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(57) Abstract: An apparatus and method for performing vector index loads and stores. For example, one embodiment of a processor
comprises: a vector index register to store a plurality of index values; a mask register to store a plurality of mask bits; a vector re -
gister to store a plurality of vector data elements loaded from memory; and vector index load logic to identify an index stored in the
vector index register to be used for a load operation using an immediate value and to responsively combine the index with a base
memory address to determine a memory address for the load operation, the vector index load logic to load vector data elements from
the memory address to the vector register in accordance with the plurality of mask bits.
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METHOD AND APPARATUS FOR VECTOR INDEX LOAD AND STORE

BACKGROUND

Field of the Invention

[0001] This invention relates generally to the field of computer processors. More
particularly, the invention relates to a method and apparatus for a vector index load and
store.

Description of the Related Art

[0002] An instruction set, or instruction set architecture (ISA), is the part of the
computer architecture related to programming, including the native data types,
instructions, register architecture, addressing modes, memory architecture, interrupt
and exception handling, and external input and output (I/0O). It should be noted that the
term “instruction” generally refers herein to macro-instructions — that is instructions that
are provided to the processor for execution — as opposed to micro-instructions or micro-
ops — that is the result of a processor’s decoder decoding macro-instructions. The
micro-instructions or micro-ops can be configured to instruct an execution unit on the
processor to perform operations to implement the logic associated with the macro-
instruction.

[0003] The ISA is distinguished from the microarchitecture, which is the set of
processor design techniques used to implement the instruction set. Processors with
different microarchitectures can share a common instruction set. For example, Intel®
Pentium 4 processors, Intel® Core™ processors, and processors from Advanced Micro
Devices, Inc. of Sunnyvale CA implement nearly identical versions of the x86 instruction
set (with some extensions that have been added with newer versions), but have
different internal designs. For example, the same register architecture of the ISA may
be implemented in different ways in different microarchitectures using well-known
techniques, including dedicated physical registers, one or more dynamically allocated
physical registers using a register renaming mechanism (e.g., the use of a Register
Alias Table (RAT), a Reorder Buffer (ROB) and a retirement register file). Unless
otherwise specified, the phrases register architecture, register file, and register are used
herein to refer to that which is visible to the software/programmer and the manner in
which instructions specify registers. Where a distinction is required, the adjective
“logical,” “architectural,” or “software visible” will be used to indicate registers/files in the
register architecture, while different adjectives will be used to designate registers in a
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given microarchitecture (e.g., physical register, reorder buffer, retirement register,

register pool).

[0004] An instruction set includes one or more instruction formats. A given
instruction format defines various fields (number of bits, location of bits) to specify,
among other things, the operation to be performed and the operand(s) on which that
operation is to be performed. Some instruction formats are further broken down though
the definition of instruction templates (or subformats). For example, the instruction
templates of a given instruction format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically in the same order, but at least
some have different bit positions because there are less fields included) and/or defined
to have a given field interpreted differently. A given instruction is expressed using a
given instruction format (and, if defined, in a given one of the instruction templates of
that instruction format) and specifies the operation and the operands. An instruction
stream is a specific sequence of instructions, where each instruction in the sequence is
an occurrence of an instruction in an instruction format (and, if defined, a given one of

the instruction templates of that instruction format).

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] A better understanding of the present invention can be obtained from the
following detailed description in conjunction with the following drawings, in which:
[0006] FIGS. 1A and 1B are block diagrams illustrating a generic vector friendly
instruction format and instruction templates thereof according to embodiments of the
invention;

[0007] FIG. 2A-D is a block diagram illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention;

[0008] FIG. 3 is a block diagram of a register architecture according to one
embodiment of the invention; and

[0009] FIG. 4A is a block diagram illustrating both an exemplary in-order fetch,
decode, retire pipeline and an exemplary register renaming, out-of-order
issue/execution pipeline according to embodiments of the invention;

[0010] FIG. 4B is a block diagram illustrating both an exemplary embodiment of an
in-order fetch, decode, retire core and an exemplary register renaming, out-of-order
issue/execution architecture core to be included in a processor according to

embodiments of the invention;



WO 2016/105755 PCT/US2015/062057
[0011] FIG. 5A is a block diagram of a single processor core, along with its

connection to an on-die interconnect network;

[0012] FIG. 5B illustrates an expanded view of part of the processor core in FIG 5A
according to embodiments of the invention;

[0013] FIG. 6 is a block diagram of a single core processor and a multicore
processor with integrated memory controller and graphics according to embodiments of
the invention;

[0014] FIG. 7 illustrates a block diagram of a system in accordance with one
embodiment of the present invention;

[0015] FIG. 8 illustrates a block diagram of a second system in accordance with an
embodiment of the present invention;

[0016] FIG. 9 illustrates a block diagram of a third system in accordance with an
embodiment of the present invention;

[0017] FIG. 10 illustrates a block diagram of a system on a chip (SoC) in
accordance with an embodiment of the present invention;

[0018] FIG. 11 illustrates a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source instruction set to binary
instructions in a target instruction set according to embodiments of the invention;
[0019] FIG. 12 illustrates an exemplary processor on which embodiments of the
invention may be implemented,;

[0020] FIG. 13 illustrates vector index load/store logic in accordance with one
embodiment of the invention;

[0021] FIG. 14 illustrates vector index load/store logic processing exemplary sets of
indexes based on an exemplary immediate and mask values;

[0022] FIG. 15 illustrates a method for performing vector index load operations in
accordance with one embodiment of the invention; and

[0023] FIG. 16 illustrates a method for performing vector index store operations in

accordance with one embodiment of the invention

DETAILED DESCRIPTION
[0024] In the following description, for the purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
embodiments of the invention described below. It will be apparent, however, to one
skilled in the art that the embodiments of the invention may be practiced without some
of these specific details. In other instances, well-known structures and devices are

3
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shown in block diagram form to avoid obscuring the underlying principles of the

embodiments of the invention.

EXEMPLARY PROCESSOR ARCHITECTURES AND DATA TYPES
[0025] An instruction set includes one or more instruction formats. A given
instruction format defines various fields (number of bits, location of bits) to specify,
among other things, the operation to be performed (opcode) and the operand(s) on
which that operation is to be performed. Some instruction formats are further broken
down though the definition of instruction templates (or subformats). For example, the
instruction templates of a given instruction format may be defined to have different
subsets of the instruction format’s fields (the included fields are typically in the same
order, but at least some have different bit positions because there are less fields
included) and/or defined to have a given field interpreted differently. Thus, each
instruction of an ISA is expressed using a given instruction format (and, if defined, in a
given one of the instruction templates of that instruction format) and includes fields for
specifying the operation and the operands. For example, an exemplary ADD instruction
has a specific opcode and an instruction format that includes an opcode field to specify
that opcode and operand fields to select operands (source1/destination and source2);
and an occurrence of this ADD instruction in an instruction stream will have specific
contents in the operand fields that select specific operands. A set of SIMD extensions
referred to the Advanced Vector Extensions (AVX) (AVX1 and AVX2) and using the
Vector Extensions (VEX) coding scheme, has been , has been released and/or
published (e.g., see Intel® 64 and IA-32 Architectures Software Developers Manual,
October 2011; and see Intel® Advanced Vector Extensions Programming Reference,
June 2011).

Exemplary Instruction Formats

[0026] Embodiments of the instruction(s) described herein may be embodied in
different formats. Additionally, exemplary systems, architectures, and pipelines are
detailed below. Embodiments of the instruction(s) may be executed on such systems,
architectures, and pipelines, but are not limited to those detailed.

A. Generic Vector Friendly Instruction Format

[0027] A vector friendly instruction format is an instruction format that is suited for
vector instructions (e.qg., there are certain fields specific to vector operations). While
embodiments are described in which both vector and scalar operations are supported
through the vector friendly instruction format, alternative embodiments use only vector

operations the vector friendly instruction format.
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[0028] Figures 1A-1B are block diagrams illustrating a generic vector friendly

instruction format and instruction templates thereof according to embodiments of the
invention. Figure 1A is a block diagram illustrating a generic vector friendly instruction
format and class A instruction templates thereof according to embodiments of the
invention; while Figure 1B is a block diagram illustrating the generic vector friendly
instruction format and class B instruction templates thereof according to embodiments
of the invention. Specifically, a generic vector friendly instruction format 100 for which
are defined class A and class B instruction templates, both of which include no memory
access 105 instruction templates and memory access 120 instruction templates. The
term generic in the context of the vector friendly instruction format refers to the
instruction format not being tied to any specific instruction set.

[0029] While embodiments of the invention will be described in which the vector
friendly instruction format supports the following: a 64 byte vector operand length (or
size) with 32 bit (4 byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64
byte vector consists of either 16 doubleword-size elements or alternatively, 8 quadword-
size elements); a 64 byte vector operand length (or size) with 16 bit (2 byte) or 8 bit (1
byte) data element widths (or sizes); a 32 byte vector operand length (or size) with 32
bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths (or
sizes); and a 16 byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte),
16 bit (2 byte), or 8 bit (1 byte) data element widths (or sizes); alternative embodiments
may support more, less and/or different vector operand sizes (e.g., 256 byte vector
operands) with more, less, or different data element widths (e.g., 128 bit (16 byte) data
element widths).

[0030] The class A instruction templates in Figure 1A include: 1) within the no
memory access 105 instruction templates there is shown a no memory access, full
round control type operation 110 instruction template and a no memory access, data
transform type operation 115 instruction template; and 2) within the memory access 120
instruction templates there is shown a memory access, temporal 125 instruction
template and a memory access, non-temporal 130 instruction template. The class B
instruction templates in Figure 1B include: 1) within the no memory access 105
instruction templates there is shown a no memory access, write mask control, partial
round control type operation 112 instruction template and a no memory access, write
mask control, vsize type operation 117 instruction template; and 2) within the memory
access 120 instruction templates there is shown a memory access, write mask control

127 instruction template.
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[0031] The generic vector friendly instruction format 100 includes the following

fields listed below in the order illustrated in Figures 1A-1B.

[0032] Format field 140 — a specific value (an instruction format identifier value) in
this field uniquely identifies the vector friendly instruction format, and thus occurrences
of instructions in the vector friendly instruction format in instruction streams. As such,
this field is optional in the sense that it is not needed for an instruction set that has only

the generic vector friendly instruction format.

