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SINGLE-STAGE ARBITERASCHEDULER FOR 
A MEMORY SYSTEM COMPRISING A 
VOLATILE MEMORY AND A SHARED 

CACHE 

PRIORITY CLAIMAND RELATED 
APPLICATION 

0001. This application claims priority under 35 U.S.C. 
S119(e) to U.S. Patent Application Ser. No. 62/267,182, filed 
Dec. 14, 2015, entitled, “SINGLE-STAGE ARBITER/ 
SCHEDULER FOR AMEMORY SYSTEM COMPRISING 
A VOLATILE MEMORY AND A SHARED CACHE. The 
entire contents of which are hereby incorporated by refer 
CCC. 

DESCRIPTION OF THE RELATED ART 

0002 Portable computing devices (e.g., cellular tele 
phones, Smart phones, tablet computers, portable digital 
assistants (PDAs), portable game consoles, wearable 
devices, and other battery-powered devices) and other com 
puting devices continue to offer an ever-expanding array of 
features and services, and provide users with unprecedented 
levels of access to information, resources, and communica 
tions. 

0003) To keep pace with these service enhancements, 
Such devices have become more powerful and more com 
plex. Portable computing devices now commonly include a 
system on chip (SoC) comprising various memory clients 
embedded on a single Substrate (e.g., one or more central 
processing units (CPUs), a graphics processing unit (GPU), 
digital signal processors, etc.). The memory clients may 
request read and write transactions from one or more volatile 
memory devices electrically coupled to the SoC, such as, 
dynamic random access memory (DRAM) via double data 
rate (DDR) high-performance data and control interface(s). 
The DRAM may be combined with an on-chip cache to 
define a memory Subsystem. The cache is a component that 
stores data so future requests for that data can be served 
faster. The cache may comprise a multi-level hierarchy (e.g., 
L1 cache, L2 cache, etc.) with a last-level cache that is 
shared among a plurality of memory clients. 
0004 Existing solutions for scheduling concurrent trans 
actions to the memory Subsystem employ a two-stage arbi 
ter/scheduler. The first stage may function as an entry point 
to a last-level cache controller, and the second stage may 
function as an entry point to a DRAM controller. For 
example, a first arbiter selects one memory transaction at a 
time from a plurality of input buffers based on their relative 
priority level. The priority level defines a relative latency 
requirement for a transaction versus the others. The selected 
transactions are provided to a last-level cache controller. 
Transactions that do not hit a location in the last-level cache 
(i.e., a cache miss) may be provided to an input queue to a 
second arbiter. The second arbiter selects, from a set of 
cache-miss transactions in its input queue(s), a transaction 
that maximizes the DRAM bus utilization. This cascading of 
arbiters based on different criteria negatively impacts the 
complete system performance, including, for example, 
DRAM efficiency and latency. 
0005 Accordingly, there is a need for improved systems 
and methods for scheduling transactions in a memory Sub 
system comprising a last-level cache and DRAM. 
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SUMMARY OF THE DISCLOSURE 

0006 Systems, methods, and computer programs are 
disclosed for Scheduling memory transactions. An embodi 
ment of a method comprises determining future memory 
state data of a dynamic random access memory (DRAM) for 
a predetermined number of future clock cycles. The DRAM 
is electrically coupled to a system on chip (SoC). Based on 
the future memory state data, one of a plurality of pending 
memory transactions is selected that speculatively optimizes 
DRAM efficiency. The selected memory transaction is sent 
to a shared cache controller. If the selected memory trans 
action results in a cache miss, the selected memory trans 
action is sent to a DRAM controller. 
0007 Another embodiment is a system for scheduling 
memory transactions. The system comprises a volatile 
memory device and a system on chip (SoC) electrically 
coupled to the volatile memory. The SoC comprises a shared 
cached, a cache controller, and a transaction scheduler for 
scheduling pending memory transactions received from a 
plurality of memory clients. The transaction scheduler is 
configured to determine future state data of the volatile 
memory for a predetermined number of future clock cycles. 
Based on the future state data, the transaction scheduler 
selects one of the plurality of pending memory transactions 
that speculatively optimizes an efficiency of the volatile 
memory. The transaction scheduler sends the selected 
memory transaction to the shared cache controller and, if the 
selected memory transaction results in a cache miss, the 
selected memory transaction is sent to the volatile memory. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0008. In the Figures, like reference numerals refer to like 
parts throughout the various views unless otherwise indi 
cated. For reference numerals with letter character designa 
tions such as “102A or “102B, the letter character desig 
nations may differentiate two like parts or elements present 
in the same Figure. Letter character designations for refer 
ence numerals may be omitted when it is intended that a 
reference numeral to encompass all parts having the same 
reference numeral in all Figures. 
0009 FIG. 1 is a block diagram of an embodiment of a 
system for implementing a single-stage memory arbiter/ 
scheduler. 
0010 FIG. 2 is a block diagram illustrating an embodi 
ment of a single-stage memory arbiter/scheduler. 
0011 FIG. 3 is a flow/timing diagram illustrating an 
exemplary operation of the single-stage memory arbiter/ 
Scheduler of FIG. 2. 

