacc gcagatgtgg tcgtctgtcct gggacttctcg atactgtcgt ctctacaaag 1200
gtcaagacgc gcacagaggg acgttctctgc ttgccctcttt cggaggtgtc accatctctc 1260
cagagaaaaac agcgcctctat gcacagacag tcctgctgata ttctcaggg gctgcttctat 1320
acagagtctg gcggcatgatgc gcacatatttg accccctgtg tcctcactca cagccgtgctc 1380
gattccacaa ttcttctgac gcagttcctca ttggtcggat tgtcggatgc ccgccccagtc 1440
tcaacggact tgcttcctcc ccctggtgtaa gttctgatcgt ctggtacgcc ccaccccttg 1500
ggtactctaa agaaccccca ggcagcctcc gcacatctga tctggcattcg ctggctcaag 1560
actggagata tctggagagtgc gcaccccaggcc ggcacatctc gcacactgtc ccgcaaaagq 1620
aacttggtca agctgctcaca ggcaggtac attgcttgg agaagcttga gttcgctctac 1680
aagagcacag cctactgcaa caacattctct gcgtgatgagc actcgtagtc gacaccgcc 1740
gttgccactta ttggttgctag ccgacccagg atctcctgagt ttggccacagc caggcccatt 1800
gagagccgct acttgggtctg ttctcctgga caccagggta tcctacaggg gttcggcctg 1860
gctgcggct gcacgtcggca gcggtctgctt gtcggtgatg ccgaagccgg ctggagtgtc tcggagatcg 1920
tacttggtgct cagagagatgc gcgccccccgagctgcctctg tggactcggcc tcagacgcctc 1980
aagctgcaaggg agatagcacc gcgcctatgt gcacagcattca agcagcttta tggaccccggc 2040

<210> 57
<211> 680
<212> PRT
<213> Mortierella alpina

<400> 57
Met Thr Lys Cys Leu Thr Val Glu Val Gly Pro Ala Asp Val Glu Gln Gly
 1 5 10 15
Glu Thr Arg Ile Arg Arg Ser Val Leu Ser Ala Lys Arg Leu Met Ser
 20 25 30
Ser Pro Ser Asp Ile Lys Thr Leu Tyr Asp Val Phe Aan His Ser
 35 40 45
Val Thr Val Arg Pro Asn Leu Asn Ala Ile Gly Tyr Arg Lys Val Val
 50 55 60
Lys Ile Val Glu Glu Glu Glu Glu Val Val Lys Val Asn Gly Glu
 65 70 75 80
Glu Val Lys Glu Lys Thr Trp Lys Phe Phe Lys Met Ser Gly Tyr
 85 90 95
His Trp Leu Thr Tyr Lys Asp Ala Lys Gin Val Val Asp Ser Ile Gly
 100 105 110
Cys Gly Leu Arg Lys Phe Gly Val Glu Pro Lys Asp Lys Leu Thr Val
 115 120 125
Phe Gly Ala Thr Ser Ala Asn Trp Leu Leu Leu Ala His Gly Ala Phe
 130 135 140
Thr Gin Ser Ile Thr Val Thr Tyr Asp Thr Leu Gly Glu
 145 150 155 160
Gly Leu Leu His Ser Met Asl Glu Val Ala Thr Ala Tyr Thr
 165 170 175
Asn Ala Asp Leu Asn Leu Thr Lys Asn Val Ala Glycerin Cys Pro
 180 185 190
Thr Leu Lys Ile Ile Thr Asp Gly Asp Ala Lys Pro Ala Asp Val
 195 200 205

