
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0168727 A1

US 20170 168727A1

ALAVONE (43) Pub. Date: Jun. 15, 2017

(54) SINGLE-STAGE ARBITER/SCHEDULER FOR (52) U.S. Cl.
A MEMORY SYSTEM COMPRISING A CPC G06F 3/06 II (2013.01); G06F 12/0215
VOLATILE MEMORY AND A SHARED (2013.01); G06F 12/0868 (2013.01); G06F
CACHE 3/0646 (2013.01); G06F 3/0688 (2013.01);

G06F 2212/1024 (2013.01); G06F 22 12/281
(71) Applicant: QUALCOMM INCORPORATED, (2013.01); G06F 2212/3042 (2013.01); G06F

SAN DIEGO, CA (US) 2212/305 (2013.01)

(72) Inventor: OLIVIER ALAVOINE, SAN DIEGO,
CA (US) (57) ABSTRACT

(21) Appl. No.: 15/008,192
1-1. Systems, methods, and computer programs are disclosed for

(22) Filed: Jan. 27, 2016 scheduling memory transactions. An embodiment of a
Related U.S. Application Data method comprises determining future memory state data of

a dynamic random access memory (DRAM) for a predeter
(60) Provisional application No. 62/267,182, filed on Dec. mined number of future clock cycles. The DRAM is elec

14, 2015. trically coupled to a system on chip (SoC). Based on the
O O future memory state data, one of a plurality of pending

Publication Classification memory transactions is selected that speculatively optimizes
(51) Int. Cl. DRAM efficiency. The selected memory transaction is sent

G06F 3/06 (2006.01) to a shared cache controller. If the selected memory trans
G06F 2/08 (2006.01) action results in a cache miss, the selected memory trans
G06F 2/02 (2006.01) action is sent to a DRAM controller.

MAINTAINFUTURE MEMORY STATE DATA OF A DRAM (e.g., /
MEMORY BANKS AND BUSES STATES) FOR A

PREDETERMINED NUMBER OFFUTURE CLOCKCYCLES

BASED ON THE FUTURE MEMORY STATE DATA, SELECT ONE OF A
PLURALITY OF PENDING MEMORY TRANSACTIONS THAT 504

SPECULATIVELY OPTIMIZESDRAM EFFICIENCY

SEND THE SELECTED MEMORY
TRANSACTION TO A DRAM

CONTROLLER

UPDATEFUTUREMEMORY STATE DATA OF THE DRAMACCORDING TO
THE SELECTED MEMORY TRANSACTION, AND SEND THE SELECTED

MEMORY TRANSACTION TO A SHARED CACHE CONTROLLER
506

UPDATE THE FUTURE MEMORY STATE DATA TO
REFLECT THAT THE SELECTED MEMORY TRANSACTION 51O

DD NOT REACH THE DRAM CONTROLLER

Patent Application Publication Jun. 15, 2017 Sheet 1 of 6

N

:

&

S

US 2017/O168727 A1

s

Patent Application Publication Jun. 15, 2017 Sheet 2 of 6 US 2017/O168727 A1

2OO

SINGLE
TRANSACTION
SELECTED

CACHE-MISSED
TRANSACTION

DRAMTIMING

COMMAND
ADDRESSBUS

DRAM 104

BANKBO BANK B1 BANK B2 BANK B3
106A 106B 1O6C 1O6D

BANKB4 BANK B5 BANK B6 BANK B7
106E 106F 106G 106H

DATABUS FIG. 2

US 2017/O168727 A1 Jun. 15, 2017. Sheet 3 of 6 Patent Application Publication

US 2017/O168727 A1 Jun. 15, 2017. Sheet 5 of 6

009

Patent Application Publication

Patent Application Publication Jun. 15, 2017 Sheet 6 of 6 US 2017/O168727 A1

POWer
Display / Supply

322 Touchscreen 606 380

338

Video
Port

Stereo CMOS
Spkr Camera

Stereo

XV Spkr

356 RF

N
Mic. 368

358 Kevoad 370
360 204

MOnO
Headset / 376

Mic.

378

FIG. 6

US 2017/O168727 A1

SINGLE-STAGE ARBITERASCHEDULER FOR
A MEMORY SYSTEM COMPRISING A
VOLATILE MEMORY AND A SHARED

CACHE

PRIORITY CLAIMAND RELATED
APPLICATION

0001. This application claims priority under 35 U.S.C.
S119(e) to U.S. Patent Application Ser. No. 62/267,182, filed
Dec. 14, 2015, entitled, “SINGLE-STAGE ARBITER/
SCHEDULER FOR AMEMORY SYSTEM COMPRISING
A VOLATILE MEMORY AND A SHARED CACHE. The
entire contents of which are hereby incorporated by refer
CCC.

DESCRIPTION OF THE RELATED ART

0002 Portable computing devices (e.g., cellular tele
phones, Smart phones, tablet computers, portable digital
assistants (PDAs), portable game consoles, wearable
devices, and other battery-powered devices) and other com
puting devices continue to offer an ever-expanding array of
features and services, and provide users with unprecedented
levels of access to information, resources, and communica
tions.