0012 FIG. 4 illustrates an embodiment of DRAM state 
data for a predetermined number of future clock cycles. 
0013 FIG. 5 is a flowchart illustrating an embodiment of 
a method implemented by the single-stage memory arbiter/ 
Scheduler of FIG. 2. 
0014 FIG. 6 is a block diagram of an embodiment of a 
portable communication device for incorporating the system 
of FIG. 1. 

DETAILED DESCRIPTION 

0015 The word “exemplary' is used herein to mean 
'serving as an example, instance, or illustration.” Any aspect 
described herein as “exemplary” is not necessarily to be 
construed as preferred or advantageous over other aspects. 
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0016. In this description, the term “application” may also 
include files having executable content, such as: object code, 
Scripts, byte code, markup language files, and patches. In 
addition, an “application” referred to herein, may also 
include files that are not executable in nature, such as 
documents that may need to be opened or other data files that 
need to be accessed. 
0017. The term “content may also include files having 
executable content, such as: object code, Scripts, byte code, 
markup language files, and patches. In addition, "content 
referred to herein, may also include files that are not 
executable in nature. Such as documents that may need to be 
opened or other data files that need to be accessed. 
0018. As used in this description, the terms “component,” 
“database.” “module.” “system,” and the like are intended to 
refer to a computer-related entity, either hardware, firmware, 
a combination of hardware and software, software, or soft 
ware in execution. For example, a component may be, but is 
not limited to being, a process running on a processor, a 
processor, an object, an executable, a thread of execution, a 
program, and/or a computer. By way of illustration, both an 
application running on a computing device and the comput 
ing device may be a component. One or more components 
may reside within a process and/or thread of execution, and 
a component may be localized on one computer and/or 
distributed between two or more computers. In addition, 
these components may execute from various computer read 
able media having various data structures stored thereon. 
The components may communicate by way of local and/or 
remote processes such as in accordance with a signal having 
one or more data packets (e.g., data from one component 
interacting with another component in a local system, dis 
tributed system, and/or across a network Such as the Internet 
with other systems by way of the signal). 
0019. In this description, the terms “communication 
device.” “wireless device,” “wireless telephone”, “wireless 
communication device,” and "wireless handset’ are used 
interchangeably. With the advent of third generation (“3G') 
wireless technology and four generation (“4G”), greater 
bandwidth availability has enabled more portable computing 
devices with a greater variety of wireless capabilities. There 
fore, a portable computing device may include a cellular 
telephone, a pager, a PDA, a Smartphone, a navigation 
device, or a hand-held computer with a wireless connection 
or link. 
0020 FIG. 1 illustrates a system 100 comprising a single 
stage memory arbiter/scheduler for a memory Subsystem. 
The system 100 may be implemented in any computing 
device, including a personal computer, a workstation, a 
server, or a portable computing device (PCD). Such as a 
cellular telephone, a Smartphone, a portable digital assistant 
(PDA), a portable game console, or a tablet computer. As 
illustrated in the embodiment of FIG. 1, the system 100 
comprises a system on chip (SoC) 102 electrically coupled 
to one or more volatile memory devices or modules (e.g., 
DRAM 104). DRAM 104 comprises a plurality of banks 
with each bank defining a plurality of DRAM pages. In FIG. 
1, eight banks B0-B7 (reference numerals 106A-106H) are 
illustrated, although there may be any number of banks. The 
SoC 102 comprises various on-chip components, including 
one or more memory clients, a DRAM controller 116, and a 
cache controller 114 interconnected via a SoC bus 118. 
0021. The memory clients request memory resources 
(read and/or write requests) from the memory Subsystem 
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comprising DRAM 104 and a shared cache 120. The 
memory clients may comprise one or more processing units 
(e.g., central processing unit (CPU) 108, a graphics process 
ing unit (GPU) 110, digital signal processor (DSP) 112, etc.), 
a video encoder, or other clients requesting read/write access 
to the memory Subsystem. 
(0022. The DRAM controller 116 is electrically coupled to 
DRAM 104 and manages the flow of data going to and from 
DRAM 104 via, for example, a command address bus 122 
and a data bus 124. DRAM controller 116 generally com 
prises the logic for reading and writing to DRAM 104. The 
cache controller 114 controls access to the shared cache 120. 
As generally illustrated in FIG. 1 and described below in 
more detail, the cache controller 114 includes a transaction 
scheduler 126 for implementing a single-stage arbiter/sched 
uler. 