96
Ile Ala Leu Glu Glu Ala His Pro His Leu Gln Leu Leu Al a Ile Thr Leu Glu
210 215 220
Glu Leu Lys Gln Leu Gly Val Asp Asn Pro Val Ala Pro Thr Pro Pro
225 230 235 240
Ala Ala Lys Tyr Cys Cys Ile Met Tyr Thr Ser Gly Ser Thr Gly
245 250 255
Asn Pro Lys Gly Val Leu Leu Thr His Gly Asn Leu Val Ala Ala Ile
260 265 270
Gly Gly Val Asn Lys Met Leu Thr Lys Tyr Val His Gly Gly Asp Val
275 280 285
Leu Leu Ala Tyr Leu Pro Leu Ala His Val Leu Glu Phe Leu Val Glu
290 295 300
Asn Val Cys Leu Phe Trp Gly Val Thr Leu Gly Tyr Gly Thr Val Arg
305 310 315 320
Thr Leu Thr Asp Ala Ser Val Arg Glu Cys Gln Gly Asp Ile Lys Glu
325 330 335
Leu Arg Pro Thr Met Thr Gly Val Pro Ala Val Trp Glu Thr Ile
340 345 350
Arg Lys Gly Val Leu Ala Glu Val Ser Gln Gly Ser Pro Leu Val Gln
355 360 365
Lys Ile Phe His Ala Ala Leu Asn Ala Lys Ala Trp Cys Leu Asp Arg
370 375 380
Lys Leu Gly Ala Leu Thr Gly Ile Phe Asp Thr Val Val Phe Asn Lys
385 390 395 400
Val Lys Gln Gln Thr Gly Gly Arg Leu Arg Phe Ala Leu Ser Gly Gly
405 410 415
Ala Pro Ile Ser Glu Thr Gln Arg Phe Leu Thr Thr Ala Leu Cys
420 425 430
Pro Ile Leu Glu Gly Tyr Gly Met Thr Glu Ser Cys Gly Met Cys Ala
435 440 445
Ile Leu Thr Pro Asp Val Phe Asn Tyr Ser Arg Val Gly Ser Pro Val
450 455 460
Pro Cys Thr Glu Val Lys Leu Val Asp Val Pro Asp Ala Gly Tyr His
465 470 475 480
Ser Thr Asp Leu Pro Leu Pro Arg Gly Glu Val Cys Ile Arg Gly Pro
485 490 495
Ser Ile Thr Ala Gly Tyr Phe Lys Asn Pro Glu Glu Thr Ser Ala Thr
500 505 510
Leu Thr Ala Asp Arg Thr Leu Lys Thr Gly Asp Ile Gly Glu Trp His
515 520 525
Pro Asp Gly Thr Ile Ser Ile Asp Arg Lys Lys Asn Leu Val Lys
530 535 540
Leu Ser His Gly Thr Tyr Ile Ala Leu Glu Lys Leu Glu Ser Val Tyr
545 550 555 560
Lys Ser Thr Ala Tyr Cys Asn Asn Ile Cys Val Tyr Ala Asp Ser Met
565 570 575
Gln Asn Lys Pro Val Ala Ile Ile Val Ala Ser Glu Pro Arg Ile Leu
580 585 590
Glu Leu Ala Lys Ala Lys Gly Ile Glu Ser Arg Asp Phe Ala Ala Leu
595 600 605
Cys His Asp Lys Val Ile Ile Lys Ala Val His Asp Ala Cys Leu Ala
610 615 620
Thr Ala Lys Arg Ala Gly Lys Leu Pro Ala Glu Met Leu Gln Gly Val
625 630 635 640
Tyr Leu Glu Ser Glu Glu Trp Thr Ala Gln Ala Gly Met Leu Thr Ala
645 650 655