0003) To keep pace with these service enhancements,
Such devices have become more powerful and more com
plex. Portable computing devices now commonly include a
system on chip (SoC) comprising various memory clients
embedded on a single Substrate (e.g., one or more central
processing units (CPUs), a graphics processing unit (GPU),
digital signal processors, etc.). The memory clients may
request read and write transactions from one or more volatile
memory devices electrically coupled to the SoC, such as,
dynamic random access memory (DRAM) via double data
rate (DDR) high-performance data and control interface(s).
The DRAM may be combined with an on-chip cache to
define a memory Subsystem. The cache is a component that
stores data so future requests for that data can be served
faster. The cache may comprise a multi-level hierarchy (e.g.,
L1 cache, L2 cache, etc.) with a last-level cache that is
shared among a plurality of memory clients.
0004 Existing solutions for scheduling concurrent trans
actions to the memory Subsystem employ a two-stage arbi
ter/scheduler. The first stage may function as an entry point
to a last-level cache controller, and the second stage may
function as an entry point to a DRAM controller. For
example, a first arbiter selects one memory transaction at a
time from a plurality of input buffers based on their relative
priority level. The priority level defines a relative latency
requirement for a transaction versus the others. The selected
transactions are provided to a last-level cache controller.
Transactions that do not hit a location in the last-level cache
(i.e., a cache miss) may be provided to an input queue to a
second arbiter. The second arbiter selects, from a set of
cache-miss transactions in its input queue(s), a transaction
that maximizes the DRAM bus utilization. This cascading of
arbiters based on different criteria negatively impacts the
complete system performance, including, for example,
DRAM efficiency and latency.
0005 Accordingly, there is a need for improved systems
and methods for scheduling transactions in a memory Sub
system comprising a last-level cache and DRAM.

Jun. 15, 2017

SUMMARY OF THE DISCLOSURE

0006 Systems, methods, and computer programs are
disclosed for Scheduling memory transactions. An embodi
ment of a method comprises determining future memory
state data of a dynamic random access memory (DRAM) for
a predetermined number of future clock cycles. The DRAM
is electrically coupled to a system on chip (SoC). Based on
the future memory state data, one of a plurality of pending
memory transactions is selected that speculatively optimizes
DRAM efficiency. The selected memory transaction is sent
to a shared cache controller. If the selected memory trans
action results in a cache miss, the selected memory trans
action is sent to a DRAM controller.
0007 Another embodiment is a system for scheduling
memory transactions. The system comprises a volatile
memory device and a system on chip (SoC) electrically
coupled to the volatile memory. The SoC comprises a shared
cached, a cache controller, and a transaction scheduler for
scheduling pending memory transactions received from a
plurality of memory clients. The transaction scheduler is
configured to determine future state data of the volatile
memory for a predetermined number of future clock cycles.
Based on the future state data, the transaction scheduler
selects one of the plurality of pending memory transactions
that speculatively optimizes an efficiency of the volatile
memory. The transaction scheduler sends the selected
memory transaction to the shared cache controller and, if the
selected memory transaction results in a cache miss, the
selected memory transaction is sent to the volatile memory.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. In the Figures, like reference numerals refer to like
parts throughout the various views unless otherwise indi
cated. For reference numerals with letter character designa
tions such as “102A or “102B, the letter character desig
nations may differentiate two like parts or elements present
in the same Figure. Letter character designations for refer
ence numerals may be omitted when it is intended that a
reference numeral to encompass all parts having the same
reference numeral in all Figures.
0009 FIG. 1 is a block diagram of an embodiment of a
system for implementing a single-stage memory arbiter/
scheduler.
0010 FIG. 2 is a block diagram illustrating an embodi
ment of a single-stage memory arbiter/scheduler.
0011 FIG. 3 is a flow/timing diagram illustrating an
exemplary operation of the single-stage memory arbiter/
Scheduler of FIG. 2.

0012 FIG. 4 illustrates an embodiment of DRAM state
data for a predetermined number of future clock cycles.
0013 FIG. 5 is a flowchart illustrating an embodiment of
a method implemented by the single-stage memory arbiter/
Scheduler of FIG. 2.
0014 FIG. 6 is a block diagram of an embodiment of a
portable communication device for incorporating the system
of FIG. 1.

DETAILED DESCRIPTION

0015 The word “exemplary' is used herein to mean
'serving as an example, instance, or illustration.” Any aspect
described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects.

US 2017/O168727 A1

0016. In this description, the term “application” may also
include files having executable content, such as: object code,
Scripts, byte code, markup language files, and patches. In
addition, an “application” referred to herein, may also
include files that are not executable in nature, such as
documents that may need to be opened or other data files that
need to be accessed.
0017. The term “content may also include files having
executable content, such as: object code, Scripts, byte code,
markup language files, and patches. In addition, "content
referred to herein, may also include files that are not
executable in nature. Such as documents that may need to be
opened or other data files that need to be accessed.
0018. As used in this description, the terms “component,”
“database.” “module.” “system,” and the like are intended to
refer to a computer-related entity, either hardware, firmware,
a combination of hardware and software, software, or soft
ware in execution. For example, a component may be, but is
not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a computing device and the comput
ing device may be a component. One or more components
may reside within a process and/or thread of execution, and
a component may be localized on one computer and/or
distributed between two or more computers. In addition,
these components may execute from various computer read
able media having various data structures stored thereon.
The components may communicate by way of local and/or
remote processes such as in accordance with a signal having
one or more data packets (e.g., data from one component
interacting with another component in a local system, dis
tributed system, and/or across a network Such as the Internet
with other systems by way of the signal).
0019. In this description, the terms “communication
device.” “wireless device,” “wireless telephone”, “wireless
communication device,” and "wireless handset’ are used
interchangeably. With the advent of third generation (“3G')
wireless technology and four generation (“4G”), greater
bandwidth availability has enabled more portable computing
devices with a greater variety of wireless capabilities. There
fore, a portable computing device may include a cellular
telephone, a pager, a PDA, a Smartphone, a navigation
device, or a hand-held computer with a wireless connection
or link.
0020 FIG. 1 illustrates a system 100 comprising a single
stage memory arbiter/scheduler for a memory Subsystem.
The system 100 may be implemented in any computing
device, including a personal computer, a workstation, a
server, or a portable computing device (PCD). Such as a
cellular telephone, a Smartphone, a portable digital assistant
(PDA), a portable game console, or a tablet computer. As
illustrated in the embodiment of FIG. 1, the system 100
comprises a system on chip (SoC) 102 electrically coupled
to one or more volatile memory devices or modules (e.g.,
DRAM 104). DRAM 104 comprises a plurality of banks
with each bank defining a plurality of DRAM pages. In FIG.
1, eight banks B0-B7 (reference numerals 106A-106H) are
illustrated, although there may be any number of banks. The
SoC 102 comprises various on-chip components, including
one or more memory clients, a DRAM controller 116, and a
cache controller 114 interconnected via a SoC bus 118.
0021. The memory clients request memory resources
(read and/or write requests) from the memory Subsystem