[0033] Base operation field 142 — its content distinguishes different base
operations.
[0034] Register index field 144 — its content, directly or through address

generation, specifies the locations of the source and destination operands, be they in
registers or in memory. These include a sufficient number of bits to select N registers
from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024) register file. While in one
embodiment N may be up to three sources and one destination register, alternative
embodiments may support more or less sources and destination registers (e.g., may
support up to two sources where one of these sources also acts as the destination, may
support up to three sources where one of these sources also acts as the destination,
may support up to two sources and one destination).

[0035] Modifier field 146 — its content distinguishes occurrences of instructions in
the generic vector instruction format that specify memory access from those that do not;
that is, between no memory access 105 instruction templates and memory access 120
instruction templates. Memory access operations read and/or write to the memory
hierarchy (in some cases specifying the source and/or destination addresses using
values in registers), while non-memory access operations do not (e.g., the source and
destinations are registers). While in one embodiment this field also selects between
three different ways to perform memory address calculations, alternative embodiments
may support more, less, or different ways to perform memory address calculations.
[0036] Augmentation operation field 150 — its content distinguishes which one of
a variety of different operations to be performed in addition to the base operation. This
field is context specific. In one embodiment of the invention, this field is divided into a
class field 168, an alpha field 152, and a beta field 154. The augmentation operation
field 150 allows common groups of operations to be performed in a single instruction
rather than 2, 3, or 4 instructions.
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[0037] Scale field 160 — its content allows for the scaling of the index field’s

content for memory address generation (e.g., for address generation that uses 2°°4° *
index + base).
[0038] Displacement Field 162A— its content is used as part of memory address

Qscale *

generation (e.g., for address generation that uses index + base + displacement).
[0039] Displacement Factor Field 162B (note that the juxtaposition of
displacement field 162A directly over displacement factor field 162B indicates one or the
other is used) — its content is used as part of address generation; it specifies a
displacement factor that is to be scaled by the size of a memory access (N) —where N
is the number of bytes in the memory access (e.g., for address generation that uses
2°¢@° * index + base + scaled displacement). Redundant low-order bits are ignored and
hence, the displacement factor field’s content is multiplied by the memory operands
total size (N) in order to generate the final displacement to be used in calculating an
effective address. The value of N is determined by the processor hardware at runtime
based on the full opcode field 174 (described later herein) and the data manipulation
field 154C. The displacement field 162A and the displacement factor field 162B are
optional in the sense that they are not used for the no memory access 105 instruction
templates and/or different embodiments may implement only one or none of the two.
[0040] Data element width field 164 — its content distinguishes which one of a
number of data element widths is to be used (in some embodiments for all instructions;
in other embodiments for only some of the instructions). This field is optional in the
sense that it is not needed if only one data element width is supported and/or data
element widths are supported using some aspect of the opcodes.

[0041] Write mask field 170 — its content controls, on a per data element position
basis, whether that data element position in the destination vector operand reflects the
result of the base operation and augmentation operation. Class A instruction templates
support merging-writemasking, while class B instruction templates support both
merging- and zeroing-writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates during the execution of any
operation (specified by the base operation and the augmentation operation); in other
one embodiment, preserving the old value of each element of the destination where the
corresponding mask bit has a 0. In contrast, when zeroing vector masks allow any set
of elements in the destination to be zeroed during the execution of any operation
(specified by the base operation and the augmentation operation); in one embodiment,
an element of the destination is set to 0 when the corresponding mask bit has a 0 value.

7
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A subset of this functionality is the ability to control the vector length of the operation

being performed (that is, the span of elements being modified, from the first to the last
one); however, it is not necessary that the elements that are modified be consecutive.
Thus, the write mask field 170 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the invention are described in
which the write mask field’s 170 content selects one of a number of write mask registers
that contains the write mask to be used (and thus the write mask field’s 170 content
indirectly identifies that masking to be performed), alternative embodiments instead or
additional allow the mask write field’s 170 content to directly specify the masking to be
performed.
[0042] Immediate field 172 — its content allows for the specification of an
immediate. This field is optional in the sense that is it not present in an implementation
of the generic vector friendly format that does not support immediate and it is not
present in instructions that do not use an immediate.
[0043] Class field 168 — its content distinguishes between different classes of
instructions. With reference to Figures 1A-B, the contents of this field select between
class A and class B instructions. In Figures 1A-B, rounded corner squares are used to
indicate a specific value is present in a field (e.qg., class A 168A and class B 168B for
the class field 168 respectively in Figures 1A-B).
Instruction Templates of Class A
[0044] In the case of the non-memory access 105 instruction templates of class A,
the alpha field 152 is interpreted as an RS field 152A, whose content distinguishes
which one of the different augmentation operation types are to be performed (e.g.,
round 152A.1 and data transform 152A.2 are respectively specified for the no memory
access, round type operation 110 and the no memory access, data transform type
operation 115 instruction templates), while the beta field 154 distinguishes which of the
operations of the specified type is to be performed. In the no memory access 105
instruction templates, the scale field 160, the displacement field 162A, and the
displacement scale filed 162B are not present.

No-Memory Access Instruction Templates — Full Round Control Type Operation
[0045] In the no memory access full round control type operation 110 instruction
template, the beta field 154 is interpreted as a round control field 154A, whose
content(s) provide static rounding. While in the described embodiments of the invention
the round control field 154A includes a suppress all floating point exceptions (SAE) field

156 and a round operation control field 158, alternative embodiments may support may

8
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encode both these concepts into the same field or only have one or the other of these

concepts/fields (e.g., may have only the round operation control field 158).
[0046] SAE field 156 — its content distinguishes whether or not to disable the
exception event reporting; when the SAE field’s 156 content indicates suppression is
enabled, a given instruction does not report any kind of floating-point exception flag and
does not raise any floating point exception handler.
[0047] Round operation control field 158 — its content distinguishes which one of a
group of rounding operations to perform (e.g., Round-up, Round-down, Round-towards-
zero and Round-to-nearest). Thus, the round operation control field 158 allows for the
changing of the rounding mode on a per instruction basis. In one embodiment of the
invention where a processor includes a control register for specifying rounding modes,
the round operation control field’s 150 content overrides that register value.

No Memory Access Instruction Templates — Data Transform Type Operation
[0048] In the no memory access data transform type operation 115 instruction
template, the beta field 154 is interpreted as a data transform field 154B, whose content
distinguishes which one of a number of data transforms is to be performed (e.g., no
data transform, swizzle, broadcast).
[0049] In the case of a memory access 120 instruction template of class A, the
alpha field 152 is interpreted as an eviction hint field 152B, whose content distinguishes
which one of the eviction hints is to be used (in Figure 1A, temporal 152B.1 and non-
temporal 152B.2 are respectively specified for the memory access, temporal 125
instruction template and the memory access, non-temporal 130 instruction template),
while the beta field 154 is interpreted as a data manipulation field 154C, whose content
distinguishes which one of a number of data manipulation operations (also known as
primitives) is to be performed (e.g., no manipulation; broadcast; up conversion of a
source; and down conversion of a destination). The memory access 120 instruction
templates include the scale field 160, and optionally the displacement field 162A or the
displacement scale field 162B.
[0050] Vector memory instructions perform vector loads from and vector stores to
memory, with conversion support. As with regular vector instructions, vector memory
instructions transfer data from/to memory in a data element-wise fashion, with the
elements that are actually transferred is dictated by the contents of the vector mask that
is selected as the write mask.

Memory Access Instruction Templates — Temporal
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[0051] Temporal data is data likely to be reused soon enough to benefit from

caching. This is, however, a hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Memory Access Instruction Templates — Non-Temporal
[0052] Non-temporal data is data unlikely to be reused soon enough to benefit from
caching in the 1st-level cache and should be given priority for eviction. This is,
however, a hint, and different processors may implement it in different ways, including
ignoring the hint entirely.
Instruction Templates of Class B
[0053] In the case of the instruction templates of class B, the alpha field 152 is
interpreted as a write mask control (2) field 152C, whose content distinguishes whether
the write masking controlled by the write mask field 170 should be a merging or a
zeroing.
[0054] In the case of the non-memory access 105 instruction templates of class
B, part of the beta field 154 is interpreted as an RL field 157A, whose content
distinguishes which one of the different augmentation operation types are to be
performed (e.g., round 157A.1 and vector length (VSIZE) 157A.2 are respectively
specified for the no memory access, write mask control, partial round control type
operation 112 instruction template and the no memory access, write mask control,
VSIZE type operation 117 instruction template), while the rest of the beta field 154
distinguishes which of the operations of the specified type is to be performed. In the no
memory access 105 instruction templates, the scale field 160, the displacement field
162A, and the displacement scale filed 162B are not present.
[0055] In the no memory access, write mask control, partial round control type
operation 110 instruction template, the rest of the beta field 154 is interpreted as a
round operation field 159A and exception event reporting is disabled (a given instruction
does not report any kind of floating-point exception flag and does not raise any floating
point exception handler).
[0056] Round operation control field 159A — just as round operation control field
158, its content distinguishes which one of a group of rounding operations to perform
(e.g., Round-up, Round-down, Round-towards-zero and Round-to-nearest). Thus, the
round operation control field 159A allows for the changing of the rounding mode on a
per instruction basis. In one embodiment of the invention where a processor includes a
control register for specifying rounding modes, the round operation control field’s 150
content overrides that register value.

10
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[0057] In the no memory access, write mask control, VSIZE type operation 117

instruction template, the rest of the beta field 154 is interpreted as a vector length field
159B, whose content distinguishes which one of a number of data vector lengths is to
be performed on (e.g., 128, 256, or 512 byte).

[0058] In the case of a memory access 120 instruction template of class B, part
of the beta field 154 is interpreted as a broadcast field 157B, whose content
distinguishes whether or not the broadcast type data manipulation operation is to be
performed, while the rest of the beta field 154 is interpreted the vector length field 159B.
The memory access 120 instruction templates include the scale field 160, and optionally
the displacement field 162A or the displacement scale field 162B.

[0059] With regard to the generic vector friendly instruction format 100, a full
opcode field 174 is shown including the format field 140, the base operation field 142,
and the data element width field 164. While one embodiment is shown where the full
opcode field 174 includes all of these fields, the full opcode field 174 includes less than
all of these fields in embodiments that do not support all of them. The full opcode field
174 provides the operation code (opcode).