97
Ala Gln Lys Leu Lys Arg Lys Glu Ile Asn Gln Ala Tyr Val Ser Gln
660 665 670
Ile Lys Gin Leu Tyr Gly Thr Ala
675 680

<210> 58
<211> 2043
<212> DNA
<213> Mortierella alpina

<400> 58
atgacaagt gcctaccaagt cgaagtctgga ccggcgcagc gcggccgagc ttcagagccga gacccgcgtc 60
cggccgctcg tccctctgcgc aagcgccgctc atcgctctcg ecctcgggtc aatcggcaga ccacagggccg 120
cctacagggg gtcgtacact gtaagacttg ctcaggtttgt cccgctttaa cggcctcaga ggcctgcacc 180
cgaaggtgg cgaagcgagc ctggcagcgc agcggacgct gcggcgcgca gtcagcttgt tgggagcccc 240
tacaacagac gacagcagctgc gctcagctggt gcacagcttg gctgcgcggc tccccacgctc ggcagccg 300
tcaaagggct ccgagctgcc tcaagcagtc cagccagcag ttcacaggttg ttaagcgtctg gcaactgctg 360
gacggcagct gcccagcagc tcgtaccagc gacggagtgc gtcagcgcgg cccgctctcc tggctgctg 420
tcaagagcttg ctggcagctg gctgcgcgcg aaggtgggct ggctacaggg ccttcagggc 480
gtctttttcg acctctagag caagggggag tggcgcacgg cttacagaca cggcaccttg 540
ttcacacact tcacagccgg tgcggcgcac gtcgacgcca tggcgcacgg cttacagacg 600
ggcccagcga agccgcgagg tgtcagccgc ctccagaggg cctcactcct cttccgcggc 660
cattaacctgc agagagctgg gacgcgctgg gcggacagcc tggcgcgcgg cgcagcggcc 720
gcggccggcc acttgctcgg ctcctcctgg cgcgaggggc ccagcgctgc ccagcgtggtg 780
gtcggtcttg ccctcctgg gcacagcctg ccctcctgg gcacgctgcc gcggacagcc 840
aagagtccac gcaggagcgg cgcgctctgg gcggacgagc ttcacagttt gcgacctgcc 900
ttcctctgttc aaagaggcgg ctcctctgg gcggacgagc ttcacagttt gcgacctgcc 960
acattgctat atccgcttgt cggcgtgtgg cgcggattgc cggcgtgtgg cgcggattgc 1020
tcgtagcggc gctgctgact gcggacgagc ttcacagttt gcgacctgcc 1080
ccccgaggtct ctcctcctgg ctcctcctgg ctcctcctgg ctcctcctgg ctcctcctgg 1140
tgctggtcgc ggacagcctg ggctgctgact gcggacgagc ttcacagttt gcgacctgcc 1200
gtcagagcgg agcgctcctt gcggacgagc ttcacagttt gcgacctgcc 1260
cagggcgact ggcgtcctcg ggcgtcctcg ggcgtcctcg ggcgtcctcg ggcgtcctcg 1320
acagagtatt cgcgtcctcg ggcgtcctcg ggcgtcctcg ggcgtcctcg ggcgtcctcg 1380
aggtcgcgct cggcgtcctcg ggcgtcctcg ggcgtcctcg ggcgtcctcg ggcgtcctcg 1440
tcaagcgtt tcctctctcg gcggacgagc ttcacagttt gcgacctgcc 1500
ngatctcttc gcggagcgtc gcggacgagc ttcacagttt gcgacctgcc 1560
agtcggagat gcggagcggc gcggagcggc gcggagcggc gcggagcggc gcggagcggc 1620
acatgtgttc gcggagcggc gcggagcggc gcggagcggc gcggagcggc gcggagcggc 1680
agggcctgcc gcggagcgtc gcggacgagc ttcacagttt gcgacctgcc 1740
ctggcgcctg gcggagcgtc gcggacgagc ttcacagttt gcgacctgcc 1800
agagcggcgt cggcgtcctcg gcggacgagc ttcacagttt gcgacctgcc 1860
tgcgtgtact gcggacgagc cggcgtcctcg gcggacgagc ttcacagttt gcgacctgcc 1920
tactgtgatt gcggacgagc cggcgtcctcg gcggacgagc ttcacagttt gcgacctgcc 1980
aaggcggagc gcggagcgtc gcggacgagc cggcgtcctcg gcggacgagc ttcacagttt gcgacctgcc 2040

<210> 59
<211> 2392
<212> DNA
<213> Mortierella alpina

<400> 59
cctttatcgc cggccggcgc gcggcgtcct cgccacagcc ccaccttcct gcgttcctctt tttggtcacg 60
tccacaggg ccgccgcttc ggctgcgcttc gcgttcgctc gcgttcgctc gcgttcgctc gcgttcgctc 120
ccaatctcaag cattgaaacag ctgctctacc ggctgactgg accgcggccac gtcaccgggct 180
agaccgcgct cggcggcctcc gtcctctctg caaaggctct cattgcctctg cctcceptctg 240
acataagac gctcaattac acctccttcct cgtttcctcctct accttccccct ctcacttccac 300
cgatggata cgcgtccagtt ctgaaagctctg aagaacggat gccatcttcgt ctgctaggttc 360
tcggcgcggct gggaggctcaag gaaaagcgctc ccggctggttt gttctcagttgc ctgtcctcctc 420
acctggctgct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 480
gtttccctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 540
tctgtccccct ccggttcctcc ggggggttctcc gcaacctcttc ttcggttcctcc ggggggttctcc 600
tgggcgggagct cgctgctgtgct ccgccctctcc gtcctctctg ctgctctccct cattgcctctg 660
aggccgctggc cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 720
taatctcagcg cggcggcctcc ggggggttctcc gcaacctcttc ttcggttcctcc ggggggttctcc 780
acctggctgct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 840
caggagctcct cttctctctctg ccgccctctcc gtcctctctg ctgctctccct cattgcctctg 900
accccaaggg cggcggcctcc gtcctctctg ccgccctctcc gtcctctctg ctgctctccct cattgcctctg 960
agagtctcctg caagcaggtcc ccgggggttgtg cggcggcctcc gtcctctctg ctgctctccct cattgcctctg 1020
agttttcctgc gttcgtctcct ccgccctctcc gtcctctctg ctgctctccct cattgcctctg 1080
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1140
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1200
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1260
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1320
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1380
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1440
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1500
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1560
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1620
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1680
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1740
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1800
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1860
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1920
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 1980
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 2040
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 2100
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 2160
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 2220
tcggtgtctct cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 2280
accccaaggg cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 2340
accccaaggg cggcggcctcc gtcctctctg ctgctctccct cattgcctctg gttgcctccaag 2392