Jun. 15, 2017

comprising DRAM 104 and a shared cache 120. The
memory clients may comprise one or more processing units
(e.g., central processing unit (CPU) 108, a graphics process
ing unit (GPU) 110, digital signal processor (DSP) 112, etc.),
a video encoder, or other clients requesting read/write access
to the memory Subsystem.
(0022. The DRAM controller 116 is electrically coupled to
DRAM 104 and manages the flow of data going to and from
DRAM 104 via, for example, a command address bus 122
and a data bus 124. DRAM controller 116 generally com
prises the logic for reading and writing to DRAM 104. The
cache controller 114 controls access to the shared cache 120.
As generally illustrated in FIG. 1 and described below in
more detail, the cache controller 114 includes a transaction
scheduler 126 for implementing a single-stage arbiter/sched
uler.

0023 Various embodiments of the single-stage arbiter/
Scheduler will be described below with reference to FIGS.
2-5. The single-stage arbiterischeduler may incorporate vari
ous mechanisms for scheduling transactions reaching a
multi-ported memory Subsystem comprising the shared
cache 120 and DRAM 104. As described below in more
detail, the single-stage arbiter/scheduler logic maximizes
DRAM efficiency and Quality of Service for the various
memory clients. In an embodiment, the single-stage arbiter/
scheduler may be configured to provide two modes of
operation for selectively controlling system memory perfor
mance and power. A first mode provides speculative cache
miss prediction. Transactions reaching input queue(s) of a
shared or last-level cache controller (LLCC) (e.g., cache
controller 114-FIG. 1) may be simultaneously sent to the
LLCC and the DRAM controller 116. In the example of FIG.
2, a first memory client (master M1202) has an input queue
206, and a second memory client (master M2204) has an
input queue 208. The transaction scheduler 126 selects from
the plurality of pending transactions in the input queues 206
and 208. For each selected transaction, the transaction
scheduler 126 predicts whether a cache miss will occur. By
simultaneously sending selected transactions to the cache
controller 114 and the DRAM controller 116, the transaction
scheduler 126 may enable the system 100 to mask latency
introduced by the shared cache 120.
0024. A second mode schedules the transactions based on
states of the DRAM banks 106. A table or data structure 222
may store predicted DRAM state data for each of the DRAM
banks. In the embodiment of FIG. 2, the table 222 comprises
a plurality of data fields 224, 226, 228, 230, 232, 234, 236,
and 238 for storing the DRAM state for banks 0-7, respec
tively. The predicted DRAM state data may define future
memory state data that the DRAM 104 will have in a
predetermined number of future clock cycles. The predeter
mined number of future clock cycles may represent an
amount of time corresponding to a cache hit/miss detection
latency associated with the cache controller 114. It should be
appreciated that the latency of the cache controller 114 may
not permit the system 100 to recover for transactions miss
ing the cache controller 114. However, the second mode
selectively enables lower memory power consumption by
avoiding unnecessary DRAM accesses in the event of cache
hits.

0025. The transaction scheduler 126 may comprise vari
ous algorithm(s) for arbitrating/scheduling transactions from
the input queues 206 and 208. In an embodiment, the
transaction scheduler 126 has knowledge of the state and/or