[0060] The augmentation operation field 150, the data element width field 164,
and the write mask field 170 allow these features to be specified on a per instruction
basis in the generic vector friendly instruction format.

[0061] The combination of write mask field and data element width field create
typed instructions in that they allow the mask to be applied based on different data
element widths.

[0062] The various instruction templates found within class A and class B are
beneficial in different situations. In some embodiments of the invention, different
processors or different cores within a processor may support only class A, only class B,
or both classes. For instance, a high performance general purpose out-of-order core
intended for general-purpose computing may support only class B, a core intended
primarily for graphics and/or scientific (throughput) computing may support only class A,
and a core intended for both may support both (of course, a core that has some mix of
templates and instructions from both classes but not all templates and instructions from
both classes is within the purview of the invention). Also, a single processor may
include multiple cores, all of which support the same class or in which different cores
support different class. For instance, in a processor with separate graphics and general
purpose cores, one of the graphics cores intended primarily for graphics and/or
scientific computing may support only class A, while one or more of the general purpose

11
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cores may be high performance general purpose cores with out of order execution and

register renaming intended for general-purpose computing that support only class B.
Another processor that does not have a separate graphics core, may include one more
general purpose in-order or out-of-order cores that support both class A and class B. Of
course, features from one class may also be implement in the other class in different
embodiments of the invention. Programs written in a high level language would be put
(e.g., just in time compiled or statically compiled) into an variety of different executable
forms, including: 1) a form having only instructions of the class(es) supported by the
target processor for execution; or 2) a form having alternative routines written using
different combinations of the instructions of all classes and having control flow code that
selects the routines to execute based on the instructions supported by the processor
which is currently executing the code.

B. Exemplary Specific Vector Friendly Instruction Format

[0063] Figure 2 is a block diagram illustrating an exemplary specific vector
friendly instruction format according to embodiments of the invention. Figure 2 shows a
specific vector friendly instruction format 200 that is specific in the sense that it specifies
the location, size, interpretation, and order of the fields, as well as values for some of
those fields. The specific vector friendly instruction format 200 may be used to extend
the x86 instruction set, and thus some of the fields are similar or the same as those
used in the existing x86 instruction set and extension thereof (e.g., AVX). This format
remains consistent with the prefix encoding field, real opcode byte field, MOD R/M field,
SIB field, displacement field, and immediate fields of the existing x86 instruction set with
extensions. The fields from Figure 1 into which the fields from Figure 2 map are
illustrated.

[0064] It should be understood that, although embodiments of the invention are
described with reference to the specific vector friendly instruction format 200 in the
context of the generic vector friendly instruction format 100 for illustrative purposes, the
invention is not limited to the specific vector friendly instruction format 200 except where
claimed. For example, the generic vector friendly instruction format 100 contemplates a
variety of possible sizes for the various fields, while the specific vector friendly
instruction format 200 is shown as having fields of specific sizes. By way of specific
example, while the data element width field 164 is illustrated as a one bit field in the
specific vector friendly instruction format 200, the invention is not so limited (that is, the
generic vector friendly instruction format 100 contemplates other sizes of the data
element width field 164).
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[0065] The generic vector friendly instruction format 100 includes the following fields

listed below in the order illustrated in Figure 2A.

[0066] EVEX Prefix (Bytes 0-3) 202 - is encoded in a four-byte form.

[0067] Format Field 140 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) is
the format field 140 and it contains 0x62 (the unique value used for distinguishing the
vector friendly instruction format in one embodiment of the invention).

[0068] The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields
providing specific capability.

[0069] REX field 205 (EVEX Byte 1, bits [7-5]) — consists of a EVEX.R bit field
(EVEX Byte 1, bit [7] — R), EVEX.X bit field (EVEX byte 1, bit [6] — X), and 157BEX byte
1, bit[5] - B). The EVEX.R, EVEX.X, and EVEX.B bit fields provide the same
functionality as the corresponding VEX bit fields, and are encoded using 1s complement
form, i.e. ZMMO is encoded as 1111B, ZMM15 is encoded as 0000B. Other fields of the
instructions encode the lower three bits of the register indexes as is known in the art
(rrr, xxx, and bbb), so that Rrrr, Xxxx, and Bbbb may be formed by adding EVEX.R,
EVEX.X, and EVEX.B.

[0070] REX' field 110 — this is the first part of the REX’ field 110 and is the EVEX.R’
bit field (EVEX Byte 1, bit [4] - R’) that is used to encode either the upper 16 or lower 16
of the extended 32 register set. In one embodiment of the invention, this bit, along with
others as indicated below, is stored in bit inverted format to distinguish (in the well-
known x86 32-bit mode) from the BOUND instruction, whose real opcode byte is 62, but
does not accept in the MOD R/M field (described below) the value of 11 in the MOD
field; alternative embodiments of the invention do not store this and the other indicated
bits below in the inverted format. A value of 1 is used to encode the lower 16 registers.
In other words, R’Rrrr is formed by combining EVEX.R’, EVEX.R, and the other RRR
from other fields.

[0071] Opcode map field 215 (EVEX byte 1, bits [3:0] — mmmm) — its content
encodes an implied leading opcode byte (OF, OF 38, or OF 3).

[0072] Data element width field 164 (EVEX byte 2, bit [7] — W) - is represented by
the notation EVEX.W. EVEX.W is used to define the granularity (size) of the datatype
(either 32-bit data elements or 64-bit data elements).

[0073] EVEX.vvvv 220 (EVEX Byte 2, bits [6:3]-vvvv)- the role of EVEX.vvvv may
include the following: 1) EVEX.vvvv encodes the first source register operand, specified
in inverted (1s complement) form and is valid for instructions with 2 or more source

operands; 2) EVEX.vvvv encodes the destination register operand, specified in 1s
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complement form for certain vector shifts; or 3) EVEX.vvvv does not encode any

operand, the field is reserved and should contain 1111b. Thus, EVEX.vvvv field 220
encodes the 4 low-order bits of the first source register specifier stored in inverted (1s
complement) form. Depending on the instruction, an extra different EVEX bit field is
used to extend the specifier size to 32 registers.

[0074] EVEX.U 168 Class field (EVEX byte 2, bit [2]-U) — If EVEX.U = 0, it indicates
class A or EVEX.UQ; if EVEX.U =1, it indicates class B or EVEX.U1.

[0075] Prefix encoding field 225 (EVEX byte 2, bits [1:0]-pp) — provides additional
bits for the base operation field. In addition to providing support for the legacy SSE
instructions in the EVEX prefix format, this also has the benefit of compacting the SIMD
prefix (rather than requiring a byte to express the SIMD prefix, the EVEX prefix requires
only 2 bits). In one embodiment, to support legacy SSE instructions that use a SIMD
prefix (66H, F2H, F3H) in both the legacy format and in the EVEX prefix format, these
legacy SIMD prefixes are encoded into the SIMD prefix encoding field; and at runtime
are expanded into the legacy SIMD prefix prior to being provided to the decoder’'s PLA
(so the PLA can execute both the legacy and EVEX format of these legacy instructions
without modification). Although newer instructions could use the EVEX prefix encoding
field’s content directly as an opcode extension, certain embodiments expand in a similar
fashion for consistency but allow for different meanings to be specified by these legacy
SIMD prefixes. An alternative embodiment may redesign the PLA to support the 2 bit
SIMD prefix encodings, and thus not require the expansion.

[0076] Alpha field 152 (EVEX byte 3, bit [7] — EH; also known as EVEX.EH,
EVEX.rs, EVEX.RL, EVEX.write mask control, and EVEX.N; also illustrated with a) — as
previously described, this field is context specific.

[0077] Beta field 154 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.s».,
EVEX.r20, EVEX.rr1, EVEX.LLO, EVEX.LLB; also illustrated with BBB) — as previously
described, this field is context specific.

[0078] REX’ field 110 — this is the remainder of the REX’ field and is the EVEX.V’ bit
field (EVEX Byte 3, bit [3] - V') that may be used to encode either the upper 16 or lower
16 of the extended 32 register set. This bit is stored in bit inverted format. A value of 1
is used to encode the lower 16 registers. In other words, V'VVVV is formed by
combining EVEX.V’, EVEX.vvvv.

[0079] Write mask field 170 (EVEX byte 3, bits [2:0]-kkk) — its content specifies the
index of a register in the write mask registers as previously described. In one
embodiment of the invention, the specific value EVEX.kkk=000 has a special behavior
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implying no write mask is used for the particular instruction (this may be implemented in

a variety of ways including the use of a write mask hardwired to all ones or hardware
that bypasses the masking hardware).

[0080] Real Opcode Field 230 (Byte 4) is also known as the opcode byte. Part of
the opcode is specified in this field.

[0081] MOD R/M Field 240 (Byte 5) includes MOD field 242, Reg field 244, and R/M
field 246. As previously described, the MOD field’'s 242 content distinguishes between
memory access and non-memory access operations. The role of Reg field 244 can be
summarized to two situations: encoding either the destination register operand or a
source register operand, or be treated as an opcode extension and not used to encode
any instruction operand. The role of R/M field 246 may include the following: encoding
the instruction operand that references a memory address, or encoding either the
destination register operand or a source register operand.

[0082] Scale, Index, Base (SIB) Byte (Byte 6) - As previously described, the scale
field’s 150 content is used for memory address generation. SIB.xxx 254 and SIB.bbb
256 — the contents of these fields have been previously referred to with regard to the
register indexes Xxxx and Bbbb.

[0083] Displacement field 162A (Bytes 7-10) — when MOD field 242 contains 10,
bytes 7-10 are the displacement field 162A, and it works the same as the legacy 32-bit
displacement (disp32) and works at byte granularity.

[0084] Displacement factor field 162B (Byte 7) — when MOD field 242 contains 01,
byte 7 is the displacement factor field 162B. The location of this field is that same as
that of the legacy x86 instruction set 8-bit displacement (disp8), which works at byte
granularity. Since disp8 is sign extended, it can only address between -128 and 127
bytes offsets; in terms of 64 byte cache lines, disp8 uses 8 bits that can be set to only
four really useful values -128, -64, 0, and 64; since a greater range is often needed,
disp32 is used; however, disp32 requires 4 bytes. In contrast to disp8 and disp32, the
displacement factor field 162B is a reinterpretation of disp8; when using displacement
factor field 162B, the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the memory operand access (N). This
type of displacement is referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with a much greater range). Such
compressed displacement is based on the assumption that the effective displacement is
multiple of the granularity of the memory access, and hence, the redundant low-order
bits of the address offset do not need to be encoded. In other words, the displacement
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factor field 162B substitutes the legacy x86 instruction set 8-bit displacement. Thus, the

displacement factor field 162B is encoded the same way as an x86 instruction set 8-bit
displacement (so no changes in the ModRM/SIB encoding rules) with the only exception
that disp8 is overloaded to disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpretation of the displacement
value by hardware (which needs to scale the displacement by the size of the memory
operand to obtain a byte-wise address offset).