<210> 60
<211> 2537
<212> DNA
<213> Mortierella alpina

<400> 60
atgacaagagtc gtcctcctctg cggagttgga cggcgggacg gggcggcctcc gcgggctgccg 60
cggcgggacg cggcggcctcc gcgggctgccg gggcgggacg cggcggcctcc gcgggctgccg 120
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 180
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 240
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 300
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 360
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 420
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 480
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 540
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 600
tccatctcctct gccatctctct gtcctctctg cggcggcctcc gcgggctgccg gggcgggacg 660
CA 02851105 2014-05-08

aagttggaacc gcagatacgg tcagattatg cgtagcaagc gtgtgctctag tctcatcatc 720
gctcaccact gttaccattt attttatttct acctatcctc gcgtttatgt gcacactgctg 780
cctcttgccc cacagtctctc tccctcacgct cttacattt ctctcaagct gttcgttgcct 840
gggtcagagc gttctttttcc acctatggaa gcaagaggag gttgccacaag cttacaccaa 900
cgcggataca ctaacaacta tcaagaactg tgcggcagaa tgcggcaccgc tggcagaaat 960
catcacagcag acggcagaca agcggcagagc tgcggcagaca cagcagcagaa acggcagaca 1020
cctccagactc atcaacccctcg agaagctgaa gcacagcttgag gcagctgctg cttgatctg 1080
acccgccacc gcgttgctcc acctctcttc ttttcctcttc ctttgcacac ctctctcttc 1140
ccccaagggta gttggtcctga cccatgagaa cccactgtct ggcagtagctc atcttttctctg 1200
tccgatagctg ccgccgccct ttcacacctc ctgtttacctc tttgatggga aatgtattttta 1260
acccggaacc ccaatactttt ctcttctcttc cttttctcttc ctttgcacac ctctctcttc 1320
cacacagtctg gcacaaagtac gttcagcaggg gagaagctct cttcgtctctg ccggctttttg 1380
tctcaggttct cctagttctcg tctgctttctc ctgctcgtgtc atctctggctg cttgatctg 1440
acgcagggcc gcgcagactggt cggcactgtct cagcttggtgaa gttgcagggg gatataaaag 1500
agtggggtcga tacgattagtt aaccggttgtc ctgctgcttcc ggtagacatt gtaaagggag 1560
tggtgccacta ggttttccag ggcatacctc ttgtctcaaaa gatccctccat gctgttggta 1620
acgcagactc cttggtgcttg gacggaagat gttggtgcgt tgcattggaac tcgtagatctg 1680
tgcttcttaa caaggtcaag cgacagacag gaggaagctc tcgcgtccct cttttttggag 1740
gctccacact gctctctcttg gccgcagctc cctgtgcagac atcgctttgct gcctctctctt 1800
agggctacgg tattagacag tcgtgctgca ttcgtgccttc tttgaccccc gatgtctctca 1860
actacagctt gctcgattcc gcacgaggat caggtctgctc gatgtctctcc 1920
atgcaagata ccaccatcag gactgctctc tccctctctct ccgacgacgt tgcgtgctctc 1980
ccctcatcag tcgctgatatc tccaagaccc corgagggag cctggccgacat cttgatctg 2040
atgccgtgct cagaacgatta gatacgggag agggctaccct cgcagggcct atctctgatca 2100
ttgaccgcga ccaagacttg gcgacagctc ctcacacgcga gtagtctgcttg tcggtcagag 2160
ttgaaattgt gcgacagctc ctcacacgcga gtagtctgcttg tcggtcagag 2220
tgcgacgctc atcaggtcact gcacgaacat ttcgctgtagc gctgctgctgct 2280
tgcgacgctc atcaggtcact gcacgaacat ttcgctgtagc gctgctgctgct 2340
agggcagacc atccgacag gcgaatctctc gcgcgctctct gcggagctag 2400
tgctcagacgg agtgatcttg agtgcgagat agatgcagagc cccaggtgcct acggctgtctg 2460
ctggcgcgag ctggctagctg cgtggcagac acagcgtgcag ctggctagag gctggctagag 2520
ctggcgcgag ctggctagctg cgtggcagac acagcgtgcag ctggctagag gctggctagag 2580
<210> 61
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 61
gttggctcaca agctcgccac cc 22

