woO 2009/0625277 A1 |10 0 OO0 0 0O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 May 2009 (22.05.2009)

‘ﬂ[* A0 A 00

(10) International Publication Number

WO 2009/062527 Al

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/EP2007/009812

(22) International Filing Date:
13 November 2007 (13.11.2007)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): TELE-
FONAKTIEBOGALET LM ERICSSON (PUBL)
[SE/SE]; S-164 83 Stockholm (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEVENSHTEYN,
Roman [RU/DE]; Mohnheimsallee 1, 52062 Aachen (DE).
PETTERSSON, Per [SE/CA]; 2021 Atwater #311, Mon-
treal, Quebec, H3H 2P2 (CA).

(74) Agent: ROTHINGER, Rainer; Wuesthoff & Wuesthoff,
Patent- und Rechtsanwilte, Schweigerstrasse 2, 81541
Miinchen (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

[Continued on next page]

(54) Title: TECHNIQUE FOR AUTOMATICALLY GENERATING SOFTWARE IN A SOFTWARE DEVELOPMENT ENVI-

RONMENT

lw
=]
S

Does it contain IDE extension
description?

Analyze the IDE extension description

340
N
Are pre-requisites satisfied?

312
™~

Read interactions description and user-
interface extensions descriptions

1

Extend IDE based on interactions
description and user-interface
extensions descriptions

¥

Activate new extension in IDE and make
it available to the user

My

348

F(,;,_g 34g

End

(57) Abstract: Techniques for automatically generating soft-
ware in a software development environment, e.g. an IDE, are
described. A method embodiment comprises the steps of inter-
preting (308 - 312) feature description data related to a program
library; interpreting the feature description data as a machine-
readable description of a feature to be provided by the software
development environment; allocating (314, 316), based on the
interpreted feature description data, one or more user-operable
control elements in the software development environment; and
providing access, via the control element, to one or more oper-
ations related to the feature description data.

WO 20097062527 A1 | NI DA 000 00 000010000 000 00

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, Published:
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). — with international search report

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-1-

Technique for Automatically Generating Software in a
Software Development Environment

Technical Field

The invention relates to the field of software development technologies, and more
particularly to the automatized generation of software in software development envi-

ronments.
Background

Computing devices can today be found in virtually any technical field. Microproces-
sors, microcontrollers, embedded devices, signal processors etc. are used for control-
ling purposes, sensing purposes, performing calculations and other tasks which
formerly have been performed mechanically, electrically, or manually.

For reasons of deployment flexibility, most computing devices are programmable, at
least to some degree. Therefore, the processing hardware in an industrial production
machine, robot, etc. as well as the microchip in a handheld computer or mobile
phone needs to be programmed by software or firmware (or a combination thereof)
in order to enable a proper operation of the controlled device, provide a user inter-
face to an operator or user, detect error conditions, etc. As a concrete example, most
of the features of a today's mobile phone are typically implemented in software on a
microprocessor, e.d. in the form of applications written in Java or its derivatives.

The increasing importance of programmable devices is therefore accompanied by an
increasing importance of software development for such devices. In fact, the soft-
ware development area is an industry with a constantly diversifying manifold of tech-
nologies. On the one hand, software development has to cope with the very different
requirements of, for example, real-time systems (for airplanes as well as mobile
phones) and database systems (for storing large amounts of data, e.g. for the finan-
cial area). On the other hand, techniques aiming to support the software developer in
writing code become more and more elaborated in order to allow the construction of
ever more complex software systems within a reasonable time and with using a
reasonable amount of human resources.

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-2-

From a developer's point of view, a typical software system may comprise a code
(the terms 'code’, 'program’, 'software' are used synonymously herein) representing
the required functionality in one or more programming languages suited best for the
tasks to be solved. However, not each and every functionality is explicitly pro-
grammed in the code. Many tasks are repetitive and therefore such tasks are pro-
grammed once and then provided in the form of program libraries. Basically, a
program library is a packaged suite of one or more files including coded functions.
The library may be available locally or remotely. In the latter case they may be ac-
cessed, e.g., via the Internet during execution. For instance, web services and AJAX
(Asynchronous JAvaScript and XML) services make use of remote libraries. In order
to perform a specific task, a software system may integrate an appropriate program
library and may then simply put a call to a function which is implemented by the
library. The developer of the software system does not need to know in which way
the function is implemented in the library. Instead, he or she only needs to know the
Application Programming Interface (API), which specifies for a functionality the name
of the corresponding function or functions as well as names and types of parameters
required when calling this function. The API has to be provided by the developer of

the library.

Often a software library is a part of a Software Development Kit (SDK), which further
includes information regarding the API, example code, general documentation, etc.
As an example, a basic Java Development Kit (JDK) may provide basic functions in
order to support the development of Java-based software, and may in this respect
comprise various class libraries, developer tools, example code and API-
documentation for Java developers. Another SDK may implement more specific func-
tionalities, e.g. relating to particular applications for mobile phones. For developing a
software system in Java for a mobile phone, a developer may then want to integrate
both SDKs. As program libraries potentially save considerable development re-
sources, the integration of program libraries is an important aspect of software de-
velopment.

A software development environment may simply comprise an editor and a compiler
running on a general purpose computer which provides enough storage place for the
resulting program. In order to support complex software development projects, more
elaborated tools such as Integrated Development Environments (IDEs) are available.
An IDE typically provides a graphical user interface (GUI) and aims at supporting its
user (i.e., developer) in performing typical tasks such as writing, editing, compiling,

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-3-

building and executing code as well as debugging and testing of the software system
under development. An enhanced software development environment such as an IDE
also offers the possibility of automatically generating some code fragments in re-
sponse to the user clicking on a corresponding button of the GUI or performing a
similar action. For example, in case the user wants to create a new class, clicking on
a button "Create_New_Class” may trigger the opening of a new window within the
GUI of the IDE presenting some template class definition, which may then be edited
by the user. Some of today’s most powerful IDEs aim to offer the developer a com-
mon environment for such different activities as developing software in Java, gener-
ating some code from an analysis study performed in a meta language such as the
Unified Modelling Language (UML), and developing web applications in HTML. The
tendency is that IDEs become general development platforms.

It is clear that even a sophisticated environment such as an IDE cannot include all
the software libraries as built-in features which now, or in future projects, may po-
tentially be required. Instead, IDEs are extendible by so called plug-ins, which are
separate components that can be integrated into the IDE on demand of the user and
which then enable the IDE to provide some add-on functionality. For example, an
IDE providing an environment for developing Java applications may be enhanced in
order to allow developing software in C++, PHP and/or PERL by integrating corre-
sponding plug-ins. Other plug-ins may allow to access databases from within the IDE
or to generate UML diagrams and to generate Java code therefrom. A modern IDE
thus comprises as an essential component a core which provides mechanisms for
integrating plug-ins and manages the interaction of the possibly many different plug-
ins. Such plug-in mechanisms are for instance specified by the OSGI ("Open Services
Gateway Initiative"), see www.o0sgi.org.