[0085] Immediate field 172 operates as previously described.

Full Opcode Field

[0086] Figure 2B is a block diagram illustrating the fields of the specific vector
friendly instruction format 200 that make up the full opcode field 174 according to one
embodiment of the invention. Specifically, the full opcode field 174 includes the format
field 140, the base operation field 142, and the data element width (W) field 164. The
base operation field 142 includes the prefix encoding field 225, the opcode map field
215, and the real opcode field 230.

Register Index Field

[0087] Figure 2C is a block diagram illustrating the fields of the specific vector
friendly instruction format 200 that make up the register index field 144 according to one
embodiment of the invention. Specifically, the register index field 144 includes the REX
field 205, the REX’ field 210, the MODR/M.req field 244, the MODR/M.r/m field 246, the
VVVV field 220, xxx field 254, and the bbb field 2586.

Augmentation Operation Field

[0088] Figure 2D is a block diagram illustrating the fields of the specific vector
friendly instruction format 200 that make up the augmentation operation field 150
according to one embodiment of the invention. When the class (U) field 168 contains 0,
it signifies EVEX.UO (class A 168A); when it contains 1, it signifies EVEX.U1 (class B
168B). When U=0 and the MOD field 242 contains 11 (signifying a no memory access
operation), the alpha field 152 (EVEX byte 3, bit [7] — EH) is interpreted as the rs field
152A. When the rs field 152A contains a 1 (round 152A.1), the beta field 154 (EVEX
byte 3, bits [6:4]- SSS) is interpreted as the round control field 154A. The round control
field 154A includes a one bit SAE field 156 and a two bit round operation field 158.
When the rs field 152A contains a 0 (data transform 152A.2), the beta field 154 (EVEX
byte 3, bits [6:4]- SSS) is interpreted as a three bit data transform field 154B. When
U=0 and the MOD field 242 contains 00, 01, or 10 (signifying a memory access
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operation), the alpha field 152 (EVEX byte 3, bit [7] — EH) is interpreted as the eviction

hint (EH) field 152B and the beta field 154 (EVEX byte 3, bits [6:4]- SSS) is interpreted
as a three bit data manipulation field 154C.

[0089] When U=1, the alpha field 152 (EVEX byte 3, bit [7] — EH) is interpreted as
the write mask control (2) field 152C. When U=1 and the MOD field 242 contains 11
(signifying a no memory access operation), part of the beta field 154 (EVEX byte 3, bit
[4]- So) is interpreted as the RL field 157A; when it contains a 1 (round 157A.1) the rest
of the beta field 154 (EVEX byte 3, bit [6-5]- S,.1) is interpreted as the round operation
field 159A, while when the RL field 157A contains a 0 (VSIZE 157.A2) the rest of the
beta field 154 (EVEX byte 3, bit [6-5]- S2-1) is interpreted as the vector length field 1598
(EVEX byte 3, bit [6-5]- L1.0). When U=1 and the MOD field 242 contains 00, 01, or 10
(signifying a memory access operation), the beta field 154 (EVEX byte 3, bits [6:4]-
SSS) is interpreted as the vector length field 159B (EVEX byte 3, bit [6-5]- L1.0) and the
broadcast field 157B (EVEX byte 3, bit [4]- B).

C. Exemplary Register Architecture

[0090] Figure 3 is a block diagram of a register architecture 300 according to one
embodiment of the invention. In the embodiment illustrated, there are 32 vector
registers 310 that are 512 bits wide; these registers are referenced as zmmO through
zmm31. The lower order 256 bits of the lower 16 zmm registers are overlaid on
registers ynmo0-16. The lower order 128 bits of the lower 16 zmm registers (the lower
order 128 bits of the ymm registers) are overlaid on registers xmmO0-15. The specific
vector friendly instruction format 200 operates on these overlaid register file as
illustrated in the below tables.

Adjustable Vector Class Operations | Registers
Length
Instruction Templates | A (Figure | 110, 115, zmm regqisters (the vector length is

that do not include the | 1A; U=0) | 125, 130 64 byte)

vector length field 159B | B (Figure | 112 zmm registers (the vector length is
1B; U=1) 64 byte)

Instruction templates B (Figure | 117,127 zmm, ymm, or xmm registers (the

that do include the 1B; U=1) vector length is 64 byte, 32 byte, or

vector length field 159B 16 byte) depending on the vector

length field 159B
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[0091] In other words, the vector length field 159B selects between a maximum

length and one or more other shorter lengths, where each such shorter length is half the
length of the preceding length; and instructions templates without the vector length field
159B operate on the maximum vector length. Further, in one embodiment, the class B
instruction templates of the specific vector friendly instruction format 200 operate on
packed or scalar single/double-precision floating point data and packed or scalar integer
data. Scalar operations are operations performed on the lowest order data element
position in an zmm/ymm/xmm register; the higher order data element positions are
either left the same as they were prior to the instruction or zeroed depending on the
embodiment.

[0092] Write mask registers 315 - in the embodiment illustrated, there are 8 write
mask registers (kO through k7), each 64 bits in size. In an alternate embodiment, the
write mask registers 315 are 16 bits in size. As previously described, in one
embodiment of the invention, the vector mask register kO cannot be used as a write
mask; when the encoding that would normally indicate kO is used for a write mask, it
selects a hardwired write mask of OxFFFF, effectively disabling write masking for that
instruction.

[0093] General-purpose registers 325 - in the embodiment illustrated, there are
sixteen 64-bit general-purpose registers that are used along with the existing x86
addressing modes to address memory operands. These registers are referenced by the
names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and R8 through R15.

[0094] Scalar floating point stack register file (x87 stack) 345, on which is aliased
the MMX packed integer flat register file 350 - in the embodiment illustrated, the x87
stack is an eight-element stack used to perform scalar floating-point operations on
32/64/80-bit floating point data using the x87 instruction set extension; while the MMX
registers are used to perform operations on 64-bit packed integer data, as well as to
hold operands for some operations performed between the MMX and XMM registers.
[0095] Alternative embodiments of the invention may use wider or narrower
registers. Additionally, alternative embodiments of the invention may use more, less, or
different register files and registers.

D. Exemplary Core Architectures, Processors, and Computer Architectures

[0096] Processor cores may be implemented in different ways, for different
purposes, and in different processors. For instance, implementations of such cores
may include: 1) a general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-order core intended for
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general-purpose computing; 3) a special purpose core intended primarily for graphics

and/or scientific (throughput) computing. Implementations of different processors may
include: 1) a CPU including one or more general purpose in-order cores intended for
general-purpose computing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coprocessor including one or more
special purpose cores intended primarily for graphics and/or scientific (throughput).
Such different processors lead to different computer system architectures, which may
include: 1) the coprocessor on a separate chip from the CPU; 2) the coprocessor on a
separate die in the same package as a CPU; 3) the coprocessor on the same die as a
CPU (in which case, such a coprocessor is sometimes referred to as special purpose
logic, such as integrated graphics and/or scientific (throughput) logic, or as special
purpose cores); and 4) a system on a chip that may include on the same die the
described CPU (sometimes referred to as the application core(s) or application
processor(s)), the above described coprocessor, and additional functionality. Exemplary
core architectures are described next, followed by descriptions of exemplary processors
and computer architectures.

[0097] Figure 4A is a block diagram illustrating both an exemplary in-order pipeline
and an exemplary register renaming, out-of-order issue/execution pipeline according to
embodiments of the invention. Figure 4B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and an exemplary register
renaming, out-of-order issue/execution architecture core to be included in a processor
according to embodiments of the invention. The solid lined boxes in Figures 4A-B
illustrate the in-order pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of-order issue/execution
pipeline and core. Given that the in-order aspect is a subset of the out-of-order aspect,
the out-of-order aspect will be described.

[0098] In Figure 4A, a processor pipeline 400 includes a fetch stage 402, a length
decode stage 404, a decode stage 406, an allocation stage 408, a renaming stage 410,
a scheduling (also known as a dispatch or issue) stage 412, a register read/memory
read stage 414, an execute stage 416, a write back/memory write stage 418, an
exception handling stage 422, and a commit stage 424.

[0099] Figure 4B shows processor core 490 including a front end unit 430 coupled
to an execution engine unit 450, and both are coupled to a memory unit 470. The core
490 may be a reduced instruction set computing (RISC) core, a complex instruction set
computing (CISC) core, a very long instruction word (VLIW) core, or a hybrid or
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alternative core type. As yet another option, the core 490 may be a special-purpose

core, such as, for example, a network or communication core, compression engine,
coprocessor core, general purpose computing graphics processing unit (GPGPU) core,
graphics core, or the like.

[00100] The front end unit 430 includes a branch prediction unit 432 coupled to an
instruction cache unit 434, which is coupled to an instruction translation lookaside buffer
(TLB) 436, which is coupled to an instruction fetch unit 438, which is coupled to a
decode unit 440. The decode unit 440 (or decoder) may decode instructions, and
generate as an output one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals, which are decoded from,
or which otherwise reflect, or are derived from, the original instructions. The decode
unit 440 may be implemented using various different mechanisms. Examples of suitable
mechanisms include, but are not limited to, look-up tables, hardware implementations,
programmable logic arrays (PLAs), microcode read only memories (ROMs), etc. In one
embodiment, the core 490 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 440 or otherwise within the
front end unit 430). The decode unit 440 is coupled to a rename/allocator unit 452 in
the execution engine unit 450.

