2011/078966 A1 |1 I 000 O O A0 10 R OO I 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

-

U
(43) International Publication Date :
30 June 2011 (30.06.2011)

2P0

(10) International Publication Number

WO 2011/078966 A1

International Patent Classification:
GO6F 3/06 (2006.01) GO6F 17/30 (2006.01)

(51

(21) International Application Number:

PCT/US2010/059298

(22) International Filing Date:

7 December 2010 (07.12.2010)
(25) English
(26)

(30)

Filing Language:

Publication Language: English

Priority Data:
12/645,364 22 December 2009 (22.12.2009) Us

Applicant (for all designated States except US): APPLE
INC. [US/US]; 1 Infinite Loop, Cupertino, CA 95014

(US).

Inventors; and

Inventors/Applicants (for US only): TAMURA, Eric,
Brandon [US/US]; 1 Infinite Loop, M/s:301-2cos, Cu-
pertino, CA 95014 (US). MAJNEMER, David, Alexan-
der [US/US]; 1 Infinite Loop, Cupertino, CA 95014
US).

Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 1279 Oakmead Parkway, Sunny-
vale, CA 94085-4040 (US).

1

(72)
(73)

74

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: METHODS AND APPARATUSES TO ALLOCATE FILE STORAGE VIA TREE REPRESENTATIONS OF A

BITMAP

k]

0

Buliding cne or mare free representations in memory for a bitmap stored in a
storage (e.g. disk, hard drive, flash memary or other mass storage devices), the
bitmap indicatirg aliocation status (e.g.

the storage 301

whether a block is available) for biocks in

'

In response to receiving an allocation request for a file, selecting one of the tree
representations suitable for the allocation request 303

'

| Searching the salected tree representation to identify one or more available
‘ blocks for the sllocation request 305

v

‘ Updating the bitmap to allacate the identified blocks in the storage 307 ‘

'

i Synchronizing the in memory tree representations with the updated bitmap 309
i

Fig. 3

(57) Abstract: Methods and apparatuses that search tree representations of a bitmap for available blocks to allocate in storage de-
vices are described. An allocation request for a file may be received to initiate the search. In one embodiment, the bitmap may in-
clude an array of bits corresponding to blocks in the storage devices. Each bit may indicate whether one of the blocks is available.
The tree representations may include at least one red-black tree having nodes corresponding to one or more consecutive bits in the
bitmap indicating an extent of available blocks. One of the tree representations may be selected according to a file associated with
an allocation request to identify an extent of available block matching the allocation request. The tree representations may be syn-
chronized as the bitmap is updated with changes of block allocations in the storage devices.

WO 2011/078966 PCT/US2010/059298

METHODS AND APPARATUSES TO ALLOCATE FILE STORAGE VIA
TREE REPRESENTATIONS OF A BITMAP

FIELD OF INVENTION

[0001] The present invention relates generally to file systems. More
particularly, this invention relates to allocating blocks in storage devices for files

based on a bitmap.

BACKGROUND

[0002] One major requirement for a file system is to keep track of available free
space of storage devices in units of blocks. Traditionally, file systems may use a
bitmap to represent free space. A bitmap is simply an array of bits, with the Nth
bit indicating whether the Nth block is allocated or free. Thus, the overhead of a
bitmap may be relatively low, such as, about 0.003% for one bit per 4K size
block. For a 1GB file system, the corresponding bitmap is about 32KB in size,
which may easily fit in memory for quick scanning to identify free space.

[0003] However, as sizes of file systems continue to grow faster than the
growth of memory sizes, loading a bitmap used in a file system to scan may
become non-trivial in either size or time. For example, a 32GB size bitmap for a
1 PB file system may not fit in memory on most data processing systems or
machines. As a result, scanning a bitmap may require reading the bitmap from
disk each time (e.g. paged in and out of a disk), which can significantly slow
down a file system.

[0004] Furthermore, loading a large size bitmap into memory may directly
compete with other kernel tasks for finite resources available in a data processing
system. For example, if the bitmap cannot be completely cached, a number of
buffers may be needed to manage paging operations. Because each buffer may
require allocation of one of a finite number of buffer headers in a system, loading
a large size bitmap can further degrade system performance.

[0005] Thus, traditional file systems that use a bitmap to allocate free space in

storage devices do not scale with the growth of modern file systems.

WO 2011/0789663FCT PCT/US2010/059298

SUMMARY OF THE DESCRIPTION

[0006] An embodiment of the present invention can include methods and

apparatuses that search tree representations of a bitmap (such as a red-black tree)
for available blocks to allocate in storage devices. An allocation request for a file
may be received to initiate the search. In one embodiment, the bitmap may
include an array of bits corresponding to blocks in the storage devices. Each bit
may indicate whether one of the blocks is available. The tree representations may
include at least one red-black tree having nodes corresponding to one or more
consecutive bits in the bitmap indicating an extent (e.g. including offset and
length) of available blocks. One of the tree representations may be selected based
on the nature of the allocation request for a given file (e.g. allocation size request,
whether the file exists or not etc.). The tree representations may be synchronized
with the bitmap as it is updated with changes of block allocations in the storage
devices.

