wo 2013/002980 A2 | 0F V00000 0 00 A O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

3 January 2013 (03.01.2013)

(10) International Publication Number

WO 2013/002980 A2

WIPOIPCT

(51
eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification: Not classified

International Application Number:
PCT/US2012/041049

International Filing Date:
6 June 2012 (06.06.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/172,757 29 June 2011 (29.06.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

Inventors: TALPEY, Thomas, M.; c¢/o Microsoft Corpor-
ation, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). KRAMER, Gregory,
Robert; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, WA 98052-6399
(US). KRUSE, David, Matthew; c/o Microsotft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(84)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: TRANSPORTING OPERATIONS OF ARBITRARY SIZE OVER REMOTE DIRECT MEMORY ACCESS

102K

Client/Application Server

202a K

204 1 Kernel)— 220
Win32 File API User |4
Application
2087 | 5222
) J Memory
SMB2 Client P B ol
uffer

214ak

7

)—224a
\l SMB Direct Client |<——>| Timers I/

21622 | s
~~ RDMA Interface W

Fig. 2A

(57) Abstract: The embodiments described herein generally
relate to a protocol for implementing data operations, e.g., a
version of SMB, atop RDMA transports. In embodiments,
systems and methods use the protocol definition, which spe-
cifies new messages for negotiating an RDMA connection
and for transferring SMB2 data using the negotiated commu-
nication. A new protocol message may include new header in-
formation to determine message size, number of messages,
and other information for sending the SMB2 data over
RDMA. The header information is used to accommodate dif-
ferences in message size requirements between RDMA and
SMB2. The SMB Direct protocol allows SMB2 data to be
fragmented into multiple individual RDMA messages that a
receiver may then logically concatenate into a single SMB2
request or SMB2 response. The SMB Direct protocol also
may allow SMB2 to transfer application data via etficient
RDMA direct placement and to signal the application data's
availability when the transter is complete.

WO 2013/002980 A2 AT 00TV AV AT 0N AR A AR A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

TRANSPORTING OPERATIONS OF ARBITRARY SIZE

OVER REMOTE DIRECT MEMORY ACCESS
BACKGROUND
[0001] File access protocols, such as Server Message Block (SMB) or versions thercof,
e.g., SMB2, may operate as application-layer network protocols mainly used to provide
shared access to files and miscellaneous communications between nodes on a network.
Historically, SMB or SMB2 operated atop transmission control protocol (TCP) transports
and traditional network infrastructure. While SMB2 has been very successful as a
protocol for general purpose remote file access, SMB2 has not been widely adopted for
remote file access where high throughput and low latency file input/output is required.
[0002] Remote Direct Memory Access (RDMA) is a direct memory access from the
memory of one computer into that of another computer without involving the operating
system of the other computer. This direct transfer permits high-throughput, low-latency
data transfers over a network, which is especially useful in performance-critical
deployments. When an application performs an RDMA Read or Write request, the
application data are delivered directly from a source memory buffer to a destination
memory buffer using RDMA-capable network adapters, which do not involve the central
processing unit (CPU) (also referred to simply as a processor) or operating system in the
transfer. These RDMA transfers reduce latency and enable fast message transfer.
Unfortunately, the benefits of RDMA have not been exploited by systems using SMB2
because SMB2 has not operated with RDMA.
[0003] Although specific problems have been addressed in this Background, this
disclosure is not intended in any way to be limited to solving those specific problems.
SUMMARY
[0004] Embodiments generally relate to a protocol and processing to implement data
operations, such as SMB2 operations (or other versions of SMB operations or file access
protocol operations, for example), atop RDMA transports. In embodiments, the protocol
definition specifies new messages for negotiation of an RDMA connection and for
transferring SMB2 data, for example, using the negotiated connection. In an embodiment,
a protocol for implementing SMB2 operations atop RDMA transports is the SMB Direct
protocol. However, other embodiments provide for other SMB protocols, SMB protocol
versions, or other data operation protocols without departing from the spirit and scope of

the present disclosure. According to an embodiment, a new SMB Direct message may

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

include new header information, which may include, but is not limited to, one or more of
the following: CreditsRequested, CreditsGranted, Flags, Reserved, RemainingDatal ength,
DataOffset, and DatalLength. The header information is used because RDMA transports
support receiving messages of a size fixed only by the receiver, and SMB2 message size
can vary widely from about a hundred bytes to very large messages over a million bytes.
The SMB2 protocol is modified to recognize the existence of the RDMA capability, while
the SMB Direct protocol adds a new layer to the networking stack to allow multiple
individual RDMA messages to be logically concatenated into a single request or response
to accommodate both the fixed size restrictions on RDMA messages and the indeterminate
size requirements inherent to SMB2 messaging. The changes to the SMB2 protocol and
the addition of the SMB Direct protocol allow for the direct transfer of data between
memories of the peers. In embodiments, the SMB2 server may read from or write to a
client’s memory using RDMA to perform direct placement of data. The server performs
an RDMA Write to the client to complete an SMB2 read and performs an RDMA Read to
complete an SMB2 write. While the SMB Direct protocol allows for the direct transfer of
SMB/SMB2 data between memories of peers, the SMB Direct protocol may be adapted to
other protocols, according to embodiments. According to embodiments, the bi-directional,
peer-to-peer nature of the SMB Direct protocol lends itself to numerous types of data
transfer operations.

[0005] RDMA transports also restrict the number of messages which may be processed
at any time, again with a value fixed only by the receiver. To conform to this requirement
of RDMA, embodiments provide for the peers to exchange or assign “credits,” which are
numeric values, requested by and granted to each mutual peer, in the protocol header that
specify the number of RDMA messages the sender may send to the receiver. Credits are
dynamic and are managed independently by each peer. Rules for managing and making
sufficient credits available to perform SMB2 exchanges are defined by the protocol in
embodiments disclosed herein.

[0006] In embodiments, the provision of independent, bidirectional credits may permit
each peer to send requests and responses without explicit negotiation or prior knowledge
and agreement by the receiving peer. Sequenced sends, associated with RDMA, may
permit the exchange of unexpectedly large messages without invoking errors in the
RDMA processing and without resorting to less efficient negotiated transfers when such

conditions arise.

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0007] Additional messages may be used for negotiation of the protocol version and
other parameters, according to embodiments. A Negotiate Request message may include,
for example, fields for CreditsRequested, Reserved, MinVersion, MaxVersion,
OutboundSendSize, MaxInboundSendSize, etc. In turn, a Negotiate Response message
sent in response to the request message may include, for example, fields for
CreditsRequested, CreditsGranted, Version, Reserved, Status, OutboundSendSize,
InboundSendSize, etc. These parameters support the negotiation of capabilities, end-to-
end optimization of resources, and compatibility with future enhanced versions of the
protocol.
[0008] This Summary is provided to introduce a selection of concepts in a simplified
form that is further described below in the Detailed Description. This Summary is not
intended to identify key or essential features of the claimed subject matter, nor is it
intended to be used in any way as to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Embodiments of the present disclosure may be more readily described by
reference to the accompanying drawings in which like numerals refer to like items.
[0010] FIG. 1 illustrates an example logical representation of an environment or system
for exchanging SMB2 messages over RDMA, in accordance with embodiments of the
present disclosure.
[0011] FIG. 2A depicts an example logical representation of a client system for sending
SMB2 messages over RDMA, in accordance with embodiments of the present disclosure.
[0012] FIG. 2B illustrates a logical representation of a server system for receiving
SMB2 messages over RDMA, in accordance with embodiments of the present disclosure.
[0013] FIGS. 3A-3E show logical representations of messages sent or received when
exchanging data using SMB2 messages over RDMA, in accordance with embodiments of
the present disclosure.
[0014] FIGS. 4A-4C depict a flow diagram illustrating the operational characteristics of
a process for negotiating a communication using SMB2 over RDMA, in accordance with
embodiments of the present disclosure.
[0015] FIGS. 5A-5D show a flow diagram illustrating the operational characteristics of
a process for exchanging data using SMB2 over RDMA, in accordance with embodiments

of the present disclosure.

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0016] FIG. 6 illustrates a flow diagram depicting the operational characteristics of a
process for exchanging data using an RDMA direct data transfer, in accordance with
embodiments of the present disclosure.
[0017] FIG. 7 depicts an example computing system upon which embodiments of the
present disclosure may be implemented.

DETAILED DESCRIPTION
[0018] This disclosure will now more fully describe example embodiments with
reference to the accompanying drawings, in which specific embodiments are shown.
Other aspects may, however, be embodied in many different forms, and the inclusion of
specific embodiments in this disclosure should not be construed as limiting such aspects to
the embodiments set forth herein. Rather, the embodiments depicted in the drawings are
included to provide a disclosure that is thorough and complete and which fully conveys
the intended scope to those skilled in the art. Dashed lines may be used to show optional
components or operations.
[0019] Embodiments generally relate to systems, methods, and protocols for exchanging
SMB2 data over an RDMA connection. RDMA provides advantages in transporting data.
For example, RDMA makes transfers from one memory to another device’s or system’s
memory. These transfers do not involve the processor and, thus, reduce the overhead
involved in transporting data. Further, without the involvement of a processor in transport
management, RDMA transmits data with fewer clock cycles. Thus, RDMA provides a
low-latency, high bandwidth connection.
[0020] In general, a version of SMB, such as SMB2, is an application-layer network
protocol used to provide shared access to files and miscellancous communications
between nodes on a network. SMB and SMB2 are thus examples of file access operation
protocols. SMB?2 allows for the transfer of data in the exchange of messages between a
client(s) and a server(s). The description of some embodiments herein refers to SMB2.
However, in other embodiments, any version of SMB or other file access operation
protocol may be used without departing from the spirit and scope of the present disclosure.
[0021] Due, generally, to differences in operation, SMB2 (or SMB) does not currently
operate over RDMA but, instead, uses TCP to transport data. The present embodiments
create a system and protocol for exchanging SMB2 messages over an RDMA-capable
network protocol. First, a client and/or a server, which may be collectively referred to as
peers, discover the capabilities or abilities of cach other using a component of SMB2. In

an embodiment, a request is sent by the client asking for information about the server.

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

The responding server may reply with information about the number of network interface
cards (NICs) the server has, the internet protocol (IP) address for the NICs, the speed of
the NICs, whether the NICs are RDMA capable, and/or possibly an IP address. In
embodiments, the asking client may use this information to determine how to interface
with the server.

[0022] Ifa server is RDMA capable, an RDMA-capable client may then negotiate an
RDMA connection with that server, according to embodiments of the present disclosure.
A new interface, referred to as the RDMA interface in embodiments, 1s an interface
between a RDMA-capable network adapter and the other system components (including
an SMB client). Further, a new module is added to the stack called an SMB Direct
client/server. First, the SMB Direct client, possibly in response to the capabilities request,
pre-posts a receive by reserving at least a portion of a memory buffer to receive a message
from the other peer. The SMB Direct client may then send an SMB Direct Negotiate
Request packet. An SMB Direct Negotiate Request begins a process of establishing an
SMB Direct connection between the peers. According to embodiments, the SMB Direct
Negotiate Request includes one or more fields that define how the RDMA connection will
function.