US 2017/O168727 A1

utilization of each of the DRAM banks 106 for completing
previously scheduled transactions to these banks. For each
bank, future clock cycles may be marked as free or busy with
a corresponding command (e.g., a precharge command
(PRE), an activate command (ACT), a read or write com
mand, an auto-refresh command, etc.). The future clock
cycles may be marked as “not available' to accommodate
DRAM timing between commands needed for performing a
read/write transaction or DRAM servicing actions. The
union of the per-cycle busy states for all banks (see reference
numeral 412 in FIG. 4) may provide a state of the command
address bus 122. The transaction scheduler 126 may also
have knowledge of the state and/or utilization of the DRAM
data bus 124. The state of the DRAM data bus 124 for future
clock cycles may be marked as free or busy based on the
previously scheduled transactions and DRAM timings.
0026. It should be appreciated that, with such future cycle
occupancy knowledge, the arbiter/scheduling algorithm(s)
may be configured to select transactions that meet certain
predetermined set of criteria. For example, in an embodi
ment, the arbiter/scheduler can select a pending transaction
if the following criteria are met: (1) this transaction can be
immediately sent in the DRAM pipeline in the form of a
DRAM command (PRE, ACT, RD or WR) without produc
ing a collision on the command address bus 122; (2) the data
transfer associated with this transaction can be sent to (write
command) or received from (read command) the DRAM
without producing a collision on the data bus 124; and (3)
the selected transaction may not create a latency for a future
transaction to the same bank higher than a programmed
threshold. This latency criteria may comprise a Quality of
Service rule for bonding the latency of transactions by
avoiding low priority transactions to “flood the DRAM
pipelines and creates then for a following high priority
transaction a latency above their requirement.
0027. With such future occupancy knowledge, the trans
action scheduler 126 may determine the state of the DRAM
banks and/or buses for a predetermined number (N) of clock
cycles ahead of a current clock cycle. In an embodiment, the
predetermined number (N) may correspond to a latency for
the cache controller 114 to deliver cache hit/miss informa
tion for any pending transaction that needs to be arbitrated/
scheduled at the input ports of the cache controller 114.
0028 FIG. 2 illustrates an exemplary operation for a first
memory transaction T1 in input queue 206 and a second
memory transaction T2 in input queue 208. The input queue
206 for master 202 comprises locations 208, 210, and 212
with location 208 corresponding to memory transaction T1.
The input queue 208 for master 204 comprises locations
214, 216, and 218 with location 214 corresponding to
memory transaction T2. Before describing the manner in
which memory transactions T1 and T2 are scheduled in the
single-stage arbiter/scheduler of FIG. 2, consider by contrast
how they would be scheduled using a conventional two
stage arbiter/scheduler.
0029. In a conventional two-stage arbiter/scheduler,
transactions T1 and T2 hit a last-level cache arbiter. This
last-level cache arbiter does not have knowledge of the
cache misses or hit property for these two pending transac
tions. Let's consider the case where both transactions may
not hit a last-level cache location and, therefore, may be sent
to the DRAM controller, with transactions T1 and T2 both
targeting DRAM bank B3. Transaction T1 may target a
different page than the one currently open in bank B3, while

Jun. 15, 2017

transaction T2 may hit the currently open page in bank B3.
Under these conditions, in order to maximize the DRAM
efficiency (e.g., reducing the number of wasted DRAM
clock cycles that represents the PRE and ACT commands
and timings), the correct transaction ordering should be
transaction T2 first followed by transaction T1.
0030. However, the last-level cache arbiter is selecting
one of the pending transactions using only the Priority Level
(PL) information associated with the transactions, without
using any criteria based on the DRAM bank state. Following
the example illustrated in FIG. 2, consider that transaction
T1 has PL=2, and transaction T2 has PL=0. In this scenario,
the last-level cache arbiter will first send transaction T1 first
to the last-level cache memory, which detects a cache-miss
and then sends then transaction T1 to the DRAM controller.
The last-level cache arbiter will then send transaction T2 to
the last-level cache memory, which detects a cache-miss and
then sends then the transaction T2 to the DRAM controller.
The DRAM controller receives the transaction T1 first. In
the absence of any other pending transaction that could
maximize the DRAM efficiency, the DRAM controller
schedules transaction T1 to the DRAM. As a result, bank B3
will be closed immediately (i.e., PRE command). After a
timing delay (tRP), bank B3 will be activated (i.e., ACT
command) for opening the page corresponding to an address
for transaction T1. When transaction T2 arrives at the
DRAM controller, as transaction T1 has been already sched
uled and bank B3 is being precharged, transaction T2 is no
more hitting an open page. Transaction T2 will need further
PRE and ACT commands before its data is sent to or read
from the DRAM memory. This causes DRAM efficiency
degradation by adding unnecessary clock cycle overhead on
DRAM memory.
0031. Following the above example, consider the opera
tion of the single-stage arbiter/scheduler of FIG. 2 receiving
at the same clock cycle the transaction T1 (PL=2) issued by
master 202 and the transaction T2 (PLO) is issued by
master 204. Because the last-level cache arbiter knows the
state of DRAM 104 a predetermined number (N) clock
cycles ahead of the current clock cycle, the transaction
scheduler 126 may speculate that these two transactions may
not hit a last-level cache location, and thus determine that
transaction T2, if not hitting a last-level cache location, may
hit an open page in bank B3 of the DRAM while transaction
T1, if not hitting a last-level cache location, may conflict
within bank B3. It should be appreciated that the single
stage arbiter/scheduler may improve DRAM efficiency
because the transaction scheduler 126 may select to process
transaction T2 before transaction T1 if these transactions are
not hitting a last-level cache location. This results in much
less wasted clock cycles on the DRAM bus for processing
both T1 and T2 as shown in the timing diagram of FIG. 3.
Reference numeral 302 and reference numerical 304 illus
trate transaction T1 and T2, respectively, arriving on arbiter/
scheduler in the same clock cycle t. Reference numeral 306
illustrates the selection by the single-stage arbiter/scheduler
of transaction T2 in next clock cycle (t+1) based on its
DRAM page hit property and despite its lower PL than T1.
Reference numeral 308 illustrates the selection by the
single-stage arbiter/scheduler of transaction T1 in clock
cycle (t+2). Reference numeral 310 illustrates the Shared
Cache hit or cache miss detection latency. Reference
numeral 312 illustrates the delivery by the Shared Cache of
the cache miss status for T2. Reference numeral 314 illus