[0007] In an alternative embodiment, a location tree and an extent tree may be
maintained in memory (e.g. RAM) to represent a bitmap in storage devices (e.g. a
hard drive) indicating allocation status for blocks in the storage devices. The
location tree may be a red-black tree keyed according to locations of extents of
available blocks. The extent tree may be a red-black tree keyed according to sizes
of extents of available blocks. One or more nodes from the location tree and/or
the extent tree may be identified based on searching the specified tree for extents
of unallocated space that matches criteria based upon an allocation request for a
file. The bitmap may be traversed if the location tree and/or the extent tree do not
include matching nodes for search criteria. The location tree and the extent tree
may be built up by traversing the bitmap and inserting nodes that represent
unallocated regions of disk space.

[0008] Other features of the present invention will be apparent from the

accompanying drawings and from the detailed description that follows.

WO 2011/0789663FCT PCT/US2010/059298

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention is illustrated by way of example and not limitation
in the figures of the accompanying drawings, in which like references indicate
similar elements and in which:

[0010] Figure 1 is a block diagram illustrating one embodiment of a system to
search tree representations of a bitmap to allocate blocks;

[0011] Figure 2 is a sample diagram illustrating exemplary red-black trees for
representing a bitmap;

[0012] Figure 3 is a flow diagram illustrating one embodiment of a process to
identify available blocks for allocation without searching a bitmap;

[0013] Figure 4 is a flow diagram illustrating one embodiment of a process to
search tree representations of a bitmap for block allocation;

[0014] Figure 5 illustrates one example of a data processing system such as a
computer system, which may be used in conjunction with the embodiments

described herein.

DETAILED DESCRIPTION
[0015] Methods and apparatuses for allocating blocks based on tree

representations of a bitmap are described herein. In the following description,
numerous specific details are set forth to provide thorough explanation of
embodiments of the present invention. It will be apparent, however, to one skilled
in the art, that embodiments of the present invention may be practiced without
these specific details. In other instances, well-known components, structures, and
techniques have not been shown in detail in order not to obscure the
understanding of this description.

[0016] Reference in the specification to “one embodiment” or “an embodiment”
means that a particular feature, structure, or characteristic described in connection
with the embodiment can be included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in various places in the

specification do not necessarily all refer to the same embodiment.

WO 2011/0789663FCT PCT/US2010/059298

[0017] The processes depicted in the figures that follow, are performed by
processing logic that comprises hardware (e.g., circuitry, dedicated logic, etc.),
software (such as is run on a general-purpose computer system or a dedicated
machine), or a combination of both. Although the processes are described below
in terms of some sequential operations, it should be appreciated that some of the
operations described may be performed in different order. Moreover, some
operations may be performed in parallel rather than sequentially.

[0018] In one embodiment, at least two red-black trees in memory (e.g. main
memory such as DRAM) are used to represent a bitmap in disk (or other mass
storage devices, such as flash memory, hard drives, etc.) mapping block allocation
status in a file system. High level structures among bits in a bitmap may be
explicitly described in tree representations (or tree structures) of the bitmap. For
example, a section of 200 unused blocks starting at the 10™ block in a bitmap may
be readily identified in a tree node including an offset parameter of 10 and a size
parameter of 200. Consequently, a perfect match for allocating 200 blocks, e.g.
for a giant movie file, can be found within a bounded time frame based on an
efficient red-black tree search.

[0019] In one embodiment, separate red-black trees representing a bitmap may
enable searching for optimal allocation using different search criteria. For
example, to locate a section of contiguous blocks to append to a file, a location
based tree representation of the bitmap may be searched to find unallocated
blocks nearest to a specified location. Alternatively, to locate a chunk of space
for a new file, a size based tree representation of the bitmap may be searched to
find a contiguous range of blocks for the chunk of space.

[0020] In the event a search cannot identify a perfect match, in one
embodiment, a second search using different search criteria may be performed on
the same tree or a different tree. For example, if searching a location based tree
for a chunk of space fails to yield a match, subsequent searches may be performed
to identify one or many sections of blocks based on a requested size, e.g. a

minimum number of blocks having a capacity to accommodate the requested size.

WO 2011/0789663FCT PCT/US2010/059298

[0021] In one embodiment, another search may be performed according to a
search criteria based on a nearby location relative to an existing location of
allocated blocks for a file within a configured threshold (e.g. 4 blocks). The
search criteria may include the minimum number of blocks to identify extents of
available blocks located close to the file and large enough for the requested size.
Multiple search results may be combined together for optimal block allocation
that minimizes disk fragmentation.

[0022] In some embodiments, one or more red-black trees maintained in
memory to represent a bitmap kept in disk may be built on demand according to a
lazy mechanism to conserve memory and/or provide faster allocation response.
Thus, each tree may grow incrementally as a file system performs operations to
allocate/free storage space. When a tree is fully populated, the tree may represent
a bitmap in disk completely.

[0023] In one embodiment, the red-black trees may be built during system boot
time without incurring additional cost, so that a bitmap representation may be
loaded in memory when system starts. Typically, tree representations of a bitmap
may be kept in memory without being stored in a disk. Updating tree
representation of a bitmap may be performed in a file system prior or subsequent
to changes of the bitmap in disk.

