发明名称：直接写入成像介质

摘要

本发明公开了一种直接写入成像膜（100），包括放置于基材（110）之上的第一层（112）和所述第一层（112）之上的第二层（116）。所述第一层（112）能够被第一波长光所分散或破坏，这样可降低所述第二层（116）与该膜（100）剩余部分的粘附性。所述第二层（116）对短于所述第一波长的第二波长光吸收较强。在使用该膜（100）时，使用第一波长光破坏所述第一层（112）的所述部分；然后去除第二层（116）的覆盖部分，得到一种强烈吸收第二波长且由第二层（116）剩余部分确定的图像。
1. 一种直接写入成像膜，包括：
基材；
放置于所述基材之上的第一材料第一层；和
放置于所述第一层之上的第二材料第二层；
其中所述第一层对第一波长光比对第二波长光的吸光率要高，所述
第二波长光比所述第一波长光要短；所述第二层对所述第一波长光的
吸光率低于所述第一层，而对所述第二波长光的吸光率高于所述第一
层；且其中所述第一层的材料能够被所述第一波长光破坏。

2. 根据权利要求 1 的直接写入成像膜，其中所述第一层包含一层
金属。

3. 根据权利要求 1 的直接写入成像膜，其中所述第二层包括吸收
紫外线的染料。

4. 根据权利要求 3 的直接写入成像膜，其中所述吸收紫外线的染
料是一种偶氮染料。

5. 根据权利要求 4 的直接写入成像膜，其中所述偶氮染料通过芳
族偶联剂与选自以下的重氮盐的反应而得到：

其中 R 表示氢原子或烷基，Y 为卤素且 X 是阴离子。

6. 根据权利要求 5 的直接写入成像膜，其中所述芳族化合物选自:
其中 R 为氢原子或烷基，且 n 为 0 或正整数。

7. 根据权利要求 3 的直接写入成像膜，其中所述第二层包含一种将所述吸收紫外线的染料溶解于其中的聚合物基体。

8. 根据权利要求 1 的直接写入成像膜，它还包括插入于所述第一层与所述第二层之间的热分散层。

9. 根据权利要求 8 的直接写入成像膜，其中所述热分散层包含一层聚合物材料。

10. 根据权利要求 9 的直接写入成像膜，其中所述聚合物材料是水解聚乙酸乙烯酯。

11. 根据权利要求 1 的直接写入成像膜，其中所述第一材料的所述第一层包含一层钛。

12. 根据权利要求 11 的直接写入成像膜，其中所述钛层的光密度为 1-8。

13. 根据权利要求 7 的直接写入成像膜，其中所述聚合物基体包含乙酸纤维素聚合物。

14. 根据权利要求 13 的直接写入成像膜，其中所述乙酸纤维素聚合物包含至少两种粘度不同的乙酸丙酸纤维素聚合物的混合物。

15. 根据权利要求 13 的直接写入成像膜，其中所述乙酸纤维素聚合物选自乙酸纤维素、乙酸丙酸纤维素、乙酸丁酸纤维素、及其混合物。
16. 根据权利要求 1 的直接写入成像膜，它还包括覆盖片材组件，所述覆盖片材组件包括一层与所述第二层接触的粘合剂。

17. 一种直接写入成像膜，包括：
基材；
放置于所述基材之上的第一材料第一层；和
放置于所述第一层之上的第二材料第二层；
其中所述第一层对第一波长光比对第二波长光的吸光率要高，所述第二波长光比所述第一波长光要短；所述第二层对所述第一波长光的吸光率低于所述第一层，而对所述第二波长光的吸光率高于所述第一层；且其中所述第一层能够被所述第二波长光破坏；和
覆盖片材组件，包括放置于所述第二层之上的粘合剂体，以及放置于所述粘合剂体之上的衬底片材。

18. 一种用于制造光工具的方法，该方法包括以下步骤：
I. 提供一种直接写入成像膜，所述膜包括：
基材；
放置于所述基材之上的第一材料第一层；
放置于所述第一层之上的第二材料第二层；其中所述第一层对第一波长光比对第二波长光的吸光率要高，所述第二波长光比所述第一波长光要短；且其中所述第二层对所述第一波长光的吸光率低于所述第一层，而对所述第二波长光的吸光率高于所述第一层；
II. 将所述第一波长光束照射到所述成像膜，所述光束的能量足以破坏所述第一层，从而在其中产生已破坏区，这样覆盖所述已破坏区的所述第二层的上面相邻部分就不再粘附于所述基材；然后
III. 从所述膜去除所述第二层的所述上面相邻的部分，这样在所述膜中产生没有所述第二层的区域。