US 2017/O168727 A1

trates the delivery by the Shared Cache of the cache miss
status for T1. Reference numeral 316 illustrates the delivery
of transaction T2 to the DRAM Protocol Converter 220
(FIG. 2), which directly produce the Read command to the
DRAM Command/Address bus as illustrated by reference
numeral 320. Reference numeral 322 illustrates the required
DRAM Read to Precharge command delay (tRTP). Refer
ence numerals 324 and 342 illustrate the Read Latency
(DRAM timing parameter RL) between Read command and
delivery of corresponding data on DRAM data bus 124.
Reference numerals 326, 328, 330, and 332 illustrate the
cycles used for receiving the data from the DRAM as
requested by transaction T2. Reference numerals 334, 338
and 342 illustrate the Precharge, Activate and Read com
mands, respectively, sent by the DRAM controller 116 as
requested for executing transaction T1. Reference numeral
336 illustrates the required DRAM delay between a Pre
charge command and next Activate command to same bank
(DRAM Row Precharge time (single bank) tRPpb). Refer
ence numeral 340 illustrates the required DRAM delay
between an Activate command and the Read command to
same bank (DRAM RAS-to-CAS delay tRCD). Reference
numerals 344, 346, 348, and 350 illustrate the cycles used
for receiving the data from the DRAM as requested by
transaction T1. Reference numeral 352 illustrates the total
number of clock cycles used for completing both transac
tions T1 and T2. It should be appreciated that, if transaction
T1 would have been selected before transaction T2 by a first
arbiter stage using PL value as ordering criteria, the total
number of clock cycles needed for completing execution of
these two transactions would have been much larger.
0032. As mentioned above, the transaction scheduler 126
may select from the set of pending memory transactions
based on the corresponding priority levels and the DRAM
bus/bank state data described above. The priority level may
comprise information representing a relative latency indica
tion between transactions. The transaction scheduler 126
uses the DRAM bus/bank state data to optimize operation of
DRAM 104. In an embodiment, the transaction scheduler
126 may maximize DRAM efficiency by avoiding unnec
essary clock cycles needed for pre-charging a DRAM bank
106 prior to activating the DRAM bank (i.e., opening a page
inside the bank) and then accessing bank content on a per
page basis. DRAM efficiency may be further maximized by
avoiding unnecessary cycles on the DRAM data bus 124 to
read/write data.

0033. The transaction scheduler 126 may be configured
to speculatively determine future memory state data for a
predetermined number of future clock cycles. The future
memory state data may comprise state data related to one or
more of the following: DRAM command address bus 122,
DRAM data bus 124, and DRAM banks 106. The transac
tion scheduler 126 speculatively determines the future
memory state data that would be induced by each selected
transaction. The transaction scheduler 126 may be further
configured to revert back some or all of the speculative state
data for the future clock cycles in the event that the selected
transaction results in a cache hit.

0034. The DRAM state data may be accumulated for
each bank 106 and the data bus state for the future clock
cycle based on the command that will speculatively be sent
by the cache controller 114 to DRAM controller 116 if the
transaction selected by the transaction scheduler 126 will not
hit a cache location.

Jun. 15, 2017

0035 FIG. 4 illustrates an embodiment of DRAM state
data for a predetermined number of future clock cycles
represented along the x-axis. Reference numeral 402 illus
trates state data for a bank 1. Reference numeral 404
illustrates state data for a bank 2. Reference numeral 406
illustrates state data for a bank N. Reference numeral 408
illustrates state data for the DRAM command address bus
122. Reference numeral 410 illustrates state data for the
DRAM data bus 410. It should be appreciated that the state
accumulation data can be performed using a per-bank and
per-bus occupancy vector with each cell of the vector
corresponding to the state of the bank or bus for a future
clock cycle, starting from a current clock cycle. The nota
tions tRPpb, and tRCD refer to the DRAM requested delays
between commands as described above in connection with
the timing diagram of FIG. 3. Reference numeral 414
illustrates the requested delay between a Read command
sent to DRAM and Read data returned by DRAM (DRAM
Read latency timing, noted RL). Reference numeral 416
illustrates the requested delay between a Write command
sent to DRAM and Write data sent to DRAM (DRAM Write
latency timing, noted WL).
0036 FIG. 5 is a flowchart illustrating an embodiment of
a method 500 implemented by the single-stage memory
arbiter/scheduler of FIG. 2. The method 500 may be per
formed at each clock cycle. At block 502, future memory
state is determined for DRAM 104 over a predetermined
number of future clock cycles. At block 504, the transaction
scheduler 126 uses the future memory state data to select one
of a plurality of pending memory transactions that specula
tively optimizes DRAM efficiency. At block 506, the
selected memory transaction is sent to the cache controller
114. If there is a cache miss, at block 512, the selected
memory transaction may be sent to the DRAM controller
116. If there is a cache hit, at block 510, the future memory
state data may be updated to reflect that the selected memory
transaction did not reach the DRAM controller 116.
0037. In another embodiment, the transaction scheduler
126 selects and sends to the shared cached 120 one trans
action that maximize a cost function computed for each
pending transaction based on any of the following:
0038 a transaction priority level (PL);
0039 the transaction, if missing the last-level cache (so
after N clock cycles of the LLCC latency), may hit an open
page in a DRAM bank, or an inactive bank;
0040 the transaction direction (read or write) compared
to the direction that the DRAM data bus direction will be in
N clock cycles;
0041 the DRAM command bus in N clock cycles from
current clock cycles will be available for directly receiving
a DRAM command (PREcharge, ACTivate, Read, or Write)
requested for executing the transaction (e.g., a cost function
of a transaction that could not be sent immediately as a
DRAM command gets Zeroed);
0042 the DRAM data bus will be available for receiving
(write transaction) or transmitting (read transaction) associ
ated data WL or RL cycles after Write or Read command has
been sent on DRAM address/command bus;
0043 this command, if sent to the DRAM, respects all
the DRAM timing requirements for the bank, and between
banks (e.g., a cost function of a transaction that could violate
a DRAM timing requirement gets Zeroed).
0044. The one among the transaction(s) having the high
est cost function value may be selected by the arbiter/