[00101] The execution engine unit 450 includes the rename/allocator unit 452
coupled to a retirement unit 454 and a set of one or more scheduler unit(s) 456. The
scheduler unit(s) 456 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The scheduler unit(s) 456 is
coupled to the physical register file(s) unit(s) 458. Each of the physical register file(s)
units 458 represents one or more physical register files, different ones of which store
one or more different data types, such as scalar integer, scalar floating point, packed
integer, packed floating point, vector integer, vector floating point,, status (e.g., an
instruction pointer that is the address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 458 comprises a vector registers unit, a
write mask registers unit, and a scalar registers unit. These register units may provide
architectural vector registers, vector mask registers, and general purpose registers.
The physical register file(s) unit(s) 458 is overlapped by the retirement unit 454 to
illustrate various ways in which register renaming and out-of-order execution may be
implemented (e.g., using a reorder buffer(s) and a retirement register file(s); using a
future file(s), a history buffer(s), and a retirement register file(s); using a register maps
and a pool of registers; etc.). The retirement unit 454 and the physical register file(s)
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unit(s) 458 are coupled to the execution cluster(s) 460. The execution cluster(s) 460

includes a set of one or more execution units 462 and a set of one or more memory
access units 464. The execution units 462 may perform various operations (e.g., shifts,
addition, subtraction, multiplication) and on various types of data (e.g., scalar floating
point, packed integer, packed floating point, vector integer, vector floating point). While
some embodiments may include a number of execution units dedicated to specific
functions or sets of functions, other embodiments may include only one execution unit
or multiple execution units that all perform all functions. The scheduler unit(s) 456,
physical register file(s) unit(s) 458, and execution cluster(s) 460 are shown as being
possibly plural because certain embodiments create separate pipelines for certain types
of data/operations (e.g., a scalar integer pipeline, a scalar floating point/packed
integer/packed floating point/vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler unit, physical register file(s)
unit, and/or execution cluster — and in the case of a separate memory access pipeline,
certain embodiments are implemented in which only the execution cluster of this
pipeline has the memory access unit(s) 464). It should also be understood that where
separate pipelines are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[00102] The set of memory access units 464 is coupled to the memory unit 470,
which includes a data TLB unit 472 coupled to a data cache unit 474 coupled to a level
2 (L2) cache unit 476. In one exemplary embodiment, the memory access units 464
may include a load unit, a store address unit, and a store data unit, each of which is
coupled to the data TLB unit 472 in the memory unit 470. The instruction cache unit
434 is further coupled to a level 2 (L2) cache unit 476 in the memory unit 470. The L2
cache unit 476 is coupled to one or more other levels of cache and eventually to a main
memory.

[00103] By way of example, the exemplary register renaming, out-of-order
issue/execution core architecture may implement the pipeline 400 as follows: 1) the
instruction fetch 438 performs the fetch and length decoding stages 402 and 404; 2) the
decode unit 440 performs the decode stage 406; 3) the rename/allocator unit 452
performs the allocation stage 408 and renaming stage 410; 4) the scheduler unit(s) 456
performs the schedule stage 412; 5) the physical register file(s) unit(s) 458 and the
memory unit 470 perform the register read/memory read stage 414; the execution
cluster 460 perform the execute stage 416; 6) the memory unit 470 and the physical
register file(s) unit(s) 458 perform the write back/memory write stage 418; 7) various
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units may be involved in the exception handling stage 422; and 8) the retirement unit

454 and the physical register file(s) unit(s) 458 perform the commit stage 424.

[00104] The core 490 may support one or more instructions sets (e.g., the x86
instruction set (with some extensions that have been added with newer versions); the
MIPS instruction set of MIPS Technologies of Sunnyvale, CA; the ARM instruction set
(with optional additional extensions such as NEON) of ARM Holdings of Sunnyvale,
CA), including the instruction(s) described herein. In one embodiment, the core 490
includes logic to support a packed data instruction set extension (e.g., AVX1, AVX2),
thereby allowing the operations used by many multimedia applications to be performed
using packed data.

[00105] It should be understood that the core may support multithreading (executing
two or more parallel sets of operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multithreading (where a single
physical core provides a logical core for each of the threads that physical core is
simultaneously multithreading), or a combination thereof (e.qg., time sliced fetching and
decoding and simultaneous multithreading thereafter such as in the Intel®
Hyperthreading technology).

[00106] While register renaming is described in the context of out-of-order execution,
it should be understood that register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also includes separate instruction and
data cache units 434/474 and a shared L2 cache unit 476, alternative embodiments
may have a single internal cache for both instructions and data, such as, for example, a
Level 1 (L1) internal cache, or multiple levels of internal cache. In some embodiments,
the system may include a combination of an internal cache and an external cache that
is external to the core and/or the processor. Alternatively, all of the cache may be
external to the core and/or the processor.

[00107] Figures 5A-B illustrate a block diagram of a more specific exemplary in-
order core architecture, which core would be one of several logic blocks (including other
cores of the same type and/or different types) in a chip. The logic blocks communicate
through a high-bandwidth interconnect network (e.g., a ring network) with some fixed
function logic, memory I/O interfaces, and other necessary 1/O logic, depending on the
application.

[00108] Figure 5A is a block diagram of a single processor core, along with its
connection to the on-die interconnect network 502 and with its local subset of the Level
2 (L2) cache 504, according to embodiments of the invention. In one embodiment, an
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instruction decoder 500 supports the x86 instruction set with a packed data instruction

set extension. An L1 cache 506 allows low-latency accesses to cache memory into the
scalar and vector units. While in one embodiment (to simplify the design), a scalar unit
508 and a vector unit 510 use separate register sets (respectively, scalar registers 512
and vector registers 514) and data transferred between them is written to memory and
then read back in from a level 1 (L1) cache 506, alternative embodiments of the
invention may use a different approach (e.g., use a single register set or include a
communication path that allow data to be transferred between the two register files
without being written and read back).

[00109] The local subset of the L2 cache 504 is part of a global L2 cache that is
divided into separate local subsets, one per processor core. Each processor core has a
direct access path to its own local subset of the L2 cache 504. Data read by a
processor core is stored in its L2 cache subset 504 and can be accessed quickly, in
parallel with other processor cores accessing their own local L2 cache subsets. Data
written by a processor core is stored in its own L2 cache subset 504 and is flushed from
other subsets, if necessary. The ring network ensures coherency for shared data. The
ring network is bi-directional to allow agents such as processor cores, L2 caches and
other logic blocks to communicate with each other within the chip. Each ring data-path
is 1012-bits wide per direction.

[00110] Figure 5B is an expanded view of part of the processor core in Figure 5A
according to embodiments of the invention. Figure 5B includes an L1 data cache 506A
part of the L1 cache 504, as well as more detail regarding the vector unit 510 and the
vector registers 514. Specifically, the vector unit 510 is a 16-wide vector processing
unit (VPU) (see the 16-wide ALU 528), which executes one or more of integer, single-
precision float, and double-precision float instructions. The VPU supports swizzling the
register inputs with swizzle unit 520, numeric conversion with numeric convert units
522A-B, and replication with replication unit 524 on the memory input. Write mask
registers 526 allow predicating resulting vector writes.

[00111] Figure 6 is a block diagram of a processor 600 that may have more than one
core, may have an integrated memory controller, and may have integrated graphics
according to embodiments of the invention. The solid lined boxes in Figure 6 illustrate
a processor 600 with a single core 602A, a system agent 610, a set of one or more bus
controller units 616, while the optional addition of the dashed lined boxes illustrates an

alternative processor 600 with multiple cores 602A-N, a set of one or more integrated
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memory controller unit(s) 614 in the system agent unit 610, and special purpose logic

608.

[00112] Thus, different implementations of the processor 600 may include: 1) a CPU
with the special purpose logic 608 being integrated graphics and/or scientific
(throughput) logic (which may include one or more cores), and the cores 602A-N being
one or more general purpose cores (e.g., general purpose in-order cores, general
purpose out-of-order cores, a combination of the two); 2) a coprocessor with the cores
602A-N being a large number of special purpose cores intended primarily for graphics
and/or scientific (throughput); and 3) a coprocessor with the cores 602A-N being a large
number of general purpose in-order cores. Thus, the processor 600 may be a general-
purpose processor, Coprocessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated
core (MIC) coprocessor (including 30 or more cores), embedded processor, or the like.
The processor may be implemented on one or more chips. The processor 600 may be a
part of and/or may be implemented on one or more substrates using any of a number of
process technologies, such as, for example, BICMOS, CMOS, or NMOS.

[00113] The memory hierarchy includes one or more levels of cache within the cores,
a set or one or more shared cache units 606, and external memory (not shown) coupled
to the set of integrated memory controller units 614. The set of shared cache units 606
may include one or more mid-level caches, such as level 2 (L2), level 3 (L3), level 4
(L4), or other levels of cache, a last level cache (LLC), and/or combinations thereof.
While in one embodiment a ring based interconnect unit 612 interconnects the
integrated graphics logic 608, the set of shared cache units 606, and the system agent
unit 610/integrated memory controller unit(s) 614, alternative embodiments may use any
number of well-known techniques for interconnecting such units. In one embodiment,
coherency is maintained between one or more cache units 606 and cores 602-A-N.
[00114] In some embodiments, one or more of the cores 602A-N are capable of
multi-threading. The system agent 610 includes those components coordinating and
operating cores 602A-N. The system agent unit 610 may include for example a power
control unit (PCU) and a display unit. The PCU may be or include logic and
components needed for regulating the power state of the cores 602A-N and the
integrated graphics logic 608. The display unit is for driving one or more externally

connected displays.
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[00115] The cores 602A-N may be homogenous or heterogeneous in terms of

architecture instruction set; that is, two or more of the cores 602A-N may be capable of
execution the same instruction set, while others may be capable of executing only a
subset of that instruction set or a different instruction set.

[00116] Figures 7-10 are block diagrams of exemplary computer architectures.
Other system designs and configurations known in the arts for laptops, desktops,
handheld PCs, personal digital assistants, engineering workstations, servers, network
devices, network hubs, switches, embedded processors, digital signal processors
(DSPs), graphics devices, video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and various other electronic
devices, are also suitable. In general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution logic as disclosed herein
are generally suitable.

[00117] Referring now to Figure 7, shown is a block diagram of a system 700 in
accordance with one embodiment of the present invention. The system 700 may
include one or more processors 710, 715, which are coupled to a controller hub 720. In
one embodiment the controller hub 720 includes a graphics memory controller hub
(GMCH) 790 and an Input/Output Hub (IOH) 750 (which may be on separate chips); the
GMCH 790 includes memory and graphics controllers to which are coupled memory
740 and a coprocessor 745; the IOH 750 is couples input/output (1/0O) devices 760 to the
GMCH 790. Alternatively, one or both of the memory and graphics controllers are
integrated within the processor (as described herein), the memory 740 and the
coprocessor 745 are coupled directly to the processor 710, and the controller hub 720 in
a single chip with the IOH 750.