0023 Various embodiments of the single-stage arbiter/ 
Scheduler will be described below with reference to FIGS. 
2-5. The single-stage arbiterischeduler may incorporate vari 
ous mechanisms for scheduling transactions reaching a 
multi-ported memory Subsystem comprising the shared 
cache 120 and DRAM 104. As described below in more 
detail, the single-stage arbiter/scheduler logic maximizes 
DRAM efficiency and Quality of Service for the various 
memory clients. In an embodiment, the single-stage arbiter/ 
scheduler may be configured to provide two modes of 
operation for selectively controlling system memory perfor 
mance and power. A first mode provides speculative cache 
miss prediction. Transactions reaching input queue(s) of a 
shared or last-level cache controller (LLCC) (e.g., cache 
controller 114-FIG. 1) may be simultaneously sent to the 
LLCC and the DRAM controller 116. In the example of FIG. 
2, a first memory client (master M1202) has an input queue 
206, and a second memory client (master M2204) has an 
input queue 208. The transaction scheduler 126 selects from 
the plurality of pending transactions in the input queues 206 
and 208. For each selected transaction, the transaction 
scheduler 126 predicts whether a cache miss will occur. By 
simultaneously sending selected transactions to the cache 
controller 114 and the DRAM controller 116, the transaction 
scheduler 126 may enable the system 100 to mask latency 
introduced by the shared cache 120. 
0024. A second mode schedules the transactions based on 
states of the DRAM banks 106. A table or data structure 222 
may store predicted DRAM state data for each of the DRAM 
banks. In the embodiment of FIG. 2, the table 222 comprises 
a plurality of data fields 224, 226, 228, 230, 232, 234, 236, 
and 238 for storing the DRAM state for banks 0-7, respec 
tively. The predicted DRAM state data may define future 
memory state data that the DRAM 104 will have in a 
predetermined number of future clock cycles. The predeter 
mined number of future clock cycles may represent an 
amount of time corresponding to a cache hit/miss detection 
latency associated with the cache controller 114. It should be 
appreciated that the latency of the cache controller 114 may 
not permit the system 100 to recover for transactions miss 
ing the cache controller 114. However, the second mode 
selectively enables lower memory power consumption by 
avoiding unnecessary DRAM accesses in the event of cache 
hits. 