US 2017/O168727 A1

scheduler and sent to the last-level cache controller. The
DRAM buses and bank states for the clock cycles located in
future N and following cycles are updating speculatively
(cache-miss speculation) based on this selected transaction.
If after the N clock cycles of the cache latency, it is detected
that the transaction is not hitting a cache location (cache
miss transaction), this transaction is then directly sent to the
DRAM controller 116, which converts the transaction into
DRAM commands (PREcharge, Activate, Read or Write
commands) to be sent on DRAM command bus 122, and
sends or receives data onto or from DRAM data bus 124. No
reordering needs to take place in the DRAM controller 116
as the optimal order between transactions has already been
done at the entry of the last-level cache by the single-stage
arbiterischeduler. The DRAM buses and banks states have
already been marked correctly by the speculative cache-miss
prediction at time of the scheduling to the cache controller
114.

0045. If the transaction hits a cached location, then the
cache memory returns the data for a read transaction or
stores the data for a write, and the transaction is not sent to
the DRAM controller 116. DRAM buses and bank states
shall be updated to reflect the fact that the transaction is not
reaching the DRAM controller 116 or the DRAM 104. This
update may comprise more than simply freeing up the bank
state for the clock cycles needed to execute the transaction.
For example, during the N clock cycles of the cache latency,
Some other transactions to the same bank may have been
already scheduled by the single-stage arbiter/scheduler
based on the speculative state of the DRAM bank for that
transaction (e.g., expecting that the bank has been already
precharged and open to a page that is then hit by the
transactions selected by the arbiter/scheduler). In this man
ner, a “command/state retraction' algorithm may be imple
mented.

0046 When a transaction has been selected by the trans
action scheduler 124, the DRAM bus/bank states may be
updated as described above, before knowing if the selected
transaction hits or misses a last-level cache location. If a
cache miss occurs, then the forecasting DRAM bank/bus
states becomes true. In case of a cache hit, the transaction
scheduled to DRAM 104 becomes useless and should be
retracted for saving DRAM bandwidth and power. But
freeing the bank/bus state from a DRAM occupancy table
may not be feasible if the transaction scheduler 124 has
already selected other transactions based on the now invali
dated State prediction. Following is a list of exemplary cases.
0047 ADRAM bus and bank state table that maintains
the potential states of each DRAM bank and of the DRAM
Command/Address and Data buses for the future clock
cycles, may be speculatively updated each time a transaction
is selected by the arbiter/scheduler, and each time a trans
action hits the last-level cache (for retracting the speculative
DRAM commands not needed and not yet sent to DRAM).
An arbiterischeduler may select among several pending
transactions the one to be sent to the last-level cache, based
on its Priority Level and on the DRAM bank/bus states. A
command retraction logic may be configured to remove,
when possible (e.g., a command not yet sent to DRAM 104
and without any dependency with other speculative com
mands resulting from other transactions selected by the
arbiter/scheduler), the speculative commands from the
DRAM bus/bank State table.

Jun. 15, 2017

0048. As mentioned above, the system 100 may be incor
porated into any desirable computing system. FIG. 6 illus
trates the system 100 incorporated in an exemplary portable
computing device (PCD) 600. It will be readily appreciated
that certain components of the system 100 (e.g., cache 120,
cache controller 114, DRAM controller 116) are included on
the SoC 322 (FIG. 6) while other components (e.g., the
DRAM 104) are external components coupled to the SoC
322. The SoC 322 may include a multicore CPU 602. The
multicore CPU 602 may include a zeroth core 610, a first
core 612, and an Nth core 614. One of the cores may
comprise, for example, a graphics processing unit (GPU)
with one or more of the others comprising the CPU.
0049. A display controller 328 and a touch screen con
troller 330 may be coupled to the CPU 1602. In turn, the
touch screen display 606 external to the on-chip system 322
may be coupled to the display controller 328 and the touch
Screen controller 330.

0050 FIG. 6 further shows that a video encoder 334, e.g.,
a phase alternating line (PAL) encoder, a sequential color a
memoire (SECAM) encoder, or a national television system
(s) committee (NTSC) encoder, is coupled to the multicore
CPU 602. Further, a video amplifier 336 is coupled to the
video encoder 334 and the touch screen display 606. Also,
a video port 338 is coupled to the video amplifier 336. As
shown in FIG. 6, a universal serial bus (USB) controller 340
is coupled to the multicore CPU 602. Also, a USB port 342
is coupled to the USB controller 340. Memory 104 and a
subscriber identity module (SIM) card 346 may also be
coupled to the multicore CPU 602.
0051. Further, as shown in FIG. 6, a digital camera 348
may be coupled to the multicore CPU 602. In an exemplary
aspect, the digital camera 348 is a charge-coupled device
(CCD) camera or a complementary metal-oxide semicon
ductor (CMOS) camera.
0052. As further illustrated in FIG. 6, a stereo audio
coder-decoder (CODEC) 350 may be coupled to the multi
core CPU 602. Moreover, an audio amplifier 352 may be
coupled to the stereo audio CODEC 350. In an exemplary
aspect, a first stereo speaker 354 and a second stereo speaker
356 are coupled to the audio amplifier 352. FIG. 6 shows
that a microphone amplifier 358 may be also coupled to the
stereo audio CODEC 350. Additionally, a microphone 360
may be coupled to the microphone amplifier 358. In a
particular aspect, a frequency modulation (FM) radio tuner
362 may be coupled to the stereo audio CODEC 350. Also,
an FM antenna 364 is coupled to the FM radio tuner 362.
Further, stereo headphones 366 may be coupled to the stereo
audio CODEC 350.