As an example for demonstrating the power of the plug-in approach, domain-specific
software development can be mentioned, which aims at developing a software sys-
tem in a specific domain of interest. Such a domain may be, e.g., software develop-
ment in the area of telecommunications or for workflow-based office systems.
Domain-Specific programming Languages (DSLs) may be available for a domain.
Plug-Ins may be provided in order to specifically enhance IDE capabilities; for exam-
ple, the GUI may be extended in order to allow the user to access domain-specific
functionality. The IDE extension resulting from integrating a plug-in may aiso com-
prise a wizard for automating specific tasks. As an example, an XML (eXtensible
Markup Language) web services support wizard may be able to generate code in a

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-4 -

given programming language such as Java based on a formal description of the ser-
vice to implemented given in, e.g., WSDL (Web Services Description Language).
Other wizards enable a GUI-based design of a user interface for an application, which
may only afterwards be transformed into a program code implementing this inter-
face. Still other IDE extensions enable packaging a given software into formats as
required for later deployment, e.g. as an executable file, plug-in, etc.

To achieve integration of a plug-in into an IDE, the API of the software libraries of
the plug-in must be made known to the IDE. Further, some functionality must be
provided by the IDE in order to make the functions provided by the plug-in available
to the IDE user. Therefore plug-ins need one or more components to achieve the
integration into any specific IDE. This requires knowledge of the internal mechanisms
of the IDE. Developing IDE plug-ins thus is a difficult task for non-professional IDE
developers as, for example, the developers of a 3" party library. This is the reason
why IDE plug-ins are often only delivered by the IDE vendor.

As IDE plug-ins are IDE specific, in principle for each program library multiple IDE
plug-ins have to be developed, one plug-in for each IDE into which one may wish to
integrate the library support. However, the resources for providing many IDE plug-
ins are typically not available for other than the most important and basic program
libraries. For libraries relating to, e.g., domain-specific software development, only
plug-ins for one or two IDEs may in general be available.

This leads to the situation that a program library implementing some highly relevant
functionality may be difficult and inconvenient to use in a particular IDE due to the
lack of library-specific support, i.e. because there exist no corresponding IDE plug-in
for this library. Thus the developer has either to create its own library, although this
functionality has already been implemented, which is a waste of resources. Or the
developer has to use a different IDE, for which a corresponding plug-in exists. This is
also a waste of resources, as the developer may realistically be familiar with only one
or two of the complex environments for professional software development, and thus
it takes time for him to become familiar with the further IDE. The situation becomes
worse in case multiple libraries are required for a project and the plug-ins available
are adapted to multiple different IDEs.

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

Summary

There is a demand for a technique for simplifying the integration of a program library
into a software development environment.

This demand is satisfied by a method for automatically generating software in a
software development environment. The method comprises the steps of receiving
feature description data related to a program library; interpreting the feature descrip-
tion data as a machine-readable description of a feature to be provided by the soft-
ware development environment; allocating, based on the interpreted feature
description data, one or more user-operable control elements in the software devel-
opment environment; and providing access, via the control element, to one or more
operations related to the feature indicated by-the feature description data.

The software development environment may be any environment providing a func-
tionality for eventually automatically generating software. This may even be an editor
which is adapted to trigger a compiler operation on data held by the editor.. Typi-
cally, a software development environment comprises a user interface, for example a
GUI, and provides extensive functionality including development operations related
to software development, i.e. operations related to writing, editing, compiling code,
etc., but also operations related to the management of the development environment
itself. The managing operations may comprise operations for managing implemented
plug-ins, controlling dependencies of plug-ins from each other and executing imple-
mented modules in the required sequence. For example, the managing operations
may be OSGI based. As an example, an operation which is related to enabling the
software development environment to provide a particular editor or compiler may be
a management operation, while an operation related to the use of this particular
editor or compiler is a development operation.

A feature of the software development environment may comprise one or more op-
erations. The one or more operations related to the feature indicated by the feature
description data may be management operations and/or development operations. At
least one of these operations may be based upon a functionality implemented by the
program library. This functionality may be related to development operations or
management operations. As a concrete example, in case an operation is a managing
operation, this operation may be related to a particular compiler or editor, wherein

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-6 -

the editor or compiler is invoked by the program library. Another operation may be
related to a function implemented in the program library, wherein the function may
be implemented in an software application to be developed by the development
environment. As a concrete example, the operation may comprise to automatically
generate, in response to an activation of the control element, a software fragment
including a call of the function.

The functionality implemented by the feature description data may be represented by
a software artifact such as a software library, SDK or plug-in, but may also be given
in the form of a build script, a GUI description, or in textual form. The functionality
may even only be represented by the feature description data. In this case one or
more operations may entirely be constructed, based on the prescription given in the
feature description data, from IDE specific functionality, e.g. IDE built-in operations.
In case the operation is a domain-specific operation, it may be implemented in a

DSL. In this case the IDE would require a domain-specific interpreter, compiler or
similar translation tool in order to perform the operation.

The feature description data may describe a user interface for an operation. As one
example, the feature description data may specify some portion of a menu or one or
more buttons to be provided on a GUI of the IDE in order to allow a user (developer)
to use a functionality, e.g. to access it or to include a function call in a code to be
developed. Such a description may additionally or alternatively comprise required
user inputs including types, names and "look & feel" of input values. The description
may also include a description of actions to be performed in response to a user input.

The feature may be related to an automatic generation, in response to an activation
of the one or more control elements, of at least one software fragment for an appli-
cation to be developed by the software development environment. For example,
upon interaction of the user with menus, dialogs, buttons, etc., a call to a function
implemented by the library may be included in a software under development in the
development environment.

The feature may be a domain-specific feature. For example, according to the feature
the software development environment may be configured to offer access to domain-
specific functionality, i.e. operations.

10

15

20

25

30

35,

WO 2009/062527 PCT/EP2007/009812

-7-

The feature description data may also describe an interaction of operations with
required functionality of the IDE. Such requirements may relate to, e.g., a run-time
environment, compilation options, etc.

In some realizations of the method, the feature description data may be provided for
being interpreted in different software development environments, for example by
providing the feature description data in a format understood by various develop-
ment environments. For instance, the feature description data may be provided in a
general programming language such as Java, C++ and/or HTML.

The step of interpreting the feature description data may comprise mapping at least
a portion of the feature description data provided based on the general programming
language to an environment specific format for at least one of allocating the control
element and providing access via the control element to operation(s), which may,
e.g., be implemented by the features contained in the program library. The environ-
ment specific format may be one used for implementing the software development
environment. For example, HTML based feature description data may be mapped to
such an IDE internal format. This format may make use of a predefined syntax and
may, e.g., be text-based or binary-based. The mapped description data describing
the operations, e.g. according to an IDE extension, may be used to perform these
operations in later steps.

The feature description data may additionally or alternatively be provided based on a
feature description language specifically designed for this purpose. This language
may or may not be IDE-independent. A mapping to an environment specific format
may also be performed in a similar way as has been described in the preceding para-

graph.

The feature description data may also comprise multiple portions related to different
aspects of operation(s) the feature is based upon, e.g., the feature description data
may be related to at least one of user inputs, user interface functionality, wizard
functionality, requirements on the IDE and requirements on a run-time environment.
Correspondingly, the feature description data may also be specified in multiple differ-
ent feature description languages. As an example, a part of the feature description
data related to a user interface may be specified in HTML, XML, XUL or WSDL, while
another part related to operations to be performed by the IDE in response to some
user input might be specified in Java, JavaScript, VBScript, etc. It is noted that for-
mats such as HTML or XUL allow for a concise machine-readable description of user

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-8-

interfaces (for example, XUL is used to define the GUI of the well-known Firefox Web
browser).

The feature description data may also be provided in different languages and may in
this way be adapted to different IDEs. For example, one and the same description
may be provided two times, one time in HTML and one time in WSDL. In one variant
of the method, different portions of the feature description data may be specified in

different languages.