[0023] In embodiments, part of the SMB Direct Negotiate Request is a request for
“credits,” Credits are an allotment of space in the receiving peer’s memory buffer. As
RDMA transfers directly from one memory to another memory, the receiving peer
reserves space in a memory buffer where the sending peer may place transported data.
The memory buffers are allotted in blocks (e.g., 1Kbyte blocks). In embodiments, the
allotments are set in that the block size does not change after the SMB Direct connection
has been established. In other embodiments, the allotments are not set, in which the block
size may change. Where the allotments are set, any transfer to the memory buffer may not
exceed the block size. To transfer SMB2 data having a size greater than the block size, the
sender sends two or more packets that are stored into two or more allotments of the
memory buffer. To reserve the memory allocations, the sending peer requests credits,
where the number of credits requested may be governed by a local policy and is not
necessarily affected by the composition of the message. Each credit represents a block of
the memory buffer and, thus, represents a message the requester may send to the other
peer.

[0024] In embodiments of the present disclosure, the server may send a response, ¢.g.,

an SMB Direct Negotiate Response, to the requester. This SMB Direct Negotiate

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

Response also includes various fields that define the RDMA connection. In response to
the request, the SMB Direct Negotiate Response provides a number of credits to the client.
Further, the SMB Direct Negotiate Response may also ask for credits that reserve an
allocation in the client’s memory buffer. The exchange of the SMB Direct Negotiate
Request and SMB Direct Negotiate Response, in embodiments, establish the RDMA
connection. Thereafter, SMB2 data may be exchanged over the connection.

[0025] According to embodiments, the exchange of SMB2 data over the RDMA
connection includes the transport of at least one packet. If the SMB2 data being sent is
smaller than the block size, only one packet, called an SMB Direct Data Transfer packet,
may be sent. However, if SMB2 data to be sent is larger than the block size, two or more
SMB Direct Data Transfer packets may be sent, according an embodiment. RDMA allows
for the sequenced reception of packets. Thus, a second packet received in a
communication will be placed directly after a first received packet. To utilize this
advantage of RDMA, the SMB Direct Data Transfer packets include fields to announce
the total amount of SMB2 data to be sent and how much data are left to be sent after the
present packet. In this way, the SMB Direct peers may determine when an SMB transfer
1s completed, and the SMB2 data may be reassembled. The SMB Direct Protocol,
therefore, provides in embodiments for quick transfers of SMB2 data with low latency and
low overhead, while overcoming the issues associated with transferring SMB2 data over
RDMA.

[0026] An example logical environment or system 100 for exchanging SMB2 data over
an RDMA connection is shown in FIG. 1, according to embodiments disclosed herein.
Connection peers (referred to also as client 102 and server 106) 102 and 106 may move
SMB2 data across an RDMA connection between RDMA NICs (RNICs) 108a and 108b
over network 104. A connection peer may be any computer system as described with
respect to FIG. 7, for example. The connection peers are shown as a client/application
server 102 and a file server 106 in FIG. 1. However, these peers are offered by way of
example only. Any type of client(s) or server(s) may function as a connection peer in the
embodiments. Thus, RDMA connections may be between multiple clients, multiple
servers, a server farm(s), a server cluster(s), a message server(s), or between a client(s)
and a server(s), for example. The client/application server 102 and file server 106 are
offered as examples only for purposes of understanding the teachings of the embodiments

disclosed herein.

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0027] While SMB2 data are moved over network 104, the network 104 may be as
described with respect to FIG. 7, for example. Network 104, although shown as an
individual single network, may be any type of network conventionally understood by those
of ordinary skill in the art. In accordance with an embodiment, the network may be the
global network (e.g., the Internet or World Wide Web, 1.e., “Web” for short). It may also
be a local area network, e.g., intranet, or a wide area network. In accordance with
embodiments, communications over network 104 occur according to one or more standard
packet-based formats, e.g., H.323, IP, Ethernet, and/or ATM.

[0028] Further, in embodiments, an RNIC 108(a and/or b) may be any network interface
card, network adapter, and/or network interface controller that supports RDMA. There are
several vendors that offer RNICs. iWARP or InfiniBand, for example, are network
protocols that support RDMA. The RNICs may support RDMA, which allows direct
transfers of data from memory 110a to memory 110b and vice versa. These transfers of
data do not require or include the oversight of the processor 112a or 112b. Thus, the
RDMA transfers are high-bandwidth, low latency, and low overhead, according to
embodiments of the present disclosure. The processors 112 and memories 110 may be as
described with respect to FIG. 7, for example.

[0029] While FIG. 1 illustrates a general environment for SMB2 data exchanges over
RDMA, FIG. 2A depicts an example peer 102 for sending or receiving the SMB2 data
over the RDMA connection, according to embodiments disclosed herein. In this example,
the peer 102 is a client and/or application server. The various components of the client
102 may include software and/or hardware, according to embodiments of the present
disclosure. However, for purposes of illustration, the components hereinafter will be
described as software modules. In embodiments, the client 102 includes one or more of,
but is not limited to, a kernel 202a, at least one user application 220, a memory buffer
222a, one or more timers 224a, and/or one or more settings 226a. In embodiments, a
“kernel” is the core of an operating system, in which memory, files, and peripheral devices
are managed, applications are triggered and launched, and system resources are allocated.
[0030] In embodiments, the kernel 202a may include one or more of, but is not limited
to, a WIN32® File application programming interface (API) or equivalent 204, an SMB2
module (shown as an SMB2 Client 208) , an SMB Direct module (shown as an SMB
Direct Client 214a), and a RDMA Interface 216a. The SMB Direct module and the
RDMA Interface 216a are introduced to perform the methods and processes described

herein. The modules, components, and/or interfaces will be described as follows.

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0031] In embodiments, the WIN32® File API 204 may be an interface between the
kernel 202a and one or more user applications 220. In an example embodiment, the
WIN32® File AP1204 is a set of APIs available in the MICROSOFT WINDOWS®
operating systems. Almost all WINDOWS® programs interact with the WINDOWS®
API to perform functions. Embodiments of the WIN32® File APl 204 provide access to
the resources available to a WINDOWS® system, such as, for example, file systems,
devices, and/or error handling. WIN32® File API 204 may provide access to functionality
additional to the kernel, according to embodiments. In embodiments, WIN32® File API
204 additionally allows a system to perform actions on remote files that use underlying
file access functions that, in turn, use various networking capabilities and allow for remote
access.

[0032] In embodiments, the SMB2 Client 208 manages the communication between
applications and the interfaces provided by the SMB2 Server 212b. Because devices may
operate at speeds that may not match the operating system, the communication between
the operating system and device drivers is primarily done through I/O request packets
(IRPs). These packets are similar to network packets or WINDOWS® message packets,
for example. The packets are passed from an operating system(s) to specific drivers and
from one driver to another. In embodiments, the SMB2 Client 208 may redirect the I/0O
requests to network resources and compose SMB messages to conduct the
communications over the network. The SMB2 Client 208 communicates the SMB packets
to the SMB Direct Client 214a to exchange the SMB packets or data over RDMA.
Similarly, the SMB2 Server 212b can also use IRPs to send file requests from the SMB2
Client 208 to the server’s storage, according to an embodiment.

[0033] In embodiments, the SMB Direct Module 214 is an instance created from the
SMB Direct network provider interface (NPI) in the kernel 202. The SMB Direct Module
214 exposes an API (referred to as the SMB Direct NPI) to the SMB2 client and SMB2
server modules. The SMB2 client/server modules use this SMB Direct NPI to make
requests to send or receive data over an SMB Direct connection. The SMB Direct module
214 implements the SMB Direct Protocol and sits between the SMB2 client/server
modules and the underlying RDMA interface, according to embodiments. The SMB
Direct NPI enables the SMB Direct protocol. The SMB Direct NPI may create and
destroy SMB Direct connections, send and receive data over SMB Direct connections,
register/unregister memory, perform RDMA Read/Write data operations from/to a peer

over a SMB Direct connection, receive notifications when an SMB Direct connection is

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

disconnected by the peer, marshal/unmarshal SMB2 packets for transmission across a
SMB Direct connection, among other operations. To accomplish these tasks, an SMB
Direct Module 214 is created that may manage the sending and retrieving of the SMB2
data from the memory buffers 222 as stored by the RDMA protocol. Thus, the SMB
Direct Module 214 converts data from simply SMB2 data into RDMA and back from
RDMA to SMB2. The SMB Direct Module 214 communicates with another new module,
the RDMA Interface 216 to execute the operations in embodiments of the present
disclosure.

[0034] According to embodiments, the SMB Direct Module 214 performs several
functions. An SMB DirectReceiveEvent callback function notifies SMB2 Client 208 or
SMB2 Server 212b that a message has been received on a SMB Direct endpoint. An SMB
DirectDisconnectEvent event callback function notifies SMB2 Client 208 or SMB2 Server
212b that a connection on an endpoint has been disconnected. An SMB
DirectAcceptEvent event callback function notifies the SMB2 Server 212b that an
incoming connection on a listening endpoint has been accepted. An SMB DirectListen
function creates a listener endpoint that listens for incoming connections on a given local
address. An SMB DirectCloseEndpoint function closes an endpoint and frees any
associated resources. An SMB DirectConnect function connects an endpoint to a remote
SMB Direct transport address. An SMB DirectDisconnect function disconnects an
endpoint from a remote SMB Direct transport address. An SMB DirectSend function
sends a buffer of data to a remote SMB Direct peer. An SMB DirectRegisterMemory
function allows the SMB2 Client 208 to register memory buffers for use in RDMA
Read/Write operations. An SMB DirectUnregisterMemory function unregisters memory
buffers that were previously registered via the SMB DirectRegisterMemory API. An
SMB DirectRdmaRead function causes RDMA to read data directly from the memory of
the remote peer to which the endpoint is connected. An SMB DirectRdmaWrite function
causes RDMA to write data directly into the memory of the remote peer to which the
endpoint is connected. These functions and the operation thereof will be explained in
conjunction with FIG. 6.

[0035] In an embodiment, the RDMA Interface 216 is a new interface to interface with
the vendor-specific RDMA functionality of the RNICs. The RDMA Interface 216 can
give access to the functions of the RDMA device. The functions of the RDMA device can
include listening to a port to receive SMB Direct packets and provide the SMB2 data to
the SMB Direct Module 214. In an embodiment, the RDMA device may include a kernel

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

mode RDMA module to manage communications over the RDMA connection. Further,
the RDMA device may include an RDMA access layer and Extensions to access and listen
on a port sending RDMA messages. A proxy driver may interface with the hardware
driver of the RNIC, according to embodiments.