0053 FIG. 6 further illustrates that a radio frequency
(RF) transceiver 368 may be coupled to the multicore CPU
602. An RF switch 370 may be coupled to the RF transceiver
368 and an RF antenna 372. A keypad 204 may be coupled
to the multicore CPU 602. Also, a mono headset with a
microphone 376 may be coupled to the multicore CPU 602.
Further, a vibrator device 378 may be coupled to the
multicore CPU 602.

0054 FIG. 6 also shows that a power supply 380 may be
coupled to the on-chip system322. In a particular aspect, the
power supply 380 is a direct current (DC) power supply that
provides power to the various components of the PCD 600
that require power. Further, in a particular aspect, the power
supply is a rechargeable DC battery or a DC power supply

US 2017/O168727 A1

that is derived from an alternating current (AC) to DC
transformer that is connected to an AC power source.
0055 FIG. 6 further indicates that the PCD 600 may also
include a network card 388 that may be used to access a data
network, e.g., a local area network, a personal area network,
or any other network. The network card 388 may be a
Bluetooth network card, a WiFi network card, a personal
area network (PAN) card, a personal area network ultra
low-power technology (PeANUT) network card, a televi
sion/cable/satellite tuner, or any other network card well
known in the art. Further, the network card 388 may be
incorporated into a chip, i.e., the network card 388 may be
a full Solution in a chip, and may not be a separate network
card 388.
0056. As depicted in FIG. 6, the touch screen display 606,
the video port 338, the USB port 342, the camera 348, the
first stereo speaker 354, the second stereo speaker 356, the
microphone 360, the FM antenna 364, the stereo headphones
366, the RF switch 370, the RF antenna 372, the keypad 374,
the mono headset 376, the vibrator 378, and the power
supply 380 may be external to the on-chip system 322.
0057. It should be appreciated that one or more of the
method steps described herein may be stored in the memory
as computer program instructions, such as the modules
described above. These instructions may be executed by any
Suitable processor in combination or in concert with the
corresponding module to perform the methods described
herein.
0058 Certain steps in the processes or process flows
described in this specification naturally precede others for
the invention to function as described. However, the inven
tion is not limited to the order of the steps described if such
order or sequence does not alter the functionality of the
invention. That is, it is recognized that some steps may
performed before, after, or parallel (substantially simultane
ously with) other steps without departing from the scope and
spirit of the invention. In some instances, certain steps may
be omitted or not performed without departing from the
invention. Further, words such as “thereafter”, “then',
“next”, etc. are not intended to limit the order of the steps.
These words are simply used to guide the reader through the
description of the exemplary method.
0059. Additionally, one of ordinary skill in programming

is able to write computer code or identify appropriate
hardware and/or circuits to implement the disclosed inven
tion without difficulty based on the flow charts and associ
ated description in this specification, for example.
0060. Therefore, disclosure of a particular set of program
code instructions or detailed hardware devices is not con
sidered necessary for an adequate understanding of how to
make and use the invention. The inventive functionality of
the claimed computer implemented processes is explained in
more detail in the above description and in conjunction with
the Figures which may illustrate various process flows.
0061. In one or more exemplary aspects, the functions
described may be implemented in hardware, software, firm
ware, or any combination thereof. If implemented in soft
ware, the functions may be stored on or transmitted as one
or more instructions or code on a computer-readable
medium. Computer-readable media include both computer
storage media and communication media including any
medium that facilitates transfer of a computer program from
one place to another. A storage media may be any available
media that may be accessed by a computer. By way of

Jun. 15, 2017

example, and not limitation, Such computer-readable media
may comprise RAM, ROM, EEPROM, NAND flash, NOR
flash, M-RAM, P-RAM, R-RAM, CD-ROM or other optical
disk storage, magnetic disk storage or other magnetic Stor
age devices, or any other medium that may be used to carry
or store desired program code in the form of instructions or
data structures and that may be accessed by a computer.
0062 Also, any connection is properly termed a com
puter-readable medium. For example, if the software is
transmitted from a website, server, or other remote source
using a coaxial cable, fiber optic cable, twisted pair, digital
subscriber line (“DSL), or wireless technologies such as
infrared, radio, and microwave, then the coaxial cable, fiber
optic cable, twisted pair, DSL, or wireless technologies Such
as infrared, radio, and microwave are included in the defi
nition of medium.
0063 Disk and disc, as used herein, includes compact
disc (“CD), laser disc, optical disc, digital versatile disc
("DVD), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data
optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.
0064. Alternative embodiments will become apparent to
one of ordinary skill in the art to which the invention
pertains without departing from its spirit and scope. There
fore, although selected aspects have been illustrated and
described in detail, it will be understood that various sub
stitutions and alterations may be made therein without
departing from the spirit and Scope of the present invention,
as defined by the following claims.
What is claimed is:
1. A method for scheduling transactions for a memory

system, the method comprising:
determining future memory state data of a dynamic ran
dom access memory (DRAM) for a predetermined
number of future clock cycles, the DRAM electrically
coupled to a system on chip (SOC);

based on the future memory state data, selecting one of a
plurality of pending memory transactions that specu
latively optimizes DRAM efficiency;

sending the selected memory transaction to a shared cache
controller, and

if the selected memory transaction results in a cache miss,
sending the selected memory transaction to a DRAM
controller.