The user-operable control elements may comprise user interface elements, such as
menus, input format prescriptions, dialog windows or boxes, buttons, etc. for ena-
bling a user to perform the operation. Additionally, the step of allocating control
elements may comprise allocating interaction components, such as variables, pa-
rameters, storage place or specific interaction objects for providing an interaction of
the operation with other management and/or development operations of the soft-
ware development environment. The term ‘allocation’ is intended to cover any activa-
tion or provision of a logical hardware or software processing resource, including,
e.g., the instantiation of objects as known from object-oriented programming envi-
ronments.

The step of providing access to the operation(s) may comprise connecting the control
element(s) with one or more actions to be performed by the software development
environment upon activation of the control element by the user. For example, the
action may comprise to provide a software fragment (e.g., a function call), process
the fragment according to a user dialog, and input the processed fragment into a
code under development within the environment. As another example, the action
may comprise starting an editor, compiler, etc.

The method may comprise the initial steps of accepting input data; and parsing the
accepted input data to detect the feature description data. The input data may only
comprise the feature description data, e.g. in case the data are distributed separately
from the related program library. In another variant, the input data comprise a pro-
gram library, extension or SDK implementing operations related to the feature and
the feature description data. It is to be noted that, while the term 'plug-in' is used
herein to denote components adapted for integration into a specific (particular) soft-
ware development environment, the term 'extension’ is used in a wider sense to
comprise, besides plug-ins, also components adapted for integration into more than

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-9.-

just one software development environment. For example, an extension may com-
prise a program library and feature description data as defined herein.

According to one realization, the feature description data are included within the
code of the program library. For example, the data may be provided in one or more
particular feature description files. In another alternative, the feature description data
are embedded within at least one of a source code or a binary code of the program
library. For example, the feature description data may be embedded into the code in
the form of at least one of comments or annotations, e.g. annotations as known in

Java.

In some variants of the method, the feature description data may comprise a frag-
ment of executable code for being executed by the software development environ-
ment. For example, the code fragment may be executed in response to an activation
of a control element in order to perform an operation indicated by the feature de-

scription data.

The above-mentioned demand is further satisfied by a computer program product
which comprises program code portions for performing the steps of any one of the
method aspects described herein when the computer program product is executed
on one or more computing devices, for example a general purpose computer, a
workstation specifically adapted to software development, or in a distributed hard-
ware environment. The computer program product may be stored on a computer
readable recording medium, such as a permanent or re-writeable memory within or
associated with a computing device or a removable CD-ROM, DVD or USB stick. Addi-
tionally or alternatively, the computer program product may be provided for
download to a computing device, for example via a data network such as the Inter-
net or a communication line such as a telephone line or wireless link.

The above-mentioned demand is further satisfied by a tool for a software develop-
ment environment for automatically generating software. The tool comprises a first
component adapted to receive feature description data related to a program library;
a second component adapted to interpret the feature description data as a machine-
readable description of a feature to be provided by the software development envi-
ronment; a third component adapted to allocate, based on the interpreted feature
description data, one or more user-operable control elements in the software devel-
opment environment; and a fourth component adapted to provide access, via the

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-10 -

control element, to one or more operations related to the feature indicated by the
feature description data.

Still further, the above-mentioned demand is satisfied by a tool for providing a pro-
gram library for incorporation into one or more software development environments.
The tool comprises a component adapted to provide feature description data repre-
senting a machine-readable description of a feature to be provided by the software
development environment, the feature being related to a functionality implemented
by the program library. The tool may be a stand-alone tool or may be a plug-in or
built-in component of the IDE. One realization of the tool may comprise a further
component adapted to include the feature description data within an extension pack-
age (i.e. a program library package including the program library and additional data
such as instruction files, example files, etc.). In one variant of this realization, the
further component is adapted to include the interface description data within the
code of the program library.

The above-mentioned demand is further satisfied by a program library for incorpora-
tion into one or more software development environments. The library includes fea-
ture description data representing a machine-readable description of a feature to be
provided by the software development environment, the feature being related to a
functionality implemented by the program library.

Brief Description of the Drawings

In the following, the invention will further be described with reference to exemplary
embodiments illustrated in the figures, in which:

Fig. 1 is a flow diagram illustrating a first embodiment of a method for incor-
porating a feature into a software development environment;

Fig. 2 is a combination of flow diagrams for a process of generating an ex-
tension, integrating the extension into an IDE and using the functionality
of the extension within the IDE;

Fig. 3 is a flow diagram illustrating a second embodiment of a method for
incorporating a feature into a software development environment;

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-11 -

Fig. 4 is a block diagram schematically illustrating components of an embodi-
ment of an IDE;

Fig. 5 is a functional block diagram schematically illustrating components of an

embodiment of a tool for incorporating a feature into the IDE of Fig. 4;

Fig. 6 is a schematic illustration of an embodiment of a GUI of the IDE of
Fig. 4 in a first operational state;

Fig. 7 is a schematic illustration of components of an embodiment of an ex-
tension;
Fig. 8 is a functional block diagram schematically illustrating components of an

embodiment of a tool for generating an extension;

Fig. 9 is a block diagram schematically illustrating components of the IDE
embodiment of Fig. 4 after integration of the extension of Fig. 7;

Fig. 10 is a schematic illustration of the GUI embodiment of Fig. 6 in a second
operational state after integration of the library of Fig. 7;

Fig. 11 is a schematic illustration of the GUI embodiment of Fig. 6 in a third
operational state.

Detailed Description

In the following description, for purposes of explanation and not limitation, specific
details are set forth, such as specific software development environments including
particular IDEs, programming languages, etc., in order to provide a thorough under-
standing of the current invention. It will be apparent to one skilled in the art that the
current invention may be practised in other embodiments that depart from these
specific details. For example, the skilled artisan will appreciate that the current inven-
tion may be practised with IDEs comprising GUIs different from those discussed
below or even with software development environments not providing any GUL. The
invention may be practised with any software development environment which pro-
vides a framework for automatically generating software for an application to be
developed. The term 'software' is intended to include any sequence of commands,

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-12 -

which is directly executable (such as an executable code or binary code) or automati-
cally translatable into a directly executable code (such as a program code written in a
programming language, assembler code or a code written in a specific syntax for,
e.g., microcontrollers or signal processors or intended as a firmware for a special
purpose processor) by an interpreter, compiler or similar translation tool.

Those skilled in the art will further appreciate that functionality explained herein
below may be implemented using individual hardware circuitry, using software func-
tioning in conjunction with a programmed microprocessor or a general purpose com-
puter, using an application specific integrated circuit (ASIC) and/or using one or more
digital signal processors (DSPs). It will also be appreciated that when the current
invention is described as a method, it may also be embodied in a computer processor
and a memory coupled to a processor, wherein the memory is encoded with one or
more programs that perform the methods disclosed herein when executed by the

processor.

Fig. 1 is a flow diagram illustrating an embodiment of a method 100 for automatically
generating software in a software development environment. The method may be
performed by a respective component built into an IDE or provided as an add-on or
stand-alone tool thereto.

The method 100 starts in step 102 with the reception of input data. For example, the
input data may comprise an SDK or a program library. In step 104, the input data is
accepted. For example, the tool may have recognised that the input data has an
acceptable input format. In step 106, the accepted input data is parsed in order to
detect feature description data. The respective tool or component may for example
scan the input data to find a dedicated file containing feature description data or may
scan the entire input data in order to detect all possible occurrences of feature de-
scription data being integrated within a code or provided as an extra data entity.