[0024] Figure 1 is a block diagram illustrating one embodiment of a system to
search tree representations of a bitmap to allocate blocks. In one embodiment,
system 100 may include a computer operating environment 105 having a file
system 107 in an operating system. Storage 101 may be one or more storage
devices, such as hard disks, flash memories or other mass storage media, locally
or remotely coupled to system 101. In one embodiment, files in system 100 may
be stored in one or more blocks allocated in storage 101. Storage 101 may include
bitmap 103 representing availability of each allocated block using a bit (e.g. using
0/1 as status values to indicate if a block is free/allocated).

[0025] In one embodiment file system 107 may include interface module 119 to
receive file access (read/write) requests from runtime programs 121, e.g. via API

(application programming interface). File management module 117 may

WO 2011/0789663FCT PCT/US2010/059298

determine file access operations, such as file read, file write, file creation, file
deletion, etc. for the received file access requests. For example, file management
module 117 may send a storage allocation request to disk block allocation module
115 for creating new file and/or storing/updating data to a file.

[0026] In one embodiment, file system 107 may include bitmap representations
109 for one or more in memory representations, such as location tree 111 or
extent tree 113, of bitmap103. Each in memory representation may correspond to
at least a portion of bitmap 103. For example, each node in location tree 111
and/or extent tree 113 may include location and/or size information corresponding
to one or more consecutive blocks (or extents) which are available as indicated in
bitmap 103.

[0027] In one embodiment, bitmap representation management module 123 can
build and/or maintain bitmap representations 109 in memory in sync with bitmap
103 in storage 101. For example, bitmap representation management module 123
can access a portion of bitmap 103 loaded in memory when a search is performed
directly on bitmap 103. Alternatively, bitmap representation management module
123 may receive an update notification when bitmap 103 is updated.

[0028] File system 107 may include disk block allocation module 115 to
allocate blocks in storage 101 for storing file content according to bitmap
representations 109 without accessing bitmap 103 in storage 101. Disk block
allocation module 115 may determine which blocks are available in storage 103
and select one or more available blocks large enough to accommodate an amount
of data to be stored, e.g. in response to an allocation request for a file. In one
embodiment, disk block allocation module 115 may access one or more trees in
bitmap representations 109 in memory and/or bitmap 103 in storage 101 to
identify available blocks to allocate.

[0029] For example, disk block allocation module 115 can dynamically
determine an order (e.g. starting with location tree 111 for writing data to an
existing file) to search separate trees in bitmap representations 109 for identifying
available blocks for allocation in response to an allocation request, according to,

e.g. one or more characteristics of the request, such as whether a file associated

WO 2011/0789663FCT PCT/US2010/059298

with the request exists or not. Disk block allocation module 115 may directly
search bitmap 103 when necessary, for example, if no desired blocks are found
via bitmap representations 109.

[0030] In one embodiment, bitmap representation management module 123 can
build bitmap representations 109 concurrent to disk block allocation module 115
accessing bitmap 103. For example, disk block allocation module 115 may load a
portion of bitmap 103 in memory to update bitmap 103 for block allocation or to
search for available blocks to allocate. Bit map representation management
module 123 may build into bitmap representations 109 with block allocation
status from a portion of bitmap 103 already loaded in memory. In one
embodiment disk block allocation module 115 may determine when to access
bitmap 103 for bitmap representation management module 123 to update and/or
build bitmap representations 109.

[0031] Figure 2 is a sample diagram illustrating exemplary red-black trees for
representing a bitmap. Example 200 may be based on a file system maintaining
one or more trees to represent a bitmap for allocating blocks of file storage space,
such as in system 100 of Figure 1. In one embodiment, bitmap 201 may include
an array of bits to indicate an allocation status for blocks in storage devices, such
as bitmap 103 in storage 101 of Figure 1. Each bit may indicate whether a
corresponding block is available or not. For example, bit 207 may have value 0
for a block which has already been occupied.

[0032] In one embodiment, location tree 203 and extent tree 205 may be stored
in memory, such in bitmap representations 109 of Figure 1, to represent portions
of bitmap 201. Trees 203, 205 may be based on a self-balancing binary search tree
as the underlying data structure to allow efficient update operations on the trees,
such as search, delete, insert etc. For example, trees 203, 205 may be red-black
trees using red-black tree update operations for ensuring the trees are reasonably
balanced.

[0033] Location tree 203 may be configured with nodes representing available
blocks indicated in bitmap 201 based on a red-black tree structure (or tree

representation) including keys for the nodes. In one embodiment, location tree

WO 2011/0789663FCT PCT/US2010/059298

203 may be keyed according to starting locations of consecutive available blocks
or available block extents. For example, node 209 may include a location key 3
corresponding to a location of a starting block, e.g. indicated by bit 207, for 5
available consecutive blocks, e.g. indicated by 5 bits between bit 207 and bit 213.
Node 209 may include a size key indicating the size of the consecutive blocks.
[0034] In one embodiment, extent tree 205 can be configured with nodes
representing available blocks indicated in bitmap 201 using sizes of consecutive
available blocks as keys based on a red-black tree structure. For example, node
211 may include a size key 5 corresponding to 5 consecutive available blocks, e.g.
indicated by 5 bits between bit 207 and bit 213. Node 211 may include a location
key, e.g. 3, to denote a starting block corresponding to bit 207 (the third bit) of
bitmap 201.