[00118] The optional nature of additional processors 715 is denoted in Figure 7 with
broken lines. Each processor 710, 715 may include one or more of the processing
cores described herein and may be some version of the processor 600.

[00119] The memory 740 may be, for example, dynamic random access memory
(DRAM), phase change memory (PCM), or a combination of the two. For at least one
embodiment, the controller hub 720 communicates with the processor(s) 710, 715 via a
multi-drop bus, such as a frontside bus (FSB), point-to-point interface such as
QuickPath Interconnect (QPI), or similar connection 795.

[00120] In one embodiment, the coprocessor 745 is a special-purpose processor,
such as, for example, a high-throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU, embedded processor, or
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the like. In one embodiment, controller hub 720 may include an integrated graphics

accelerator.

[00121] There can be a variety of differences between the physical resources 710,
715 in terms of a spectrum of metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.

[00122] In one embodiment, the processor 710 executes instructions that control data
processing operations of a general type. Embedded within the instructions may be
coprocessor instructions. The processor 710 recognizes these coprocessor instructions
as being of a type that should be executed by the attached coprocessor 745.
Accordingly, the processor 710 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus or other interconnect, to
coprocessor 745. Coprocessor(s) 745 accept and execute the received coprocessor
instructions.

[00123] Referring now to Figure 8, shown is a block diagram of a first more specific
exemplary system 800 in accordance with an embodiment of the present invention. As
shown in Figure 8, multiprocessor system 800 is a point-to-point interconnect system,
and includes a first processor 870 and a second processor 880 coupled via a point-to-
point interconnect 850. Each of processors 870 and 880 may be some version of the
processor 600. In one embodiment of the invention, processors 870 and 880 are
respectively processors 710 and 715, while coprocessor 838 is coprocessor 745. In
another embodiment, processors 870 and 880 are respectively processor 710
coprocessor 745.

[00124] Processors 870 and 880 are shown including integrated memory controller
(IMC) units 872 and 882, respectively. Processor 870 also includes as part of its bus
controller units point-to-point (P-P) interfaces 876 and 878; similarly, second processor
880 includes P-P interfaces 886 and 888. Processors 870, 880 may exchange
information via a point-to-point (P-P) interface 850 using P-P interface circuits 878, 888.
As shown in Figure 8, IMCs 872 and 882 couple the processors to respective
memories, namely a memory 832 and a memory 834, which may be portions of main
memory locally attached to the respective processors.

[00125] Processors 870, 880 may each exchange information with a chipset 890 via
individual P-P interfaces 852, 854 using point to point interface circuits 876, 894, 886,
898. Chipset 890 may optionally exchange information with the coprocessor 838 via a
high-performance interface 839. In one embodiment, the coprocessor 838 is a special-

purpose processor, such as, for example, a high-throughput MIC processor, a network
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or communication processor, compression engine, graphics processor, GPGPU,

embedded processor, or the like.

[00126] A shared cache (not shown) may be included in either processor or outside
of both processors, yet connected with the processors via P-P interconnect, such that
either or both processors’ local cache information may be stored in the shared cache if
a processor is placed into a low power mode.

[00127] Chipset 890 may be coupled to a first bus 816 via an interface 896. In one
embodiment, first bus 816 may be a Peripheral Component Interconnect (PCI) bus, or a
bus such as a PCI Express bus or another third generation 1/O interconnect bus,
although the scope of the present invention is not so limited.

[00128] As shown in Figure 8, various I/0O devices 814 may be coupled to first bus
816, along with a bus bridge 818 which couples first bus 816 to a second bus 820. In
one embodiment, one or more additional processor(s) 815, such as coprocessors, high-
throughput MIC processors, GPGPU'’s, accelerators (such as, e.g., graphics
accelerators or digital signal processing (DSP) units), field programmable gate arrays,
or any other processor, are coupled to first bus 816. In one embodiment, second bus
820 may be a low pin count (LPC) bus. Various devices may be coupled to a second
bus 820 including, for example, a keyboard and/or mouse 822, communication devices
827 and a storage unit 828 such as a disk drive or other mass storage device which
may include instructions/code and data 830, in one embodiment. Further, an audio /O
824 may be coupled to the second bus 820. Note that other architectures are possible.
For example, instead of the point-to-point architecture of Figure 8, a system may
implement a multi-drop bus or other such architecture.

[00129] Referring now to Figure 9, shown is a block diagram of a second more
specific exemplary system 900 in accordance with an embodiment of the present
invention. Like elements in Figures 8 and 9 bear like reference numerals, and certain
aspects of Figure 8 have been omitted from Figure 9 in order to avoid obscuring other
aspects of Figure 9.

[00130] Figure 9 illustrates that the processors 870, 880 may include integrated
memory and I/O control logic (“CL") 872 and 882, respectively. Thus, the CL 872, 882
include integrated memory controller units and include 1/O control logic. Figure 9
illustrates that not only are the memories 832, 834 coupled to the CL 872, 882, but also
that 1/0O devices 914 are also coupled to the control logic 872, 882. Legacy I/O devices
915 are coupled to the chipset 890.
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[00131] Referring now to Figure 10, shown is a block diagram of a SoC 1000 in

accordance with an embodiment of the present invention. Similar elements in Figure 6
bear like reference numerals. Also, dashed lined boxes are optional features on more
advanced SoCs. In Figure 10, an interconnect unit(s) 1002 is coupled to: an
application processor 1010 which includes a set of one or more cores 202A-N and
shared cache unit(s) 606; a system agent unit 610; a bus controller unit(s) 616; an
integrated memory controller unit(s) 614; a set or one or more coprocessors 1020 which
may include integrated graphics logic, an image processor, an audio processor, and a
video processor; an static random access memory (SRAM) unit 1030; a direct memory
access (DMA) unit 1032; and a display unit 1040 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1020 include a special-purpose
processor, such as, for example, a network or communication processor, compression
engine, GPGPU, a high-throughput MIC processor, embedded processor, or the like.
[00132] Embodiments of the mechanisms disclosed herein may be implemented in
hardware, software, firmware, or a combination of such implementation approaches.
Embodiments of the invention may be implemented as computer programs or program
code executing on programmable systems comprising at least one processor, a storage
system (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

[00133] Program code, such as code 830 illustrated in Figure 8, may be applied to
input instructions to perform the functions described herein and generate output
information. The output information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing system includes any
system that has a processor, such as, for example; a digital signal processor (DSP), a
microcontroller, an application specific integrated circuit (ASIC), or a microprocessor.
[00134] The program code may be implemented in a high level procedural or object
oriented programming language to communicate with a processing system. The
program code may also be implemented in assembly or machine language, if desired.
In fact, the mechanisms described herein are not limited in scope to any particular
programming language. In any case, the language may be a compiled or interpreted
language.

[00135] One or more aspects of at least one embodiment may be implemented by
representative instructions stored on a machine-readable medium which represents
various logic within the processor, which when read by a machine causes the machine
to fabricate logic to perform the techniques described herein. Such representations,
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known as “IP cores” may be stored on a tangible, machine readable medium and

supplied to various customers or manufacturing facilities to load into the fabrication
machines that actually make the logic or processor.

[00136] Such machine-readable storage media may include, without limitation, non-
transitory, tangible arrangements of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any other type of disk including
floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk
rewritable’s (CD-RWs), and magneto-optical disks, semiconductor devices such as
read-only memories (ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMSs), static random access memories (SRAMSs),
erasable programmable read-only memories (EPROMSs), flash memories, electrically
erasable programmable read-only memories (EEPROMSs), phase change memory
(PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

[00137]  Accordingly, embodiments of the invention also include non-transitory,
tangible machine-readable media containing instructions or containing design data,
such as Hardware Description Language (HDL), which defines structures, circuits,
apparatuses, processors and/or system features described herein. Such embodiments
may also be referred to as program products.

[00138] In some cases, an instruction converter may be used to convert an
instruction from a source instruction set to a target instruction set. For example, the
instruction converter may translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate, or otherwise convert an
instruction to one or more other instructions to be processed by the core. The instruction
converter may be implemented in software, hardware, firmware, or a combination
thereof. The instruction converter may be on processor, off processor, or part on and
part off processor.

[00139] Figure 11 is a block diagram contrasting the use of a software instruction
converter to convert binary instructions in a source instruction set to binary instructions
in a target instruction set according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruction converter, although
alternatively the instruction converter may be implemented in software, firmware,
hardware, or various combinations thereof. Figure 11 shows a program in a high level
language 1102 may be compiled using an x86 compiler 1104 to generate x86 binary
code 1106 that may be natively executed by a processor with at least one x86
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instruction set core 1116. The processor with at least one x86 instruction set core 1116

represents any processor that can perform substantially the same functions as an Intel
processor with at least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applications or other software targeted
to run on an Intel processor with at least one x86 instruction set core, in order to
achieve substantially the same result as an Intel processor with at least one x86
instruction set core. The x86 compiler 1104 represents a compiler that is operable to
generate x86 binary code 1106 (e.g., object code) that can, with or without additional
linkage processing, be executed on the processor with at least one x86 instruction set
core 1116. Similarly, Figure 11 shows the program in the high level language 1102
may be compiled using an alternative instruction set compiler 1108 to generate
alternative instruction set binary code 1110 that may be natively executed by a
processor without at least one x86 instruction set core 1114 (e.g., a processor with
cores that execute the MIPS instruction set of MIPS Technologies of Sunnyvale, CA
and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale, CA). The
instruction converter 1112 is used to convert the x86 binary code 1106 into code that
may be natively executed by the processor without an x86 instruction set core 1114.
This converted code is not likely to be the same as the alternative instruction set binary
code 1110 because an instruction converter capable of this is difficult to make; however,
the converted code will accomplish the general operation and be made up of
instructions from the alternative instruction set. Thus, the instruction converter 1112
represents software, firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a processor or other electronic
device that does not have an x86 instruction set processor or core to execute the x86
binary code 1106.