[0036] In embodiments, the user application 220 may be any software executed by a
processor for a user or other software. Examples of user applications 220 include web
browsers, email, etc. These user applications 220 interface with the kernel 202a to send
and receive data, especially from remote storage locations, such as the file server 106.
[0037] In an embodiment, a memory buffer 222 may be any type of memory, as
described with respect to FIG. 7. The memory buffer 222 may be used to receive SMB
Direct messages and/or SMB?2 data carried in the messages and may be used to stage
outgoing SMB Direct messages before transmitting those messages. Thus, the memory
buffer 222 may be partitioned into blocks as described hereinafter, according to
embodiments.

[0038] The timers 224, in embodiments, are a set of clocks that may count down from a
predetermined time to zero. Thus, the timers 224 represent stored data and a clock
function executed by a processor. Expiration of a timer 224 may trigger one or more
functions in the RDMA Interface or with the SMB Direct Module 214. In other
embodiments, the timers may count from zero to a threshold or perform some other type
of counting. Some of the timers may include a SendCreditGrantTimer, which is the timer
that is started when SendCreditCount reaches zero and operates in the timers section 224,
The remotely connected peer has until this timer expires to grant additional Send Credits.
The SendCreditGrantTimer can also regulate the amount of time that the client/server
waits for the peer to grant it additional Send Credits. When the client/server finds that it
cannot send a packet to the peer because the value of SendCreditsCount is zero, then the
client/server sets a timer that will expire in a predetermined number of seconds, according
to embodiments. If the timer expires before a Send Credit becomes available, the
client/server disconnects the connection. In an embodiment, an Idle Connection Timer
regulates the amount of time that the client/server waits for the peer to send a packet. If no
packets have been received from the peer in the last predetermined number of seconds, the
client/server sends a keep alive request to the peer and sets a KeepAliveResponse timer. If
no response is received before the expiration of the KeepAliveResponse timer, then the

connection is disconnected, according to embodiments of the present disclosure.

10

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0039] A KEEPALIVE REQUESTED flag may also be set for any SMB Direct Data
transfers over the SMB Direct Connection, according to embodiments of the present
disclosure. In an embodiment, the KEEPALIVE REQUESTED flag is a request for the
receiving peer to respond to the sender as soon as possible so that the sender knows that
the receiver is still connected and responsive. One or more systems may try to time out
the connection without a message exchange. Thus, a message with the

KEEPALIVE REQUESTED flag can maintain the connection. In alternative
embodiments, a message with the KEEPALIVE REQUESTED flag set can be used to
request or receive credits.

[0040] In an embodiment, a settings 226 store stores and retrieves data relevant to
exchanging SMB messages over RDMA. The settings 226 may be stored in any type of
memory or storage devices as described with respect to FIG. 7. As an example, the
settings may include how many seconds after being set does the Credit Replenishment
Timer expire, what is the maximum sized SMB Direct Data Transfer packet that the peer
is willing to receive from another peer, or what is the limit on the number of send credits
the peer will grant to another peer, etc.

[0041] The SMB DIRECT ENDPOINT Structure may be an opaque structure that
represents a SMB Direct endpoint, in embodiments. An SMB Direct endpoint is
analogous in function to a network socket, for example. SMB2 Client 208 or SMB2
Server 212b may not access the members of this structure directly but through the SMB
Direct Module 214, according to an embodiment. The SMB_DIRECT ENDPOINT
Structure may include data for several operations. MwReleaseList is a list of memory
windows that may be released back to the remotely connected peer. These memory
windows are associated with RDMA Read/Write operations that have completed.
ReceiveCreditCount is the number of Receive Credits that are to be granted to the
remotely connected peer. The endpoint’s host may have at least this number of receives
pending on the endpoint. SendCreditCount is the number of Send Credits that the
endpoint’s host currently has. The remotely connected peer may have at least this number
of receives pending on their endpoint. PendingRdmaReadCount is the number of RDMA
Read operations that have been initiated but not yet completed on this endpoint.
PendingRdmaReadLimit is the maximum number of RDMA Read operations that may be
simultaneously pending on the endpoint. DeferredInitiatorOpQueue is a queue of initiator
operations that are deferred because the endpoint resources to issue them are not currently

available, in embodiments. NdkQp is the queue pair object that represents the receive and

11

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

initiator request queues. NdkReceiveCq is the NDK receive completion queue. Receive
request completions are queued to this queue. NdkReceiveQueueCapacity is the
maximum number of Receive requests that may be simultancously pending on the
endpoint. NdkInitiatorCq is the NDK initiator completion queue. Send, Bind, Fast-
Register, Read, Write, and Invalidate request completions are queued to this queue, for
example. In embodiments, NdklInitiatorQueueCapacity is the maximum number of Send,
Bind, Fast-Register, Read, Write, and Invalidate requests that may be simultaneously
pending on the endpoint.

[0042] FIG. 2B depicts an example peer 106 for sending or receiving the SMB2 data
over the RDMA connection, in accordance with embodiments disclosed herein. In this
example, the peer 106 is a file server. The various components of the file server 106 may
include software and/or hardware. While embodiments describe the components as
software modules, other embodiments provide for other types of modules. In
embodiments, the file server 106 includes one or more of, but is not limited to, a kernel
202b, an NTFS 232, a memory buffer 222b, one or more timers 224b, and/or one or more
settings 226b. Some of these functions are the same or similar to those described in FIG.
2A.

[0043] According to embodiments, the kernel 202b (and/or as described with respect to
FIG. 2A) may include one or more of, but is not limited to, an input/output (I/O) manager
206b, an SMB2 Server 212b, a SMB Direct Server 214b, and an RDMA Interface 216b.
Some of these functions are the same or similar to those described in FIG. 2A.

[0044] In embodiments, SMB2 Server 212b is a driver that implements the server side
of the SMB2 protocol for MICROSOFT® servers. Other embodiments provide for other
types of servers. SMB2 Server 212b may start and exchange data using SMB and supply
the data or receive the data from the I/O Manager 206b. In embodiments, SMB2 Server
212b sends or receives the SMB2 data over a network connection. SMB2 Server 212b
functions to communicate over networks for the server. Thus, SMB2 Server 212b
provides the SMB2 data for transmission or receives the SMB2 data from a network
transmission, according to embodiments.

[0045] In embodiments, the New Technology File System (NTFS) 232 may be a
standard file system. NTFS includes support for metadata and the use of advanced data
structures to improve performance, reliability, and disk space utilization, plus additional
extensions such as security access control lists (ACL) and file system journaling. NTFS

functions to organize and store file data for one or more clients. This file data may be

12

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

provided to the client over communications with the client, such as SMB2 data transfers
over RDMA.

[0046] According to embodiments, SMB Direct creates an RDMA connection to
exchange SMB2 data. The protocol creates the RDMA connection through a negotiation
process. After the peers 102 and 106 negotiate the RDMA connection, either peer 102 or
106 may send SMB2 data over the RDMA connection.

[0047] According to embodiments, a first SMB Direct Negotiate Request packet 300 is
shown in FIG. 3A. In turn, the associated SMB Direct Negotiate Response packet 336 is
shown in FIG. 3B, in embodiments. Further, the SMB Direct Data Transfer packet 338
used to transfer data is shown in FIG. 3C, according to embodiments. Each message or
packet may be created, transmitted, stored, and/or received, for example. The packets or
messages may cach include portions or fields that store different data, in embodiments.
[0048] Turning to FIG. 3A, an SMB Direct Negotiate Request packet 300 is shown,
according to embodiments of the present disclosure. The SMB Direct Negotiate Request
packet 300 may include one or more of, but is not limited to, the following fields, for
example: MinVersion 302, MaxVersion 304, Reserved 306, CreditsRequested 308,
PreferredSendSize 310, MaxReceiveSize 312, and/or MaxSMB2MessageSize 314. The
SMB Direct Negotiate Request packet 300 may include additional or fewer fields than
those shown in FIG. 3A, as represented by ellipses 316.

[0049] In an embodiment, the MinVersion field 302 may include a value for the lowest
SMB Direct Protocol version that the client/requester 102 supports. The MaxVersion field
304 may store the highest SMB Direct Protocol version that the client/requester 102
supports. This value may be equal to or greater than the value of the MinVersion field
302. In embodiments, the client/requester supports all of the protocol versions (inclusive)
in the range between the value in the MinVersion field 302 and the value in the
MaxVersion field 304. The Reserved field 306 is simply a reserved field for future
unknown requirements and is not used by the client, according to an embodiment.

[0050] The CreditsRequested field 308, according to embodiments, comprises a value
for the number of send credits that the client/requester 102 is requesting from the
server/receiver 106. In embodiments, the value in the CreditsRequested field 308 is
greater than zero (0) to ensure that the SMB2 data may be sent in a subsequent message.
However, the value in the CreditsRequested field 308 may be any number and may be set
based on an average usage, according to embodiments. In alternative embodiments, the

value in the CreditsRequested field 308 may be based at least on the size of the SMB

13

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

message to be sent. In still further embodiments, other or additional factors may be
considered in requesting credits. Also, large messages may be transferred using RDMA,
in embodiments.

[0051] The PreferredSendSize field 310 may include the size (possibly in bytes) of the
largest SMB Direct Data Transfer packet 338 that the client/requester 102 wishes to be
able to transmit to the server/receiver 106. The MaxReceiveSize field 312 includes a size
(possibly in bytes) of the largest SMB Direct Data Transfer message that the
client/requester 102 will accept from the server/receiver 106. This value may be equal to
the block or predetermined allocation of the memory buffer 222a that the client 102 set in
embodiments. Thus, no single SMB2 data transfer will exceed the memory allocation. In
embodiments, this value is greater than or equal to threshold 128, which is at least the size
of the SMB Direct header in the data transfer packet and a small SMB2 message. The
MaxSmb2MessageSize field 314 may include a size (possibly in bytes) of the largest
SMB2 Protocol message that the client/requester will accept from the server/receiver 106,
according to an embodiment. This value is predetermined and set by the client 102. In
embodiments, the value in the MaxSmb2MessageSize field 314 may not be greater than
the total size of the memory buffer 222a. In this way, no SMB message may overflow the
memory buffer 222a. However, the value of the MaxSmb2MessageSize field 314 may be
less than the amount of memory in the memory buffer 222a, as determined by a user,
according to an embodiment.

[0052] Turning to FIG. 3B, an SMB Direct Negotiate Response packet 336 is shown in
accordance with embodiments. The SMB Direct Negotiate Response packet 336 may be
sent by a peer 106 to complete the negotiation for the RDMA connection. The SMB
Direct Negotiate Response packet 336 may include one or more of, but is not limited to,
the following fields, for example: MinVersion 302b, MaxVersion 304b, PreferredVersion
318, Reserved 306b, CreditsRequested 308b, CreditsGranted 320a, Status 322,
PreferredSendSize 310b, MaxReceiveSize 312b, and/or MaxSMB2MessageSize 314b.
The SMB Direct Negotiate Response packet 336 may include additional or fewer fields
than those shown in FIG. 3B, as represented by ellipses 324.