[0035] Figure 3 is a flow diagram illustrating one embodiment of a process to
identify available blocks for allocation without searching a bitmap. Exemplary
process 300 may be performed by a processing logic that may comprise hardware
(circuitry, dedicated logic, etc.), software (such as is run on a dedicated machine),
or a combination of both. For example, process 300 may be performed by some
components of system 100 of Figure 1. At block 301, the processing logic of
process 300 may build one or more tree representations in memory, such as trees
111, 113 of Figure 1, to represent a bitmap maintaining status of block allocation
in a storage system, such as bitmap 103 of Figure 1. For example, the processing
logic of process 300 may start building tree representations for a bitmap when a
system, such as system 100 of Figure 1, is booting up. A tree representation built
in a system may stay in memory during the lifetime of the running system.

[0036] In one embodiment, the processing logic of process 300 may load a
portion of a large bitmap (e.g. when compared with available memory resources)
to build tree representations for the bitmap incrementally. In some embodiments,
the processing logic of process 300 can generate tree representations for a portion
of a bitmap loaded (e.g. read in from a disk storing the bitmap) when a system

starts. A tree representation may correspond to (or cover) a portion of a bitmap.

WO 2011/0789663FCT PCT/US2010/059298

The processing logic of process 300 may keep track of which portion of a bitmap
is covered in a tree representation.

[0037] The processing logic of process 300 may identify extents of available
blocks from a bitmap. Each extent may correspond to maximal consecutive
available blocks (e.g. bounded by two blocks which are not available) indicated in
a bitmap (e.g. based on bits of value 0) between two allocated blocks (e.g. based
on bits of value 1). An extent may include a starting location indicated in the bit
map, such as an index of a bit for a starting block of the extent. Alternatively, an
extent may include a size representing, for example, number of blocks included in
the extent. A node in a tree representation of a bit map may correspond to an
extent of available blocks.

[0038] In one embodiment, when mounting a file system (e.g. including setting
up where files should appear in a directory tree), the processing logic of process
300 may retrieve tree representations for a bitmap of the file system directly from
a storage device, such as storage 101 of Figure 1, without loading (or scanning)
the bitmap to rebuild the tree representations. The tree representations for the
bitmap may be maintained in memory if the corresponding file system is
mounted. In one embodiment, the processing logic of process 300 may store or
write out the tree representations in a storage device, €.g. when a corresponding
file system is unmounted (e.g. removed from an operating system), after a
complete scan of a bitmap to update the tree representations for the bitmap. The
processing logic of process 300 may determine to skip a full scan of a bitmap if
the bitmap represented by available tree representations stored in a storage device
has not been modified. For example, the processing logic of process 300 may
compare time stamps of the bitmap and tree representations stored in the storage
device to determine if the tree representations still represent the bitmap.

[0039] At block 303, in one embodiment, the processing logic of process 300
may receive an allocation request for a file, such as a file write request from
runtime programs 121 of Figure 1. In response, the processing logic of process
300 may select a tree representation for a bitmap to identify available blocks most

suitable for the received request. For example, the processing logic of process 300

WO 2011/0789663FCT PCT/US2010/059298

may select a location tree, such as location tree 113 of Figure, for a request to
allocate storage space for a file which has already existed in a file system.
Alternatively, the processing logic of process 300 may search a location tree, such
as location tree 113 of Figure 1, to allocate storage space for a new file.

[0040] At block 305, in one embodiment, the processing logic of process 300
may search a selected tree representation of a bitmap to identify one or more
available blocks to allocate for an allocation request based on one or more search
criteria. In one embodiment, search criteria may include considerations to reduce
fragmentation effects when allocating storage space (e.g. blocks).

[0041] For example, the processing logic of process 300 may perform a red-
black tree search against a location tree to identify a node matching an allocation
request specifying an allocation size and/or a starting location for an extent of
available blocks. In one embodiment, a node in a location tree may be a match for
a tree search if a corresponding extent of available blocks is large enough (e.g.
based on a size key) to accommodate a requested allocation size and located (e.g.
based on a location key) at the starting location.

[0042] Similarly, the processing logic of process 300 may perform a red-black
tree search against an extent tree to identify a node matching an allocation request
specifying an allocation size. For example, search criteria may include a
minimum number of blocks to accommodate the requested allocation size. A node
in an extent tree may be a match for the tree search if the node corresponds to an
extent of the minimum number of available blocks. In some embodiments, a
matching node may correspond to an extent of available blocks with a capacity
large enough (e.g. based on a size key) to accommodate requested allocation size.
[0043] In another embodiment, the processing logic of process 300 may start
searching a location tree in response to a request to allocate additional storage
space for an existing file. The processing logic of process 300 may use search
criteria to locate an extent of available blocks next to the last block allocated for
the file. Alternatively, the processing logic of process 300 may start searching an
extent tree to allocate storage space for creating a new file. The processing logic

of process 300 may specify search criteria to identify an extent of available blocks

-10-

WO 2011/0789663FCT PCT/US2010/059298

best matching the request for the new file (e.g. by comparing the size of an extent
of available blocks and the size of storage space requested).