In step 108, the detected feature description data is received by a tool for interpret-
ing it. In step 110, the feature description data is interpreted as a machine-readable
description of a feature to be provided by the software development environment.
The feature may include, e.g., one or more of editing, compiling, building, and test-
ing functionalities. In step 110, one or more user-operable control elements are
allocated in the software development environment, based on the interpreted feature
description data. For example, a menu, buttons and/or dialogs may be provided on a

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-13 -

GUI of an IDE.

In step 114, access is provided , via the control element, to one or more operations
related to the feature indicated by the feature description data implemented by the
program library. For example, an action may be connected with the control element
such that upon activation of the control element the action will be performed. The
action may comprise an automatic generation of code in an application to be devel-
oped and/or the start of an editor, compiler, etc., or a complex processing such as
formatting all classes in a development project in a particular way or performing an
action on all function calls in the code with a name matching a certain pattern.

After having incorporated the operation (or multiple operations) in this way into the
software development environment, the tool or component returns control in step

116.

Fig. 2 provides a high-level overview of a process 200 which comprises in a stage I a
provisioning of an extension for one or more IDEs, in stage II the integration of the
extension into an IDE, and in stage III the use of the functionality of the extension
within the IDE.

As a general example, a program library or other software artefact may comprise a
function with a complex API to be included in a software application to be developed;
e.g. the function call may include a set of many parameters with complicated types.
Writing manually the code for invoking such a function is time-consuming and error-
prone. Therefore, the provider of the library may consider adding feature description
data in order to offer a user of the library the possibility to automatically generate
the required code, i.e. function call, based on an extended user interface within the
framework of a software development environment (stage I). The function may be of
any kind, for example related to input/output of data, managing, generating and/or
calculation of data, sensing data, etc.

The feature description data may be as detailed as considered necessary in its de-
scription of the user interface part. For example, the data might describe in detail a
dialog for configuring the invocation of a function, including input fields for entering
the values for each of the parameters expected according to the API. In this way, the
parameters may be entered in a form easier to recognize by the user of the function
in a time-efficient way, e.g. by also offering default values. The extended user inter-

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-14 -

face may receive the parameters entered by the user of the software development
environment, analyse it, and transforms it from the user-friendly form into the form
required by the source code. Eventually, a piece of source code is generated for
implementing the required function invocation (stage III).

Referring back to Fig. 2, it is exemplarily assumed that the extension comprises a
program library implementing a set of functions related to sending messages from a

mobile phone.

In stage I, a library developer invokes in step 202 an extension or SDK provisioning
tool (for brevity, the terms extension and SDK may sometimes be used inter-
changeably herein). This tool, which may itself be a software development environ-
ment such as an IDE, is used by the developer in step 204 to provide a library
“Messaging_Lib”, which may be a Java-based library containing various functions
implementing functionality for sending messages such as SMS (Short Message Ser-
vice) messages, MMS (Multimedia Message Service) messages or Email messages
from a mobile phone over a mobile network towards a recipient.

In step 206, the provisioning tool provides an IDE extension description for the API
of Messaging_Lib, more precisely the APIs of the functions included within this li-
brary. The IDE extension description is a particular embodiment of the feature de-
scription data as discussed herein. For example, the IDE extension description may
be included into the Java library Messaging_Lib in the form of Java annotations in the
program code. The provisioning tool may be adapted to automatically provide the
IDE extension description or may be adapted to enable the library developer to enter
the IDE extension description. The tool may also provide for both possibilities.

In step 208, the provisioning tool generates an extension "Mobile_Messaging" which
includes the library Messaging_Lib and the IDE extension description generated in
step 206. While it has been described with reference to step 206 that the IDE exten-
sion description is included into the library code, in other embodiments a separate
IDE extension may be provided in an SDK or extension, for example as one or more
separate text files, HTML files, etc. The provisioning tool 202 finishes operation and
returns control in step 210.

Stage II is an embodiment of the method 100 of Fig. 1. In stage II, the Mo-
bile_Messaging extension generated in stage I will be integrated within an IDE. The

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-15 -

Mobile_Messaging extension may be provided to the IDE via the Internet or from a
data carrier such as a CD-ROM or DVD.

In step 220, the IDE is ready for integration of an extension. In step 222, the IDE
accepts the Mobile_Messaging extension, for example because it is in a valid format
and the library Messaging_Lib is determined to be written in Java, which is accepted
because the IDE supports development processes using Java.

In step 224, the integration component of the IDE parses the accepted Mo-
bile_Messaging extension in order to detect potentially included feature description
data. For example, the component may scan the extension for the occurrence of
specific files or of feature description data embedded within a library code. In case of
the Java library Messaging_Lib, the integration component may scan in particular for
the occurrence of an IDE extension description in the form of Java annotations. A
detected IDE extension description may for example be copied into an internal stor-
age of the IDE.

In step 226, the IDE analyses the detected IDE extension descriptions. Based on this
analysis, which may comprise an interpretation of the IDE extension description such
as described with reference to step 110 in Fig. 1, in step 228 the functionality of the
IDE is extended, i.e. support for the library Message_Lib is implemented according to
the analyzed IDE extension description. This is achieved, e.g., by allocating user-
operable control elements such as new user interface elements and by connecting
actions to be performed upon activation of the control elements by a user of the IDE,
i.e. steps similar to steps 112 and 114 in Fig. 1. The new functionalities are made
available to the user, for example by presenting graphical representations of user
input elements in the GUI of the IDE. In step 230, the integration component returns
control to a main program of the IDE.

In stage III, the library Messaging_Lib integrated into the IDE in stage II is used by
an application developer. In step 240 the IDE is ready to support a development
process which supports an application developer in developing code for a software
system by, e.g., writing, editing, compiling, building and/or testing the code. The
support may comprise providing an editor, compiler, etc. to the developer and/or any
other of the functionalities typically provided by an IDE. Based on the specific ele-
ments presented in the IDE GUI as a resuit of integration of the Mobile_Messaging
extension in stage II, the IDE may be adapted in a domain-specific way, i.e. the IDE

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

- 16 -

offers the user a particular support related to functionality provided by the library,
i.e. support for implementing mobile messaging functionality into an application
software for mobile phones.

In step 242, the IDE provides domain-specific GUI elements related to a use of func-
tionality of the library Messaging_Lib. In step 244, in response to user actions, do-
main-specific operations are performed by, e.g., implementing function calls of the
library Messaging_Lib or otherwise making use of functionality implemented by Mes-
saging_Lib. For example, code fragments may be generated related to a Java mes-
saging application for mobile phones. In order to implement a call to a function
included in Messaging_Lib, the respective APIs are used as described in the IDE
extension description. In step 246, a code is built as a result of operations performed
in step 244. The code may be included into a software system comprising a set of
Java applications for mobile phones. In step 248, the IDE development mode returns
control to a main program, e.g. a higher-level GUI of the IDE.

Fig. 3 is another exemplary embodiment of a method 300 for automatically generat-
ing software in a software development environment similar to method 100 of Fig. 1
or stage 11 of the process illustrated in Fig. 2. For method 300 it is assumed that an

- IDE Extension Description Processing module (IEDP) is provided which might be a

built-in part of an IDE or a stand-alone application.

In step 302, the IEDP is activated. In step 304, the IEDP detects a software artifact
that may contain an IDE extension description, such as a program library, an exten-
sion, an SDK, a build script, a GUI description, etc. In step 306, the detected artifact
is parsed whether it contains IDE extension descriptions, for example contained
within a code or in an extra, specific structure such as a specific extension descrip-
tion file. In case no IDE extension description is found, the procedure stops. Other-
wise, the IEDP goes on in step 308 with analysing (e.g., interpreting) the detected
IDE extension description(s). For each detected extension description, the IEDP
reads in the description, analyses it and checks if pre-requisites required by this
extension are satisfied (step 310). For example, the availability of a specific function-
ality in the IDE, requirements for a run-time platform, support of specific standards
by the IDE may be prescribed in the IDE extension description. As a concrete exam-
ple, the availability of other program libraries and a specific compiler may be re-
quired. If mandatory pre-requisites are not satisfied, the extension cannot be used
by the IDE. In this case, the IEDP stops integrating at least that portion of the de-
tected artefact related to the currently analyzed IDE extension description.

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-17 -

In case at least the mandatory pre-requisites are satisfied, the IEDP reads in step
312 those portions of the detected extension description related to interactions with
a user of the IDE, e.g., required user inputs, format and type of user input, etc.
Further, user interface extension descriptions are read, e.g., elements of an ex-
tended GUI. Further, the IDE extension description may contain descriptions of op-
erations to be performed by the IDE as a result of a user interaction with the
extended user interface.

After having interpreted the read data, in step 314, the IDE is extended based on the
analysed interaction description and user interface extension description. For exam-
ple, in this step a mapping of the IDE extension description to an IDE specific syntax
for providing user-operable control elements within the IDE may be performed, e.g.
new user interface elements may be added to the IDE GUI such as new menus,
dialogues, panels, etc. As an example, a generic description contained in an IDE
extension description may comprise an indication <selectFileDialog> as a request for
the IDE to include a further dialogue for selecting files on its GUI. While a class with
the name "selectFileDialog" may exist in every SDK/API, the resultant GUI element
will look different in, e.g., an Eclipse IDE and a NetBeans IDE using each their spe-

cific SDKs.

In step 316, the IDE extensions are activated and made available to the user. The
steps 312 and 314 may be a variant of the steps 112 and 114 in Fig. 1. The IEDP
returns control to a main program of the IDE in step 318.

Fig. 4 schematically illustrates components of an embodiment of an IDE 400. For
example, the IDE 400 may be a variant of the well-known Eclipse IDE. The IDE 400
is embedded within a run-time environment 402 on a computer (not shown), which
may be a general purpose computer. As illustrated in Fig. 4, the run-time environ-
ment 402 may be Java-based.

The IDE 400 provides a user interface 404 to the developer using the IDE. The user
interface may be a graphical user interface (GUI) such as that described further
below with reference to Fig. 6. The IDE 400 further comprises a core component 406
which comprises a plug-in mechanism for incorporating plug-ins into the IDE 400.
The core component 406 may comprise a managing component (not shown), which

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-18 -

manages integrated add-ons and, e.g., automatically starts available modules in the
sequence required for proper functioning.

The IDE 400 further comprises a component 408 including basic functionality related
to the user interface 404 and a component 410 including some basic functionality of
the IDE 400, for example one or more editors or compilers. The components 408 and
410 may comprise built-in and/or add-on components. The IDE 400 further com-
prises an integration component or IEDP 412, which may operate as illustrated in Fig.
1, Fig. 2 (stage II), or Fig. 3. With the IEDP 412, the IDE 400 is capable of automati-
cally incorporating external software libraries or extensions including feature descrip-
tion data such as the IDE extension description of Fig. 2. The IEDP 412 may be
accessed via the IDE UI 404.

Fig. 5 is a functional block diagram schematically illustrating components of an em-
bodiment of a tool 500 for a software development environment such as an IDE for
automatically generating software. While the tool 500 may be assumed to be an
implementation of the IEDP 412 of Fig. 4, it may form in general part of any integra-
tion component for integrating operations in a software development environment.
As one of its essential functions is to interpret feature description data related to a
library, one may also call the tool 500 an interpreter. The tool 500 may be a built-in
component of an environment as illustrated in Fig. 4, or may be a stand-alone tool.

The tool 500 comprises a reception component 502 which is adapted to accept input
data. The component 502 analyses the input data and accepts these in case it de-
termines that the input data is a software artifact in an expected format. In case the
software artifact is accepted, the component 502 provides it to a parser 504, which is
adapted to parse the accepted input data in order to detect any included feature
description data. In general, the parser may scan the entire input data, for example
the entire code of a program library, for the occurrence of feature description data,
which may for example be embedded within the code. Any detected feature descrip-
tion data may be extracted from the input data and may be buffered in a storage
component 506. Having parsed the input data, the parser 504 provides a trigger
signal to an interpreter component 508.

The interpreter 508, upon reception of the trigger signal from the parser 504, re-
ceives the feature description data from the buffer 506. The interpreter 508 inter-
prets the feature description data in buffer 506 as a machine-readable description of

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-19 -

a feature to be provided by the software development environment, the tool 500 is
associated with.. The interpretation may comprise, amongst others, mapping the
feature description data to a format specific for a particular software development
environment. The format may be an executable format, plug-in format or API format
specific for the implementation of the particular software development environment,
i.e. the format in which the development environment and its extensions are defined.
To this end, a mapping table (not shown) may be provided, which contains associa-
tions of feature description data with an environment specific syntax.

The interpreter 508 buffers the interpreted data in the environment specific format in
another buffer 510 and provides a trigger signal to an allocator 512. This component
accesses the specific data in the buffer 510 and allocates one or more user-operable
control elements of the software development environment. For example, one or
more of menus, dialogs, buttons, etc. may be instantiated or prepared for instantia-
tion.

The allocator 512 triggers a connector component 514 which is adapted to provide
access, according to the feature description data, to a functionality implemented by
the program library with which the detected feature description data are associated.
The access will be provided via the control element. Therefore the connector 514
extracts from the data in buffer 510 information related to which operation is to be
performed upon an activation of the control element allocated by the allocator 512;
e.g., a function call related to a function implemented in the program library is to be
included in a code to be developed, or an editor or compiler, which is provided or
invoked by the library, is to be started, or some analysis is to be performed on an
application software. The connector defines the connection between the control
element and the action.

While the operation of the tool 500 has been described in a sequential manner for
sake of clarity, it is to be noted that generally the various components of tool 500
may operate in parallel to integrate one or more libraries. For example, the parsing,
interpreting and allocating components may operate in parallel on the feature de-
scription data of a library and may interact with each other to control their respective
operations. For example, the interpreter 508 may, upon operating on a piece of data
in storage 506, provide a trigger signal (not shown) to the parser 504 to continue or
stop the parsing of the input data.

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

- 20 -

Fig. 6 is a schematic illustration of an embodiment of a graphical user interface (GUI)
600 as it may be presented to a user. For example, the GUI 600 may be generated
by the user interface component 404 of IDE 400 from Fig. 4.

The GUI 600 shows a menu bar 602, a side bar 604 and a working area 606. The
menu bar 602 offers various menus, such as “File”, “Edit”, “Project”, to the devel-
oper. The side bar 604 indicates various projects of the developer. In the example of
Fig. 6, a “Messenger” project for a software system implementing a mobile phone
application for sending messages such as SMS or MMS has been opened and is pre-
sented in the working area 606. While a function sendMessage has been prepared
already, there is no body for the function included yet. At the position of the cursor
608, the developer may either enter some lines of code or, as suggested by a com-
ment 610, insert a function call to a function provided by a library including such a
function. The appearance of the GUI 600 after integration of the Mobile_Messaging
IDE extension of Fig. 2 will be shown further below.