[0053] According to embodiments, the MinVersion field 302b may include a value for
the lowest SMB Direct Protocol version that the server/receiver 106 supports. The
MaxVersion field 304b may store the highest SMB Direct Protocol version that the
server/receiver 106 supports. This value may be equal to or greater than the value of the

MinVersion field 302b. In embodiments, the server/receiver 106 supports all of the

14

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

protocol versions (inclusive) in the range between the value in the MinVersion field 302b
and the value in the MaxVersion field 304b. The PreferredVersion field 318 stores a value
for the common SMB Direct Protocol version. The value of the PreferredVersion field
318, in embodiments, is within the range specified by MinVersion field 302a and
MaxVersion field 304a of the client’s SMB Direct Negotiate Request packet 300. In
further embodiments, the value of the PreferredVersion field 318 is between the range
specified by MinVersion field 302b and the MaxVersion field 304b of the server’s SMB
Direct Negotiate Response packet 336. The Reserved field 306b is simply a reserved field
for future unknown requirements and is not used by the server, according to embodiments.
[0054] The CreditsRequested field 308b, according to embodiments, comprises a value
for the number of send credits that the server/receiver 106 is requesting from the
client/requester 102. In embodiments, the value in the CreditsRequested field 308b is
greater than zero (0) to ensure that the SMB2 data may be sent in a subsequent message.
However, the value in the CreditsRequested field 308b may be any number and may be set
based on an average usage. In alternative embodiments, the value in the CreditsRequested
field 308b is based on the size of the SMB message to be sent or may be based on other
factors. Large messages may be sent when one credit is requested, according to
embodiments. The CreditsGranted field 320a includes the number of credits granted from
the server/receiver 106 to the client/requester 102. In embodiments, the value of the
CreditsGranted field 320a is greater than zero (0) to allow the client/requester 102 to send
the next SMB Direct message.

[0055] In embodiments, a status field 322 includes at least one flag or value. In an
embodiment, the status field 322 includes one or two values, either status success or status
not supported. The success flag designates that the server/receiver 106 has accepted the
client/requester’s SMB Direct Negotiate Request packet 300. The not supported flag
designates that the server/receiver 106 has rejected the client/requester’s 102 SMB Direct
Negotiate Request packet 300.

[0056] According to embodiments, the PreferredSendSize field 310b may include the
size (possibly in bytes) of the largest SMB Direct Data Transfer packet 338 that the
server/receiver 106 wishes to be able to transmit to the client/requester 102, The
PreferredSendSize field 310b is, in embodiments, smaller than or equal to the
MaxReceiveSize field 312a in the SMB Direct Negotiate Request packet 300. Thus, the
packet size sent by the server/receiver 106 may not be larger than the memory buffer 222a

allotment of the client/requester 102.

15

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0057] In embodiments, the MaxReceiveSize field 312b includes a size (possibly in
bytes) of the largest SMB Direct Data Transfer message that the server/receiver 106 will
accept from the client/requester 102. This value may be equal to the block or
predetermined allocation of the memory buffer 222b that the server/receiver 106 set.
Thus, in embodiments, no SMB2 data transfer will exceed the memory allocation. In
embodiments, this value is greater than or equal to the threshold 128, which is at least the
size of the SMB Direct header in the data transfer packet. The MaxSmb2MessageSize
field 314b may include a size (possibly in bytes) of the largest SMB2 Protocol message
that the server/receiver 106 will accept from the client/requester 102. This value is
predetermined and set by the server/receiver 106. In embodiments, the value in the
MaxSmb2MessageSize field 314b may not be greater than the total size of the memory
buffer 222b. In this way, no SMB message may overflow the memory buffer 222b.
However, the value of the MaxSmb2MessageSize field 314b may be less than the amount
of memory in the memory buffer 222b, as determined by a user, according to an
embodiment.

[0058] An SMB Direct Data Transfer packet 338 is shown in FIG. 3C, in accordance
with embodiments disclosed herein. The SMB Direct Data Transfer packet 338 may be
sent to transfer SMB2 data across the RDMA connection established during the
negotiation. Either the client/requester 102 or the server/receiver 106 may send or receive
the SMB2 data. As such, both the client/requester 102 and the server/receiver 106 are
referred to generally as the receiver and sender. The SMB Direct Data Transfer packet
338 may include one or more of, but is not limited to, the following fields, for example:
CreditsRequested 308c, CreditsGranted 320b, Reserved 306c, RemainingDatal.ength 326,
DataOffset 328, Datal.ength 330, and/or SMB2 Data 332. The SMB Direct Data Transfer
packet 338 may include additional or fewer fields than those shown in FIG. 3C, as
represented by ellipses 334, according to embodiments.

[0059] In embodiments, the CreditsRequested field 308c comprises a value for the
number of send credits that the sender is requesting from the receiver. In embodiments,
the value in the CreditsRequested field 308c is greater than zero (0) to ensure that the
SMB2 data may be sent in a subsequent message. However, the value in the
CreditsRequested field 308c may be any number and may be set based on predicted future
usage, i.e., how many more packets are to complete the transfer of the SMB2 data. The
CreditsGranted field 320b includes the number of credits granted from the sender to the

receiver. In embodiments, the value of the CreditsGranted field 320b can be zero because

16

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

the peer is not obligated to honor a peer’s request for credits. However, the peer can
provide credits in the CreditsGranted field 320b to allow the client/requester 102 to send
the next SMB Direct message. The Reserved field 306¢ is simply a reserved field for
future unknown requirements and is not used by the client, according to embodiments
disclosed herein.

[0060] In embodiments, the RemainingDatal.ength field 326 may include a number of
bytes of a fragmented SMB2 message that the receiver has yet to receive. Thus, any value
other than zero in this field indicates to the receiver that another SMB Direct Data
Transfer packet 338 will be sent with more data. If the SMB Direct Data Transfer packet
338 carries a complete SMB2 message or the last of two or more SMB Direct Data
Transfer packets 338 that carry fragmented SMB2 data, then the value in the
RemainingDatalength field 326 is zero (0), according to embodiments. RDMA is capable
of sending messages sequentially. As such, reassembling messages is simplified because
sequential messages are reassembled in strict order of receipt. Thus, the embodiments
forgo the need for a message identifier in the header or the use of other more complicated
reassembly techniques, for example.

[0061] In an embodiment, the DataOffset field 328 includes a value for the offset, in
bytes, from the beginning of the SMB Direct Data Transfer packet 338 to the first 8-byte
aligned byte of the encapsulated SMB2 Protocol message. In embodiments, if the value of
the DataLength field 330 is zero, then the DataOffset field 328 is also set to zero. If the
value of Datalength is not zero, then the DataOffset field 328 is some value and may be
greater than or equal to 24 bytes, which is the size of the other fields in the header,
according to an embodiment. The Datalength field 330 may include the size, in bytes, of
the encapsulated SMB2 Protocol message in the SMB2 Data field 332. In embodiments,
if the SMB Direct Data Transfer packet 338 does not encapsulate an SMB2 Protocol
message, then the value of the DatalLength field 330 is set to zero. The SMB2 Data field
includes any SMB2 Protocol message, according to embodiments.

[0062] An SMB2 Read/Write Request 340 is shown in FIG. 3D, in accordance with
embodiments disclosed herein. The SMB2 Read/Write Request 340 may be encapsulated
in the SMB Direct Data Transfer packet 338 to perform a direct RDMA read/write. A
direct RDMA read/write sends only unencoded application data. The SMB2 Read/Write
Request 340 may be a SMB2 Read Request if the server 106 is to perform an RDMA write
to the client 102 and a SMB2 Write Request if the server 106 is to perform an RDMA read

from the client 102, according to embodiments of the present disclosure. Regardless, the

17

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

fields in the SMB2 Read/Write Request 340 are similar. It should be noted that the server
106 performs the RDMA transfer that the client 102 requests. The SMB2 Read/Write
Request 340 may include one or more of, but is not limited to, the following fields, for
example: Channel 342, ChannellnfoOffset 346, and ChannellnfoLength 348. In an
embodiment, the fields may include the steering information for completing the RDMA
data transfer. The Reserved field 344 is simply a reserved field for future unknown
requirements and is not used, according to an embodiment. The SMB2 Read/Write
Request 340 may include additional or fewer fields than those shown in FIG. 3D, as
represented by ellipses 351. The fields shown are offered for purposes of illustration and
are not intended to be limiting.

[0063] In embodiments, the Channel field 342 comprises a value for the channel where
the data are to be found. The RDMA connection may include several channels. The
channel information may include information that the peer provides to the RDMA device
to accomplish the transfer, according to embodiments. For example, the channel
information may contain one or more tokens, offsets, and lengths of memory segments,
along with other RDMA -specific information, as shown in FIG. 3E.

[0064] In an embodiment, the ChannellnfoOffset field 346 and the ChannellnfoLength
field 348 are pointers to the offsct, token, and length information in the data packet. The
pointers give the location in the SMB2 read or write request where the information may be
located. In embodiments, the Flags 350 include any information to control or change the
behavior of the RDMA direct data transfer.

[0065] Turning to FIG. 3E, an RDMA channel descriptor 352 is shown, in accordance
with embodiments disclosed herein. The RDMA channel descriptor 352 may be
encapsulated in the SMB Direct request, typically in the channel field 342. The RDMA
channel descriptor 352 may include one or more of, but is not limited to, the following
fields, for example: Offset 354, Token 356, and Length 358. In an embodiment, the fields
are the steering information for completing the RDMA data transfer. The RDMA channel
descriptor 352 may include additional or fewer fields than those shown in FIG. 3E, as
represented by ellipses 360. The fields shown are offered for purposes of illustration. To
complete a direct data transfer, RDMA is directed to the memory with the data that is to be
read or written and the length of the data based on the information in the channel field
342. As the direct data transfer sends only application data, this information helps ensure

a proper transfer.

18

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0066] According to an embodiment, the Offset 354 is the value in bytes or bits where
the data begins. The Offset 354 may be measured from a memory block starting address,
which may be located using information provided in the Token 356. The Length 358 is
the value in bits or bytes of how long the data segment is. This steering information
guides the direct data transfer, for example.

[0067] The interactions of the various software functional modules depicted in FIGS.
2A and 2B are further illustrated in the operational steps 400 depicted in FIGS. 4A-4C for
negotiating an RDMA connection, in accordance with an embodiment disclosed herein.
FIG. 4A shows the representation 400A of the transfers of packets 408 and 424 between a
client 102 and a server 106, according to embodiments of the present disclosure. FIG. 4B
1s in the perspective of the client 102, while FIG. 4C 1s in the perspective of the server
106, according to embodiments of the present disclosure. It should be noted that the
process 400 is described as the client requesting the RDMA connection and the server 106
responding. However, the reverse could be true where the server 106 requests and the
client responds, according to embodiments. Further, the method may be conducted
between multiple clients and/or between multiple servers, for example.