[0044] If no matched node is identified from a tree representation during a tree
search, in one embodiment, the processing logic of process 300 may proceed to
search another tree representation using similar or different search criteria.
Alternatively, if multiple nodes are matched during a tree search, the processing
logic of process 300 may select a best one among the matched nodes to, for
example, minimize fragmentation in storage space. In some embodiments, the
processing logic of process 300 may directly search a portion of bitmap not yet
represented by in memory tree representations, for example if matched nodes
cannot be identified during the tree search. Optionally, the processing logic of
process 300 may determine to allocate a plurality of blocks, which may not be
consecutively located all together, for an allocation request based on extents of
available blocks corresponding to multiple nodes in a tree representation of a
bitmap.

[0045] At block 307, the processing logic of process 300 may update a bitmap
to allocate identified blocks in a storage system (e.g. storage devices for file
systems) based on results of searching in memory tree representations of the
bitmap. The processing logic of process 300 may synchronize the in memory tree
representations with the updated bitmap at block 309, e.g. via operations such as
search, insert and/or delete performed according to red-black tree structures. In
other embodiments, the processing logic of process 300 may update in memory
tree representations of a bitmap to indicate allocation of identified blocks prior to
update the bitmap in storage system.

[0046] Figure 4 is a flow diagram illustrating one embodiment of a process to
search tree representations of a bitmap for block allocation. Exemplary process
400 may be performed by a processing logic that may comprise hardware
(circuitry, dedicated logic, etc.), software (such as is run on a dedicated machine),
or a combination of both. For example, process 400 may be performed by some
components of system 100 of Figure 1. In one embodiment, at block 401, the

processing logic of process 400 can maintain tree representations for at least a

-11-

WO 2011/0789663FCT PCT/US2010/059298

portion of a bitmap indicating block allocation status in a storage system, such as
storage 101 of Figure 1. For example, each bit in the bitmap may indicate whether
a corresponding one of the blocks represented by the bitmap is available or not.
[0047] Tree representations may include, for example, a location tree and an
extent tree, such as location tree 111 and extent tree 113 of Figure 1. Each tree
representation may be a red-black tree with nodes corresponding to extents of
available blocks in the storage system. The processing logic of process 400 can
traverse the bitmap to build the tree representations whenever a portion of the
bitmap is loaded in memory, e.g. when a system boots up. Optionally, the
processing logic of process 400 can track which portions of a bitmap has been
incorporated in each tree representation maintained, for example, based on indices
of bits in the bitmap.

[0048] At block 403, the processing logic of process 400 may receive an
allocation request to allocate an amount of space in a storage system for a file or
other system components. In response, at block 405, the processing logic of
process 400 may determine whether an allocation request is to create a new file,
e.g. based on whether there are blocks already allocated for the file in a storage
system. For an existing file, at block 407, the processing logic of process 400 can
perform a red-black tree search in the location tree to identify a matching node
based on the size of allocation space requested and/or locations of existing blocks
allocated for the file.

[0049] A matching node may be perfect if the corresponding extent of available
blocks has a capacity larger than the size of allocation space requested and located
next to a block allocated for the file. In some embodiments, a search criteria for a
matching node may locate an extent of available blocks close to (e.g. within a
certain number of blocks) existing blocks allocated for the file. If a matching node
is found, at block 409, the processing logic of process 400 may proceed to
allocate storage space based on an extent of available blocks corresponding to a
matching node at block 425. Otherwise, in one embodiment, at the processing
logic of process 400 may proceed to search the extent tree for matching nodes at

block 411.

-12-

WO 2011/0789663FCT PCT/US2010/059298

[0050] In one embodiment, in response to an allocation request for a new file,
the processing logic of process 400 may, at block 411, perform a red-black tree
search in the extent tree to identify one or more matching nodes based on the size
of allocation space requested. If more than one matching nodes are identified
during the search, the processing logic of process 400 may select a best matching
node (e.g. according to how closely the size of allocation space requested matches
the space available in the extent corresponding to a matching node). In some
embodiment, the processing logic of process 400 may select the first matched
node during the tree search.

[0051] If matching nodes are found at block 413, the processing logic of
process 400 may proceed to allocate identified blocks at block 425. Otherwise, at
block 415, the processing logic of process 400 may determine if in memory tree
representations incorporate all block allocation status in a bitmap. For example,
the processing logic of process 400 can track which portion of the bitmap (e.g. via
an index to bit locations in the bitmap) have been incorporated (or built) in the
tree representations.

[0052] If the bitmap has not been completely built in the tree representations, at
block 417, the processing logic of process 400 can traverse or search the bitmap
directly to identify an extent of available blocks matching an allocation request. In
one embodiment, the processing logic of process 400 may load a portion of the
bitmap not yet covered in the tree representations to search for matching extents
of available blocks. The portion of the bitmap may be loaded according to a size
limitation of available memory space. In one embodiment, the processing logic of
process 400 may search remaining portions of the bitmap, e.g. until a matching
extent of available blocks is identified.

[0053] In the meanwhile when performing a search (e.g. a linear search bit by
bit) directly in a bitmap, for example, at block 419, the processing logic of
process 400 may continue building tree representations of the bitmap, such as a
location tree and an extent tree, with loaded portions of the bitmap. If one or more
matching extents of available blocks are found directly from the bitmap, the

processing logic of process 400 may proceed to allocate blocks at 425.