METHOD AND APPARATUS FOR A VECTOR INDEX LOAD AND STORE
[00140] The key feature of high performance code (HPC) is that it has a significant
number of memory references, most of which point to the same memory but with a
different index. With current implementations, each of these memory indexes needs a
“separate” general purpose register (e.g., a GPR x86-64 in an x86 architecture). With a
limited register set (e.g., eight x86 and sixteen x64 registers) and with a large number of
memory references, the GPR register set soon fills up leading to spill-and-fill on the
stack, and generating bloated and inefficient code. Moreover, these indexes need
further computation such as add, multiply or subtract, all of which require a GPR scalar
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computation, further consuming the GPR register stack and creating unnecessary

duplicate code bloat as the computations are the same across all of the indexes.
[00141] The embodiments of the invention include vector indexed load/store
instructions which improve the performance of loads and stores by using a SIMD vector
register as the index register for each load/store operation. Using a vector register in
this manner speeds up commutation of the index, which may be accomplished using a
SIMD vector compute rather than a GPR scalar compute, resulting in more compact
and efficient code. The embodiments of the invention also naturally flow within a
vectorized loop. Because all index computations are now performed in SIMD vector
registers and do not need to be spilled on the stack and then read back for performing
loads/stores, more efficient vectorization of HPC code loops can be achieved. In
addition, these embodiments are significantly easier for the compiler to vectorize (e.g.,
due to less management of the GPR stack).
[00142] One embodiment of the invention includes a 3-source vector index load
instruction (VILD) and a 3-source vector index store instruction (VIST) which takes the
following forms:

Vector Index Load: VILD[B/W/D/Q] DST_SIMD_REG {k1}{z}, [MEM+Vectindex],
ImmSelectForVectindex; and

Vector Index Store: VIST[B/W/D/Q] [MEM+Vectindex] {k1}{z}, SRC_SIMD_REG,
ImmSelectForVectindex, where:

- MEM is memory base reference,

- Vectindex is a SIMD vector register,

- ImmSelectForVectindex is used for selecting the corresponding index from the
VectorIndex register, and

- B/W/D/Q indicates whether the instruction is performed using byte, word,
doubleword, or quadword values.
[00143] Figure 12 illustrates an exemplary processor 1255 on which embodiments of
the invention may be implemented. In one embodiment, each core 0-N of the processor
1255 includes a memory management unit 1290 with vector index load/store logic 1291
for performing the vector index load/store operations described herein. In addition,
each core 0-N includes a set of general purpose registers (GPRs) 1205, a set of vector
registers 1206, and a set of mask registers 1207. In one embodiment, multiple vector
data elements are packed into each vector register 1206 which may have a 512 bit
width for storing two 256 bit values, four 128 bit values, eight 64 bit values, sixteen 32
bit values, etc. However, the underlying principles of the invention are not limited to any
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particular size/type of vector data. In one embodiment, the mask registers 1207 include

eight 64-bit operand mask registers used for performing bit masking operations on the
values stored in the vector registers 1206 (e.g., implemented as mask registers kO—k7
described above). However, the underlying principles of the invention are not limited to
any particular mask register size/type.

[00144] The details of a single processor core (“Core 07) are illustrated in Figure 12
for simplicity. It will be understood, however, that each core shown in Figure 12 may
have the same set of logic as Core 0. For example, each core may include a dedicated
Level 1 (L1) cache 1212 and Level 2 (L2) cache 1211 for caching instructions and data
according to a specified cache management policy. The L1 cache 1212 includes a
separate instruction cache 1220 for storing instructions and a separate data cache 1221
for storing data. The instructions and data stored within the various processor caches
are managed at the granularity of cache lines which may be a fixed size (e.g., 64, 128,
512 Bytes in length). Each core of this exemplary embodiment has an instruction fetch
unit 1210 for fetching instructions from main memory 1200 and/or a shared Level 3 (L3)
cache 1216; a decode unit 1220 for decoding the instructions (e.g., decoding program
instructions into micro-operatons or “uops”); an execution unit 1240 for executing the
instructions; and a writeback unit 1250 for retiring the instructions and writing back the
results.

[00145] The instruction fetch unit 1210 includes various well known components
including a next instruction pointer 1203 for storing the address of the next instruction to
be fetched from memory 1200 (or one of the caches); an instruction translation look-
aside buffer (ITLB) 1204 for storing a map of recently used virtual-to-physical instruction
addresses to improve the speed of address translation; a branch prediction unit 1202 for
speculatively predicting instruction branch addresses; and branch target buffers (BTBs)
1201 for storing branch addresses and target addresses. Once fetched, instructions are
then streamed to the remaining stages of the instruction pipeline including the decode
unit 1230, the execution unit 1240, and the writeback unit 1250. The structure and
function of each of these units is well understood by those of ordinary skill in the art and
will not be described here in detail to avoid obscuring the pertinent aspects of the
different embodiments of the invention.

[00146] Figure 13 illustrates one embodiment of the vector index load/store logic
1291 which utilizes a vector index register 1301 for storing the source index values i0-i7
and a destination/source vector register 1302 for storing the vector loaded from memory
1200 in response to the vector index load instructions or stored to memory 1200 in
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response to the vector index store instructions. In one embodiment, the

destination/source vector register 1302 comprises a 512-bit vector register with eight
64-bit vector data elements (located at 63:0, 127:64, 191:128, etc) and the vector index
register 1301 comprises a 512-bit vector register with eight 64-bit index values. A mask
register 1303 stores a mask value for performing write masking operations as described
herein. In one embodiment, the mask register 1303 is a 64-bit register (e.g., such as
the kO-k7 registers described above). A base memory reference 1304 is provided for
combination with the indexes from the vector index register 1301 for calculating a
memory address. In addition, a immediate select value 1305 is provided for identifying
a particular vector index from the vector index register 1301 to be combined with the
base memory reference 1304 to calculate the final memory address. While various
exemplary register sizes and data types are mentioned above for the purpose of
illustration, it should be noted that the underlying principles of the invention are not
limited to any particular size/type of index, mask, immediate value or data element.
[00147] In operation, a plurality of different indexes i0-i7 are stored within the vector
index register 1301. The vector index load/store logic 1291 identifies the index to be
used for the current load/store operation from the immediate value 1305. In one
embodiment, the immediate value 1305 comprises a value between 0 and N-1 to
identify N different index values are stored within the vector index register 1301 (in
Figure 13, N=8). Once the vector index load/store logic 1291 identifies the appropriate
index, it combines the index with the base memory reference 1304 to calculate the
memory address for the load/store operation. It then performs the load/store using the
destination/source vector register 1302, loading values from memory to data element
locations within the vector register 1302 or storing values from the data element
locations of the vector register 1302 to memory. In one embodiment, a mask value from
the mask register 1303 is used to specify the number of elements to be loaded/stored
from/to the given memory address.

[00148] Figure 14 illustrates a specific example in which double precision floating
point values (64 bits each) are to be loaded from memory, where Struct Atom [double x,
y, z] and Atom AtomArray [10000]. In this example, MEM points to base of the array,
i.e., & AtomArray [0]. Vectindex is a ZMM1 register 1301 containing eight values as
memory indexes (DWORD value): ZMM1 = {7000, 6000, 4000, 3000, 900, 500, 2000,
1000}. Mask k1 1303 = binary 00000111 indicating that the elements x, y, and z are to
be loaded at the given index (as indicated by the three set bits 111 in the LSB

locations). In the illustrated example, it is assumed that index 2000 identifies the data to
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be loaded, which is stored in the second element of the ZMM1 register (element 1).

Consequently, to load Atom elements x, y, z from index 2000 of AtomArray, the
instruction VILD ZMM2 {k1}, [MEM + ZMM1], 1 may be executed. The result of the load
operation is that the destination vector register 1302, ZMM2 = {0,0,0,0,0,
AtomArray[2000].z, AtomArray[2000].y, AtomArray[2000].x}.

[00149] A method in accordance with one embodiment of the invention is illustrated in
Figure 15. The method may be executed within the context of the architectures
described above, but is not limited to any specific system architectures.

[00150] At 1501, a vector index load instruction is fetched from memory or read from
a cache (e.g., an L1, L2, or L3 cache). At 1502, index values are stored in the source
vector index register. At 1503, the index to be combined with the base memory address
is identified within the vector index register using the immediate value included with the
vector index load instruction. At 1504, the index is combined with the base memory
reference to determine the memory address for the load operation. Finally, at 1505, the
data identified by the memory address is loaded from memory (e.g., such as the array
data mentioned above).

[00151] A method in accordance with one embodiment of the invention is illustrated in
Figure 16. The method may be executed within the context of the architectures
described above, but is not limited to any specific system architectures.

[00152] At 1601, a vector index store instruction is fetched from memory or read from
a cache (e.g., an L1, L2, or L3 cache). At 1602, index values are stored in the source
vector index register. At 1603, the index to be combined with the base memory address
is identified within the vector index register using the immediate value included with the
vector index store instruction. At 1604, the index is combined with the base memory
reference to determine the memory address for the store operation. Finally, at 1605,
the data is stored to memory at the memory address.

[00153] As mentioned above, high performance code (HPC) has a significant number
of memory references wherein the base memory address is the same but the indexes
are different. Further, the indexes are generally computed and the values stored and
maintained in the SIMD vector registers. The embodiments of the invention take
advantage of maintaining and re-using the indexes in the SIMD vector registers to do
the loads and stores without performing spill-to-mem and/or fill-to-GPR register
operations.
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[00154] By way of example, consider the following application use-case, which is a

snapshot of a C code-sequence from a HPC application operating on a double precision
data-set:
if (delr2 >= lowest_efs_u) { /FP Double-Precision data-set
ind = (int)(dens_efs * delr2);
ind = ind << 2; //''4*ind
df = cgi_cgj * (f_tbl[ind] + du * f_tbl[1 + ind] + du2 * f_tbI[2 + ind] + du3 *
f_tbI[3 + ind]);

} else {
delr = sqrt(delr2);
delrinv = 1.0/ delr;
X = (*dxdr) * (delr);
ind = (int)(*eedtbdns_stk * x);
dx = x - (double)(ind) * (*del);
ind = ind<<2;// !4 * ind
e3dx = dx * eed_cub|[2 + ind];
eddx2 =dx * dx * eed_cub[3 + ind];
Switch = eed_cublind] + dx * (eed_cub[1 + ind] + half * (e3dx + third *
eddx2));

}

[00155] The above program code loads 4 elements from f_tbl or from eed_cub
depending on whether there is an “if” or “else” condition, respectively. Further,
computation of the indexes (i.e., “ind”) comes out naturally in a vector SIMD register as
the loop is vectorized.