<210> 62
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 62
gccagcgttcc agcaactgttg gtaag 25

100
<210> 63
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 63
gaccacggg tttcccaagg ctgc

<210> 64
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 64
cctgggtcgcg cttgttcttg gccac

<210> 65
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 65
tacagctttg ttgctgtccc catc

<210> 66
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 66
gatgatgggt gtgcttgcaag agatc

<210> 67
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA
<400> 67
aacccaaagc tgcgccaggc tgc
<210> 68
<211> 25
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic DNA
<400> 68
ttcagcttg gattcctttt gatgg
<210> 69
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic DNA
<400> 69
gtgcggcccg atgcgagac gc
<210> 70
<211> 24
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic DNA
<400> 70
tcagtggtac ccggtataca tcag
<210> 71
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic DNA
<400> 71
gcgtccccct ctatgataca ttg
<210> 72
<211> 24
<212> DNA
<213> Artificial sequence

102
<220> Synthetic DNA
<400> 72
gtggagatgga ggcgggaac atcg

<210> 73
<211> DNA
<212> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA

<400> 73
ggatgctcgaa caaagcgcg tgg

<210> 74
<211> DNA
<212> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA

<400> 74
gcacctctcct cagaaacagc cctc

<210> 75
<211> DNA
<212> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA

<400> 75
cagtcgagta cattgtcaac cacg

<210> 76
<211> DNA
<212> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA

<400> 76
gcggttcaag aggcgaggca cagc

<210> 77
<211> 25
DNA Artificial sequence

Synthetic DNA

gttcatcttc tgctggcttg gtc

25

77

DNA Artificial sequence

Synthetic DNA

gttgcgttgt tcacgcggca atcc

24

78

Artificial sequence

Synthetic DNA

atggaaacct tgttaacgg aaag

24

79

Artificial sequence

Synthetic DNA

toagcaaga tggccttgga ctgg

24

80

Artificial sequence

Synthetic DNA

80

Artificial sequence

Synthetic DNA

81

gtcaagggcg agactgcag cc

22

81
<210> 82
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 82
cggtagcagat ggtcatggac tgc

<210> 83
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 83
gcgagacccg ctcgcccgc tcc

<210> 84
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 84
gaccgtccct cgcaggggtg tcg

<210> 85
<211> 31
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 85
gcatccatgc ctctcctcaaa aagtacaac c

<210> 86
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA
<210> 86
cctcgggcat ggttttctta tctacagtt
<211> 86
<212> DNA
<213> Artificial sequence

<220> Synthetic DNA

<210> 87
gaattcatgg ttgctctccc actcg
<211> 87
<212> DNA
<213> Artificial sequence

<220> Synthetic DNA

<210> 88
ggatccctac tataagttgg ccttgcc
<211> 88
<212> DNA
<213> Artificial sequence

<220> Synthetic DNA

<210> 89
ggatcatgt atgtcggctc caagcttgac
<211> 89
<212> DNA
<213> Artificial sequence

<220> Synthetic DNA

<210> 90
gtgcgctca aaacctggctt tcgctgac g
<211> 90
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA
<400> 91
ggatccatgg aaccttggt taacggaag
<210> 92
<211> 29
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA
<400> 92
ggtacctaga acttcttcca catctctcc
<210> 93
<211> 31
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA
<400> 93
gagctccatgc caaagtgcct taccgtaac g
<210> 94
<211> 31
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA
<400> 94
ggatccttac ttggagccat agatctgctt g
<210> 95
<211> 28
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA
<223> Synthetic DNA
<400> 95
tctagaatgg cacctcccaaa cactattg
<210> 96
<211> 30
<212> DNA
<213> Artificial sequence
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 96
aagcttttac ttcttgaaaa agaccacgtc