13-

WO 2011/0789663FCT PCT/US2010/059298

[0054] If no matching node or extents of available blocks are found from tree
representations of a bitmap and/or directly from the bitmap, at block 423, the
processing logic of process 400 may identify one or more extents of available
blocks satisfying an allocation request based on, for example, results of traversing
tree representations (e.g. based on red-black tree search) of a bitmap and/or
directly from the bitmap. The processing logic of process 400 may determine an
optimal combination of available blocks to allocate for an allocation request
considering, for example, minimizing fragmentation effects, maximizing storage
usage, and/or fine tuning other file system performance parameters. Subsequently,
the processing logic of process 400 may proceed to allocate identified available
blocks at block 425. In one embodiment, at block 427, the processing logic of
process 400 may update tree representations, such as a location tree and/or an
extent tree, of a bitmap and the bitmap itself according to the allocation of
identified blocks.

[0055] Figure 5 shows one example of another data processing system such as a
computer system, which may be used with one embodiment the present invention.
For example, the system 500 may be implemented as a part of the system shown
in Figure 1. Note that while Figure 5 illustrates various components of a computer
system, it is not intended to represent any particular architecture or manner of
interconnecting the components as such details are not germane to the present
invention. It will also be appreciated that network computers and other data
processing systems which have fewer components or perhaps more components
may also be used with the present invention.

[0056] As shown in Figure 5, the computer system 500, which is a form of a
data processing system, includes a bus 503 which is coupled to a
microprocessor(s) 505 and a ROM (Read Only Memory) 507 and volatile RAM
509 and a non-volatile memory 511. The microprocessor 505 may retrieve the
instructions from the memories 507, 509, 511 and execute the instructions to
perform operations described above. The bus 503 interconnects these various
components together and also interconnects these components 505, 507, 509, and

511 to a display controller and display device 513 and to peripheral devices such

-14-

WO 2011/0789663FCT PCT/US2010/059298

as input/output (I/O) devices which may be mice, keyboards, modems, network
interfaces, printers and other devices which are well known in the art. Typically,
the input/output devices 515 are coupled to the system through input/output
controllers 517. The volatile RAM (Random Access Memory) 509 is typically
implemented as dynamic RAM (DRAM) which requires power continually in
order to refresh or maintain the data in the memory.

[0057] The mass storage 511 is typically a magnetic hard drive or a magnetic
optical drive or an optical drive or a DVD RAM or a flash memory or other types
of memory systems which maintain data (e.g. large amounts of data) even after
power is removed from the system. Typically, the mass storage 511 will also be a
random access memory although this is not required. While Figure 5 shows that
the mass storage 511 is a local device coupled directly to the rest of the
components in the data processing system, it will be appreciated that the present
invention may utilize a non-volatile memory which is remote from the system,
such as a network storage device which is coupled to the data processing system
through a network interface such as a modem or Ethernet interface or wireless
networking interface. The bus 503 may include one or more buses connected to
each other through various bridges, controllers and/or adapters as is well known
in the art.

[0058] Portions of what was described above may be implemented with logic
circuitry such as a dedicated logic circuit or with a microcontroller or other form
of processing core that executes program code instructions. Thus processes
taught by the discussion above may be performed with program code such as
machine-executable instructions that cause a machine that executes these
instructions to perform certain functions. In this context, a “machine” may be a
machine that converts intermediate form (or “abstract”) instructions into
processor specific instructions (e.g., an abstract execution environment such as a
“virtual machine” (e.g., a Java Virtual Machine), an interpreter, a Common
Language Runtime, a high-level language virtual machine, etc.), and/or, electronic
circuitry disposed on a semiconductor chip (e.g., “logic circuitry” implemented

with transistors) designed to execute instructions such as a general-purpose

-15-

WO 2011/0789663FCT PCT/US2010/059298

processor and/or a special-purpose processor. Processes taught by the discussion
above may also be performed by (in the alternative to a machine or in
combination with a machine) electronic circuitry designed to perform the
processes (or a portion thereof) without the execution of program code.

[0059] An article of manufacture may be used to store program code. An
article of manufacture that stores program code may be embodied as, but is not
limited to, one or more memories (e.g., one or more flash memories, random
access memories (static, dynamic or other)), optical disks, CD-ROMs, DVD
ROMs, EPROMs, EEPROMSs, magnetic or optical cards or other type of machine-
readable media suitable for storing electronic instructions. Program code may
also be downloaded from a remote computer (e.g., a server) to a requesting
computer (e.g., a client) by way of data signals embodied in a propagation
medium (e.g., via a communication link (e.g., a network connection)).

[0060] The preceding detailed descriptions are presented in terms of algorithms
and symbolic representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations are the tools used by
those skilled in the data processing arts to most effectively convey the substance
of their work to others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations leading to a desired
result. The operations are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

[0061] It should be kept in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated otherwise
as apparent from the above discussion, it is appreciated that throughout the
description, discussions utilizing terms such as "processing” or "computing" or

"calculating" or "determining" or "displaying" or the like, refer to the action and

-16-

WO 2011/0789663FCT PCT/US2010/059298

processes of a computer system, or similar electronic computing device, that
manipulates and transforms data represented as physical (electronic) quantities
within the computer system's registers and memories into other data similarly
represented as physical quantities within the computer system memories or
registers or other such information storage, transmission or display devices.

