

[54] SPRAYING DEVICE

[75] Inventors: **Takamitsu Nozawa; Takao Kishi**,
both of Tokyo, Japan
[73] Assignee: **Yoshino Kogyosho Co., Ltd.**, Tokyo,
Japan
[22] Filed: **June 8, 1972**
[21] Appl. No.: **260,960**

[30] Foreign Application Priority Data

June 10, 1971 Japan 46/41277
June 24, 1971 Japan 46/45896

[52] U.S. Cl. 222/394
[51] Int. Cl. B65d 83/14
[58] Field of Search 222/375-385,
222/398, 402.13, 390, 402.2; 239/350

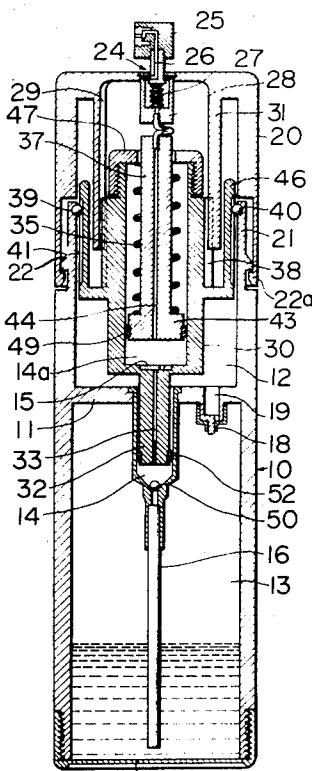
[56] References Cited

UNITED STATES PATENTS

3,471,065 10/1969 Malone 222/382 X
3,489,322 1/1970 Ayres 222/380 X
3,491,919 1/1970 Ramsay 222/390 X

Primary Examiner—Samuel F. Coleman
Assistant Examiner—Norman L. Stack, Jr.
Attorney—Richard K. Stevens et al.

[57] ABSTRACT

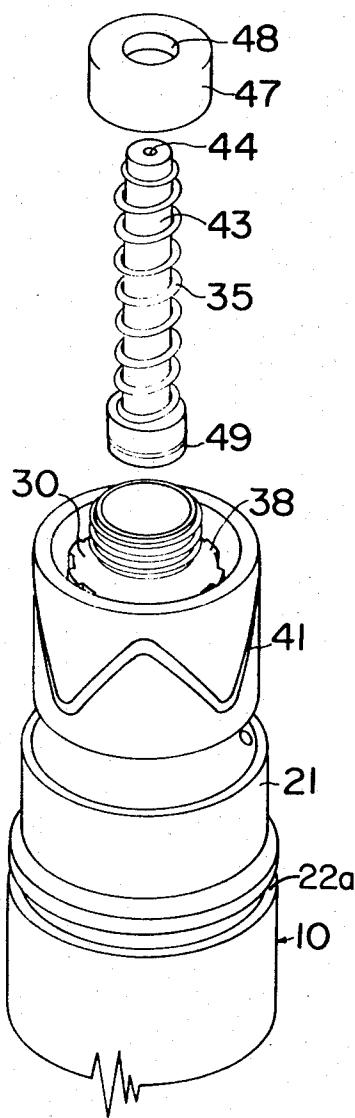

This invention relates to a spraying device.
Said spraying device comprises a container containing

a liquid therein, a rotary head fitted over the top of said container, a cylindrical chamber formed in an upper portion of said container, slide means mounted in said cylindrical chamber and adapted to be moved upwardly and downwardly by the force with which said spray head is turned, and a piston mounted in the interior of said slide means and adapted to be moved upwardly as the slide means moves upwardly and moved downwardly by the biasing force of a spring mounted about said piston and serving as a restoring spring.