<210> 97
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 97
tctagaatgg ctgctgtcc cagtgtagg

<210> 98
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 98
aagcttttac tgtgctttgc ccatctttgg

<210> 99
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 99
tctagaatgg agtcgattgc gcaattcc

<210> 100
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 100
gagcttttac tgcaacttcc tgtgcttctc
<210> 101
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 101
tctagaatgg gtgcggacac aggaaaaacc

<210> 102
<211> 30
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 102
aagcgtttac tctctcttg gacggaagacc

<210> 103
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 103
gaattcatga caaagtgcct caccgtcg

<210> 104
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 104
cocgggactt aggccgttcc ataaagctg

<210> 105
<211> 54
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA
<400> 105
aattcataag aatgcggccc gtaaactatt ctgaactagg tcgacgggc gcga

<210> 106
<211> 54
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 106
agcttggcgc gcctgtagcc tagtttagaa tagtttagcg gcgcattct tatg

<210> 107
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 107
agcgccccga tagggagat cgaacc

<210> 108
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 108
agaatctggc gcgcattga cgggtccttc tca

<210> 109
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 109
gtgcaccatg acaagtttgc

<210> 110
<211> 21
<212> DNA
<213> Artificial sequence
<220> Synthetic DNA

<400> 110
gtgaactgga agacqagcac g 21

<210> 111
<211> 43
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 111
ggcaaatctg tcgagagcg aagagagat tagaaacagc agc 43

<210> 112
<211> 42
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 112
cactcctcttc tcttaattgt tgagagagtg ttggttgtga gt 42

<210> 113
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 113
taagaaaggg gagtgaatcg cataggg 27

<210> 114
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 114
catgacaagt ttgcaagat gcg 23

<210> 115
<211> 28

111
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 115
atgttgaga gagtttggg tgagagtg 28

<210> 116
<211> 40
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 116
cactctctca acaatatgga aaccttggtt aacggaagt 40

<210> 117
<211> 45
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 117
cactcccttt tcctactaga actctcttca cactctctca atatc 45

<210> 118
<211> 41
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 118
cactcccttt tcctattact tgagccata gatcttggtt a 41

<210> 119
<211> 39
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 119
cactctctca acaatatgcc aaagtgcttt acogtcaac 39

112
<210> 120
<211> 16
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 120
gtoccgaatg gttcct

<210> 121
<211> 17
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 121
agcggtttttc tacttg

<210> 122
<211> 16
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 122
aactacaacc gcgtcg

<210> 123
<211> 16
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic DNA

<400> 123
cggcataaac gcagat

113
30179-221D1

CLAIMS:

1. A polynucleotide according to any one selected from the group consisting of (a) to (e) below:

(a) a polynucleotide comprising the nucleotide sequence set forth as SEQ ID NO: 51 or 56;

(b) a polynucleotide encoding a protein consisting of the amino acid sequence set forth as SEQ ID NO: 52 or 57;

(c) a polynucleotide encoding a protein consisting of an amino acid sequence wherein 1 to 100 amino acids are deleted, substituted, inserted and/or added in the amino acid sequence SEQ ID NO: 52 or 57, and having an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell;

(d) a polynucleotide encoding a protein having an amino acid sequence having at least 60% identity to the amino acid sequence set forth as SEQ ID NO: 52 or 57, and having an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell; and,

(e) a polynucleotide which hybridizes to a polynucleotide consisting of a nucleotide sequence complementary to the nucleotide sequence set forth as SEQ ID NO: 51 or 56 under stringent conditions, and which encodes a protein having an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell.

2. The polynucleotide according to claim 1, which is either one defined in (f) or (g) below:

(f) a polynucleotide encoding a protein consisting of an amino acid sequence wherein 1 to 10 amino acids are deleted, substituted, inserted and/or added in the amino acid sequence set forth as SEQ ID NO: 52 or 57, and having an acyl-CoA synthetase activity or an
activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell; and,

(g) a polynucleotide encoding a protein having an amino acid sequence having at least 90% identity to the amino acid sequence set forth as SEQ ID NO: 52 or 57, and an acyl-CoA synthetase activity or an activity of increasing the amount or changing the composition, of the fatty acids produced in a host cell when expressed in the host cell.

3. The polynucleotide according to claim 1, comprising the nucleotide sequence set forth as SEQ ID NO: 51 or 56.

4. The polynucleotide according to claim 1, encoding a protein consisting of the amino acid sequence set forth as SEQ ID NO: 52 or 57.

5. The polynucleotide according to any one of claims 1 to 4, which is a DNA.

6. A protein encoded by the polynucleotide according to any one of claims 1 to 5.

7. A vector comprising the polynucleotide according to any one of claims 1 to 5.

8. A non-human transformant, into which the polynucleotide according to any one of claims 1 to 5, or the vector according to claim 7 is introduced.

9. A method for producing a lipid or fatty acid composition, which comprises collecting the lipid or fatty acid composition from the culture of the transformant according to claim 8.

10. The method according to claim 9, wherein the lipid is a triacylglycerol.

11. The method according to claim 9, wherein the fatty acid is a polyunsaturated fatty acid having at least 18 carbon atoms.

12. A food product, pharmaceutical, cosmetic or soap comprising the lipid or fatty acid composition obtained by the production method according to claim 9.
Figure 8C

2801

genome A

cds A
Figure 9B

1901 CTATGAGAAGCCTGCTGGCTCATCCGGCTGCAAGAAAACATTCTGAAAAAGCTCAGAAGGTTTCTCAGCTGAAATGTGTGGAGGTTTTGAAGATATG

1901 YEELCAHPAVKETIIKLKELKEFRENDLKLKFEIL

2001 AAGAAATCTCATTGAAAGGGAACATCCTGCTGAGTAATGATATGTTCTTGGACACCCACATTCAACGCTGAAAGGAAACACGACAGGACAGAAATACATG

2001 KNINHTAEQFSIENDLLTTPTFKKLKRHTAKEKYIA

2101 CCGAGATTGAGCTGATGTATAAACGATGACGTAAGAAGCACAACCTTAATATCTTGTTTTTTAATACCTGTAACCATCAAAA

2101 EIENMYNG1H*

2201 AAAAAA AAAAAA
Figure 11B

2081 TTTACGCGCCACCTTCGATGCTGACAAATTCCCTAAGTAAAGTTTACGCTGTTTCAATTTATCTCTGACACATCTGACCTAGG
 LTPFKLKHAACKKYNAEIDMRWYAIA

2101 TTTACGCGCTATATAAAAAAA
Figure 18A
Figure 19B

1901
TGAAGAGCCAGGGCAGGCGGCTGATGGGCTGGTGCAGAGATATCTGTATTCTGATGGTATAGCTGAGATCGCGATGAGTGAGCCGCCTC
-KSOAKAAAGLSSKSETVQGGVIIDDDSDOWNNTNGMTS-

2001
CAGCGCAAGSCTCAAGGAGACGCGGGGCAAGGAACACACACAGGAGATGGGAGATGGGAGATTTTGATGAT
-SSKVKKRREVRKAKNKKDIEEMWKKFK-
Figure 21B

AELLOQYVYLESEETWTAOGGLLTAAQKLKRKEING

AYADQIKQY6S
Figure 24A
Figure 25B
<table>
<thead>
<tr>
<th>Code</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaACS-3</td>
<td>----------</td>
</tr>
<tr>
<td>NaACS-4</td>
<td>IHXKESKL-</td>
</tr>
<tr>
<td>NaACS-5</td>
<td>IH----------</td>
</tr>
<tr>
<td>NaACS-6</td>
<td>IA---------</td>
</tr>
<tr>
<td>NaACS-8</td>
<td>INASTPIAKL</td>
</tr>
<tr>
<td>NaACS-10</td>
<td>F----------</td>
</tr>
<tr>
<td>NaACS-11</td>
<td>K----------</td>
</tr>
<tr>
<td>NaACS-1Z</td>
<td>A----------</td>
</tr>
<tr>
<td>SoFAA1</td>
<td>S----------</td>
</tr>
<tr>
<td>SoFAA2</td>
<td>GSLVKTEKL-</td>
</tr>
<tr>
<td>SoFAA3</td>
<td>NS---------</td>
</tr>
<tr>
<td>SoFAA4</td>
<td>NT---------</td>
</tr>
</tbody>
</table>
Figure 28

A

Lipid production (mg/g dry mycelia)

- MaACS-11
- Control

Cultivation time (days)

B

AA production (mg/g dry mycelia)

- MaACS-11
- Control

Cultivation time (days)