[0062] The present invention also relates to an apparatus for performing the
operations described herein. This apparatus may be specially constructed for the
required purpose, or it may comprise a general-purpose computer selectively
activated or reconfigured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable storage medium, such as,
but is not limited to, any type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories (ROMs), RAMs,
EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for
storing electronic instructions, and each coupled to a computer system bus.

[0063] The processes and displays presented herein are not inherently related to
any particular computer or other apparatus. Various general-purpose systems
may be used with programs in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus to perform the
operations described. The required structure for a variety of these systems will be
evident from the description below. In addition, the present invention is not
described with reference to any particular programming language. It will be
appreciated that a variety of programming languages may be used to implement
the teachings of the invention as described herein.

[0064] The foregoing discussion merely describes some exemplary
embodiments of the present invention. One skilled in the art will readily
recognize from such discussion, the accompanying drawings and the claims that
various modifications can be made without departing from the spirit and scope of

the invention.

-17-

WO 2011/0789663FCT PCT/US2010/059298

CLAIMS

What is claimed is:

1. A computer implemented method for a file system, the method comprising:

selecting, in response to a request to allocate space in storage devices for a
file, one of a plurality of tree representations of a bitmap, each bit
in the bitmap indicating availability of a block in the storage
devices, each node in the tree representations corresponding to one
or more consecutive bits in the bitmap;

searching the selected tree representation for one or more nodes
identifying blocks available for the request;

updating the bitmap to allocate the identified blocks in the storage devices;
and

synchronizing the plurality of trees with the updated bitmap.

2. The method of claim 1, wherein the plurality of tree representations are

maintained in memory if the file system is mounted.

3. The method of claim 2, wherein the storage devices are mass storage

devices storing files for the file system.

4. The method of claim 1, wherein the node includes a location of the
consecutive bits in the bitmap and a size indicating a number of the consecutive

bits.

5. The method of claim 4, wherein the selection comprises:

determining if the file is new in the file system.
6. The method of claim 5, wherein the plurality of tree representations include

a location tree including nodes keyed according to the location and wherein the

selected tree representation is the location tree if the file is not new.

-18-

WO 2011/0789663FCT PCT/US2010/059298

7. The method of claim 6, wherein the location tree is a red-black tree.

8. The method of claim 6, wherein the file has an existing location, and
wherein the search comprises:

matching the existing location with the nodes based on the location.

9. The method of claim 8, wherein the space has an allocation size, wherein the
search further comprises:
comparing the allocation size with the nodes based on the size, wherein
the identified available blocks have a capacity large enough for the

allocation size.

10. The method of claim 5, wherein the plurality of tree representations include
an extent tree including nodes keyed according to the size and wherein the

selected tree representation is the extent tree if the file is new.

11. The method of claim 10, wherein the space has an allocation size, and
wherein the search comprises:
comparing the allocation size with the nodes based on the size; and
selecting the one or more nodes to reduce fragmentation effect in

allocating the identified available blocks in the storage devices.

12. A computer implemented method for a file system, the method comprising:
maintaining tree representations for a bitmap stored in storage devices
having blocks for storing data, each bit in the bitmap indicating
availability of one of the blocks, each node in the tree
representations corresponding to an extent of available blocks;
in response to receiving an allocation request for a file, identifying one or
more matching nodes in the tree representations according to a

search criteria for the allocation request;

-19-

WO 2011/0789663FCT PCT/US2010/059298

traversing the bitmap from the storage devices if the matching nodes
cannot be identified; and

building up the tree representations based on the traverse of the bitmap.

13. The method of claim 12, wherein the tree representations correspond to
extends of available blocks, and wherein the bitmap includes at least one bit

indicating an available block not covered in the extends of available blocks.

14. The method of claim 12, wherein the maintenance comprises:
loading a portion of the bitmap from the storage devices; and

generating the tree representation in memory from the portion of the bitmap.

15. The method of claim 12, wherein the storage devices include available tree
representations stored for the bitmap, wherein the maintenance comprises:
determining if the available tree representations represent the bitmap; and
retrieving the available tree representations from the storage devices as the
tree representations in memory if the available tree representations

represent the bitmap.

16. The method of claim 12, wherein the bitmap includes an array of bits,
wherein the extent of available blocks corresponds to consecutive bits in the array
indicating the available blocks, and wherein the consecutive bits are bounded by

two bits in the array indicating two blocks which are not available.

17. The method of claim 12, wherein the node includes a location for a first bit

of the consecutive bits in the bitmap, and wherein the node includes a number of

the consecutive bits.

18. The method of claim 17, wherein the allocation request includes an amount

of space for allocation, wherein the search criteria is based on a minimum number

220-

WO 2011/0789663FCT PCT/US2010/059298

of blocks having a capacity large enough to accommodate the amount of space,

and wherein each matched node is associated with the minimum number.

19. The method of claim 18, wherein the allocation request includes an existing
location for the file, wherein the search criteria is based on the existing location and
the minimum number, and wherein the matched node is associated with a matching
location and a matching number, the matching location being near the existing

location and the matching number being greater than with the minimum number.

20. The method of claim 17, wherein the identification comprises:
selecting one of the tree representations; and

performing a red-black tree search on the selected tree representation.