[0068] Turning to FIG. 4B, example operational steps 400B for negotiating a
connection using SMB2 over RDMA are shown in accordance with an embodiment.
Process 400B is initiated at START operation 402B, and process 400B proceeds to the
client pre-posting a receive 404. In embodiments, the RDMA Interface 216a
automatically detects and leverages the RNICs 108a/108b to see that they are available
and properly configured. Next, in an embodiment, the SMB Direct NPI is exposed by the
SMB Direct module 214. The SMB Direct Client 214a may open a handle to the RDMA
Adapter to form an RDMA connection for the SMB2 Client 208. In an embodiment, the
SMB Direct Client 214a then requests an RDMA Connection through the RDMA
Interface 216a. The SMB Direct Client 214a may also create the allocations in the
memory buffer 222a and determine what to request for initial send credits and what will be
allowed for receive credits. The allocations in the memory buffer 222a may be of a
predetermined size, in embodiments. The total amount of memory in the memory buffer
222a may also be determined, according to embodiments.

[0069] Returning to FIG. 4B, the SMB Direct Client 214a may then construct 406 the
SMB Direct Negotiate Request packet 300 to send to the RDMA Interface 216a. The
SMB Direct Negotiate Request packet 300 is as described in FIG. 3A, for example. As
such, the SMB Direct Client 214a sets the fields in the SMB Direct Negotiate Request

19

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

packet 300. Thus, the SMB Direct Client 214a determines the minimum and maximum
versions of SMB Direct that the client 102 may support. The SMB Direct Client 214a
determines the number of credits to request. The number of credits to request may be
based on known future SMB messages that are to be sent, on predicted SMB traffic that
may occur in the future, on historical use of SMB, or by some other method, in
embodiments. The send size is determined by internal functions and speed considerations.
The maximum receive size may be pegged to the size of the memory buffer allotment.
Finally, a maximum SMB message size is determined and set (generally, the maximum
SMB message size is large enough to allow a peer to send large SMB2 packets but not so
large as to use all the memory). This collected information is entered into the SMB Direct
Negotiate Request packet 300, according to embodiments of the present disclosure.

[0070] Next, the SMB Direct Client 214a sends 408B the SMB Direct Negotiate
Request packet 300. In an embodiment, the SMB Direct Client 214a requests the RDMA
Interface 216a to send the SMB Direct Negotiate Request packet 300 by a send operation.
The RDMA Interface 216a communicates with the RDMA Interface 216b and sends the
SMB Direct Negotiate Request packet 300 to the server 106. With the sending of the
SMB Direct Negotiate Request packet 300, the SMB Direct Client 214a begins a
negotiation request expiration timer 410. The negotiation request expiration timer may
have a predetermined value and counts down from the value to zero. The SMB Direct
Client 214a then waits for a response to the SMB Direct Negotiate Request packet 300, If
it is determined 411 that the negotiation request expiration timer expires before receiving a
response to the SMB Direct Negotiate Request packet 300, process 400B proceeds NO to
END operation 432B where the connection is dropped.

[0071] Turning to FIG. 4C at start operation 402C, the server 106 anticipates the SMB
Direct Negotiate Request packet 300 and pre-posts a receive 412, in embodiments. The
SMB2 Server 212b may listen for activity and automatically discover that RDMA is
available and bound on a port of the RNIC 108b, according to embodiments. SMB2
Server 212b opens a listener endpoint and determines that RDMA is available on the
RNIC 108b. Next, SMB2 Server 212b then begins communications with the SMB Direct
Server 214b. The SMB Direct Server 214b may open an RDMA connection and receive
an RDMA Adapter Handle. The SMB Direct Server 214b then requests an RDMA
Connection through the RDMA Interface 216b. The SMB Direct Server 214b may then
accept the RDMA Connection, thereby informing the client 102 that the connection

20

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

request succeeded. This success indication from the RDMA interface 216a triggers the
client to send the negotiate request.

[0072] The SMB Direct Server 214b may also create the allocations in the memory
buffer 222b and determine what to request for initial send credits and what will be allowed
for receive credits, according to embodiments. The allocations in the memory buffer 222b
may be of a predetermined size. The total amount of memory in the memory buffer 222b
may also be determined, according to embodiments of the present disclosure.

[0073] Returning to FIG. 4C, the SMB Direct Server 214b may then start a negotiation
request expiration timer 414. The negotiation request expiration timer at the server 106
may have a predetermined value and counts down from the value to zero, in embodiments.
The SMB Direct Server 214b then waits to receive the SMB Direct Negotiate Request
packet 300. While waiting, the SMB Direct Server 214b monitors the RDMA connection
and determines 416 if the negotiation request expiration timer expires before receiving the
SMB Direct Negotiate Request packet 300. If the negotiation request timer expires,
process 400C proceeds NO to END operation 432C where the connection is dropped.
[0074] However, if the SMB Direct Negotiate Request packet 300 arrives at the RNIC
108b and the RDMA Interface 216b before the expiration of the negotiation request
expiration timer, process 400C proceeds YES to receiving and validating 408C, by the
RDMA Interface 216b, the SMB Direct Negotiate Request packet 300 and placing the
packet in the memory buffer 222b. Next, the SMB Direct Server 214b is informed of the
data and determines if the SMB Direct Negotiate Request packet 300 is valid 418.

[0075] In embodiments, to validate the SMB Direct Negotiate Request packet 300, the
SMB Direct Server 214b reads the data from the SMB Direct Negotiate Request packet
300 and determines the following, for example: if the value of the MaxVersion field 304 is
less than the value of the MinVersion field 302 or if no value in the range is supported; if
the value of the CreditsRequested field 308 is zero; if the value of the MaxReceiveSize
field 312 is less than a predetermined threshold (e.g., 128 bytes); or, if the value of the
MaxSmb2MessageSize field 314 is less than a predetermined threshold. If any of the
above are true, then the SMB Direct Negotiate Request packet 300 is not valid, and
process 400C proceeds NO to END operation 432C, where SMB Direct Server 214b
disconnects. If all of the checks are not true, then process 400C proceeds YES to process
SMB Direct Response 420, in which the SMB Direct Negotiate Request packet 300 is sent
to the SMB Direct Client 214a by the SMB Direct Server 214b.

21

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0076] In processing the SMB Direct Negotiate Request packet 300, the SMB Direct
Server 214b sets the setting ProtocolVersion to equal the maximum protocol version
shared by the client 102 and the server 106, in embodiments. The SMB Direct Server
214b also determines how many credits to grant. The number of credits to grant depends,
in embodiments, on the available space in the memory buffer 222b or other factors. After
making these determinations, the SMB Direct Server 214b generates 422 the SMB Direct
Negotiate Response packet 336. In an embodiment, the SMB Direct Server 214b sets the
fields in the SMB Direct Negotiate Response packet 336. For example, the
PreferredVersion field is set to the value in the setting ProtocolVersion. The
CreditsGranted320a is set to the number of credits determined by the SMB Direct Server
214b, according to an embodiment. The other fields are filled in a similar fashion to the
SMB Direct Negotiate Request packet 300. The SMB Direct Negotiate Response packet
336 is then sent 424C to the client. In embodiments, the SMB Direct Server 214b sends
the SMB Direct Negotiate Response packet 336 to the RDMA Interface 216b to send.
[0077] Returning to FIG. 4B, the SMB Direct client 214a may, according to
embodiments, determine 411 if the response was received before expiration of the
negotiate expiration timer. If the response was received before expiration of the timer,
process 400B proceeds YES to validate 424B the SMB Direct Negotiate Response packet
336. The RDMA Interface 216a receives the message into the memory buffer 222a. The
SMB Direct Client 214a reads the SMB Direct Negotiate Response packet 336 and then
validates the message. To validate the SMB Direct Negotiate Response packet 336, the
SMB Direct Client 214a determines 428 the following, for example: if the Status field 322
is not STATUS SUCCESS,; if the PreferredVersion field 318 does not contain a value that
is within the range specified by the MinVersion field 302 and MaxVersion field 304 of the
client’s SMB Direct Negotiate Request packet 300; if the CreditsRequested field 308b is
zero; if the CreditsGranted field 320a is zero; if the PreferredSendSize field 310b is
greater than the value specified by the MaxReceiveSize field 312 of the client’s SMB
Direct Negotiate Request packet 330; or if the MaxReceiveSize field 312b is less than a
predetermined threshold (e.g., 128 bytes), according to embodiments of the present
disclosure. If any of the above are true, then the SMB Direct Negotiate Response packet
336 is not valid, and process 400B proceeds NO to END operation 432B, in which the
SMB Direct Client 214a disconnects. If all of the checks are not true, then process 400B
proceeds YES to process SMB Direct Response 430, in which the SMB Direct Negotiate

22

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

Response packet 336 is processed by the SMB Direct Client 214a, according to
embodiments disclosed herein.

[0078] In processing the SMB Direct Negotiate Response packet 336, the SMB Direct
Client 214a completes the following, in embodiments, for example: sets the connection’s
PeerTargetSendCreditsCount setting in the settings 226 equal to the CreditsRequested
field 308b; sets the connection’s SendCreditsCount setting in the SMB Direct connection
properties equal to the CreditsGranted field 320a; sets the connection’s MaxSendSize
setting in the settings 226 equal to the MaxReceiveSize field 312b; sets the connection’s
ReceiveSize setting in the settings 226 equal to the PreferredSendSize field 310b; sets the
connection’s MaxOutboundFragmentedMessageSize setting in the settings 226 equal to
the MaxReceiveSize field 312b; and sets the connection’s Idle Connection timer to expire
in a predetermined amount of time (e.g., a few hours, a few minutes, ctc.) and starts the
timer. Once the above steps have been performed, the RDMA connection negotiation has
completed, and the client 102 and server 106 may begin exchanging SMB Direct Data
Transfer packets. Process 400B then terminates at END operation 432B.

[0079] The interactions of the various software functional modules depicted in FIGS.
2A and 2B are further illustrated in the operational steps 500 depicted in FIGS. 5A-5D for
exchanging SMB2 data over the established RDMA connection, in accordance with an
embodiment disclosed herein. In request and response communications, SMB2 data are
transmitted between the client 102 and the server 106 over the established SMB Direct
connection by encapsulating the SMB2 data as the data payload of a SMB Direct Data
Transfer packet 338, according to embodiments of the present disclosure. Request and
response communications may be used for control channel communications, the exchange
of file metadata, or for other processes, for example. FIG. SA shows a representation
500A of the transfer of packets 516/518, 530, 532, and 546 between a client(s) 102 and a
server(s) 106, according to embodiments of the present disclosure. FIGS. 5B and 5C are
in the perspective of the client 102, while FIG. 5D is in the perspective of the server 106.
It should be noted that the process 500 is described as the client sending SMB?2 data to the
server 106 either independently or in response to a request from the server. However, the
reverse could be true where the server 106 responds to a request and sends data back to the
client 102. Thus, the processes described herein apply where the server sends requests and
requires credits, in embodiments. Further, the method may be conducted between multiple

clients or between multiple servers, for example.