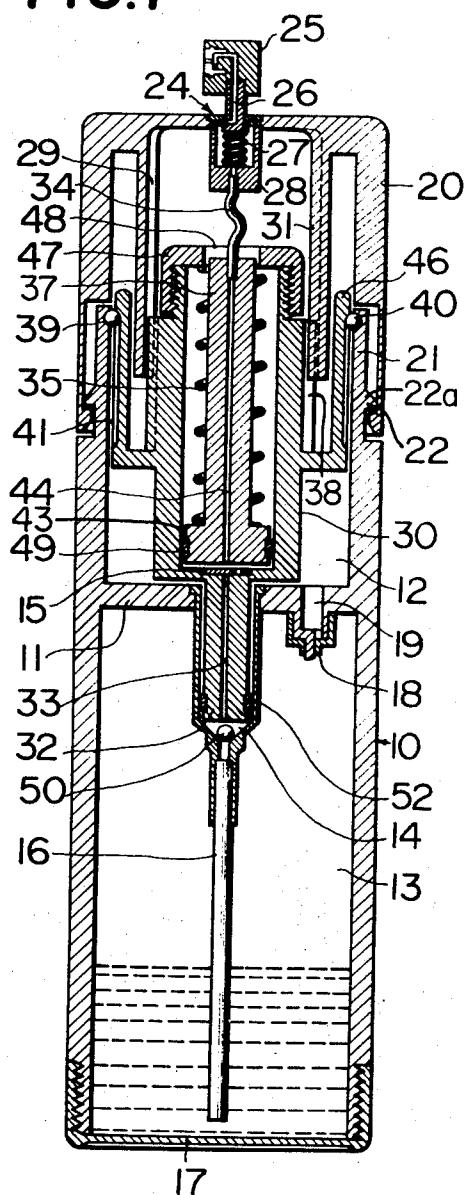
Said piston is formed therein with a central axial bore serving as a passage for the liquid.

Said spraying device is characterized by a transverse partition wall formed substantially in the central portion of said container to divide the container into an upper portion formed therein with a pressurizing chamber and a lower portion serving as a liquid tank, a liquid drawing line depending from the lower end of said pressurizing chamber into said liquid tank, means provided in the side wall of said slide means and the side wall of the upper portion of said container for converting the rotary movement of the rotary head into a reciprocating movement of the slide means, a valve assembly comprising a nozzle and mounted in the upper central portion of the rotary head, and a passage formed in said transverse partition wall and having an air valve mounted in its lower portion for preventing the pressure in the liquid tank from becoming lower than atmospheric pressure.