21. The method of claim 20, wherein the red-black tree search is based on the

location.

22. The method of claim 20, wherein at least a portion of the bitmap is not

covered in the selected tree representation.

23. The method of claim 12, wherein building up the tree representations
comprises:
determining if the tree representations have been fully populated by the
bitmap for the storage devices, wherein each available block
belongs to one of the extents of available blocks for the tree

representations.

24. A machine-readable storage medium having instructions, when executed by
a machine, cause the machine to perform a method for a file system, the method
comprising:

selecting, in response to a request to allocate space in storage devices for a

file, one of a plurality of tree representations of a bitmap, each bit

21-

WO 2011/0789663FCT PCT/US2010/059298

in the bitmap indicating availability of a block in the storage
devices, each node in the tree representations corresponding to one
or more consecutive bits in the bitmap;

searching the selected tree representation for one or more nodes
identifying blocks available for the request;

updating the bitmap to allocate the identified blocks in the storage devices;
and

synchronizing the plurality of trees with the updated bitmap.

25. An apparatus, comprising:

a memory storing executable instructions including a file system;

a storage device having blocks for storing data, the storage storing a
bitmap, each bit in the bitmap indicating availability of one of the
blocks;

a processor coupled to the storage and the memory to execute the
executable instructions from the memory for the file system, the
processor being configured to:

maintain tree representations for the bitmap, each node in
the tree representations corresponding to an extent
of available blocks;

in response to receiving an allocation request for a file,
identify one or more matching nodes in the tree
representations according to a search criteria for the
allocation request;

traverse the bitmap from the storage devices if the
matching nodes cannot be identified; and

build up the tree representations based on the traverse of

the bitmap.

22-

WO 2011/078966

PCT/US2010/059298
Storage (e.g. based on hard 100

disk, flash memory or other
mass storage media) 101

Bitmap (e.g. indicating block
allocation) 103

Operating Environment (e,g. including
an Operating System) 105

Bitmap Representation

File System 107

Management Module <
123

Bitmap Representations \
109

< Location Tree 111 >

Disk Block Allocation
Module 115

!

File Management
Module 117

(Extent Tree 113 >

_ Y,

|

Interface (e.g. file read/write)
Module 119

!

I

Runtime Programs (e.g. applications,
system services, or other user level/system
level executables, etc.) 121

Fig. 1

WO 2011/078966 PCT/US2010/059298

2/5

20

207 —. Bitmap 201
~
4
1 1 0 0 0 0

213 —_

Extent Tree 205
Location Tree 203

\, 209 211

Fig. 2

WO 2011/078966 PCT/US2010/059298

3/5

w
o

Building one or more tree representations in memory for a bitmap stored in a
storage (e.g. disk, hard drive, flash memory or other mass storage devices), the
bitmap indicating allocation status (e.g. whether a block is available) for biocks in

the storage 301

In response to receiving an allocation request for a file, selecting one of the tree
representations suitable for the allocation request 303

,

Searching the selected tree representation to identify one or more available
blocks for the allocation request 305

v

Updating the bitmap to allocate the identified blocks in the storage 307

'

Synchronizing the in memory tree representations with the updated bitmap 309

Fig. 3

WO 2011/078966 PCT/US2010/059298

4/5

Maintaining tree representations for at least a portion of a bitmap indicating allocation status for
blocks in a storage, the tree representations including a location tree and a extent tree 401

'

TN
(@]
o

Receiving an allocation request to allocate a size of space in the storage for a file 403

Is the file new ? 405

Searching the location tree to identify a matching node corresponding to an extent of available
blocks based on locations of allocated blocks for the file and the size of space requested, 407

Is a match found ? 409

Searching the extent tree to identify matching nodes corresponding to extents of available blocks
based on the size of space requested 411

Is a match found ? 413 Yes

Yes

Identifying one or more
extents of available blocks| Yes
satisfying the allocation
request based on the 3
location tree and/or the
extent tree 423

Searching the
bitmap to identify
one or more blocks
to allocate for the
request 417

ave the locatio
ree and/or the extent tree been
completely built from the
bitmap ? 415

Fig. 4

'

Building the location

| tree and the extent
tree while searching

the bitmap 419

Is a match found ? 421

Yes

Allocating blocks based on the identified extents of available blocks for the file 425

'

Updating the location tree, the extent tree and the bitmap with the allocation of the
identified blocks 427

WO 2011/078966 PCT/US2010/059298
500
505 507 509 511
Nonvolatile Memory
. Volatile or mass storage
Microprocessor ROM RAM (e.g. hard drive or flash
i i i memory)
Bus (es)
i ¢ 503
517

Display Controller
& Display Device

1e]
Controiler(s)

\ 513

Fig. 5

;

o
Device(s)
(e.g. mouse, or
keyboard, or
modem, or
network interface,
or printer)

515

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/059298

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06 GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

figures 1-4

column 1, Tine 9 - column 4, line 68

X US 5 375 233 A (KIMBER SUSAN P [GB] ET AL) 1-25
20 December 1994 (1994-12-20)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr:ts, such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

11 February 2011

Date of mailing of the international search report

18/02/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Andlauer, J

Form PCT/ISA/210 (second sheet) (April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2010/059298
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 5375233 A 20-12-1994 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