Fig. 7 schematically illustrates an embodiment of an IDE extension 700 including a
program library for incorporation into one or more software development environ-
ments. It is exemplarily assumed that the IDE extension 700 is the Mobile_Messaging
extension which has been generated in stage I of the process of Fig. 2.

The Mobile_Messaging extension 700 comprises the program library Messaging_Lib
702. As further components, the extension 700 comprises an information file 704
intended for perception by a human user, e.g. a developer, who is going to decide
whether to include Mobile_Messaging into his or her project. The extension 700
further comprises example code 706 and feature description data 708, which may be
the IDE extension description generated in step 206 in Fig. 2. While it is illustrated in
Fig. 7 that the feature description data 708 is a component distinct from the program
library 702, the feature description data 708 may well be integrated within the library
702, for example in the form of comments or annotations in the code constituting the
library 702.

Fig. 8 is a functional block diagram illustrating components of an embodiment of a

tool 800 for providing a program library for incorporation into one or more software
development environments. The tool 800 may be adapted, for example, to perform
the step 206 of Fig. 2. The tool 800 may be a stand-alone tool or may be integrated
within a program library provisioning tool such as that used in stage I of Fig. 2. For

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-21-

instance, the tool 800 may be embedded within a software development environ-
ment.

The tool 800 comprises a generator 802, which is a component adapted to provide
feature description data representing a machine-readable description of a feature to
be provided by the software development environment such as IDE 400 in Fig. 4.
The feature is related to a functionality implemented by the program library, which
may be library 702 in Fig. 7. For example, the generator 802 may be used to com-
pose the IDE extension description 708 of the Mobile_Messaging extension 700 of
Fig. 7. To this end, the generator 802 may access a program library 804, which is
illustrated in Fig. 8 as the Messaging_Lib library (see also library 702 in Fig. 7). For
example, the generator 802 may scan the program library 804 in order to determine,
for example, a hierarchical structure of the enclosed functions, classes, etc., user
interface related functions, and/or other aspects related to a use of the library. Addi-
tionally or alternatively, the developer of the library 804 may also manually provide
the feature description data. For example, the generator 802 may be adapted for
generating feature description data from manual input, provide predefined fragments
of feature description data, etc.

The generator 802 provides the generated feature description data to an insertion
component 806. This component is adapted to include the feature description data
within the code of the library 804. For example, the insertion component 806 may
embed comments representing the feature description data in a header part or a
body of functions, subroutines, or similar program structures. In the alternative, the
insertion component 806 may also provide the feature description data in the form of
an extra file, e.g. an HTML file, to the program library 804.

Fig. 9 schematically illustrates the functional structure of IDE 400 of Fig. 4 after in-
corporation of the Mobile_Messaging extension 700 of Fig. 7. The components 404 —
412 in Fig. 9 correspond to the respective components in Fig. 4. The interpreter or
IEDP 412 has integrated the Mobile_Messaging extension into the IDE 400. As a
result, the IDE user interface 404 has been extended by an additional user interface
(UI) 902. This interface, which may comprise new menu structures, buttons, input
forms, etc. is supported by a component 904 comprising extended UI functionality,
which in turn may be connected with further Messaging_Lib functionality in compo-
nent 906. The component 906 contains messaging functions specific for the domain
of mobile applications The extended UI functionality of component 904 or 906 may

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-22-

make use of IDE functionality for providing storage places, basic data structures or
input/output functionality, etc.

Both components 904 and 906 have been extracted from the Messaging_Lib library
702 illustrated in Fig. 7. The IDE core component 406 manages the built-in compo-
nents 408 and 410 and also the add-on components 904 and 906. This is possible,
because the IDE extension description 708 (cf. Fig. 7) contains a description of de-
pendencies and interrelations of the functionality included in the components 904
and 906 as well as a required support by the IDE 400, for example via basic func-
tionality included in components 408 and 410. The extended UI 902 is also sup-
ported by basic functionality of component 408 of IDE 400. As a concrete example,
the component 408 may comprise an SDK including basic prescriptions for menus,
buttons and other elements of a user interface. These may be used for the IDE user
interface 404 and may be re-used for the extended user interface 902. The function-
ality connected to the interaction of a user with the extended UI 902 may be pro-
vided by the components 904 and 906.

Fig. 10 schematically illustrates a possible appearance of the IDE GUI 600 of Fig. 6
after integration of the Mobile_Messaging extension 700. The GUI 600 in Fig. 10 may
be generated by the UI component 404 and the extended UI component 902 of Fig.
9. The IDE GUI 600 now comprises in its tool bar 602 a new menu point "Messaging"”
1002, which enables a user to access operations implemented by component 906 of

Fig. 9.

In the working area 606, a pop-up window 1004 is shown which may be reached via
menu 1002. The window 1004 is generated based upon functionality implemented by
the component 904 for providing the extended user interface. The pop-up window
1004 displays an input form for defining a function, which may be included as a
template function in the component 906. The layout ("look & feel") of dialog 1004
may be generated using functionality provided by component 408 of IDE 400.

In the dialog 1004, the user may enter, for example, the type of the message to be
sent. In the example illustration of Fig. 10, the user has chosen to define a function
sendMMS (). Pre-defined default values are offered to the developer for further pa-
rameters required for calling the corresponding function. For example, a message

priority may be set by default to the value 2. Further, variables for parameters such
as From: and To: addresses may be defined or the default values may be used. An

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-23-

extended user interface may thus support the developer by hiding a complex func-
tion call and offering instead input options such as pop-up windows, default values,
etc.

The window 1004 provides a “Generate Code” button 1006, which, when pressed,
causes the dialog 1004 to disappear and a syntactic structure representing a function
call to be inserted at the position of the cursor in the working area 606 (see cursor
position 608 in Fig. 6). The result of pressing the button 1006 in Fig. 10 is schemati-
cally illustrated in Fig. 11. In the working area 606, the comment 610 of Fig. 6 has
been automatically replaced by a call to a function Messaging_Lib.sendMMS () (refer-
ence numeral 1102). The further parameters of window 1004 in Fig. 10 have been
automatically included as parameters in the function call. Further, an error handling
has automatically been included (reference numeral 1104). The code lines 1102 and
1104 may have been generated by the interaction of components 904, 906 and 406
— 410 of the IDE 400 as illustrated in Fig. 9.

It is noted that feature description data such as the IDE extension description dis-
cussed in the example embodiments herein may not comprise executable code for
implementing a user interface such as the extended user interface 902 schematically
illustrated in Fig. 9 and providing the menu 1002 of Fig. 10. The reason is that an
executable code for implementing an IDE extension would be dependent on a par-
ticular programming language or programming platform, and thus requires a particu-
lar run-time environment which may not be available in any software development
environment. This would limit the usability of the program library associated with the
feature description data in terms of its integration in as many software development
environments as possible. For maximum usability, feature description data should be
provided in a form which is as independent of any particular software development
environment(s) as possible or desirable. For example, feature description data may
be provided using XML and/or Java syntax, as such syntax can be understood by
nearly all IDEs.

As an example for feature description data, consider the following code in a library
Example_Lib:

@TemplateClass
class ServietBaseTemplate {
@TemplateMember

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-24 -

void doEvent1(Event event);
@TemplateMember

void doEvent2(Event event);

// The next function is not a template
void processEvent(Event event);

}

Feature description data related to this code may be as follows:

<onButton “Generate from Template”
action="GenerateFromTemplateAction”/>

<action name="GenerateFromTemplateAction”>

<select_class label="Template classes” from="defined_in(Example_Lib) &&
annotated(@TemplateClass)” variable="SelectedClass”>

<enter_name type="classname” label="Name of the class to be
generated” variable="NewClassName”>

<create_class name="$(NewClassName)"
fromClass="$(SelectedClass)”
methods="annotated(@TemplateMember)”>
< /action>

The GUI-related part of the feature description data specifies a simple dialog com-
prising a button that, when pressed, results in a display of a list of classes defined in
the library and annotated as @TemplateClass. This annotation is defined within the
library as exemplarily illustrated above. The user (application developer) may then
select a particular class from the displayed list and may specify a name for the se-
lected class. In response to this selection process, the new class is generated and
added to a project. The new class contains all methods annotated as
@TemplateMember in the template class. Assuming that the IDE user selects the
class ServietBaseTemplate and specifies "MyServlet" as the name for this class, a
code fragment would be generated as follows: '

// Generated from @TemplateClass
class MyServlet {

// Generated from @TemplateMember
void doEvent1(Event event) {

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

- 25 -

by
// Generated from @TemplateMember

void doEvent2(Event event){

}
}

In this example the extended user interface provided to the developer is mostly
derived from the API and the class provided by the library. The rudimentary GUI
description part requires that basic functionality of the IDE is used to specifically
provide the required button embedded in the IDE GUI as well as the presentation of
the selection list and the input form for enabling the user to enter the new class
name. Further, it is up to the IDE to arrange for the generated code to be displayed
within the GUL

The techniques proposed herein allow the integration of software artifacts such as
program libraries, SDKs, extensions, etc. into software development environments for
automatically generating software in a way, which is independent of a particular
development environment. In other words, an IDE support (feature description data)
of the libraries need not to be specifically adapted to a particular development envi-
ronment. This increases the usability of libraries and saves development costs, as a
library may be included in multiple development environments without the necessity
to develop multiple environment specific plug-ins. As developers may include a re-
quired library automatically into their preferred development environment, the devel-
opment process becomes more efficient.

Feature description data may be added to a library or extension. These data may
represent a high level description or “meta model” for user interface extensions and
operations associated therewith for a specific library. The meta model expresses
aspects of an interaction with the user, but it does not necessarily specify in detail
how these aspects may be realized. For example, the meta model may describe the
inputs required from the user, but may not specify the details of the user interface
required for entering those inputs. Rather, required actions, interactions and user
interface elements are specified on an abstract level only. This approach allows at
the same time the efficient generation of (unspecific or specific) IDE extensions in a
semi-automated or even fully automated way, and/or provides for the platform inde-
pendence of libraries, SDKs, build scripts and similar artifacts.

10

15

WO 2009/062527 PCT/EP2007/009812

- 26 -

Taking the last point further, in principle all the features of an IDE (except possibly
the core plug-in / extension integration mechanisms) may be provided by IDE inde-
pendent extensions. Thus IDEs are essentially standardised containers for a set of
features which the developer may freely combine according to its requirements. Such
a situation may be seen as being comparable to a situation in which several Web
browsers offer essentially the same features, but differ only in their "Look & Feel".

Embedding the feature description data into a code implementing a related function-
ality, e.g. in the form of comments or annotations, guarantees that the data are
preserved even in a compiled code. This is a relevant advantage as many vendors
provide their libraries in a compiled, binary form, i.e. without source code. Further,
version mismatch problems are avoided.

While the current invention has been described in relation to its preferred embodi-
ments, it is to be understood that this disclosure is for illustrative purposes only.
Accordingly, it is intended that the invention be limited only by the scope of the
claims appended hereto.

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-27 -

Claims

1. A method for automatically generating software in a software development envi-
ronment, the method comprising the following steps:
receiving (108) feature description data related to a program library;
interpreting (110, 226, 308 — 312) the feature description data as a machine-
readable description of a feature to be provided by the software development
environment;
allocating (112, 228, 314, 316), based on the interpreted feature description
data, one or more user-operable control elements (1002 — 1006) in the soft-
ware development environment (400); and
providing access (114, 228, 316), via the control element, to one or more op-
erations related to the feature indicated by the feature description data.

2. The method according to claim 1,
wherein at east one of the one or more operations are based upona functionality

implemented by the program library.

3. The method according to claim 1 or 2,

wherein the feature is related to an automatic generation, in response to an activa-
tion of the control element, of at least one software fragment (1102, 1104) for an
application to be developed by the software development environment.

4. The method according to claim 3,
wherein the software fragment is related to a function implemented by the program

library.

5. The method according to any one of the preceding claims,
wherein the feature is related to a tool to be provided by the software development
environment for supporting a software development process.

6. The method according to any one of the preceding claims,
wherein the feature description data are provided for being interpreted in different

software development environments.

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-28 -

7. The method according to any one of the preceding claims,
wherein the feature description data are provided in at least one of a general pro-
gramming language and a specific feature description language.

8. The method according to any one of the preceding claims,
wherein different portions of the feature description data are specified in different

machine-readable languages.

9. The method according to any one of the preceding claims, wherein the step of
receiving the feature description data comprises the steps of
accepting (104, 222, 304) input data (700); and
parsing (106, 224, 306) the accepted input data to detect the feature descrip-
tion data (708).

10. The method according to claim 9,
wherein the input data comprise the program library (702).

11. The method according to claim 10,
wherein the feature description data are included within the code of the program

library.

12. The method according to claim 11,
wherein the feature description data are included within at least one of a source code

or a binary code of the library.

13. The method according to claim 11 or 12,
wherein the feature description data are embedded within the code in the form of at

least one of comments and annotations.

14. The method according to any one of the preceding claims,

wherein the feature description data comprise multiple portions related to at least
one of user inputs, user interface functionality, wizard functionality, requirements on
the software development environment and requirements on a run-time environ-

ment.

10

15

20

25

30

35

WO 2009/062527 PCT/EP2007/009812

-29-

15. The method according to any one of the preceding claims,

wherein the feature description data comprise a fragment of executable code for
being executed by one of the software development environment and an application
to be developed based on the software development environment.

16. The method according to any one of the preceding claims,
wherein the feature is a domain-specific feature.

17. The method according to any one of claims 6 to 16,
wherein the feature description language comprises at least one of HTML, XML, XUL

and WSDL.

18. A computer program product comprising program code portions for performing
the steps of any one of the preceding claims when the computer program product is
executed on one or more computing devices.

19. The computer program product of claim 18, stored on a computer readable re-
cording medium.

20. A tool for a software development environment for automatically generating
software, the tool (412, 500) comprising: :
a first component (508) adapted to receive feature description data related to
a program library;
a second component (508) adapted to interpret the feature description data as
a machine-readable description of a feature to be provided by the software
development environment;
a third component (512) adapted to allocate, based on the interpreted feature
description data, one or more user-operable control elements (1002 — 1006)
in the software development environment; and
a fourth component (514) adapted to provide access, via the control element,
to one or more operations related to the feature indicated by the feature de-

scription data.

21. A tool for providing a program library for incorporation into one or more software
development environments, the tool (800) comprising a component (802) adapted to
provide feature description data representing @ machine-readable description of a

10

WO 2009/062527 PCT/EP2007/009812

-30 -

feature to be provided by the software development environment, the feature being
related to a functionality implemented by the program library (804).

22. The tool according to claim 21,
comprising a further component (806) adapted to include the feature description
data within the code of the program library.

23. A program library for incorporation into one or more software development envi-
ronments, the library (702) including feature description data (708) representing a
machine-readable description of a feature to be provided by the software develop-
ment environment, the feature being related to a functionality implemented by the
program library.

WO 2009/062527

100

Fig. 1

PCT/EP2007/009812

1/9

Receive input data

Accept the input data

.)

Parse the accepted input data to detect feature
description data

A 4

Receive feature description data related to a pro-
gram library

'

Interpret the feature description data as a ma-
chine-readable description of a feature to be pro-
vided by the software development environment

l

Allocate, based on the interpreted feature descrip-
tion data, one or more user-operable control ele-
ments in the software development environment

l | \/\12

Provide access, via the control element, to one or
more operations related to the feature indicated by
the feature description data

l

104

06

108

110

114

PCT/EP2007/009812

WO 2009/062527

2/9

8¥¢ 9vz

8poo piing

1444

qr1 Buibessap jo Ajeuot
-Jouny uo paseq suoneiado
3Q| oyoads-uewop wiopad

suoneoldde suoyd
ajigow Joj g7 Buibessay
0} paje|al sjusulela
INS ou108dS-UIBWOP SPINCIH

S

(A4

ove

poddns
juswdojanap
Joy Apeas 3q|

11l ebeis

0¢ce

yie

8¢c

uoiduossp uoisua)xa
3Q) o} Buipsodoe 3Q|
3y} Jo Ayjeuonouny puaxg

MGNN

suonduossp uoisuaixa
301 payosep ashjeuy

%

uonduosep po_mcmaxm 3Q1
10} Buibessaps|Iqo asled

UOISUBIXd [AA4
Buibessapy 9jIqoN
ydaooy

0¢c
uoljeibaju
uoIsuajx3y
10} Apeal 3q|

i| ebeig

80¢

oLz w

uonduosap uoisualxa 3| pue
a7~ buibessapy Buipnjour uoisua}
-xa BuibessaN” 81O\ apInold

Idv Qi1 Buibessapy
oynads-ulewop 10}
uopduosap uoisuaxa 3q|
juspuadapui-3a;j epinoid

90¢

sauoyd ajiqotu
Joj qI7 Buibessapy v0¢
Aeiq)| paseq
-BAB[8pirold

AV

(el §
Buluoisinoig
uoIsua}x3

| ebeg

Z bi4

WO 2009/062527 PCT/EP2007/009812

3/9

IEDP 302

300

30y

New artifact was detected?

Does it contain IDE extension

End

description?

Analyze the IDE extension description 3 08

340

No
Are pre-requisites satisfied?

Read interactions description and user- 31 l
interface extensions descriptions ~_/
Extend IDE based on interactions qy

description and user-interface _/

extensions descriptions

!

Activate new extension in IDE and make
it available to the user

. 348
3.3 oo

346

PCT/EP2007/009812

WO 2009/062527

4/9

\)Nov

A E

ooy

Ayijeuonouny
3Q| o1seg

(wsiueyosw u-bnid)
2100 3Q|

Ayjeuonouny |0 34|

80V

da3di

IS

N 34l

adl

00¥y m

JUSWUOIIAUS SWi}-uni eaep

PCT/EP2007/009812

WO 2009/062527

5/9

\ 008

G ‘B4

0LG

XejuAs

oyoads 3

80§ \/\ lejaidia|

90§

10}o3UuU0)

I

142°

ejep uondiosap

aoeB)UI PaYOS)ap |¢—— Josied <

lojeooly

¥0S

uoljdaoay

Av

c0G

WO 2009/062527 PCT/EP2007/009812

6
/\ 602 /9 j\ 600

File Edit Project

Projects 608

(project 1 \& void sendMessage (string msg)
) — {_

/Il

// insert Lib AP! call here

/]

- Messenger y /\
610

604 | - project_2

/

606)

Fig. 6

WO 2009/062527 PCT/EP2007/009812

7/9
example
_ \j IDE
Messaging 706 extension
_Lib description
ReadMe
702 \/ /\/
704 708
Fig. 7 700
802
P>
Generator
804 i
o
Messaging Insertion
_Lib
sog\/

Fig. 8

PCT/EP2007/009812

WO 2009/062527

8/9

\}Nov

6 ‘b1

o0¥ AR
Ayjeuonouny Ajjeuonouny
3Q| doI1seg Buibessap
(wsiueyoaw ui-bnid) —
2100 3Q| ovv/\ /\mom muz
3
Ajjeuonouny
Ajjeuonoun : :
jieuonouny |N 34l IN PepuaIxa
¥06 /\
80V
IN 34l N PapusIXa
Ob r\ c06 Ele]

oovw

JUSWUOIIAUS sWl}-unJ eaef

WO 2009/062527 PCT/EP2007/009812

9/9

/\ 602 f\“m J\ 600

File Edit Project | Messaging

Projects — —
void s Create Messaging Call
- project_1 -
(project_. f/- API methods:
604 | - project_2 Hinse o send SMS ()
- Messenger " * send MMS ()
} Message priority: 2
From: $source_mail_address
To: $dest_mail_address
Generate Code

71 b
P |)

-Fig. 10 606 1006 1004

/\ 602 j\ 1002 j\soo

File Edit Project | Messaging

Projects :
void sendMessage (string msg)
(- project_1 {try {
Messaging_Lib.sendMMS
604 | - project_2 (2, $source_mail_address, o
$dest_mail_address) 1102
- Messenger

catch (Messaging_Lib.exception_handling)

\1104

Fig. 11 606

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/009812

CLASSIFICATION OF SUBJECT MATTER
G06F9/44

A
INV.

According 1o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the exient that such documents are included in the fields searched

EPO-Internal, IBM-TDB

Electronic data base consulted during the international search (name of data base and, where practical, search terms used) -

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* { Citation of document, with indication, where appropriate, of the relevani passages

14 July 2005 (2005-07-14)

claims 1-b

paragraph [0004] - paragraph [0012]

X JOHN GRUNDY ET AL: "Generating 1-23
Domain-Specific Visual Language Editors .
from High-level Tool Specifications”
AUTOMATED SOFTWARE ENGINEERING, 2006. ASE
’06. 21ST IEEE/ACM INTERNATIONAL
CONFERENCE ON, IEEE, PI,
September 2006 (2006-09), pages 25-36,
XP031021393
ISBN: 0-7695-2579-2
page 25 - page 28
X | US 2005/155016 Al (BENDER JOACHIM [DE]) 1-23

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed :

T later document published after the international filing date
oy priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
metr]ns, such combination being obvious to a person skilled
inthe art.

*&" document member of the same patent family

Date of the actual completion of the international search

13 March 2008

Date of malling of the international search repott

27/03/2008

Name and mailing address of the 1SA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31~70) 340-3016

Authorized officer

Hardeman, David

Form PCT/ISA/210 (second sheet) {April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Information on patent family memBers

.| International application No

' PCT/EP2007/009812
Patent document - Publication Patent family Publication
cited in search report date member(s) date
US 2005155016 Al 14-07-2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report