6 Claims, 5 Drawing Figures



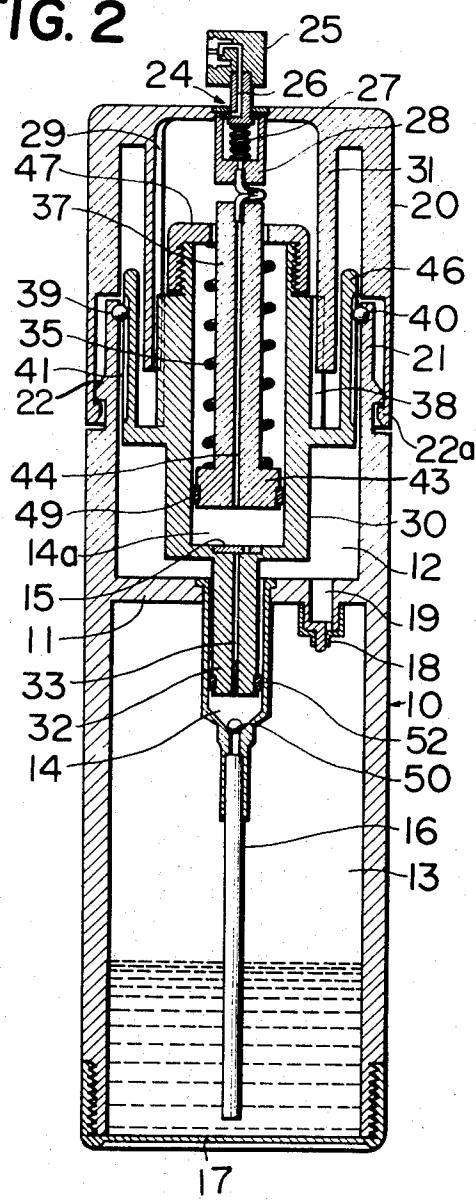
PATENTED DEC 11 1973


3,777,945

SHEET 1 OF 3

FIG. 3

FIG. I



PATENTED DEC 11 1973

3,777,945

SHEET 2 OF 3

FIG. 2

PATENTED DEC 11 1973

3,777,945

SHEET 3 OF 3

FIG. 4

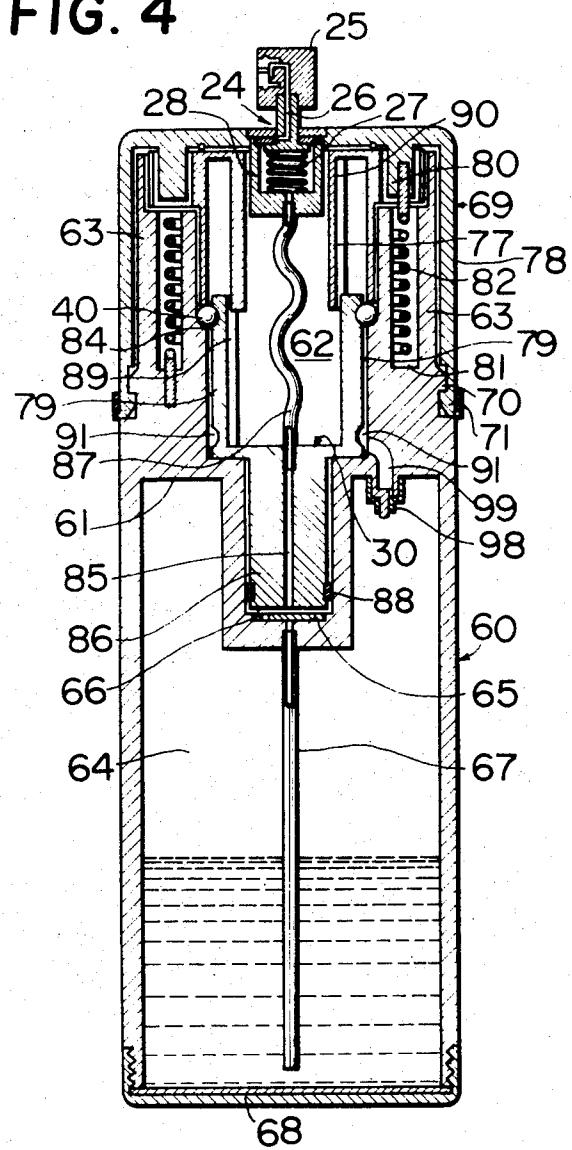
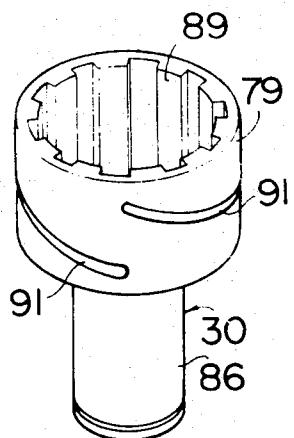



FIG. 5

SPRAYING DEVICE

This invention relates to liquid spraying devices of the type which produce spray mist similar to that produced by the common aerosol spray bomb, and more particularly it is concerned with a liquid spraying device which requires no pressurizing gas nor other foreign propellant in container, thereby eliminating the problems of contaminating and diluting the liquid to be dispensed and avoiding the explosion hazards which might otherwise occur when the container is discarded.

A spraying device of the type which requires no pressurizing gas in container and in which the bulk of the liquid stored in the device is merely under atmospheric pressure is known. This device has some disadvantages. It is complex in construction, and a considerable force is required to depress the head.

This invention provides an improvement in or relating to liquid spraying devices of the type which requires no pressurizing gas in container. The improvement consists in the provision of a rotary spray head housing therein, slide means which is moved upwardly to draw the liquid by suction into the pressurizing chamber when the spray head is turned and the liquid is pressurized by means of a restoration spring.

Accordingly, an object of this invention is to provide a liquid spraying device of the type which requires no pressurizing gas nor other foreign propellant in container and thereby eliminates the problems of contaminating and diluting the liquid to be dispensed and avoid the explosion hazards, and which comprises a spray head of the rotary type including slide means housed therein, so that no movable parts are exposed and therefore damage to them are precluded.

Additional and other objects as well as features and advantages of the invention will become evident from the description set forth hereinafter when considered in conjunction with the accompanying drawings, in which:

FIG. 1 is a vertical sectional view of the liquid spraying device comprising a first embodiment of this invention;

FIG. 2 is a vertical sectional view of the device of FIG. 1 showing its operation state;

FIG. 3 is a perspective view of the sliding means of FIG. 1;

FIG. 4 is a vertical sectional view of the liquid spraying device comprising a second embodiment of the invention; and

FIG. 5 is a perspective view of the sliding means of FIG. 4.

FIG. 1 and FIG. 2 illustrate a first embodiment of this invention. There is shown a container 10 which is cylindrical in shape and which has a transverse wall 11 disposed substantially in its middle portion to partition the interior of the container into upper and lower portions. A cylindrical chamber 12 for housing therein slide means 30 is formed in the upper portion while a liquid tank 13 for storing therein a liquid to be sprayed is provided in the lower portion.

Disposed in the central portion of transverse wall 11 is a pressurizing chamber 14. A liquid drawing line 16 is connected at one end thereof to the lower end of pressurizing chamber 14 and almost reaches at the other end thereof to the bottom of tank 13 which mounts therein detachably a bottom cover 17 to fill the tank with a quantity of liquid when required. A ball

valve 50 is inserted between the lower end of pressurizing chamber 14 and liquid drawing line 16. An air valve 18 and a passage 19 are mounted on the underside of transverse wall 11 to keep the pressure in liquid tank 13 and cylindrical chamber 12 from becoming negative.

A cylindrical wall 21 is formed on the outer peripheral surface of the container 10 and a peripheral groove 22 is formed on the inner circumferential surface of a spray head 20. A spray head 20 which is of the same diameter as container 10. The peripheral rib 22a is formed on the outer surface of said wall 21. Said peripheral rib 22a and peripheral groove 22 are complementary with each other. Spray head 20 is fitted over the upper end of container 10 and held in place by inserting the peripheral groove 22 thereof in the complementary cylindrical rib 22a of the container 10.

A valve assembly 24 comprising a nozzle 25, a valve body 26, a spring 27 and a spring supporting small cylindrical body 28 is mounted in the upper middle portion of spray head 20. The nozzle 25 of valve assembly 24 is not limited to the type shown and may be a nozzle for a milky liquid when a shaving cream or other milky liquid is to be discharged.

Guide means 31 for guiding slide means 30 in its vertical movement is mounted in the spray head 20 below valve assembly 24. Slide means 30 comprises a piston 32 extending downwardly from the underside of the bottom wall of slide means 30 into the upper chamber 12 and formed with a central vertical bore or passage 33. The lower end of piston 32 faces the upper portion of pressurizing chamber 14, and piston 32 is movable into and out of pressurizing chamber 14 to reduce or increase the volume of the pressurizing chamber. A plunger ring 52 is provided at the lower end of piston 32 for sealing a space between piston 32 and pressurizing chamber 14.

Slide means 30 is formed at its upper half portion with a number of axially arranged spline-like ribs 38 maintained in engagement with a number of axially arranged grooves 29 formed on the inner circumferential surface of guide means 31 in spray head 20.

A cylindrical portion 46 is provided in the upper half of slide means 30 to project therefrom in adjacent relationship with the inner surface of cylindrical chamber 12. A pressure adjusting piston 43 having a rod 37, is inserted in the interior of slide means 30 axially thereof, and a spring support cover 47 is provided at the upper end of slide means 30. A plunger ring 49 is provided at the lower end of piston 43 to seal a space between the inner surface of slide means 30 and the outer surface of piston 43.

Formed in the middle of cover 47 is an opening 48 of a size sufficiently large to permit piston 43 to move vertically therethrough in and out of slide means 30. If piston 43 moves upwardly, then a secondary pressurizing chamber 14a is formed in the lower portion of the interior of slide means 30 as shown in FIG. 2. A coil spring 35 serving as a restoring spring is mounted about piston rod 37 to extend from its lower end to cover 47 and normally urges piston 43 to move downwardly from its upper position by its biasing force.

Formed in the center of piston 43 is a vertical axial passage 44 which is connected at its upper end to the small cylindrical body 28 of valve assembly 24 by a flexible tube 34.

A plurality of recesses 39 (two recesses disposed at diametrically opposed positions in the embodiment are shown) are formed in the upper portion of container 10 or on the inner wall surface of the upper portion of cylindrical chamber 12, each of the recesses 39 being of a size such that it is sufficiently large to receive therein the semi-spherical portion of a steel ball 40. An inclined peripheral groove 41 formed in wave-form as shown in FIG. 3 is provided on the outer wall surface of the cylindrical portion 46 of slide means 30 in a position corresponding to the positions of the plurality of recesses 39, the groove 41 being of a size such that it is sufficiently large to receive therein the semi-spherical portion of each of steel balls 40.

Steel balls 40 are received in the recesses 39 and inclined groove 41 as aforementioned. By this arrangement, the cylindrical portion 46 of slide means 30 moves in vertical by virtue of the provision of steel balls 40 as it moves in wave-like motion while being guided by the inclined guide 41 when cylindrical portion 46 is turned.

In the embodiment shown and described, the inclined groove 41 formed in wave-form has four crests and four valleys, so that slide means 30 moves in four reciprocating motions while the head 20 is turned through 360°. Thus, the recesses 39, steel balls 40 and inclined peripheral groove 41 constitute means for converting the rotary movement of the rotary head into a reciprocating movement of slide means 30.

The operation of the spraying device constructed as aforementioned will now be described. The slide means 30 shown in FIG. 1 is disposed in its lowermost position, with steel balls 40 each being disposed in one of the crests of inclined groove 41.

FIG. 2 shows the spraying device after the head 20 is turned. Slide means 30 is shown as being moved to an upper position together with piston 43 by the action of steel balls 40 and inclined groove 41.

If slide means 30 is moved upwardly as aforementioned, a quantity of liquid in liquid tank 13 will be drawn up by suction through liquid drawing line 16 into pressurizing chamber 14 by pushing a ball valve 50 upwardly. If head 20 is further turned so as to move steel balls 40 upwardly in sliding motion from their positions in the valleys of inclined groove 41 shown in FIG. 3, slide means 30 will move perpendicularly downwardly without being twisted and the quantity of liquid in pressurizing chamber 14 will be introduced into the secondary pressurizing chamber 14a formed in the lower portion of slide means 30 through the vertical bore 33 in piston 32, and thence into the interior of slide means 30. The piston 43 in slide means 30 is prevented from moving downwardly by the quantity of liquid introduced into the secondary pressurizing chamber 14a in the lower portion of slide means 30, so that piston 43 is maintained in its upper position. Thus, the lower portion of the space between the inner wall surface of slide means 30 and the outer wall surface of piston 43 is converted into a liquid sump 45 in which the liquid is stored.

If nozzle 25 is opened at this time, a quantity of liquid will be drawn from liquid sump 45 and move through central axial bore 44 formed in piston 43, flexible tube 34 and valve assembly 24 to be ejected outwardly through nozzle 25. As liquid is ejected through nozzle 25, the pressure of liquid in liquid sump 45 tends to be lowered. However, this tendency is checked by the

downward movement of piston 43 caused by the biasing force of spring 35, so that the liquid pressure in liquid sump 45 is maintained at a predetermined level.

If the operation of opening nozzle 25 is performed continuously or intermittently, the downwardly moving piston 43 will ultimately reach its lowermost position in slide means 30. At this time, liquid under pressure in liquid sump 45 will have been completely consumed. If head 20 is turned again to draw up a quantity of liquid from the liquid tank 13, the aforementioned cycle can be repeated again to effect ejection of the liquid through the nozzle.

The optimum mode of operation of the embodiment of the spraying device described above would be to turn the head 20 so that it will make three or four complete revolutions and move the slide means 30 12 to 16 times in reciprocating motion to store liquid in the liquid sump 45 before the nozzle 25 is opened.

FIG. 4 and FIG. 5 show a second embodiment of this invention. A container 60 shown is formed with a transverse partition wall 61 at substantially the middle of container 60 for dividing the interior of container 60 into two portions or upper and lower portions.

A cylindrical chamber 62 for mounting a slide means 30 therein is defined by a cylindrical wall 63 in the upper portion of container 60. A liquid tank 64 for containing a liquid to be dispensed is provided in the lower portion of container 60. The transverse partition wall 61 is formed therein with a passage 99 mounting an air valve 98 as described with reference to the first embodiment to maintain balance in internal pressure in the container.

The transverse partition wall 61 is formed in the middle with a suction chamber 66 provided with a valve 65 at its bottom and adapted to serve as a pressurizing chamber. A liquid drawing line 67 extends from the lower end of pressurizing chamber 66 to the bottom of liquid tank 64. A bottom cover 68 may be detachably attached to the lower end of liquid tank 64 to fill the tank with a quantity of liquid when required.

A rotary head 69 cylindrical in shape and having the same outer diameter as the lower portion of container 60 is fitted over the cylindrical wall 63. The cylindrical wall 63 is formed on the outer wall surface of its lower portion with an outer peripheral rib 70 and an outer peripheral groove contiguous with each other while the rotary head 69 is formed on the inner wall surface of its lower portion with an inner peripheral groove and an outer peripheral rib 71. Thus the rotary head 69 is held in position as the outer peripheral rib 70 of cylindrical wall 63 is snugly received in the inner peripheral groove of rotary head 69 and the inner peripheral rib 71 of rotary head 69 is snugly received in the outer peripheral groove of cylindrical wall 63. A valve assembly 24 comprising a nozzle 25, valve body 26, spring 27 and spring support small cylindrical body 28 is mounted in the upper central portion of rotary head 69.

A guide means 77 for guiding slide means 30 in its vertical movement is mounted in the central portion of rotary head 69 to be disposed perpendicularly. The aforementioned cylindrical wall 63 and a cylindrical body 79 extending upwardly from the upper end of slide means 30 as subsequently to be described are disposed between a side wall portion 78 of rotary head 69 and the guide means 77.

The cylindrical wall 63 defining the cylindrical chamber 62 as aforementioned is formed therein with a ver-

tical groove 81 of suitable depth so that the wall 63 is divided into an inner wall and an outer wall for mounting in a groove 81 between the two wall members a coil spring 82 which is supported at its upper end by a spring supporter 80 projected from the head 69 and which has a lower end embedded in cylindrical wall 63. If rotary head 69 is turned several times, then energy of resilience is stored in coil spring 82 which urges the rotary head 69 to return to its original position.

A plurality of recesses 84 are formed on the inner wall surface of cylindrical wall 63, each of the recesses 84 being of a size such that it is sufficiently large to receive therein the semi-spherical portion of each steel balls 40. In the embodiment described, such recesses 84 are two in number and disposed in diametrically opposed positions.

Slide means 30 is formed with a piston 86 formed with an axial center bore or passage 85 therein. A flexible tube 87 connects the upper end of passage 85 to the small cylindrical body 28 of valve assembly 24. Piston 86 is inserted in the pressurizing chamber 66 and has a plunger ring 88 attached to its lower end so as to seal a space between the outer wall surface of piston 86 and the inner wall surface of pressurizing chamber 66.

The cylindrical portion 79 extending upwardly from the upper end of slide means 30 as aforementioned is formed in its inner wall surface with a number of vertically disposed ribs 89 which are adapted to be received in vertical grooves 90 formed on the outer wall surface of guide means 77 in the head 69, so that guide means 77 and slide means 30 are interconnected in spline connection.

As shown in FIG. 5 in a perspective view, the cylindrical portion 79 of slide means 30 is formed on its outer wall surface with a plurality of discrete inclined peripheral grooves 91 (two grooves in this embodiment), each groove extending from the upper marginal portion toward the lower marginal portion of the outer wall surface of cylindrical body 79. The upper end of each inclined peripheral groove 91 corresponds in position to one of the recesses 84 formed on the inner wall surface of cylindrical wall 63, the grooves 91 being of a size such that they are sufficiently large to receive therein the semi-spherical portion of each steel ball 40.

Since steel balls 40 are disposed in inclined peripheral grooves 91 and recesses 84 as aforementioned, rotation of cylindrical portion 79 results in its moving upwardly while rotating as it is guided by inclined peripheral grooves 91 by virtue of the presence of steel balls 40 therein. Thus, the recesses 84, steel balls 40 and inclined peripheral grooves 91 constitute means for converting the rotary movement of the rotary head 69 into a reciprocating movement of slide means 30.

The operation of the embodiment constructed as aforementioned will now be described. The spraying device shown in FIG. 4 is in a state in which the rotary head 69 thereof is not turned yet, with each steel ball 40 being disposed at the upper end of one of the inclined peripheral grooves 91. When the spraying device is in this state, the slide means 30 thereof is disposed in its lower position and no liquid in the liquid tank 64 is drawn by suction into the pressurizing chamber 66.

If rotary head 69 is turned rightwardly, slide means 30 will be moved upwardly by guide means 77 in cooperation with steel balls 40 and inclined peripheral grooves 91. Upward movement of slide means 30 causes a quantity of liquid to be drawn upwardly by

suction from the liquid tank 64 through liquid drawing line 67 and valve 65 into pressurizing chamber 66.

Rotary head 69 is urged by the energy of resilience stored in coil spring 82 to return to its original position. However, if a quantity of liquid is drawn up by suction into pressurizing chamber 66, the pressure of liquid in the pressurizing chamber 66 overcomes the energy of resilience of coil spring 82, so that rotary head 69 is kept in a position to which it has been turned.

If nozzle 25 is opened, then the liquid in pressurizing chamber 66 is moved upwardly through the passage 85 in piston 86 and the flexible tube 87 to the valve assembly 24 from which it is ejected outwardly. As the liquid in pressurizing chamber 66 is released through nozzle 25 in this way, the liquid pressure in pressurizing chamber 66 tends to be reduced. However, this tendency is cancelled out by the energy of resilience stored in coil spring 82 and piston 86 is moved downwardly; so that the liquid pressure in pressurizing chamber 66 can be maintained at a predetermined level.

If the aforementioned operation of nozzle 25 is performed continuously or intermittently, the downwardly moving piston 86 will ultimately reach its lowermost position in pressurizing chamber 66. At this time, the liquid under pressure in pressurizing chamber 66 will have been completely consumed. If head 69 is turned again to draw up a quantity of liquid from the liquid tank into pressurizing chamber 66, the liquid in pressurizing chamber 66 can be ejected through the nozzle 25 by repeating the aforementioned cycle of operation.

From the foregoing description, it will be appreciated that the present invention permits a liquid contained in the liquid tank 64 in the container to be drawn up by suction into the pressurizing chamber or the liquid sump by turning the rotary head and then ejected or discharged through the nozzle by merely operating the nozzle without requiring to use a propellant medium. Since the liquid in the container can be pressurized by merely turning the rotary head, the spraying device according to this invention is very easy to operate. Besides, the movable parts of the device are not exposed to atmosphere and therefore prevented from suffering damage.

In the first embodiment of the invention, the provision of a piston in the interior of slide means to form a liquid sump therein permits a large quantity of liquid to be drawn up by suction from the liquid tank and stored in the liquid sump, so that the operation of nozzle can be facilitated. The provision of a pressure adjusting spring in the interior of slide means precludes exertion of a force of reaction on the rotary head by the pressurized liquid in the liquid sump, thereby preventing the hazards of the rotary head being dislodged from the container.

In the second embodiment of the invention, the provision of a coil spring for storing therein energy of resilience for urging the rotary head to return to its original position permits the rotary head automatically to be restored to its original position to be ready for a next liquid suction operation when the liquid in the pressurizing chamber is exhausted after ejection thereof. This facilitates the ejection of liquid in fine mist form.

What is claimed is:

1. A spraying device comprising a container containing a liquid therein, a rotatable head fitted over the top of said container, a cylindrical chamber formed in an upper portion of said container, slide means mounted

in said cylindrical chamber defining on the lower part thereof a piston having an axial bore therein, said slide means movable upwardly and downwardly within said chamber, a transverse partition wall formed substantially in the central portion of said container to divide the container into an upper portion with a pressurizing chamber and a lower portion serving as a liquid tank, said pressurizing chamber receiving said piston defined on the lower part of said slide means, a liquid one way drawing line depending from the lower end of said pressurizing chamber into said liquid tank, means provided in the side wall of said slide means and the side wall of the upper portion of said container for converting rotary movement of the rotatable head into a reciprocating movement of the slide means, a valve assembly comprising a nozzle and mounted in the upper central portion of the rotatable head, conduit means extending from the axial bore of said piston to said valve assembly, means to force liquid from said pressurizing chamber to said valve assembly and a passage formed in said transverse partition wall and having an air valve mounted in its lower portion for preventing the pressure in the liquid tank from becoming lower than atmospheric pressure.

2. A liquid spraying device comprising a container containing a liquid therein, a rotary head fitted over the top of said container, a cylindrical chamber formed in an upper portion of said container, and slide means mounted in said cylindrical chamber and adapted to be moved upwardly by the force with which the rotary head is turned and moved downwardly by the biasing force of a restoring spring, said slide means being formed therein with a central axial bore serving as a passage for the liquid, and said restoring spring is provided between the rotary head and container for storing therein an energy of resilience for urging the slide means to return to its original position, a transverse partition wall formed substantially in the central portion of said container to divide the container into an upper portion formed therein with a pressurizing chamber and a lower portion serving as a liquid tank, and means provided in the side wall of said slide means and the side wall of the upper portion of said container for converting the rotary movement of the rotary head into a reciprocating movement of the slide means, a valve assembly comprising a nozzle and mounted in the upper central portion of the rotary head, and a passage formed in said transverse partition wall and having an air valve mounted in its lower portion for preventing the pressure in the liquid tank from becoming lower than atmospheric pressure.

3. A spraying device comprising a container containing a liquid therein, a rotary head fitted over the top of

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9