This invention relates to an improvement in traffic-markers and particularly to traffic-markers in strip form for insertion into pavements to mark and define traffic lanes.

The main object of this invention is to produce, at a low cost for manufacture and installation, simple, attractive, effective and easily-installed means for marking traffic lanes.

With the above and other objects in view as will appear from the following, my invention consists in a traffic-marking strip for insertion into a pavement, consisting of a horizontal head-portion for exposure through the upper surface of a pavement, and a substantially coextensive anchoring-tang depending from the said head for insertion into the pavement to anchor the strip in place therein, and provided with anchoring means engageable with the pavement material below the surface thereof.

My invention further consists in a traffic-marking strip characterized as above and having certain other details of construction and arrangements of parts as will be hereinafter described and particularly recited in the claims.

In the accompanying drawing:

Fig. 1 is a broken diagrammatic perspective view illustrating one use of my improved traffic-marking strip at a road or street junction;

Fig. 2 is a broken view in transverse section taken on the line 2—2 of Fig. 1, but on a larger scale;

Fig. 3 is a broken transverse view of a length of traffic-marking strip constructed in accordance with my invention.

The particular form of traffic-marking strip illustrated in Figs. 2 and 3 consists of a concavo-convex head-portion 19 and an integral anchoring-tang 11 centrally depending therefrom and co-extensive therewith. The integral anchoring-tang 11 has a generally tapered form from its upper end to its lower to provide a relatively-sharp lower edge 12 to adapt the strip to be readily forced into a previously laid pavement, as will hereinafter appear.

For the purpose of insuring against the upward displacement of the strip when once installed in the pavement, I provide the anchoring-tang 11 thereof, near its upper end and upon its respective opposite sides, with a pair of complementary upwardly-facing anchoring-shoulders 13 and 14, constituting the upper faces of triangular anchoring-ribs 15 and 16 respectively offsetting from the opposite sides of the said tang. The said faces 17 and 18 of the said ribs 15 and 16 slope downwardly and inwardly to join the respective opposite faces of the anchoring-tang 11.

The anchoring-shoulders 13 and 14 above described are supplemented by a corresponding pair of complementary upwardly-facing anchoring-shoulders 19 and 20 extending outward from the respective opposite sides of the anchoring-tang 11 and constituting the upper faces of anchoring-ribs 21 and 22. The side faces 23 and 24 of the said ribs 21 and 22 slope downward and inward to join at the relatively sharp lower end 12 of the anchoring-tang.

My improved traffic-marking strip may be installed in a pavement 25 in any approved manner, but preferably it is installed after the pavement has been laid, by forcing the anchoring-tang 11 vertically into the same and pressing the head-portion 10 sufficiently thereto so that its parallel opposite side edges 26 and 27 are also embedded to a substantial degree.

The concavo-convex head-portion 10 is of substantially the same thickness throughout, and hence when its longitudinal sides or edges 26 and 27 are embedded in the surface of the roadway there is no real likelihood of their curling up above the surface, even after the strip has become appreciably worn. Obviously, under conditions of service, it is these embedded edges, and of course the tang, which are last subjected to wear.

Moreover, in constructing the head-portion with a concave under surface, the longitudinal sides 26 and 27 where they join this surface produce relatively sharp edges which may be forced easily into the material of the roadway, and the space provided beneath the head by its concave under surface accommodates the material laterally and inwardly displaced by these edges. Thus the strip is made not only exceedingly durable and serviceable but easy to install.

As illustrative of the use of my improved traffic-marking strip, reference may be had to Fig. 1 in which cross traffic lanes 28 are defined between opposite sides of the street by inserting into the pavement 25, in spaced relationship, a pair of parallel strips 29 and 30. Longitudinally-extending strips 31 abutting at one end against the strips 29 may be employed to divide the street into two distinct lanes of vehicular traffic.

By employing my improved traffic-marking strip in lieu of pegs, etc., now in common use, not only are the traffic lanes defined in a permanent manner, but the markings being both continuous and therefore distinct, will avoid confusion to motorists as well as pedestrians.
I claim:

1. A traffic-marking strip adapted to be forced into plastic street pavement comprising: an integral, strong, beam-like structure of substantially uniform, general T-shape cross-section throughout its length and having a longitudinal head-portion and a coextensive longitudinal anchoring-tang extending transversely of said head-portion, the lower portion of said anchoring-tang being relatively narrow, sharp and strong and adapted to be forced into plastic street pavement.

2. A traffic-marking strip adapted to be forced into plastic street pavement comprising: an integral, strong, beam-like structure, substantially uniform, general T-shape cross-section throughout its length and having a longitudinal head-portion and a coextensive longitudinal anchoring-tang extending transversely of said head-portion, the lower portion of said anchoring-tang being relatively narrow, sharp and strong and adapted to be forced into plastic street pavement, said head-portion having a convex upper face and a concave under surface.

3. A traffic-marking strip adapted to be forced into plastic street pavement comprising: an integral, strong, beam-like structure of substantially uniform, general T-shape cross-section throughout its length and having a longitudinal head-portion and a coextensive longitudinal anchoring-tang extending transversely of said head-portion and having a longitudinal concave under surface whereby sharp, longitudinal side-edges are produced which are adapted to be forced into plastic pavement.

4. A traffic-marking strip adapted to be forced into plastic street pavement comprising: an integral, strong, beam-like structure of substantially uniform cross-section throughout its length and having a longitudinal head-portion and a coextensive longitudinal anchoring-tang extending transversely of said head-portion and provided with coextensive longitudinal anchoring-shoulders, the lower portion of said anchoring-tang being relatively narrow, sharp and strong and adapted to be forced into plastic street pavement.

5. A traffic-marking strip adapted to be forced into plastic street pavement comprising: an integral, strong, beam-like structure of substantially uniform cross-section throughout its length and having a longitudinal head-portion and a coextensive longitudinal anchoring-tang extending transversely of said head-portion, the lower portion of said anchoring-tang being relatively narrow, sharp and strong and adapted to be forced into plastic street pavement.

EDWARD S. CORNEL, Jr.