2. The method of claim 1, wherein the selected pending
memory transaction is determined based on the future
memory state data and priority level data corresponding to
the plurality of pending memory transactions.

3. The method of claim 1, wherein the selectively opti
mizing DRAM efficiency comprises reducing a number of
DRAM clock cycles.

4. The method of claim 1, wherein the future memory
state data comprises a bank State for each of a plurality of
banks comprising the DRAM.

5. The method of claim 4, wherein the bank state com
prises a free state or a busy state.

6. The method of claim 4, wherein the future memory
state further comprises:

a DRAM data bus state; and
a DRAM command address bus state.
7. The method of claim 1, wherein the predetermined

number of future clock cycles corresponds to a latency of the
shared cache controller.

US 2017/O168727 A1

8. The method of claim 1, further comprising:
if the selected memory transaction results in a cache hit,

updating the future memory state data to reflect that the
selected memory transaction did not reach the DRAM
controller.

9. A system for scheduling memory transactions compris
ing:

means for determining future memory state data of a
dynamic random access memory (DRAM) for a pre
determined number of future clock cycles, the DRAM
electrically coupled to a system on chip (SoC);

means for selecting one of a plurality of pending memory
transactions that speculatively optimizes DRAM effi
ciency based on the future memory state data;

means for sending the selected memory transaction to a
shared cache controller, and

means for sending the selected memory transaction to a
DRAM controller if the selected memory transaction
results in a cache miss.

10. The system of claim 9, wherein the means for select
ing the one of the plurality of pending memory transactions
that speculatively optimizes DRAM efficiency comprises:
means for reducing a number of DRAM clock cycles.

11. The system of claim 9, wherein the future memory
state data comprises a bank State for each of a plurality of
banks comprising the DRAM.

12. The system of claim 11, wherein the bank state
comprises a free State or a busy state.

13. The system of claim 11, wherein the future memory
state further comprises:

a DRAM data bus state; and
a DRAM command address bus state.
14. The system of claim 9, wherein the predetermined

number of future clock cycles corresponds to a latency of the
shared cache controller.

15. The system of claim 9, further comprising:
means for updating the future memory state data, if the

Selected memory transaction results in a cache hit, to
reflect that the selected memory transaction did not
reach the DRAM controller.

16. A system for scheduling memory transactions com
prising:

a volatile memory device;
a system on chip (SoC) electrically coupled to the volatile
memory, the SoC comprising a shared cached, a cache
controller, and a transaction scheduler for scheduling
pending memory transactions received from a plurality
of memory clients, the transaction scheduler configured
tO:

determine future state data of the volatile memory for
a predetermined number of future clock cycles;

based on the future state data, select one of the plurality
of pending memory transactions that speculatively
optimizes an efficiency of the Volatile memory;

send the selected memory transaction to the shared
cache controller, and

send the selected memory transaction to the volatile
memory if the selected memory transaction results in
a cache miss.

Jun. 15, 2017

17. The system of claim 16, wherein the volatile memory
comprises a dynamic random access memory (DRAM)
comprising a plurality of banks.

18. The system of claim 17, wherein the future state data
comprises a bank state for each of the plurality of banks.

19. The system of claim 18, wherein the bank state
comprises a free State or a busy state.

20. The system of claim 18, wherein the future state data
further comprises:

a DRAM data bus state; and
a DRAM command address bus state.
21. The system of claim 16, wherein the predetermined

number of future clock cycles corresponds to a latency of the
shared cache controller.

22. The system of claim 16, wherein the transaction
scheduler is further configured to update the future state data
of the volatile memory to reflect that the selected memory
transaction did not reach the Volatile memory.

23. The system of claim 16, incorporated in a portable
communication device.

24. A computer program embodied in a memory and
executable by a processor for scheduling memory transac
tions, the computer program comprising logic configured to:

determine future memory state data of a dynamic random
access memory (DRAM) for a predetermined number
of future clock cycles, the DRAM electrically coupled
to a system on chip (SoC);

based on the future memory state data, select one of a
plurality of pending memory transactions that specu
latively optimizes DRAM efficiency;

send the selected memory transaction to a shared cache
controller, and

if the selected memory transaction results in a cache miss,
send the selected memory transaction to a DRAM
controller.

25. The computer program of claim 24, wherein the
selectively optimizing DRAM efficiency comprises reduc
ing a number of DRAM clock cycles.

26. The computer program of claim 24, wherein the future
memory state data comprises a bank State for each of a
plurality of banks comprising the DRAM.

27. The computer program of claim 26, wherein the bank
state comprises a free state or a busy state.

28. The computer program of claim 26, wherein the future
memory state further comprises:

a DRAM data bus state; and
a DRAM command address bus state.
29. The computer program of claim 24, wherein the

predetermined number of future clock cycles corresponds to
a latency of the shared cache controller.

30. The computer program of claim 24, further compris
ing logic configured to:

if the selected memory transaction results in a cache hit,
update the future memory state data to reflect that the
selected memory transaction did not reach the DRAM
controller.