23

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0080] Turning to FIG. 5B, example operational steps 500B for exchanging data using
SMB2 over RDMA are illustrated in accordance with embodiments disclosed herein. Start
operation 502 is initiated, and process 500B proceeds to the client 102 establishing an
RDMA connection 504. Establishing an RDMA connection may be as described with
respect to FIGS. 4A-4C, according to embodiments of the present disclosure. In an
embodiment, the SMB Direct Client 214a sets several connection properties including
setting the MaxSendSize setting equal to the MaxReceiveSize field 312b, setting the
connection’s ReceiveSize setting equal to the PreferredSendSize field 310b, and setting
the connection’s MaxOutboundFragmentedMessageSize setting in the settings 226 equal
to the MaxReceiveSize field 312b. In this way, the client 102 has established the size of
packets that may be sent to the server 106, according to embodiments.

[0081] Returning to FIG. 5B, the SMB Direct Client 214a may determine the number of
SMB Direct Data Transfer packets that are needed to transport an SMB2 message to the
server 106, according to embodiments. To make the determination, the SMB Direct Client
214a may first retrieve the MaxSendSize (designated as R) as set during the negotiation.
The SMB Direct Client 214a may then determine the size of the SMB2 protocol
message(s) that is to be sent; this value is set as “S” in embodiments. The SMB Direct
Client 214a also determines the number of bytes (designated as P, in embodiments)
consumed by the SMB Direct Data Transfer packet 338 header and the padding (e.g., the
DataOffset 328, etc.) for the SMB Direct Data Transfer packet 338 payload to begin on an
8-byte-aligned boundary. In embodiments, the SMB Direct Client 214a then determines if
S is less than or equal to (R — P), and, if so, may determine the number of packets by
dividing S by (R-P), according to embodiments.

[0082] Process S00B then proceeds to determining, by the SMB Direct Client 214a, if
fragmentation is used 510. In an embodiment, fragmentation is used when the SMB2
protocol message does not “fit” into a single SMB Direct Data Transfer packet 338. In
other words, is S greater than (R — P)? If fragmentation is not to be used, process S00B
proceeds NO to send one SMB Direct Data Transfer Packet 518B. On the other hand, if
fragmentation is used, process 500B proceeds YES to initialize transmission buffer bytes
512

[0083] Returning to step 518, an SMB2 protocol message may be transmitted without
fragmentation, according to embodiments. A portion of the memory buffer 222a, used for
transmitting packets, is initialized. In embodiments, the first P bytes are initialized to set

the header information for the SMB Direct Data Transfer packet 338 and to add zeroed

24

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

padding bytes to ensure that the SMB2 payload is 8-byte aligned. Thus, in the buffer, the
DataOffset field 328 is set to P, the Datal.ength field 330 is set to S, and
RemainingDatalength field 326 is set to zero (0), according to embodiments. Information
about, or requests for, credits are stored in the CreditsRequested field 308c or the
CreditsGranted field 320b. Thus, the client 102 may request or grant more credits in the
SMB Direct Data Transfer packet 338. In embodiments, the sender of an SMB Direct
Data Transfer packet must set the CreditsRequested field to at least one (1). The next S
bytes are initialized in the memory buffer 222a, and the SMB2 protocol message is stored
in the SMB2 data field 332. After the SMB Direct Data Transfer packet 338 is assembled,
the SMB Direct Client 214a sends 518B the packet to the RDMA Interface 216a to send
through the RDMA connection to the server 106. Process 500B then proceeds through
page connector B 522 to END operation 548C, and process 500B terminates.

[0084] Returning to step 512, where S is greater than (R — P), the SMB2 protocol
message is divided into two or more portions, according to embodiments. The portions
are then sequenced to be sent in a series of RDMA Send operations, each of which carries
a portion (called a fragment) of the SMB2 protocol message. To divide the SMB2
protocol message into fragments, the size of the first payload is set to X, which is equal to
or less than (R — P). X represents the number of bytes of the SMB2 protocol message that
will be transmitted by at least the first RDMA Send operation, according to an
embodiment. As with step 518B, a portion of the memory buffer 222a, used for
transmitting packets, is initialized. In embodiments, the first P bytes are initialized to set
the header information for the SMB Direct Data Transfer packet 338 plus the padding
bytes. Next, the DataOffset field 328 is set to P, the Datal.ength field 330 is set to X, and
the RemainingDatal.ength field 326 is set to (S — X) 514. The RemainingDatal.ength field
326 indicates, in embodiments, how many bytes of the SMB2 protocol message remain to
be transmitted. In embodiments, when the last fragment of the SMB2 protocol message is
transmitted, (S — X) will be zero (0) In the last packet, the RemainingDatal.ength field
326 is then set to zero, which indicates that the SMB Direct Data Transfer packet 338
carries the last fragment of the SMB2 protocol message. Information about, or requests
for, credits are stored in the CreditsRequested ficld 308¢ or the CreditsGranted ficld 320b.
Thus, in embodiments, the client 102 requests or grants more credits in the SMB Direct
Data Transfer packet 338. The next X bytes of the memory buffer 222a are then
initialized. The fragment of the SMB2 protocol message may then be stored in the SMB2

data field 332, according to embodiments disclosed herein.

25

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

[0085] After assembling the SMB Direct Data Transfer packet 338 with the first
untransmitted X bytes of the SMB2 protocol message, the SMB Direct Data Transfer
packet 338 is sent 516B to the server. The SMB Direct Client 214a sends 516B the SMB
Direct Data Transfer packet 338 to the RDMA Interface 216a to send through the RDMA
connection to the server 106, in embodiments. Process 500B then proceeds through page
connector A 520 to optional step 526, in which the SMB Direct Client 214a determines
526 if another SMB Direct Data Transfer packet 338 containing another fragment is to be
sent. Thus, in embodiments, the SMB Direct Client 214a determines if, after sending the
last packet, (S — X) is 0. If (S — X) is O or less than zero, meaning the last fragment was
sent in the last SMB Direct Data Transfer packet 338, process 500B proceeds NO to END
operation 548C, and process 500B terminates. However, if (S — X} is greater than 0, then
process 500B proceeds YES to determine if enough send credits exist 528. In
embodiments, step 526 may be optional (as shown) because the SMB Direct Data Transfer
packets 338 transporting the fragments may be pre-staged in the memory buffer 222a and
sent sequentially, When the buffer 222a is empty, process 500B terminates. There is then
no need to determine if a next packet is to be sent. It should be noted that when an SMB2
protocol message is fragmented, the RDMA Send operations that carry the fragments are
sent sequentially and monotonically, and may not be interrupted by other RDMA Send
operations that are unrelated to the fragmented SMB2 protocol message, according to
embodiments. The RDMA transport ordering, at the receiver, will preserve the
sequencing of the fragments, such that the receiving peer may reconstruct the original
message, according to an embodiment.

[0086] Returning to step 528, the SMB Direct Client 214a determines 528 if there are
enough send credits to send the next fragment. Essentially, the SMB Direct Client 214a
determines if there is one send credit left. If there is a send credit, process 500B proceeds
YES through page connector C 524 to step 512. In embodiments, RDMA transports have
a receive buffer pre-posted by the receiver before the sender may send a packet. This rule
requires coordination between the sender and receiver to ensure that senders do not
attempt to send a packet before the receiver has pre-posted a receive. SMB Direct uses a
system of Send Credits to achieve the desired coordination, according to embodiments of
the present disclosure.

[0087] In an embodiment, a send credit granted from a server 106 or client 102
represents a single pre-posted receive on the server 106 or client 102. The peer is entitled

to perform one RDMA Send operation with one send credit. The client 102 may also

26

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

provide information to the server 106 about how many send credits the client 102 needs to
efficiently support its workload by setting the CreditsRequested field 308c¢ or in the form
of a separate Send Credit Request (which is not to be sent in the middle of a set of SMB
Direct Data Transfer packets 338 transporting fragmented SMB2 data, according to an
embodiment). Send credits are granted in the CreditsGranted field 320b of the SMB
Direct Data Transfer packet 338. Thus, the SMB Direct Client 214a may request more
send credits by setting the value in the CreditsRequest field 308c to a higher number
(possibly covering all the future fragmented packets). The SMB Direct Client 214a may
then wait 530C to receive send credits by awaiting a SMB Direct Data Transfer packet
338, sent from the server 106, which has no data but includes send credits in the
CreditsGranted field 320b of the SMB Direct Data Transfer packet 338, according to an
embodiment. The SMB Direct Client 214a may determine at query 532C if credits are
received by setting a SendCreditsGrantedTimer in the timers 224a. If the
SendCreditsGranted Timer expires 547 before credits are granted, process S00B proceeds
YES to fail, or terminate, the transmission operation, and process 500B then terminates at
END operation 548C. However, if credits are granted 532C, process 500B proceeds YES
through page connector C 524 to step 512. According to an embodiment, if no timer is set
and/or the timer has not expired 547, process 500B proceeds NO and does not fail, or
terminate, the transmission operation but, instead, continues to wait 530C to receive send
credits.

[0088] Turning to FIG. 5D and start operation 502D for process 500D, at the server 106,
the SMB Direct Data Transfer packet 338 is received 516D. In an embodiment, the
RDMA Interface 216b receives the SMB Direct Data Transfer packet 338 and sends it to
the SMB Direct Server 214b. First, the SMB Direct Server 214b reads the header
information. The SMB Direct Server 214b proceeds to query 536 to determine if the
RemainingDatalength field 326 is something other than zero. If the
RemainingDatalength field 326 is zero, then the SMB Direct Data Transfer packet 338 is
the only packet, and process 500D proceeds NO to process SMB packet data 544 where
the SMB Direct Server 214b processes the packet data and sends the SMB2 protocol
message to SMB2 Server 212b, in an embodiment. If the RemainingDatalength field 326
is something other than zero, process 500D proceeds YES to allocate reassembly buffer
538.

[0089] In step 538, the SMB Direct Server 214b allocates a portion of the memory
buffer 222b to reassemble the SMB2 protocol message in the buffer 222b, in an

27

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

embodiment. Thus, the SMB Direct Server 214b may allocate enough blocks in the
memory buffer 222b to accept the data in the current SMB Direct Data Transfer packet
338 and in the upcoming SMB Direct Data Transfer packets 338, which is based on the
DataLength field 330 value plus the RemainingDatal.ength field 326 value. The SMB
Direct Server 214b may then read the SMB2 data from the SMB2 data field 332 and copy
the data into the allocated buffer 540, according to embodiments of the present disclosure.
[0090] Next, an embodiment provides for the SMB Direct Server 214b to wait and
receive 546D the next SMB Direct Data Transfer packets 338. The data in the SMB2 data
field 332 is also copied into the next portion of the memory buffer 222b, in an
embodiment. In an alternative embodiment, the SMB Direct Server 214b may optionally
determine if this next SMB Direct Data Transfer packet 338 is the last packet containing
fragmented data 542. To make the determination, the SMB Direct Server 214b checks if
the RemainingDatalength field 326 is zero. If the RemainingDatal.ength field 326 is
zero, the SMB Direct Server 214b understands that no more packets will be received, and
process 500D proceeds YES to process the SMB2 protocol message 544 from the memory
buffer 222b. Process 500D then terminates at END operation 548D. On the other hand, if
the RemainingDatalLength field 326 is something other than zero, the SMB Direct Server
214b understands that another packet(s) will be received, and process 500D proceeds NO
to receive 546D the next SMB Direct Data Transfer packet 338, according to an
embodiment.