19. 根据权利要求 18 的方法，其中去除所述上面相邻的部分的步骤包括：将所述上面相邻部分与粘合剂材料体接触，然后从所述膜的剩余部分移开所述粘合剂体，这样所述粘合剂体就粘附并携带走所述上面相邻部分。
20. 根据权利要求 18 的方法，其中：
提供直接写入成像膜的步骤还包括提供一种具有覆盖片材组件的膜，所述覆盖片材组件包括与所述第二层接触的粘合剂体；
将所述第一波长光束照射到所述膜上的步骤包括将所述光束照射通过所述基材；且
去除所述上面相邻部分的步骤包括去除所述覆盖片材组件。
说明书

直接写入成像介质

相关申请
本专利申请要求 1998 年 1 月 14 递交的题为"直接写入成像介质"的临时专利申请 60/071413 的优先权。

本发明的领域
本发明一般涉及光响应材料及其应用方法。更具体地说，本发明涉及一种能够利用光束在其上直接形成图像而无需使用任何光掩模或负片的直接写入成像膜。

本发明的背景
照相平板印刷和/或光刻技术广泛用于印刷电路板、半导体设备的制造、印刷板的制备、以及许多其它的这类场合。这些照相技术一般采用一个或多个也称作光工具（phototool）的掩模。光工具在其它感光材料曝光时用作掩模。一般来说，用于光工具的材料应该具有非常高的分辨率，而且应该能够在成像波长上得到高对比图像。也就是说，光工具材料应该具有一个高度吸收成像波长的图像区、以及一个在成像波长高度透明的背景区。

已采用许多不同的介质来制造光掩模。一组材料包含直接写入介质。在这种材料中，光束（一般为来自激光器的高强度光束）扫描穿过膜，这样可在其上直接形成图像。这种体系是有利的，因为它们容易连接计算机化数据储存和处理系统。此外，这种成像介质一般对周围照明的感光度较低，而且可在普通室内光线下使用。

由已有技术已知几种不同的直接写入膜。一组膜包含烧蚀成像膜。在这些材料中，通常来自激光器的高强度光束撞击成像材料体，然后通过挥发作用而物理去除该材料。美国专利 5521050 给出了这样一种方法。美国专利 5747197 给出了另一种直接成像膜，其中光束将成像染料烧蚀或降解。美国专利 5256506 给出了一个有点类似的方案。其
中公开，将一层吸光的可烧蚀的含染料材料放置在一层烧蚀增强材料之上。两层都高度吸收成像光束，而且烧蚀增强材料层通过从膜中驱走已挥发的含染料层来增加成像介质的敏感度。尽管烧蚀成像膜广泛使用，但较厚的成像材料层在挥发时产生大量的可能是毒性而且在任何情况下都必须从成像装置中清洗掉的流出物。

另一种产生直接写入介质的方案是使用光可分散材料。在这种成像膜中，可熔材料层（通常为金属层）放置于连续片材中的基材之上。光束撞击到该层上引起熔化。该熔化层利用表面张力聚集成液滴，这样降低了成像区的光密度。为了在非分散区产生足够的光密度，这些膜一般需要较厚的金属层；因此，需要较大的能量通量以引起分散。这种成像材料的例子可参见美国专利 4000334 和 4211838。

需要一种具有高分辨率和高对比度，而且在使用时不会产生大量挥发性材料的直接写入膜。此外，成像的膜应该具有非常好的尺寸稳定性，而且应该在环境使用条件下耐刮擦、耐撕裂和耐褪色。