[00156] Taking a simple case, suppose that the “if” condition was true for the
vectorized loop. In that case, all 8 indexes “ind” are in the SIMD vector register. Since
only four elements at the given index are to be loaded, the mask is set to 0x00001111.
Note that the mask values and base address register pointing to the f_tbl is constant for
all of these 8 loads. Thus, the only difference is the indexes.

[00157] In contrast, with current ISA implementations, in order to perform 8 vector
loads of “f_tbl” array, the SIMD register has to be spilled to memory and the index

values read from there. This results in bloated code, resulting in further spill-fill of
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general purpose registers (e.g., x86-64 GPR registers) if they are being used

elsewhere, resulting in slow code.

[00158] The embodiments of the invention for performing vector index load/store
solves this problem by re-using the index values in the SIMD register as it is to perform
the load/store. This results in efficient, compact fully SIMD code besides being much
more readable. This feature is also similar to SIMD index registers being used for
gathers and scatters but extends it to vanilla loads and stores.

[00159] The following example will help to highlight the benefits of the embodiments
of the invention described herein:

Struct Atom [double x, vy, z];
Atom AtomArray [10000];

1. Memory is defined as:
Struct Table [double X, y, z,w];
Table f_tbl [10000];

2. Indexes computed are held in the ZMM register in accordance with one
embodiment of the invention, as shown in Table 1 below, and the corresponding values
are illustrated for an implementation which uses the x86-64 GPR registers.

GPR r15 ri4 r13 ri2 ri1 r10 ro r8
ZMM 7000 6000 4000 3000 9000 5000 2000 1000
TABLE 1

[00160] Itis assumed that mask K1 is set to OxOF to load the four elements x, v, z,
and w.
[00161] Using a current ISA implementations, eight vector loads are performed in
registers ZMM1-8 as follows:

VMOVDQA ZMM1 {k1}, [MEM+r8]

VMOVDQA ZMM2 {k1}, [MEM+r9]

VMOVDQA ZMMS {k1}, [MEM+r10]

VMOVDQA ZMM4 {k1}, [MEM+r11]

VMOVDQA ZMM5 {k1}, [MEM+r12]

VMOVDQA ZMM6 {k1}, [MEM+r13]

VMOVDQA ZMM7 {k1}, [MEM+r14]
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VMOVDQA ZMM8 {k1}, [MEM-r15]

[00162] With the embodiments of the invention using vector-indexed loads, the
indexes may be stored in one or more ZMM registers (e.g., ZMM15 in the below
example). Using the above-described instruction format, the corresponding vector
indexed loads may be performed with the following instruction sequence (assuming
quadword (Q) values):

VILDQ ZMM1 {k1}, [MEM+ZMM15], O

VILDQ ZMM2 {k1}, [MEM+ZMM15], 1

VILDQ ZMM3 {k1}, [MEM+ZMM15], 2

VILDQ ZMM4 {k1}, [MEM+ZMM15], 3

VILDQ ZMM5 {k1}, [MEM+ZMM15], 4

VILDQ ZMM6 {k1}, [MEM+ZMM15], 5

VILDQ ZMM7 {k1}, [MEM+ZMM15], 6

VILDQ ZMM8 {k1}, [MEM+ZMM15], 7
[00163] A similar instruction sequence may be performed for store operations using
VIST. Note that for the above VILD instructions (and for VIST instructions), no GPR
register need be involved when retrieving index values.
[00164] In the foregoing specification, the embodiments of invention have been
described with reference to specific exemplary embodiments thereof. It will, however,
be evident that various modifications and changes may be made thereto without
departing from the broader spirit and scope of the invention as set forth in the appended
claims. The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.
[00165] Embodiments of the invention may include various steps, which have been
described above. The steps may be embodied in machine-executable instructions
which may be used to cause a general-purpose or special-purpose processor to
perform the steps. Alternatively, these steps may be performed by specific hardware
components that contain hardwired logic for performing the steps, or by any
combination of programmed computer components and custom hardware components.
[00166] As described herein, instructions may refer to specific configurations of
hardware such as application specific integrated circuits (ASICs) configured to perform
certain operations or having a predetermined functionality or software instructions
stored in memory embodied in a non-transitory computer readable medium. Thus, the
techniques shown in the Figures can be implemented using code and data stored and

executed on one or more electronic devices (e.g., an end station, a network element,
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etc.). Such electronic devices store and communicate (internally and/or with other

electronic devices over a network) code and data using computer machine-readable
media, such as non-transitory computer machine-readable storage media (e.g.,
magnetic disks; optical disks; random access memory; read only memory; flash memory
devices; phase-change memory) and transitory computer machine-readable
communication media (e.g., electrical, optical, acoustical or other form of propagated
signals — such as carrier waves, infrared signals, digital signals, etc.). In addition, such
electronic devices typically include a set of one or more processors coupled to one or
more other components, such as one or more storage devices (non-transitory machine-
readable storage media), user input/output devices (e.g., a keyboard, a touchscreen,
and/or a display), and network connections. The coupling of the set of processors and
other components is typically through one or more busses and bridges (also termed as
bus controllers). The storage device and signals carrying the network traffic
respectively represent one or more machine-readable storage media and machine-
readable communication media. Thus, the storage device of a given electronic device
typically stores code and/or data for execution on the set of one or more processors of
that electronic device. Of course, one or more parts of an embodiment of the invention
may be implemented using different combinations of software, firmware, and/or
hardware. Throughout this detailed description, for the purposes of explanation,
numerous specific details were set forth in order to provide a thorough understanding of
the present invention. It will be apparent, however, to one skilled in the art that the
invention may be practiced without some of these specific details. In certain instances,
well known structures and functions were not described in elaborate detail in order to
avoid obscuring the subject matter of the present invention. Accordingly, the scope and
spirit of the invention should be judged in terms of the claims which follow.
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CLAIMS

What is claimed is:

1. A processor comprising:

a vector index register to store a plurality of index values;

a mask register to store a plurality of mask bits;

a vector register to store a plurality of vector data elements loaded from memory;
and

vector index load logic to identify an index stored in the vector index register to
be used for a load operation using an immediate value and to responsively combine the
index with a base memory address to determine a memory address for the load
operation, the vector index load logic to load vector data elements from the memory
address to the vector register in accordance with the plurality of mask bits.

2. The processor as in claim 1 wherein the plurality of mask bits are to
indicate a number of vector data elements to be loaded from the memory address.

3. The processor as in claim 1 wherein the mask register comprises a 64-bit
mask register and wherein the vector index register and vector register comprise 512-bit
vector registers having eight 64-bit values.

4. The processor as in claim 1 wherein the immediate value comprises an

integer value identifying an index position for an index within the vector index register.

5. The processor as in claim 1 further comprising:
a memory management unit to compute each of the index values and store the

index values within the vector index register.

6. The processor as in claim 1 wherein the vector data elements comprise
double-precision floating point values.

7. The processor as in claim 1 wherein a data array comprising the vector
data elements is to be stored in memory and wherein the base memory address points
to the base of the array, the vector index load logic to combine the base memory
address with each of the index values to identify each of the vector data elements in the
array.
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8. The processor as in claim 1 wherein identifying an index, combining the
index with a base memory address, and loading the vector data elements are performed

responsive to decoding and execution of a vector index load instruction.

9. The processor as in claim 1 wherein the vector index load instruction is

decoded into a plurality of microoperations.

10. A processor comprising:

a vector index register to store a plurality of index values;

a mask register to store a plurality of mask bits;

a vector register to store a plurality of vector data elements to be stored to
memory; and

vector index store logic to identify an index stored in the vector index register to
be used for a store operation using an immediate value and to responsively combine
the index with a base memory address to determine a memory address for the store
operation, the vector index load logic to store vector data elements from the vector
register to the memory address in a system memory in accordance with the plurality of
mask bits.

11.  The processor as in claim 10 wherein the plurality of mask bits are to

indicate a number of vector data elements to be stored to the memory address.

12.  The processor as in claim 10 wherein the mask register comprises a 64-bit
mask register and wherein the vector index register and vector register comprise 512-bit

vector registers having eight 64-bit values.

13.  The processor as in claim 10 wherein the immediate value comprises an

integer value identifying an index position for an index within the vector index register.
14.  The processor as in claim 10 further comprising:

a memory management unit to compute each of the index values and store the

index values within the vector index register.
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15.  The processor as in claim 10 wherein the vector data elements comprise

double-precision floating point values.

16.  The processor as in claim 10 wherein a data array comprising the vector
data elements is to be stored in memory and wherein the base memory address points
to the base of the array, the vector index store logic to combine the base memory
address with each of the index values to identify a location to store each of the vector

data elements in the array.

17.  The processor as in claim 10 wherein identifying an index, combining the
index with a base memory address, and storing the vector data elements are performed

responsive to decoding and execution of a vector index load instruction.

18.  The processor as in claim 17 wherein the vector index load instruction is

decoded into a plurality of microoperations.

19. A method comprising:

storing a plurality of index values in a vector index register;

storing a plurality of mask bits in a mask register;

storing a plurality of vector data elements loaded from memory; and

identifying an index stored in the vector index register to be used for a load
operation using an immediate value;

responsively combining the index with a base memory address to determine a
memory address for the load operation; and

loading vector data elements from the memory address to the vector register in

accordance with the plurality of mask bits.

20. The method as in claim 19 wherein the plurality of mask bits are to

indicate a number of vector data elements to be loaded from the memory address.
21.  The method as in claim 19 wherein the mask register comprises a 64-bit

mask register and wherein the vector index register and vector register comprise 512-bit
vector registers having eight 64-bit values.
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22. The method as in claim 19 wherein the immediate value comprises an

integer value identifying an index position for an index within the vector index register.

23.  The method as in claim 19 further comprising:
a memory management unit to compute each of the index values and store the

index values within the vector index register.

24. The method as in claim 19 wherein the vector data elements comprise
double-precision floating point values.

25.  The method as in claim 19 further comprising:

storing a data array comprising the vector data elements in memory, wherein the
base memory address points to the base of the array; and

combining the base memory address with each of the index values to identify
each of the vector data elements in the array.

26. The method as in claim 19 wherein identifying an index, combining the
index with a base memory address, and loading the vector data elements are performed

responsive to decoding and execution of a vector index load instruction.

27. The method as in claim 26 wherein the vector index load instruction is

decoded into a plurality of microoperations.
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