[0091] The interactions of the various software functional modules depicted in FIGS.
2A and 2B are further illustrated in the operational steps 600 depicted in FIG. 6 for
performing an RDMA Direct Data Transfer in accordance with an embodiment disclosed
herein. FIG. 6 shows the representation of the data transfer between a client 102 and a
server 106, according to embodiments of the present disclosure.

[0092] As shown in FIG. 6, process 600 is initiated at start operation 602, and the
SMB2 Client 208 creates 604 an SMB2 read/write request 340. An application 220 can
request data to be transferred to the server 106 or read from the server 106. The data
transfer may be directed by the SMB2 Client 208 to employ an RDMA direct data
transfer, such that the SMB2 server 106 uniquely performs the actual RDMA request, in
accordance with embodiments of the present disclosure. To begin the transfer, the SMB2
Client 208 registers the target memory buffers to provide or receive unencoded application
data, and then generates an SMB read/write command that is to be sent and conducted

over RDMA. The command may be included in the SMB2 read/write request 340 and

28

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

sent to the SMB Direct Client 214a, which encapsulates 606 the SMB2 read/write request
340 in a SMB Direct Data Transfer packet. In embodiments, the SMB2 read/write request
340 is stored in the SMB2 Data field 332 in the SMB Direct Data Transfer packet. The
SMB Direct Data Transfer packet may then be sent 608 over the RDMA interface 216 to
the server 106. In an embodiment, the server 106 receives the SMB Direct Data Transfer
packet and reads the SMB2 read/write request 340 from the SMB2 Data field 332. The
SMB Direct Server 214b may then read the data from the SMB2 read/write request 340,
including the channel 342, ChannellnfoOffset 346, and the Channellnfol.ength 348. This
information may direct the SMB Direct Server 214b to the steering information 610 in the
RDMA Channel Descriptor 352. From the steering information, the SMB Direct Server
214b may start the direct data transfer by sending or retrieving 612 unencoded application
data to or from a memory location in a buffer of the client 102. Process 600 then
terminates at END operation 614.

[0093] FIGS. 4A-4C, 5A-5D, and 6 illustrate example operational characteristics for
negotiating a communication using a file access protocol over RDMA and exchanging
data using a file access protocol over RDMA, respectively, in accordance with
embodiments disclosed herein. In embodiments, operational steps depicted may be
combined into other steps and/or rearranged. Further, fewer or additional steps may be
used, for example.

[0094] In general, credits are an advantage to the present embodiments. A send credit
represents a buffer that has been pre-posted to receive incoming data on a peer. As such, a
send credit represents limited receiver resources (memory, memory regions, etc.) that have
been committed to the peer so that the peer may use them to transmit data. Due to the
nature of RDMA, a receive, once-posted, may not be canceled, in embodiments. For the
resources that are associated with the receive to be released, the resources are used to
service an incoming send. This poses a possible problem in embodiments if the receiving
peer starts to run low on resources and wants to reclaim some of the resources it has
dedicated to outstanding receives. Since receives may not be cancelled according to
embodiments disclosed herein, reclaiming these resources relies on the cooperation of the
peer.

[0095] A solution to this issue in SMB Direct is referred to as the Send Credit
Revocation, according to an embodiment. An SMB Direct Data Transfer packet that is
transmitted to the peer has a CreditsGranted field that specifies how many additional send

credits have been granted to the peer. In alternative embodiments, by setting a

29

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

CreditRevocation flag (not shown) in the SMB Direct Data Transfer packet 338, the
meaning of the CreditsGranted field 320b changes to be the number of Send Credits that
the peer may keep. For example, if the CreditRevocation flag were set and the value of
CreditsGranted field 320b is ten (10) then ten (10) is the number of credits the receiver
may retain. If the receiver currently holds more than ten (10) Send Credits, then the
receiver performs a series of RDMA Send operations to use up the revoked Send Credits
so that the receiver ends up with ten (10) or fewer Send Credits. The send operations that
are performed to use up revoked Send Credits may include sending an empty SMB Direct
Data Transfer packet 338 (a packet with no data payload). Upon receiving the incoming
empty SMB Direct Data Transfer packets 338, the peer that revoked the Send Credits may
release these resources or reuse them as it sees fit, according to embodiments.

[0096] While Send Credits allow two peers to synchronize their Send and Receive
operations, the peers, in embodiments, attempt to avoid send credit deadlocks. Imagine a
scenario in which Peer Y has a single Send Credit from peer X and where peer X has a
single Send Credit from peer Y. In this scenario, each peer is entitled to perform a single
send to its peer at any time. Imagine that both X and Y simultaneously perform a Send
operation, using their single Send Credit in the process, but the SMB Direct Data Transfer
packet 338 that is transmitted by both peers grants no additional Send Credits to the peer.
The resulting state is known as a Send Credit deadlock. Both X and Y have used their last
Send Credit. To be able to send additional packets to the peer, each peer needs additional
Send Credits. However, Send Credits are granted via SMB Direct Data Transfer packets
338, and neither peer may perform any further send operations. The result is that neither
peer may transmit any additional packets, and there is no mechanism by which they may
acquire further send credits. A deadlock has therefore occurred.

[0097] A solution to this issue is simply a rule, according to embodiments of the present
disclosure. When an SMB Direct peer uses its last Send Credit, the SMB Direct Data
Transfer packet 338 that is being sent grants at least one (1) additional send credit to the
peer, according to an embodiment. If both peers follow this rule, the deadlock does not
occur because each peer will always be able to respond to the other with a grant of
additional Send Credits.

[0098] Finally, FIG. 7 illustrates an example computing system 700 upon which
embodiments disclosed herein may be implemented. A computer system 700, such as
client/application server 102 or file server 106, for example, which has at least one

processor 702 for exchanging message data as shown herein, is depicted in accordance

30

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

with embodiments disclosed herein. The system 700 has a memory 704 comprising, for
example, system memory, volatile memory, and non-volatile memory. In its most basic
configuration, computing system 700 is illustrated in FIG. 7 by dashed line 706.
Additionally, system 700 may also include additional storage (removable and/or non-
removable) including, but not limited to, magnetic or optical disks or tape. Such
additional storage is illustrated in FIG. 7 by removable storage 708 and non-removable
storage 710.

[0099] The term computer readable media as used herein may include computer storage
media. Computer storage media may include volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information,
such as computer readable instructions, data structures, program modules, or other data.
System memory 704, removable storage 708, and non-removable storage 710 are all
computer storage media examples (i.e., memory storage.) Computer storage media may
include, but is not limited to, RAM, ROM, electrically erasable read-only memory
(EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which may be used to store
information and which may be accessed by computing system 700. Any such computer
storage media may be part of system 700. The illustration in FIG. 7 is intended in no way
to limit the scope of the present disclosure.

[00100] The term computer readable media as used herein may also include
communication media. Communication media may be embodied by computer readable
instructions, data structures, program modules, or other data in a modulated data signal,
such as a carrier wave or other transport mechanism, and includes any information
delivery media. The term “modulated data signal” may describe a signal that has one or
more characteristics set or changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communication media may include wired
media such as a wired network or direct-wired connection, and wireless media such as
acoustic, radio frequency (RF), infrared, and other wireless media.

[00101] System 700 may also contain communications connection(s) 716 that allow the
device to communicate with other devices. Additionally, system 700 may have input
device(s) 714 such as a keyboard, mouse, pen, voice input device, touch input device, etc.

Output device(s) 712 such as a display, speakers, printer, etc. may also be included. All of

31

10

15

20

25

WO 2013/002980 PCT/US2012/041049

these devices are well known in the art and need not be discussed at length here. The
aforementioned devices are examples and others may be used.

[00102] Having described embodiments of the present disclosure with reference to the
figures above, it should be appreciated that numerous modifications may be made to the
embodiments that will readily suggest themselves to those skilled in the art and which are
encompassed within the scope and spirit of the present disclosure and as defined in the
appended claims. Indeed, while embodiments have been described for purposes of this
disclosure, various changes and modifications may be made which are well within the
scope of the present disclosure.

[00103] Similarly, although this disclosure has used language specific to structural
features, methodological acts, and computer-readable media containing such acts, it is to
be understood that the subject matter defined in the appended claims is not necessarily
limited to the specific structure, acts, features, or media described herein. For example,
while specific names or naming conventions have been used in describing aspects of the
embodiments, such as names for APIs, routines, etc., numerous modifications may be
made to such names and/or naming conventions which are encompassed within the spirit
and scope of the present disclosure. The specific structures, features, acts, names, naming
conventions, and/or media described above are disclosed as example forms of
implementing the claims. Aspects of embodiments allow for multiple client/application
servers, multiple file servers, multiple networks, multiple connection peers, etc. Or, in
other embodiments, a single client computer with a single server and a single network are
used. One skilled in the art will recognize other embodiments or improvements that are
within the scope and spirit of the present disclosure. Therefore, the specific structure, acts,
or media are disclosed as example embodiments of implementing the present disclosure.

The disclosure is defined by the appended claims.