本发明提供了一种能够满足所有前述标准的直接写入成像膜。本发明的直接写入成像膜并不需要任何湿化学处理，而且可在环境条件下使用，并且容易适用于计算机控制成像系统，在该系统中激光器或类似光源被控制以直接在膜上书写。本发明成像膜在光谱的 UV 部分具有非常高的 D\text{max} 和非常低的 D\text{min}，但在可见波长光时却在图像区和背景区都高度透明。这样可得到在 UV 波长上具有高对比度的“看穿图像”。透明度的这种组合方式使得本发明材料非常适用作光工具或光掩模材料，因为这种看穿特征使得容易校准该光工具，而强 UV 吸收则产生高对比图像。

正如以下要更详细解释的，该膜的成像区非常耐褪色或光漂白。该成像介质非常耐刮擦或化学破坏；因此，无需进行上层压（overlamination）。本发明的成像物质是分子而不是颗粒；因此，可实现高分辨率。本发明材料并不需要任何化学处理、特殊通风，或特殊处理。

本发明的简要描述
本文公开了一种直接写入成像膜，包括其上放置有第一材料第一层的基材，以及放置于第一材料层之上的第二材料第二层。该第一层对第一波长光比对第二波长光的吸光率要高，所述第二波长光比第一波长光要短。该第二层对第一波长光的吸光率低于第一层，而对第二波长光的吸光率高于第一层。第一层的材料能够被第一波长光破坏，如果这样，第二层的覆盖部分与剩余成像膜的粘附性下降，这样那些覆盖第一层中所述破坏区的第二层部分就容易从剩余成像膜上去除。

在特殊实施方案中，该第一材料层包含一层金属。在其它的实施方案中，第二材料层包括紫外线吸收染料。在特定实施方案中，紫外线吸收染料是特定种类偶氮染料的一种。

在某些实施方案中，热分散层插入第一层与第二层之间。在其它实施方案中，将粘合剂材料体放置于第二层之上，而且该粘合剂材料体用于将覆盖第一层已破坏部分的第二层部分除去。

本文还公开了一种制备光工具的方法，该方法包括使用本发明的直接写入成像膜。

附图的简要描述
图 1 是按照本发明原理构造的成像介质的横截面图；
图 2 是表示图 1 介质在成像时的第一步的横截面图；
图 3 是表示图 1 介质在成像时的第二步的横截面图；
图 4 是按照本发明原理构造的成像介质的另一实施方案的横截面图，并表示在其成像时的第一步；
图 5 是图 4 成像介质的横截面图，表示在其上形成图像时的第二步；
图 6 是本发明成像介质的示意图，说明其作为光掩模的用途；
图 7 是本发明成像膜的顶视图，说明其成像部分中的特有显微缺陷；
图 8 是沿线 8-8 得到的图 7 成像膜的横截面图。
图 9 是本发明成像介质另一实施方案的横截面图，其中包括热扩散层；和
图 10 是按照本发明原理构造的成像介质的另一实施方案的横截面图。
本发明的详细描述

本发明涉及一种直接写入成像介质及其应用方法。图1描绘了按照本发明原理构造的成像介质10的横截面图。图1的介质10包括基材12，通常用于在光谱的可见光和紫外线部分具有良好透明度的材料形成；而且在某些实施方案中，该基材还在光谱的近红外部分较透明。该基材应该是尺寸稳定的且与介质的其它层相容。在大多数情况下，优选柔性基材，且一种特别优选的基材包含聚酯材料，如聚对苯二甲酸乙二醇酯(PET)。其它基材包含刚性聚合物、玻璃和类似物。

基材12上方是第一材料层14，再上方是第二材料层16。第一层14和第二层16的材料选择使得，第一层的材料对第一波长光比对第二波长光(比第一波长短)具有更高的光吸收。另外，选择构成第二层16的材料使得，它对第一波长光的吸收低于第一层材料的吸收，而且它对较短的第二波长光的吸收高于构成第一层14的材料。更具体地说，选择第一层14的材料使得，它对光谱的红外、近红外和红色部分的波长光具有较高吸收，但对大部分可见光谱是相对透明的。此外，第一层14的材料能够通过吸光而分散或破坏。选择第二层16的材料使得，它高度吸收紫外线，但对光谱的可见光部分相对透明。以下给出这些层的材料的某些具体例子。

各层吸收性能的这种独特组合方式使本发明成为可能。现参照图2和图3，给出了本发明的一个特殊实施方式。图2描绘了成像工艺中的第一步，其中一般类似于图1所描绘的本体10的直接写入介质10本体通过激光器18而在其上写入。如图2所示，安置激光器18以将光束20导向介质10上。光束20波长较长，优选为具有约1微米波长的红外线，这可从许多市售激光器如YAG激光器等得到。如上所述，第二层16对长波长照射相对透明，因此激光束20较不受阻地由其通过。第一层14强烈吸收这种红外线，通过吸收和热加热，激光束20所撞击的第一层14的那部分被破坏。在本公开内容的上下文中，层的破坏是指其中层14的整体受到破坏的任何工艺。最常见的是，激光加热熔化、烧蚀或物理分散层14，这样得到包含尘埃、小球等形式的层
残余物的已破坏区 14'。在其它情况下，破坏可通过层的化学变化，如氧化之类的解聚化学反应而实现。

覆盖第一层 14 的已破坏区 14'的第一层 16 部分不再被支撑或减滞，因此可容易去除。参照图 3，给出了这样一种方法，其中将覆盖第一层 14 的已破坏区 14'的第一层 16 部分去除。如图 3 所示，将具有稍微发粘的、粘性的外表面 24 的滚筒 22 滚过成像介质 10 的第二层 16 的上表面。这种稍微发粘的滚筒粘附并仅接触直接覆盖第一层 14 的已破坏区 14'的第二层 16 的 16'部分。在一个优选实施方案中，该滚筒的粘性表面由较软的聚氨酯聚合物提供。在另一替代实施方案中，可使用粘合剂层或类似物以提供粘性表面。在另一替代实施方案中，也可使用刷子、压缩空气或其它流体来去除第二层 16 的未支撑部分。

第一层的破坏可在已破坏区 14'中产生尘埃或其它残余物。任何残余尘埃或第一层残余物一般都不会影响成像体随后用作光掩模或光工具；尽管这些尘埃可能聚集在各种装置中，或令人讨厌，因此，通常需要去除所有的残余尘埃。在某些情况下，第二层 16 部分的去除还能够去除第一层 14 的已破坏区 14'的所有尘埃或其它残余物。尘埃可利用常规的清洁技术来去除，包括刷子、采用压缩气流清洗、真空清洗或其它方法。

本发明可考虑其它方式和结构。参照图 4，给出了按照本发明的另一变型成像介质 40。图 4 的介质 40 包括基材 12、第一层 14 和第二层 16，它们一般类似于以上所述。图 4 的介质 40 还包括一层被置于第二层 16 之上的低粘性粘合剂 42、以及被置于粘合剂体 42 之上的支撑片材 44。该粘合剂 42 可通过选择具有与第二层 16 的较低粘附性，而且这些粘合剂是本领域熟知的，广泛用于可复位标记、粘性备忘笺、和类似物。衬底材料层 44 最优选为柔性材料的透明片材，这有助于在使用时看见和校准成像材料体 40；但不透明片材也可使用。

如图 4 所示，在材料体 40 上形成图像时，第一步包括，用来自激光器 18 或类似高强度源的光束 20 照射介质 40。该步骤类似于图 2 所示的第一步；但在这种情况下，照射是从元件的基材侧进行的，而且
该基材应该对光束 20 较透明。但第二层 16 无需对成像光束 20 特别透明。在图 2 实施方案中，照射在第一层 14 中产生破坏区 14'。正如在前述例子中一样，第一层的已破坏区 14'位于第二层 16 相应部分之下，因此可降低第二层 16 那部分与剩余成像介质的粘附性。

在图 5 中，给出了形成图像时的第二步。在该步骤中，将粘合剂层 42 及其衬底层 44 从构成成像材料体 40 剩余部分的第二层 16、第一层 14 和基材 12 处剥离。粘合剂 42 还将覆盖第一层 14 已破坏区 14'的第二层 16 的那部分 16'带走。随后丢弃粘合剂层 42、衬底层 44 和第二层的已去除部分 16'，这样结构 40 的剩余部分包括一种备用的光掩模或光工具。正如在前述例子中一样，在某些情况下，可有利地去除留在已破坏区 14'中的第一层 14 的所有残余物。

图 6 描绘了一种用于随后场合的按照本发明制造的成像光工具，而该图说明了本发明的优点。图 6 具体给出了如上所述按照本发明制造的光掩模或光工具 60。该光工具 60 如上所述包括基材部分 12、第一层 14、和第二层 16。可以看出，只有一部分基材 12 被第一层 14 和第二层 16 所覆盖，且其剩余部分已通过一般类似于前述的方法步骤而由这些层清除。

进一步说，光工具 60 位于工件 62 之上，该工件的一部分以横截面在本文中给出。该工件 62 包含一种乳液或其它光响应组合物。本发明的一个显著特征是，其图像侧具有足够的完整性以通过该工件 62 直接接触。这在本领域称作乳液-乳液接触，而且它不同于已有技术体系，后者要求将光工具或光掩模的基材部分与工件接触放置，或在图像与工件 62 之间存在保护性外涂层。乳液-乳液接触消除了衍射和视差问题，否则会降低分辨率。还可看出，为了进行说明，各层的垂直厚度在本图中得到夸大。在一种典型组合物中，本发明材料的第一和第二层的总计厚度约为 1/2-10 微米。

图 6 还说明了本发明材料与可见光束 64 和紫外线光束 66 的相互作用。根据所示，基材 12、第一层 14 和第二层 16 都对大部分可见光谱 64 较透明。因此，光工具 60 的载像部分对肉眼是较透明的。这被称
作当穿图像，而且该特征有助于在基材 62 上将光工具 60 定位和校准。构成第一层 14 和第二层 16 的光工具的图像部分高度吸收短波长 UV 和近紫外线 66，因此可有效地将基材 62 屏蔽开该紫外线 66。相反，光工具 60 的非载像部分仅包括基材 12（以及第一层 14 的可能已破坏区），而且对紫外线 66 较透明，因此可使这些光线穿过并与基材 62 相互作用。

尽管前述成像介质可得到适用于大多数光工具应用的优质、高分辨率图像，但在某些情况下已经发现，该成像工艺中存在特殊的人为现象和缺陷，而且这些缺陷可能是成问题的，尤其是对于甚高分辨率场合。因此，按照本发明，还提供了一种能够将这些缺陷降至最低程度的特定成像结构。

现参照图 7，给出了一般类似于图 1 所示膜的成像膜 10 的一个非常放大部分的顶视图。该膜 10 具有一个成像区 72，由其上存在的载有染料的第二层来确定。该膜还包括一个背景区 74，其构造为沿着膜长度方向延伸的薄条且由已从其上去除第一和第二层的膜部分来限定。在图 7，可以看见许多缺陷区，但要理解，为了说明目的，这些缺陷区出现的频率已被夸大，因此实际上，往往出现的频率要小得多。图示缺陷包括扇形区 76，其中载有染料的图像层部分伸入背景区；钉状物 78，一般类似于扇形区 76。这些缺陷还包括切削区 80，其中一部分第二层已从邻近破坏区的第一层中剥落。这些缺陷还包括来自不完全分散的第一层的小球 82、以及在抛弃已分散第一层材料（分散照明的结果）时形成的柱状第一层材料区 84。在图 7 的图示中，还可看见一个桥接部分 84，一般与切削区 80 相反，它是在不完全去除第二层部分时形成。

另一种缺陷包括梯形边缘，在第一层材料部分聚集于破坏区边缘时形成。这种缺陷产生一条沿着成像区边缘延伸的线，而且该缺陷在图 7 中以图标 86 表示，这在图 8 中可更清楚地看出，图 8 是图 7 成像膜沿着线 8-8 的横截面图。

现参照图 8，给出了图 7 膜 10 的横截面部分，用于说明该梯形边缘
缺陷 84。在不受推测局限的情况下，本发明人推论，该梯形边缘缺陷在已分散第一层材料被抛弃并聚集于边缘区时出现。这些缺陷扭曲了所得光工具的几何形状。其它可列举的缺陷同样被认为是分散工艺的热和/或机械作用的结果。在某些情况下，这些缺陷可以容许；但在其它情况下，它们必须被最小化。

按照本发明的另一方面，已经发现，如果在光可分散第一层和第二层之间插入较薄的底涂层，可消除或极大地减少前述缺陷，特别是梯形边缘缺陷和切割缺陷。在不受推测局限的情况下，本发明人推论，该层用作热分散层，它能够缓和和平衡热效应，从而减少形成前述缺陷。

现参照图 9，给出了按照本发明原理构造的另一成像膜 90 的横截面图。膜 90 包括基材 12、第一层 14 和第二层 16，它们一般类似于前述的那些。但图 9 的膜 90 还包括一层用作热分散层的底涂层 92，引入该层可尽量减少在成像膜中形成缺陷。该底涂层 92 通常很薄，且一般约 1-5 微米厚。它优选由聚合物材料形成，而且用于用于破坏第一层 14 的较长波长照射、较短波长照射（在使用成品光工具时使用）、以及可见光波长都较透明。

用于制造该底涂层的一种优选材料包含水解聚乙酸乙烯酯。适用于本发明的一种商品级水解聚乙酸乙烯酯来自 Precision Coatings Inc. (Walled Lake, Michigan)，品名为 HPVA。已经发现，得自甲醇与乙酸乙酯的 50:50 混合物的该聚合物的 10％溶液可得到一层能够将形成缺陷的可能降至最低的非常良好的底涂层。另一底涂层可由来自 Morton Chemical Company 的水解聚乙酸乙烯酯聚合物（品名为 Morton Polymer 10）制成。该聚合物在 2 份去离子水与 1 份异丙醇的混合物中的 25％溶液可得到非常良好的底涂层。

本发明可通过使用各种不同的材料而得以实现。如上所述，基材 12 应该具有对紫外线和可见光的高度透明度，而且在通过基材进行照射时，它还应该对用于诱导破坏第一层 14 的红外和近红外波长较透明。该基材还应该具有良好的尺寸稳定性。在某些情况下，该基材可
由刚性材料如玻璃制成；但在许多情况下，柔性基材是理想的。因此，该基材通常由具有良好尺寸稳定性的柔性聚合物材料，如 PET、聚氨酯或者类似物制成。

第一层由对可见光波长较透明，但对红外和近红外波长高度吸收的材料制成。此外，构成该层的材料应该能够通过吸收红外线而被破坏。已发现，用于制造第一层的最优选材料包括金属薄膜。许多金属容易通过各种技术，例如真空蒸发、溅射或类似技术，以受控厚度沉积到基材上。如果构成足够薄，这些层就对可见光波长高度透明，但仍然强烈吸收红外线。此外，红外线可使薄金属层光分散并失去其完整性。可以使用许多金属作为本发明的第一层。合适材料的选择取决于该材料与基材和与上面第二层的粘附性、以及该材料对环境条件和对成像介质剩余组分的稳定性。一种特别优选的用于本发明的第一层的材料包含钛。其它金属如铋、镍、钒、钴和类似金属也可类似使用。通常，金属层通过溅射进行沉积，并选择其厚度使得该层对光源的光密度为约 1-8。厚度通常低于 1 微米。

第二层材料优选包含溶解在聚合物基体材料中的吸收紫外线的染料。第二层的厚度一般为 1-10 微米。本领域技术人员已知并可得到许多吸收紫外线的染料，它们可用于本发明。但本发明的申请人已经发现一组独特的吸收紫外线的染料，它们高度吸收紫外线但对可见光波长和红外波长较透明。此外，这些染料在高度照射时非常稳定，而且还具有非常良好的热稳定性和对周围环境条件的良好稳定性。优选的这种染料包括偶氮染料。

由现有技术已知，偶氮染料可通过对重氮盐与另一种有机分子（通常为芳族分子）的偶联而制成。可用于形成用于本发明的偶氮染料的一种特殊重氮盐由以下结构式 I 表示：

结构式 I

![结构式图](image-url)
可用于本发明的另一种重氮盐由以下结构式 II 定义：

结构式 II

![结构式 II](attachment:image.png)

在这两种情况下，R 表示氢原子或烷基，最优选甲基、乙基或丙基；
Y 为卤素，优选氯或氟；且 X 可以是任何阴离子，最通常包括卤素、NO₃⁻、
HSO₄⁻、BF₄⁻、PF₆⁻、等。

能够与重氮盐反应形成重氮染料的偶联剂分子优选为芳族分子。某些特别优选的偶联剂由以下结构式 III 和 IV 表示：

结构式 III

![结构式 III](attachment:image.png)

结构式 IV

![结构式 IV](attachment:image.png)

在前述结构式中，R 如上所述为氢原子或烷基，且对于这些特殊的
偶联剂，R 最优选氢原子或低分子量烷基；n 为 0 或整数，最优选 1、
2 或 3。

按照前述结构式的偶氮染料容易合成，储存稳定，高度吸收紫外线
波长，且对可见光和近红外波长吸收较差。以下描述可用于本发明的
某些特殊的染料，但应该理解，这些例子用于说明本发明而非对其实
践进行限定。

可用于本发明的第一染料由具有以上通式 I 的重氮盐制成，其中卤素 Y 为氢且 R 基团都是乙基。该盐的阳离子可称作对-重氮-邻-氯-\(N, N\)-二乙基苯胺。该离子与其中 R 基团都是氢的通式 III 偶联剂 (2,2'-二羟基-联苯) 的反应将重氮氯偶联到一个芳环上以释放 HX 并形成所得的偶氮染料。所得染料肉眼看具有浅黄色，且在通常低于 360 纳米的紫外线光谱部分吸收性高。

如果使用其中 R' 都是氢原子且 n 为 2 的通式 IV 偶联剂 (β-二羟基苯甲酸-乙醇缩酰胺) 进行偶联反应，所得染料肉眼看具有褐色，而且主要吸收可见光谱部分的光。

类似化合物通过将其中 R 基团都是甲基的结构式 I 重氮盐与前述偶联剂进行反应而制成。所得重氮染料一般类似于通过使用二乙基化合物得到的那些。

另一种重氮染料由结构式 II 所示重氮盐制成，其中硫对位的 R 基团为甲基且连接到氧原子上的剩余 R 基团都是乙基。相应的阳离子可称作 1-重氮-2, 5-二氧基-4-甲苯基硫基-苯。该重氮氯离子与前述偶联剂之一的偶联可产生一种在光谱紫外线部分高度吸收的偶氮染料。

将染料分配在聚合物基体中，尽管重氮盐可与偶联剂在基体中现场反应形成染料，但一般优选在单独的合成步骤中得到染料，然后将该染料加入基体中。本发明可以使用各种基体材料。基体材料应该与染料相容，与下方第一层材料相容性良好，而且还应该对可见光、近紫外线和近红外线波长较透明。一类特别优选的基体材料包括乙酸纤维素聚合物，其中特别优选乙酸丙酸纤维素 (CAP)。CAP 具有良好的成膜性能，良好的宽光谱透明度，而且与钛亚层相容性非常好。此外，如果下方相邻的金属层被破坏，CAP 就干净地从基材上决裂，从而生成精确的、高分辨率图像。其它聚合物如丁酸乙酸纤维素 (CAB)、乙酸纤维素和乙烯基材料也可类似地被使用。

在本发明的一个特别优选实施方案中，用于第二层的聚合物包含两
种粘度不同 CAP 的混合物，其中第一材料包含较低粘度的聚合物且第二材料是一种较高粘度的聚合物。由现有技术已知，聚合物的粘度通常由给定量的聚合物标准溶液通过器中的标准尺寸开口所需的时间来定量化。一种优选的树脂混合物包含等重量使用的 5 秒树脂和 20 秒树脂，而且这些树脂得自 Eastman Chemical Company，品名为 CAP 504-0.2 和 CAP 482-20。

第一层材料应该包括足够的紫外线染料以赋予在光谱紫外线部分的相当高的光密度，同时避免在红外和可见光谱部分的不适当吸收。染料的加入量通常包括约 10–100 毫克染料/厘米²。第二层的涂布通常通过由聚合物和染料的溶剂基溶液进行挤涂而进行，但也可采用其它涂布技术，如棒涂、旋涂、刮刀涂布、浸渍涂布和类似技术。

本发明可以考虑其它实施方案。例如，第一层材料无需由金属制成，也可类似使用其它的可破坏材料如有机材料。此外，第二层可包括不同于本文所述染料的吸收物质。还应理解，其它材料层如抗反射层、保护层、和类似层也可引入本发明的介质中，这是本领域已知的。这些层可被放置于任被认为处于重叠关系的第一层与第二层之间；或它们以其它方式进行放置。

现参照图 10，给出了本发明一个优选的商业实施方案。图 10 说明了一种特定的直接写入膜 100。该膜包括基材 110，优选由具有良好光学透明度的聚酯材料如 PET 制成。通常，该基材由较厚的材料体制成，这样可在处理和使用时产生足够的刚性，而且已经发现，650 格基（gauge）聚酯在本发明中是有利的。放置在基材 110 之上的相金属的较薄层 112。该层用作本发明膜体系的第一层，而且容易被激光射线所破坏。通常，该层 112 的厚度低于 1 微米，且对其选择使得其白光光密度为约 5–8。放置在第一金属层 112 之上的热分散底涂层 114。该层的厚度为约 2 微米，并且如上所述用于尽量减少形成梯形边缘、切削等缺陷。该层优选由水解聚乙酸乙烯酯制成。放置在底涂层 114 之上的染料涂层 116。该层用作膜的第二层，而且其中包括吸收紫外线的染料。染料涂层的厚度为约 5–6 微米。
图 10 实施方案还包括放置于染料涂层 116 之上的覆盖片材组件 118。该覆盖片材组件 118 由在衬底片材 122 之上的粘合剂材料体 120 组成。在所述实施方案中，衬底片材 122 包括其上的胶基层（subbing layer）124，它有助于将粘合剂体 120 粘结于其上。尽管可有可无，但覆盖片材 118 优选在其上表面上包括一抗静电涂层 126，而且由现有技术已知，该涂层 126 用于防止在膜上的静电堆积，否则会导致尘埃聚集。在该实施方案中，衬底片材 122 优选由聚酯材料如具有约 92 格基厚的 PET 制成。该粘合剂体 120 可以是与染料涂层 116 粘性适当的任何市售粘合剂。优选包括胶基层 124，这样可保证粘合剂体 120 更牢固地粘结到衬底层 122 上而不是染料涂层 116 上。胶基层 124 的组成取决于粘合剂体 116 和衬底层 122 的性质，为此可以使用容易获得的市售材料。

图 10 膜的某些特殊变型可利用这样一种底涂层制成，该底涂层优选通过涂布 10% 重量水解聚乙酸乙烯酯在 45% 甲醇和 45% 乙酸乙酯中的溶液而制成。

另一种底涂层组合物包含溶解在 50% 去离子水和 25% 异丙醇中的 25% 重量水解聚乙酸乙烯酯乳液，由 Morton Chemical Company 以品名 Morton Polymer 10 售卖。一种优选的染料涂层通过涂布以下物质的溶液而制成：395.81 克丙酮、319.04 克甲醇、193.42 克丙二醇甲醚溶剂（以商品名 Dowanol PM 售卖）、28.91 克乙酸丙酸纤维素（5 秒，由 Eastman Chemical Company 以品名 CAP 504-0.2 售卖）、28.91 克乙酸丙酸纤维素（20 秒，由 Eastman Chemical Company 以品名 CAP 482-20 售卖）、30.91 克吸收紫外线的染料（品名为 LPA 染料 T-113，通过将结构式 I 重氮铬盐与结构式 III 偶联剂进行反应而制成）、和 3 克聚酯改性二甲基聚硅氧烷共聚物（由 Byk Chemie Chemical Company 以品名 BYK331 售卖）。将该材料涂布到底涂层上至约 5-6 微米厚。

适合挤涂的另一种染料涂层配方由以下物质组成（以重量为基）：382
克丙酮、310 克甲醇、188 克 Dowanol PM、38 克 CAP (5 秒)、38 克 CAP (20 秒)、40 克 LPA 染料 T-113、和 4 克 BYK331。将该混合物挤涂至约 5-6 微米厚。

图 10 实施方案的一种优选粘合剂配方包含由 Morton Chemical Company 以品名 Morstick 220 售卖的接触型粘合剂。将 90 克该粘合剂与 10 克水进行混合，然后涂布到 92 摄氏度的预处理聚酯片材上至约 12 微米厚。

因此，应该理解，以上附图、讨论和描述都用于说明本发明的特定实施方案，而并不意味着对其的任何实际限定。能够限定本发明范围的是所附的权利要求书，包括所有的等同方式。