0025. The transaction scheduler 126 may comprise vari 
ous algorithm(s) for arbitrating/scheduling transactions from 
the input queues 206 and 208. In an embodiment, the 
transaction scheduler 126 has knowledge of the state and/or 
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utilization of each of the DRAM banks 106 for completing 
previously scheduled transactions to these banks. For each 
bank, future clock cycles may be marked as free or busy with 
a corresponding command (e.g., a precharge command 
(PRE), an activate command (ACT), a read or write com 
mand, an auto-refresh command, etc.). The future clock 
cycles may be marked as “not available' to accommodate 
DRAM timing between commands needed for performing a 
read/write transaction or DRAM servicing actions. The 
union of the per-cycle busy states for all banks (see reference 
numeral 412 in FIG. 4) may provide a state of the command 
address bus 122. The transaction scheduler 126 may also 
have knowledge of the state and/or utilization of the DRAM 
data bus 124. The state of the DRAM data bus 124 for future 
clock cycles may be marked as free or busy based on the 
previously scheduled transactions and DRAM timings. 
0026. It should be appreciated that, with such future cycle 
occupancy knowledge, the arbiter/scheduling algorithm(s) 
may be configured to select transactions that meet certain 
predetermined set of criteria. For example, in an embodi 
ment, the arbiter/scheduler can select a pending transaction 
if the following criteria are met: (1) this transaction can be 
immediately sent in the DRAM pipeline in the form of a 
DRAM command (PRE, ACT, RD or WR) without produc 
ing a collision on the command address bus 122; (2) the data 
transfer associated with this transaction can be sent to (write 
command) or received from (read command) the DRAM 
without producing a collision on the data bus 124; and (3) 
the selected transaction may not create a latency for a future 
transaction to the same bank higher than a programmed 
threshold. This latency criteria may comprise a Quality of 
Service rule for bonding the latency of transactions by 
avoiding low priority transactions to “flood the DRAM 
pipelines and creates then for a following high priority 
transaction a latency above their requirement. 
0027. With such future occupancy knowledge, the trans 
action scheduler 126 may determine the state of the DRAM 
banks and/or buses for a predetermined number (N) of clock 
cycles ahead of a current clock cycle. In an embodiment, the 
predetermined number (N) may correspond to a latency for 
the cache controller 114 to deliver cache hit/miss informa 
tion for any pending transaction that needs to be arbitrated/ 
scheduled at the input ports of the cache controller 114. 
0028 FIG. 2 illustrates an exemplary operation for a first 
memory transaction T1 in input queue 206 and a second 
memory transaction T2 in input queue 208. The input queue 
206 for master 202 comprises locations 208, 210, and 212 
with location 208 corresponding to memory transaction T1. 
The input queue 208 for master 204 comprises locations 
214, 216, and 218 with location 214 corresponding to 
memory transaction T2. Before describing the manner in 
which memory transactions T1 and T2 are scheduled in the 
single-stage arbiter/scheduler of FIG. 2, consider by contrast 
how they would be scheduled using a conventional two 
stage arbiter/scheduler. 
0029. In a conventional two-stage arbiter/scheduler, 
transactions T1 and T2 hit a last-level cache arbiter. This 
last-level cache arbiter does not have knowledge of the 
cache misses or hit property for these two pending transac 
tions. Let's consider the case where both transactions may 
not hit a last-level cache location and, therefore, may be sent 
to the DRAM controller, with transactions T1 and T2 both 
targeting DRAM bank B3. Transaction T1 may target a 
different page than the one currently open in bank B3, while 
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transaction T2 may hit the currently open page in bank B3. 
Under these conditions, in order to maximize the DRAM 
efficiency (e.g., reducing the number of wasted DRAM 
clock cycles that represents the PRE and ACT commands 
and timings), the correct transaction ordering should be 
transaction T2 first followed by transaction T1. 
0030. However, the last-level cache arbiter is selecting 
one of the pending transactions using only the Priority Level 
(PL) information associated with the transactions, without 
using any criteria based on the DRAM bank state. Following 
the example illustrated in FIG. 2, consider that transaction 
T1 has PL=2, and transaction T2 has PL=0. In this scenario, 
the last-level cache arbiter will first send transaction T1 first 
to the last-level cache memory, which detects a cache-miss 
and then sends then transaction T1 to the DRAM controller. 
The last-level cache arbiter will then send transaction T2 to 
the last-level cache memory, which detects a cache-miss and 
then sends then the transaction T2 to the DRAM controller. 
The DRAM controller receives the transaction T1 first. In 
the absence of any other pending transaction that could 
maximize the DRAM efficiency, the DRAM controller 
schedules transaction T1 to the DRAM. As a result, bank B3 
will be closed immediately (i.e., PRE command). After a 
timing delay (tRP), bank B3 will be activated (i.e., ACT 
command) for opening the page corresponding to an address 
for transaction T1. When transaction T2 arrives at the 
DRAM controller, as transaction T1 has been already sched 
uled and bank B3 is being precharged, transaction T2 is no 
more hitting an open page. Transaction T2 will need further 
PRE and ACT commands before its data is sent to or read 
from the DRAM memory. This causes DRAM efficiency 
degradation by adding unnecessary clock cycle overhead on 
DRAM memory. 
0031. Following the above example, consider the opera 
tion of the single-stage arbiter/scheduler of FIG. 2 receiving 
at the same clock cycle the transaction T1 (PL=2) issued by 
master 202 and the transaction T2 (PLO) is issued by 
master 204. Because the last-level cache arbiter knows the 
state of DRAM 104 a predetermined number (N) clock 
cycles ahead of the current clock cycle, the transaction 
scheduler 126 may speculate that these two transactions may 
not hit a last-level cache location, and thus determine that 
transaction T2, if not hitting a last-level cache location, may 
hit an open page in bank B3 of the DRAM while transaction 
T1, if not hitting a last-level cache location, may conflict 
within bank B3. It should be appreciated that the single 
stage arbiter/scheduler may improve DRAM efficiency 
because the transaction scheduler 126 may select to process 
transaction T2 before transaction T1 if these transactions are 
not hitting a last-level cache location. This results in much 
less wasted clock cycles on the DRAM bus for processing 
both T1 and T2 as shown in the timing diagram of FIG. 3. 
Reference numeral 302 and reference numerical 304 illus 
trate transaction T1 and T2, respectively, arriving on arbiter/ 
scheduler in the same clock cycle t. Reference numeral 306 
illustrates the selection by the single-stage arbiter/scheduler 
of transaction T2 in next clock cycle (t+1) based on its 
DRAM page hit property and despite its lower PL than T1. 
Reference numeral 308 illustrates the selection by the 
single-stage arbiter/scheduler of transaction T1 in clock 
cycle (t+2). Reference numeral 310 illustrates the Shared 
Cache hit or cache miss detection latency. Reference 
numeral 312 illustrates the delivery by the Shared Cache of 
the cache miss status for T2. Reference numeral 314 illus 
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trates the delivery by the Shared Cache of the cache miss 
status for T1. Reference numeral 316 illustrates the delivery 
of transaction T2 to the DRAM Protocol Converter 220 
(FIG. 2), which directly produce the Read command to the 
DRAM Command/Address bus as illustrated by reference 
numeral 320. Reference numeral 322 illustrates the required 
DRAM Read to Precharge command delay (tRTP). Refer 
ence numerals 324 and 342 illustrate the Read Latency 
(DRAM timing parameter RL) between Read command and 
delivery of corresponding data on DRAM data bus 124. 
Reference numerals 326, 328, 330, and 332 illustrate the 
cycles used for receiving the data from the DRAM as 
requested by transaction T2. Reference numerals 334, 338 
and 342 illustrate the Precharge, Activate and Read com 
mands, respectively, sent by the DRAM controller 116 as 
requested for executing transaction T1. Reference numeral 
336 illustrates the required DRAM delay between a Pre 
charge command and next Activate command to same bank 
(DRAM Row Precharge time (single bank) tRPpb). Refer 
ence numeral 340 illustrates the required DRAM delay 
between an Activate command and the Read command to 
same bank (DRAM RAS-to-CAS delay tRCD). Reference 
numerals 344, 346, 348, and 350 illustrate the cycles used 
for receiving the data from the DRAM as requested by 
transaction T1. Reference numeral 352 illustrates the total 
number of clock cycles used for completing both transac 
tions T1 and T2. It should be appreciated that, if transaction 
T1 would have been selected before transaction T2 by a first 
arbiter stage using PL value as ordering criteria, the total 
number of clock cycles needed for completing execution of 
these two transactions would have been much larger. 
0032. As mentioned above, the transaction scheduler 126 
may select from the set of pending memory transactions 
based on the corresponding priority levels and the DRAM 
bus/bank state data described above. The priority level may 
comprise information representing a relative latency indica 
tion between transactions. The transaction scheduler 126 
uses the DRAM bus/bank state data to optimize operation of 
DRAM 104. In an embodiment, the transaction scheduler 
126 may maximize DRAM efficiency by avoiding unnec 
essary clock cycles needed for pre-charging a DRAM bank 
106 prior to activating the DRAM bank (i.e., opening a page 
inside the bank) and then accessing bank content on a per 
page basis. DRAM efficiency may be further maximized by 
avoiding unnecessary cycles on the DRAM data bus 124 to 
read/write data. 

0033. The transaction scheduler 126 may be configured 
to speculatively determine future memory state data for a 
predetermined number of future clock cycles. The future 
memory state data may comprise state data related to one or 
more of the following: DRAM command address bus 122, 
DRAM data bus 124, and DRAM banks 106. The transac 
tion scheduler 126 speculatively determines the future 
memory state data that would be induced by each selected 
transaction. The transaction scheduler 126 may be further 
configured to revert back some or all of the speculative state 
data for the future clock cycles in the event that the selected 
transaction results in a cache hit. 

0034. The DRAM state data may be accumulated for 
each bank 106 and the data bus state for the future clock 
cycle based on the command that will speculatively be sent 
by the cache controller 114 to DRAM controller 116 if the 
transaction selected by the transaction scheduler 126 will not 
hit a cache location. 
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0035 FIG. 4 illustrates an embodiment of DRAM state 
data for a predetermined number of future clock cycles 
represented along the x-axis. Reference numeral 402 illus 
trates state data for a bank 1. Reference numeral 404 
illustrates state data for a bank 2. Reference numeral 406 
illustrates state data for a bank N. Reference numeral 408 
illustrates state data for the DRAM command address bus 
122. Reference numeral 410 illustrates state data for the 
DRAM data bus 410. It should be appreciated that the state 
accumulation data can be performed using a per-bank and 
per-bus occupancy vector with each cell of the vector 
corresponding to the state of the bank or bus for a future 
clock cycle, starting from a current clock cycle. The nota 
tions tRPpb, and tRCD refer to the DRAM requested delays 
between commands as described above in connection with 
the timing diagram of FIG. 3. Reference numeral 414 
illustrates the requested delay between a Read command 
sent to DRAM and Read data returned by DRAM (DRAM 
Read latency timing, noted RL). Reference numeral 416 
illustrates the requested delay between a Write command 
sent to DRAM and Write data sent to DRAM (DRAM Write 
latency timing, noted WL). 
0036 FIG. 5 is a flowchart illustrating an embodiment of 
a method 500 implemented by the single-stage memory 
arbiter/scheduler of FIG. 2. The method 500 may be per 
formed at each clock cycle. At block 502, future memory 
state is determined for DRAM 104 over a predetermined 
number of future clock cycles. At block 504, the transaction 
scheduler 126 uses the future memory state data to select one 
of a plurality of pending memory transactions that specula 
tively optimizes DRAM efficiency. At block 506, the 
selected memory transaction is sent to the cache controller 
114. If there is a cache miss, at block 512, the selected 
memory transaction may be sent to the DRAM controller 
116. If there is a cache hit, at block 510, the future memory 
state data may be updated to reflect that the selected memory 
transaction did not reach the DRAM controller 116. 
0037. In another embodiment, the transaction scheduler 
126 selects and sends to the shared cached 120 one trans 
action that maximize a cost function computed for each 
pending transaction based on any of the following: 
0038 a transaction priority level (PL); 
0039 the transaction, if missing the last-level cache (so 
after N clock cycles of the LLCC latency), may hit an open 
page in a DRAM bank, or an inactive bank; 
0040 the transaction direction (read or write) compared 
to the direction that the DRAM data bus direction will be in 
N clock cycles; 
0041 the DRAM command bus in N clock cycles from 
current clock cycles will be available for directly receiving 
a DRAM command (PREcharge, ACTivate, Read, or Write) 
requested for executing the transaction (e.g., a cost function 
of a transaction that could not be sent immediately as a 
DRAM command gets Zeroed); 
0042 the DRAM data bus will be available for receiving 
(write transaction) or transmitting (read transaction) associ 
ated data WL or RL cycles after Write or Read command has 
been sent on DRAM address/command bus; 
0043 this command, if sent to the DRAM, respects all 
the DRAM timing requirements for the bank, and between 
banks (e.g., a cost function of a transaction that could violate 
a DRAM timing requirement gets Zeroed). 
0044. The one among the transaction(s) having the high 
est cost function value may be selected by the arbiter/ 
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scheduler and sent to the last-level cache controller. The 
DRAM buses and bank states for the clock cycles located in 
future N and following cycles are updating speculatively 
(cache-miss speculation) based on this selected transaction. 
If after the N clock cycles of the cache latency, it is detected 
that the transaction is not hitting a cache location (cache 
miss transaction), this transaction is then directly sent to the 
DRAM controller 116, which converts the transaction into 
DRAM commands (PREcharge, Activate, Read or Write 
commands) to be sent on DRAM command bus 122, and 
sends or receives data onto or from DRAM data bus 124. No 
reordering needs to take place in the DRAM controller 116 
as the optimal order between transactions has already been 
done at the entry of the last-level cache by the single-stage 
arbiterischeduler. The DRAM buses and banks states have 
already been marked correctly by the speculative cache-miss 
prediction at time of the scheduling to the cache controller 
114. 

0045. If the transaction hits a cached location, then the 
cache memory returns the data for a read transaction or 
stores the data for a write, and the transaction is not sent to 
the DRAM controller 116. DRAM buses and bank states 
shall be updated to reflect the fact that the transaction is not 
reaching the DRAM controller 116 or the DRAM 104. This 
update may comprise more than simply freeing up the bank 
state for the clock cycles needed to execute the transaction. 
For example, during the N clock cycles of the cache latency, 
Some other transactions to the same bank may have been 
already scheduled by the single-stage arbiter/scheduler 
based on the speculative state of the DRAM bank for that 
transaction (e.g., expecting that the bank has been already 
precharged and open to a page that is then hit by the 
transactions selected by the arbiter/scheduler). In this man 
ner, a “command/state retraction' algorithm may be imple 
mented. 

0046 When a transaction has been selected by the trans 
action scheduler 124, the DRAM bus/bank states may be 
updated as described above, before knowing if the selected 
transaction hits or misses a last-level cache location. If a 
cache miss occurs, then the forecasting DRAM bank/bus 
states becomes true. In case of a cache hit, the transaction 
scheduled to DRAM 104 becomes useless and should be 
retracted for saving DRAM bandwidth and power. But 
freeing the bank/bus state from a DRAM occupancy table 
may not be feasible if the transaction scheduler 124 has 
already selected other transactions based on the now invali 
dated State prediction. Following is a list of exemplary cases. 
0047 ADRAM bus and bank state table that maintains 
the potential states of each DRAM bank and of the DRAM 
Command/Address and Data buses for the future clock 
cycles, may be speculatively updated each time a transaction 
is selected by the arbiter/scheduler, and each time a trans 
action hits the last-level cache (for retracting the speculative 
DRAM commands not needed and not yet sent to DRAM). 
An arbiterischeduler may select among several pending 
transactions the one to be sent to the last-level cache, based 
on its Priority Level and on the DRAM bank/bus states. A 
command retraction logic may be configured to remove, 
when possible (e.g., a command not yet sent to DRAM 104 
and without any dependency with other speculative com 
mands resulting from other transactions selected by the 
arbiter/scheduler), the speculative commands from the 
DRAM bus/bank State table. 
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0048. As mentioned above, the system 100 may be incor 
porated into any desirable computing system. FIG. 6 illus 
trates the system 100 incorporated in an exemplary portable 
computing device (PCD) 600. It will be readily appreciated 
that certain components of the system 100 (e.g., cache 120, 
cache controller 114, DRAM controller 116) are included on 
the SoC 322 (FIG. 6) while other components (e.g., the 
DRAM 104) are external components coupled to the SoC 
322. The SoC 322 may include a multicore CPU 602. The 
multicore CPU 602 may include a zeroth core 610, a first 
core 612, and an Nth core 614. One of the cores may 
comprise, for example, a graphics processing unit (GPU) 
with one or more of the others comprising the CPU. 
0049. A display controller 328 and a touch screen con 
troller 330 may be coupled to the CPU 1602. In turn, the 
touch screen display 606 external to the on-chip system 322 
may be coupled to the display controller 328 and the touch 
Screen controller 330. 

0050 FIG. 6 further shows that a video encoder 334, e.g., 
a phase alternating line (PAL) encoder, a sequential color a 
memoire (SECAM) encoder, or a national television system 
(s) committee (NTSC) encoder, is coupled to the multicore 
CPU 602. Further, a video amplifier 336 is coupled to the 
video encoder 334 and the touch screen display 606. Also, 
a video port 338 is coupled to the video amplifier 336. As 
shown in FIG. 6, a universal serial bus (USB) controller 340 
is coupled to the multicore CPU 602. Also, a USB port 342 
is coupled to the USB controller 340. Memory 104 and a 
subscriber identity module (SIM) card 346 may also be 
coupled to the multicore CPU 602. 
0051. Further, as shown in FIG. 6, a digital camera 348 
may be coupled to the multicore CPU 602. In an exemplary 
aspect, the digital camera 348 is a charge-coupled device 
(CCD) camera or a complementary metal-oxide semicon 
ductor (CMOS) camera. 
0052. As further illustrated in FIG. 6, a stereo audio 
coder-decoder (CODEC) 350 may be coupled to the multi 
core CPU 602. Moreover, an audio amplifier 352 may be 
coupled to the stereo audio CODEC 350. In an exemplary 
aspect, a first stereo speaker 354 and a second stereo speaker 
356 are coupled to the audio amplifier 352. FIG. 6 shows 
that a microphone amplifier 358 may be also coupled to the 
stereo audio CODEC 350. Additionally, a microphone 360 
may be coupled to the microphone amplifier 358. In a 
particular aspect, a frequency modulation (FM) radio tuner 
362 may be coupled to the stereo audio CODEC 350. Also, 
an FM antenna 364 is coupled to the FM radio tuner 362. 
Further, stereo headphones 366 may be coupled to the stereo 
audio CODEC 350. 

0053 FIG. 6 further illustrates that a radio frequency 
(RF) transceiver 368 may be coupled to the multicore CPU 
602. An RF switch 370 may be coupled to the RF transceiver 
368 and an RF antenna 372. A keypad 204 may be coupled 
to the multicore CPU 602. Also, a mono headset with a 
microphone 376 may be coupled to the multicore CPU 602. 
Further, a vibrator device 378 may be coupled to the 
multicore CPU 602. 

0054 FIG. 6 also shows that a power supply 380 may be 
coupled to the on-chip system322. In a particular aspect, the 
power supply 380 is a direct current (DC) power supply that 
provides power to the various components of the PCD 600 
that require power. Further, in a particular aspect, the power 
supply is a rechargeable DC battery or a DC power supply 
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that is derived from an alternating current (AC) to DC 
transformer that is connected to an AC power source. 
0055 FIG. 6 further indicates that the PCD 600 may also 
include a network card 388 that may be used to access a data 
network, e.g., a local area network, a personal area network, 
or any other network. The network card 388 may be a 
Bluetooth network card, a WiFi network card, a personal 
area network (PAN) card, a personal area network ultra 
low-power technology (PeANUT) network card, a televi 
sion/cable/satellite tuner, or any other network card well 
known in the art. Further, the network card 388 may be 
incorporated into a chip, i.e., the network card 388 may be 
a full Solution in a chip, and may not be a separate network 
card 388. 
0056. As depicted in FIG. 6, the touch screen display 606, 
the video port 338, the USB port 342, the camera 348, the 
first stereo speaker 354, the second stereo speaker 356, the 
microphone 360, the FM antenna 364, the stereo headphones 
366, the RF switch 370, the RF antenna 372, the keypad 374, 
the mono headset 376, the vibrator 378, and the power 
supply 380 may be external to the on-chip system 322. 
0057. It should be appreciated that one or more of the 
method steps described herein may be stored in the memory 
as computer program instructions, such as the modules 
described above. These instructions may be executed by any 
Suitable processor in combination or in concert with the 
corresponding module to perform the methods described 
herein. 
0058 Certain steps in the processes or process flows 
described in this specification naturally precede others for 
the invention to function as described. However, the inven 
tion is not limited to the order of the steps described if such 
order or sequence does not alter the functionality of the 
invention. That is, it is recognized that some steps may 
performed before, after, or parallel (substantially simultane 
ously with) other steps without departing from the scope and 
spirit of the invention. In some instances, certain steps may 
be omitted or not performed without departing from the 
invention. Further, words such as “thereafter”, “then', 
“next”, etc. are not intended to limit the order of the steps. 
These words are simply used to guide the reader through the 
description of the exemplary method. 
0059. Additionally, one of ordinary skill in programming 

is able to write computer code or identify appropriate 
hardware and/or circuits to implement the disclosed inven 
tion without difficulty based on the flow charts and associ 
ated description in this specification, for example. 
0060. Therefore, disclosure of a particular set of program 
code instructions or detailed hardware devices is not con 
sidered necessary for an adequate understanding of how to 
make and use the invention. The inventive functionality of 
the claimed computer implemented processes is explained in 
more detail in the above description and in conjunction with 
the Figures which may illustrate various process flows. 
0061. In one or more exemplary aspects, the functions 
described may be implemented in hardware, software, firm 
ware, or any combination thereof. If implemented in soft 
ware, the functions may be stored on or transmitted as one 
or more instructions or code on a computer-readable 
medium. Computer-readable media include both computer 
storage media and communication media including any 
medium that facilitates transfer of a computer program from 
one place to another. A storage media may be any available 
media that may be accessed by a computer. By way of 
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example, and not limitation, Such computer-readable media 
may comprise RAM, ROM, EEPROM, NAND flash, NOR 
flash, M-RAM, P-RAM, R-RAM, CD-ROM or other optical 
disk storage, magnetic disk storage or other magnetic Stor 
age devices, or any other medium that may be used to carry 
or store desired program code in the form of instructions or 
data structures and that may be accessed by a computer. 
0062 Also, any connection is properly termed a com 
puter-readable medium. For example, if the software is 
transmitted from a website, server, or other remote source 
using a coaxial cable, fiber optic cable, twisted pair, digital 
subscriber line (“DSL), or wireless technologies such as 
infrared, radio, and microwave, then the coaxial cable, fiber 
optic cable, twisted pair, DSL, or wireless technologies Such 
as infrared, radio, and microwave are included in the defi 
nition of medium. 
0063 Disk and disc, as used herein, includes compact 
disc (“CD), laser disc, optical disc, digital versatile disc 
("DVD), floppy disk and blu-ray disc where disks usually 
reproduce data magnetically, while discs reproduce data 
optically with lasers. Combinations of the above should also 
be included within the scope of computer-readable media. 
0064. Alternative embodiments will become apparent to 
one of ordinary skill in the art to which the invention 
pertains without departing from its spirit and scope. There 
fore, although selected aspects have been illustrated and 
described in detail, it will be understood that various sub 
stitutions and alterations may be made therein without 
departing from the spirit and Scope of the present invention, 
as defined by the following claims. 
What is claimed is: 
1. A method for scheduling transactions for a memory 

system, the method comprising: 
determining future memory state data of a dynamic ran 
dom access memory (DRAM) for a predetermined 
number of future clock cycles, the DRAM electrically 
coupled to a system on chip (SOC); 

based on the future memory state data, selecting one of a 
plurality of pending memory transactions that specu 
latively optimizes DRAM efficiency; 

sending the selected memory transaction to a shared cache 
controller, and 

if the selected memory transaction results in a cache miss, 
sending the selected memory transaction to a DRAM 
controller. 

2. The method of claim 1, wherein the selected pending 
memory transaction is determined based on the future 
memory state data and priority level data corresponding to 
the plurality of pending memory transactions. 

3. The method of claim 1, wherein the selectively opti 
mizing DRAM efficiency comprises reducing a number of 
DRAM clock cycles. 

4. The method of claim 1, wherein the future memory 
state data comprises a bank State for each of a plurality of 
banks comprising the DRAM. 

5. The method of claim 4, wherein the bank state com 
prises a free state or a busy state. 

6. The method of claim 4, wherein the future memory 
state further comprises: 

a DRAM data bus state; and 
a DRAM command address bus state. 
7. The method of claim 1, wherein the predetermined 

number of future clock cycles corresponds to a latency of the 
shared cache controller. 
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8. The method of claim 1, further comprising: 
if the selected memory transaction results in a cache hit, 

updating the future memory state data to reflect that the 
selected memory transaction did not reach the DRAM 
controller. 

9. A system for scheduling memory transactions compris 
ing: 

means for determining future memory state data of a 
dynamic random access memory (DRAM) for a pre 
determined number of future clock cycles, the DRAM 
electrically coupled to a system on chip (SoC); 

means for selecting one of a plurality of pending memory 
transactions that speculatively optimizes DRAM effi 
ciency based on the future memory state data; 

means for sending the selected memory transaction to a 
shared cache controller, and 

means for sending the selected memory transaction to a 
DRAM controller if the selected memory transaction 
results in a cache miss. 

10. The system of claim 9, wherein the means for select 
ing the one of the plurality of pending memory transactions 
that speculatively optimizes DRAM efficiency comprises: 
means for reducing a number of DRAM clock cycles. 

11. The system of claim 9, wherein the future memory 
state data comprises a bank State for each of a plurality of 
banks comprising the DRAM. 

12. The system of claim 11, wherein the bank state 
comprises a free State or a busy state. 

13. The system of claim 11, wherein the future memory 
state further comprises: 

a DRAM data bus state; and 
a DRAM command address bus state. 
14. The system of claim 9, wherein the predetermined 

number of future clock cycles corresponds to a latency of the 
shared cache controller. 

15. The system of claim 9, further comprising: 
means for updating the future memory state data, if the 

Selected memory transaction results in a cache hit, to 
reflect that the selected memory transaction did not 
reach the DRAM controller. 

16. A system for scheduling memory transactions com 
prising: 

a volatile memory device; 
a system on chip (SoC) electrically coupled to the volatile 
memory, the SoC comprising a shared cached, a cache 
controller, and a transaction scheduler for scheduling 
pending memory transactions received from a plurality 
of memory clients, the transaction scheduler configured 
tO: 

determine future state data of the volatile memory for 
a predetermined number of future clock cycles; 

based on the future state data, select one of the plurality 
of pending memory transactions that speculatively 
optimizes an efficiency of the Volatile memory; 

send the selected memory transaction to the shared 
cache controller, and 

send the selected memory transaction to the volatile 
memory if the selected memory transaction results in 
a cache miss. 
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17. The system of claim 16, wherein the volatile memory 
comprises a dynamic random access memory (DRAM) 
comprising a plurality of banks. 

18. The system of claim 17, wherein the future state data 
comprises a bank state for each of the plurality of banks. 

19. The system of claim 18, wherein the bank state 
comprises a free State or a busy state. 

20. The system of claim 18, wherein the future state data 
further comprises: 

a DRAM data bus state; and 
a DRAM command address bus state. 
21. The system of claim 16, wherein the predetermined 

number of future clock cycles corresponds to a latency of the 
shared cache controller. 

22. The system of claim 16, wherein the transaction 
scheduler is further configured to update the future state data 
of the volatile memory to reflect that the selected memory 
transaction did not reach the Volatile memory. 

23. The system of claim 16, incorporated in a portable 
communication device. 

24. A computer program embodied in a memory and 
executable by a processor for scheduling memory transac 
tions, the computer program comprising logic configured to: 

determine future memory state data of a dynamic random 
access memory (DRAM) for a predetermined number 
of future clock cycles, the DRAM electrically coupled 
to a system on chip (SoC); 

based on the future memory state data, select one of a 
plurality of pending memory transactions that specu 
latively optimizes DRAM efficiency; 

send the selected memory transaction to a shared cache 
controller, and 

if the selected memory transaction results in a cache miss, 
send the selected memory transaction to a DRAM 
controller. 

25. The computer program of claim 24, wherein the 
selectively optimizing DRAM efficiency comprises reduc 
ing a number of DRAM clock cycles. 

26. The computer program of claim 24, wherein the future 
memory state data comprises a bank State for each of a 
plurality of banks comprising the DRAM. 

27. The computer program of claim 26, wherein the bank 
state comprises a free state or a busy state. 

28. The computer program of claim 26, wherein the future 
memory state further comprises: 

a DRAM data bus state; and 
a DRAM command address bus state. 
29. The computer program of claim 24, wherein the 

predetermined number of future clock cycles corresponds to 
a latency of the shared cache controller. 

30. The computer program of claim 24, further compris 
ing logic configured to: 

if the selected memory transaction results in a cache hit, 
update the future memory state data to reflect that the 
selected memory transaction did not reach the DRAM 
controller. 