32

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

CLAIMS
1. A computer readable storage medium storing computer-executable instructions that
when executed by a processor perform a method for exchanging data using data operations
over remote direct memory access (RDMA), the method comprising:
establishing a connection with a server;
negotiating a connection with the server, wherein the negotiation establishes a
maximum number of bytes the server will receive in the connection;
determining a number of packets to send data associated with the connection to the
Server;
determining if fragmentation of the data is to be used;
if fragmentation of the data is not to be used, sending a first protocol packet to the
server with the data;
if fragmentation of the data is to be used, initializing first bytes within a
transmission buffer to send as data in the first protocol packet;
setting a Datal.ength field and a RemainingDatal.ength field in the first protocol
packet;
sending the first protocol packet to the server;
for at least a second protocol packet, instructions to repeat, comprising:
initializing bytes within the transmission buffer to send as data in the at
least a second protocol packet;
setting the RemainingDatal.ength field in the at least a second protocol
packet; and
sending the at least a second protocol packet to the server.
2, The computer readable storage medium of claim 1, wherein the determining if
fragmentation is to be used comprises determining if the number of packets to send the
data is greater than one.
3. The computer readable storage medium of claim 2, wherein the determining a
number of packets to send data associated with the connection to the server comprises
determining if the maximum number of bytes the server will receive in the connection is
less than a number of bytes of data to be sent.
4. The computer readable storage medium of claim 1, wherein negotiating the
connection with the server comprises:
pre-posting a receive;

constructing a protocol negotiate request;

33

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

sending the protocol negotiate request to the server;
setting a negotiate expiration timer;
determining if a response to the protocol negotiate request is received before the
negotiate expiration timer expires;
if a response to the protocol negotiate request is not received before the negotiate
expiration timer expires, resending the protocol negotiate response;
if a response to the protocol negotiate request is received before the negotiate
expiration timer expires, receiving a protocol negotiate response;
validating the protocol negotiate response; and
processing the protocol negotiate response, wherein the protocol negotiate
response provides at least one credit to the sender to send the protocol packet.
5. The computer readable storage medium of claim 4, further comprising:
if enough credits exist for sending the at least a second protocol packet, sending the
at least a second protocol packet;
if enough credits do not exist to send the at least a second protocol packet,
requesting at least one more credit from the server;
determining if enough credits are received;
if enough credits are not received, terminating the connection; and
if enough credits are received, sending the at least a second protocol packet.
6. A system configured to exchange data using server message block (SMB/SMB2)
over remote direct memory access (RDMA), the system comprising:
a RDMA network interface card (RNIC) operable to transfer data by a RDMA
message;
memory operable to store computer program instructions executable by a
processor; and
the processor, in communication with the RNIC and the memory, operable to
execute a kernel, the kernel comprising:
a first protocol client operable to:
communicate SMB data in one or more RDMA messages; and
create a receive buffer to exchange credits, wherein the credits
determine a number of messages that a sender may send to a receiver.
7. The system of claim 6, further comprising an RDMA Interface in communication
with the first protocol client, the RDMA Interface operable to open an RDMA connection
through the RNIC.

34

10

15

20

25

30

WO 2013/002980 PCT/US2012/041049

8. The system of claim 7, further comprising:
a second protocol client operable to:
create an SMB2 read/write request to instruct a server to perform an
RDMA direct data transfer;
send the SMB2 read/write request to the first protocol client; and
wherein the first protocol client is further operable to:
encapsulate the SMB2 read/write request in a first protocol Data Transfer
packet; and
send the first protocol Data Transfer packet to the server.
9. The system of claim 8, wherein the SMB2 read/write request includes fields that
identify RDMA channel descriptor information, and wherein the first protocol is the SMB
Direct protocol.
10. The system of claim 9, wherein the RDMA channel descriptor information
includes steering information, and wherein the server determines the steering information
and performs an RDMA write or an RDMA read of unencoded application data to or from
memory addresses identified by the steering information.
11. A computer-implemented method for establishing a connection that exchanges data
using server message block (SMB/SMB2) over remote direct memory access (RDMA),
the method comprising:
receiving a first SMB Direct Data Transfer packet, wherein the first SMB Direct
Data Transfer packet comprises a RemainingDatal.ength ficld and SMB2 data;
determining if the RemainingDatal.ength field is non-zero;
if the RemainingDatalength field is zero, processing the SMB2 data in the first
SMB Direct Data Transfer packet;
if the RemainingDataLength field is non-zero, allocating a reassembly buffer to the
connection;
copying the SMB2 data from the first SMB Direct Data Transfer packet into the
reassembly buffer;
receiving at least one other SMB Direct Data Transfer packet; and
copying the SMB2 data from the at least one other SMB Direct Data Transfer
packet into the reassembly buffer.
12. The method of claim 11, wherein the SMB Direct Data Transfer packet comprises
one or more ficlds from the group consisting of: CreditsRequested, CreditsGranted,

DataOffset, and DatalLength.

35

10

WO 2013/002980 PCT/US2012/041049

13. The method of claim 12, wherein the CreditsGranted field delineates how many
credits were provided to a sender of the SMB Direct Data Transfer packet.
14. The method of claim 11, wherein a credit is a value for the number of RDMA
messages that may be sent by the sender.
15. The method of claim 11, further comprising:

determining if the at least one other SMB Direct Data Transfer packet is a last
packet;

if the at least one other SMB Direct Data Transfer packet is the last packet,
processing the SMB2 data in the reassembly buffer;

if the at least one other SMB Direct Data Transfer packet is not the last packet,
repeating receiving at least one other SMB Direct Data Transfer packet and copying the
SMB2 data from the at least one other SMB Direct Data Transfer packet into the

reassembly buffer.

36

PCT/US2012/041049

WO 2013/002980

1/16

10ss820.1d

!

Alowas

[

!

OIN YINaS

JIQN_‘_‘

Jlno:

JanIeg 9|14

™ ceor

ol

vOl

mNZ‘Iﬂ

mo‘_‘lﬂ

|_{ 1o0sse001d

!

|_{ Aowspy

l

coor $

» OIN YINAS

Janeg
uoneolddyausi)

e

™ o

WO 2013/002980

2/16

102

PCT/US2012/041049

202a K
204 _L

2081
214ak

21631

Client/Application Server

Kernel

N Win32 File APl fe—
!

T SMB2Client |e
!

1N SMB Direct Client j&—
!

TN RDMA Interface |€—

User
Application
Memory
Buffer
—> Timers
) Settings

)‘ 220
)‘ 222a
)‘ 224a
)‘ 226a

Fig. 2A

WO 2013/002980 PCT/US2012/041049

3/16

106\

202b
k File Server
2060 Y | Kemel | 5292
T~ I/O Manager <> NTFS "
212bl i)_222b
T~ SMB2 Server <> Memory 14
Buffer
214b _L i)_224b
T~ SMB Direct Server > Timers d
e ! -
~~ RDMA Interface <> o
Settings
v

Fig. 2B

PCT/US2012/041049

WO 2013/002980

4/16

ve 614

9lLE
pslsenbay
az|gabessapzqwsxe | ezigeanieoeyxe | szispusgpallsiald SIPOID panIasay | uoisiapxe | uoisispAuIn
145> N_‘m\ orm\ wom\ ©omx y0¢g Rmom\

00¢ x

PCT/US2012/041049

WO 2013/002980

5/16

9ee

445

g¢ 'b14

8z159besSSONZqUISXEA

az1S0oM000YXe\ | 8ZISPUSgpBlIBiBld | smels | pejuels sipel)

arvlLe qzLe \

qolLe \ 443 \\ S{074 \

palsenbaysipaln

pPoAISSDY

uoIsIsApalIs)ald

UOISISAXE

UOISJOAUIN

g80¢ \ qo0¢€ \ 8LE \ avoe \ qcoe \

PCT/US2012/041049

WO 2013/002980

6/16

8¢E

o¢ ‘b4
1259
eleq Z4dINS yibueeleq | 1esuoeieq | yibusgereqgbuluiewsy | pealesay MM_HMM_% vﬂmmmwwm
A% 0] % 8C¢ \ 9ce \ 090¢ K q0¢¢e \ 980¢ \

PCT/US2012/041049

WO 2013/002980

7116

1GE

3¢ "bi4
09¢
)) yibue usyo| 1940
wmmt\ ommu\ vmm\
aeg ‘614
(s)Be|4 yibueojujpuuey) 18syQou|Buuey) | pantesay | jeuueyn

0S¢ K 8v¢ R

ope N 4% x re \

™ L.

™

WO 2013/002980 PCT/US2012/041049

8/16

o)
>
o by S
%)
) < <
gl 3 -
=l
LL

400A 1‘
Clllent
|
|
|
|
|
|
|
|
l¢
|
|
|
|
|

WO 2013/002980 PCT/US2012/041049

9/16

400B 4028
[N

404 _| Pre-post a
Receive

A 4
406 Construct SMB Direct Negotiate Request

A 4
4088 | Send SMB Direct Negotiate Request

|

410 Set Negotiate Expiration Timer

411 no

Response Received
Before Timer

Expired?

424B | Validate SMB Direct Negotiate
Response

no

428 Is Response

Valid?

430 “\
Process SMB Direct Negotiate Response

432B

End

Fig. 4B

WO 2013/002980 PCT/US2012/041049

Md= Set Negotiation Request Expiration Timer

416 Negotiation Request no
Received Before

Timer Expired?

408C K
Validate SMB Direct Negotiate Request

no
418 Is Request Valid?

420
k Process SMB Direct Negotiate Response

|

422 K
Generate SMB Direct Negotiate Response

'

424C j\
Send SMB Direct Negotiate Response

432C

End

Fig. 4C

PCT/US2012/041049

WO 2013/002980

11/16

Vs "Bid

']
_ _
_ _
€ m
| 814 _
_ _
_ _
| N
r 265 |
_ _
_ _
_ _
_ _
"A 0€s |_
_ _
_ _
_ _
_ _
|« |
_ 81G/91G _

L®>“®w HCO___O

™ v

WO 2013/002980

12/16

504 —\
Establish Connection

510

512—\

PCT/US2012/041049

/ 500B

no

Fragmentation?

518B

—>

Initialize Transmission

Buffer Bytes

514—\

Set DatalLength and
RemainingDatalength Fields

C]L
524

516B —\

Send Packet from Buffer

520@

Fig. 5B

Send One SMB
Direct Data
Transfer Packet

522 v

WO 2013/002980

500B ‘Q‘

~
526 _ ~5oes Another Packet ~

PCT/US2012/041049

13/16

520 522 7 | B I

-
- S

- no
~ _ Need to be Sent? -~ i
~ Vg
~ ~
~ ~”~
~ -~

yes

-
~
- ~

-~
yes -~ EnoughSend > {528

AL_(_/
S - Credits Exist? _ ~
~ ~ _ — -
no
530C “_ v_
L Wait :4—
532C lﬁ
H\ -
7 ~
es 7 e ~N
< y P Credits ~
~ ~ Received? P s
~ 7
N 7
547 I no
AN
< ~ ~ no
/ / - - ,?\ \
~ Timer Expired” P
~ 7
~ rd
N 7
yes
End
548C

Fig. 5C

WO 2013/002980 PCT/US2012/041049

14/16

/ 500D
-

Receive First SMB Direct Data Transfer Packet

516D

Is no
RemainingDatalength

Field Non-Zero?

536

— e e e e ey e - e— — —

544
/V\ Y
542 -~ g o~ yes P SMB
A rocess
L/\ \Last Packet” _ > Packet Data
~ -~

Receive Next SMB Direct Data Transfer Packet

546D —/

548D END

Fig. 5D

WO 2013/002980 PCT/US2012/041049

15/16

600 K‘

604 K
Create SMB2 Read/Write Request

606 —\ l
Encapsulate SMB2 Read/Write Request

l

Send SMB Direct Data Transfer Packet

A
]

Determine steering information

612 \ l
Send/retrieve data

614

Fig. 6

PCT/US2012/041049

WO 2013/002980

16/16

(s)uonosuuo)
UOIJEDIUNWILIOY)

p1s s (s)eommeq induy

zL. ST (s)9dmeq ndino

sbelos
0L Iml“l d|qBAOWSY-UON
_ sbelos
80L ST s|qeAowsy

nun

Buisseooid

3|1Je|0A\-UON

Kows
SINEION

Kows
wolsAg

v0. U

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings

