WO 20047031973 A1 ||| 080000000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2004/031973 A1l

(51) International Patent Classification’: GOG6F 15/16 (74) Agents: YUDELL, Craig et al.; Bracewell & Patterson,
L.L.P, P.O. Box 969, Austin, TX 78767-0969 (US).

(43) International Publication Date
15 April 2004 (15.04.2004)

(21) International Application Number:

PCT/US2003/029963 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Fi]jng Date: AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
24 September 2003 (24.09.2003) CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
(25) Filing Language: English KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
(26) Publication Language: English MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
(30) Priority Data: TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
60/414,369 30 September 2002 (30.09.2002)  US
(71) Applicant (for all designated States except US): ADVENT ~ (84) Designated States (regional): ARIPO patent (GH, GM,
NETWORKS, INC. [US/US]; Suite 300 East, 9600 Great KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Hills Trail, Austin, TX 78759-5681 (US). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(72) Inventor; and ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
(75) Inventor/Applicant (for US only): ROUSSELLE, Philip SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
[US/US]; 16002 Mickey Dr., Austin, TX 78717-4854 (US). GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: IMPLEMENTING REQUEST/REPLY PROGRAMMING SEMANTICS USING PUBLISH/SUBSCRIBE MIDDLE-
WARE

(57) Abstract: A request/reply middleware
ino 300 il 20 wrapper (312, 322) that transposes an
i application’s request/reply communications

Application Layer Application Layer

112 122 into  publish/subscribe communications
2

implemented by publish/subscribe
middleware where every distributed

application component (112, 122) of
a distributed application is referenced
by a component type and name. Each

322 component type has associated with it a
d request publish/subscribe topic and a reply
publish/subscribe topic. Each distributed
application component subscribes  to
its request and reply topics and can

24 publish to request and reply topics of
other component types. By utilizing

312
Middleware Wrapper

Middleware Wrapper Layer Middleware Wrapper Layer

/ Middlewape APLN) | X Middlewarg APL \ callback objects, the middleware wrapper
12 22 facilitates the transmission of a request

Niddlowms Niddloware and replies between d'15tr1buted application
components by posting the requests or

Middleware Layer Middleware Layer replies on an appropriate request or reply

116 126 publish/subscribe topic.
SZZS.'.'IE_e.ﬁ@".‘__i_'_} | Sockets 4L |
114 . 124
OS Layer OS Layer

130
§




WO 2004/031973 A1 I\ HI0 00000 0000 0 00

Published:
—  with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.



WO 2004/031973 PCT/US2003/029963

5

10

15

20

25

1

IMPLEMENTING REQUEST/REPLY PROGRAMMING SEMANTICS
USING PUBLISH/SUBSCRIBE MIDDLEWARE

TECHNICAL FIELD

This application claims the benefit of U.S. Provisional Application No.
60/414,369, entitled "Implementing Request/Reply Programming Semantics Using
Publish/Subscribe Middleware," filed September 30, 2002.

BACKGROUND

1. Field of Invention

The present invention relates to distributed computing, and particularly to

software tools for architecting and implementing distributed computing systems.
2. Description of Related Art

Software that sits between two or more types of software and translates
information between them is generally referred to as “middleware.” Middleware
covers a vast range of software and is typically situated between an application and an
operating system, a network operating system, or a database management system.
Examples of middleware include object-oriented programming code based on a
Common Object Request Broker Architecture (CORBA); software implemented
according to a Distributed Computing Environment (DCE) industry-standard; Java
Remote Method Invocation (Java RMI) programming code; and an application

programming interface (API) based on Enterprise JavaBeans (EJB).

Middleware can serve as a tool that is employed to build distributed
computing systems. For example, distributed computing middleware facilitates
application components, i.e., programs, on different computers to talk to one another.
One widely used technique for allowing one program to call a second program on a
remote system is to implement remote procedure call (RPC) middleware. RPC
middleware facilitates instructing a second program to perform a task requested by the

first program and returning any results of that task to the first program.

One common method of developing distributed systems is to employ operating



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

2

system APIs, or sockets API, for facilitating communications among distributed
application components. Sockets API is an application programming interface, i.e., set
of routines, to create and use sockets implemented by the operating system for
client/server networking. A socket is an identifier for a particular service at a
particular node on a network. Winsock, short for Windows Sockets, is an API that
provides a Transmission Control Protocol/Internet Protocol (TCP/IP) interface under

Microsoft Windows™.

Fig. 1 illustrates a conventional architecture 100 of a distributed application
residing among two computing devices 110 and 120, and utilizing sockets API. In this
example, the distributed application comprises of a first application component 112
residing on computing device 110 and a second application component 122 residing
on computing device 120. Application components 112 and 122 are computer
programs, or sets of instructions that a computer or other device executes to perform
one or more actions. Computing devices 110 and 120 employ respective operating
systems 114 or 124, and communicate with one another via network connection 130,
implementation of which is apparent to one of ordinary skill in the art. Application
components 112 and 122 are designed to utilize respective sockets API 116 or 126.
Jagged lines illustrate that the API serves as an additional pseudo-software layer to
interface adjacent software layers, e.g., application and operating system (OS)

software layers in the present figure.

If application component 112 at computing device 110 wants to talk to
application component 122 at computing device 120 via network connection 130, it
first calls its operating system 114 through its sockets API 116. Operating system 114
then communicates via a communication protocol, typically TCP/IP, with operating
system 124, which in turn calls application software 122 through its sockets API 126.
If application component 122 wants to talk to application component 112, the reverse

path/process is employed.

Sockets API is used for a variety of applications ranging from, for example,
email systems to real time on-line gaming. In order to support such varied
applications, sockets API must include many options and parameters, and allow for

many different communication semantics. For instance, sockets API must support



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

3

both connection oriented TCP semantics and connectionless User Datagram Protocol
(UDP) semantics. All these options and parameters make the API complex.
Considerable training and expertise is required in order for a programmer to use

sockets API to implement systems that use the architecture of Fig 1.

Distributed computing middleware ménages inter-machine communication for
the components of a distributed application and presents its own API. In essence, each
application component of the distributed application talks to the middleware via a
middleware API and the middleware then talks to the operating system often via
sockets API. Middleware translates the information it carries from its own
programming semantics to the programming semantics used by sockets API
Typically, the distributed computing middleware semantics are easier to use than
those of sockets APL. By using a simpler, more focused API, distributed computing
projects can be completed quicker with higher quality by a smaller and less highly

skilled team.

Fig. 2 illustrates a conventional architecture 200 of a typical distributed
application residing among computing devices 110 and 120, and utilizing distributed
computing middleware and sockets API. Particularly, application components 112
and 122 are designed to utilize respective middleware 212 or 214 residing at
respective computing devices 110 or 120. Thus, a separate middleware layer is
provided between the application and operating system layers. Middleware 212 or 222
each presents a middleware API 214 or 224 to respective application component 112
or 122. If application component 112 at computing device 110 wants to talk to
application component 122 at computing device 120 via network connection 130, it
first calls middleware 212 via the middleware API 214. After performing any
necessary translation of the information being carried, middleware 212 in turn calls
the operating system 114 through its socket API 116. Operating system 114 then
communicates via TCP/IP with operating system 124, which in turn calls middleware
222 through its socket API 126. Middleware 222 then calls application component
122 through middleware API 224. If application component 122 wants to talk to

application component 112, the reverse path/process is employed.

Java Message Service (JMS) is a standard API implemented by several



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

4

distributed computing middleware vendors. JMS employs a publish/subscribe API for
coordinating the efficient delivery of information. Publish/subscribe features topics,
publishers, and subscribers. Conceptually, topics are pipes that carry messages.
Publishers and subscribers are sets of instructions that put information into the pipe,
i.e., topic, and take it out. Topics exist independently of publishers and subscribers,
however all three are needed to make the communications information flow. In a
distributed computing system, an application component can publish to a topic and/or

subscribe to a topic.

A message published to a topic is delivered asynchronously to all the
subscribers of the topic. JMS has its own message format featuring a header and a
payload. The header comprises a set of name/value pairs, or header properties, some
of which are defined by the publish/subscribe API and some defined by the
application. Two header properties of particular importance are “message ID” and
“correlation ID.” The message ID is a unique identification that is assigned by the
middleware to every message it processes. When one message is related in some way
to another, the application can set the correlation ID header property to equal the
message ID of the related message. The payload is never examined by the

middleware.

When a JMS publish/subscribe client subscribes to receive messages from a
topic it specifies a message filter. The filter is a conditional expression that analyzes
message header values. When a message is published on a topic it is delivered to
every subscriber of the topic who’s filter is satisfied by the messages header
properties. For example, a chatroom application component might use a filter like

this:
((targetUser = ‘phil’) OR (targetUser = ‘all’)) AND
(sendingUser NOT IN (‘darrell’, ‘jeff’))

This filter would have the effect of allowing receipt of private messages
directed to ‘phil’ or messages directed to the entire chatroom except when these

messages were sent by the ignored users ‘darrell’ or ‘jeff.

Request/reply programming is a cross between publish/subscribe and the very



WO 2004/031973 PCT/US2003/029963

10

popular RPC model. With RPC as previously mentioned, a sender invokes a
procedure on a remote application component and the remote component “returns” a
response. Request/reply has several advantages over RPC. For example, request/reply
supports the sending of messages to multiple receivers. Moreover, request/reply is
asynchronous and is therefore better suited to situations where replies may take a long
time to arrive or where the network, sender, or receiver may fail. Like
publish/subscribe, but unlike RPC, request/reply communications can be conveniently
attempted in situations where the existence, location, or number of receivers is not
known by the sender. No conventional middleware directly supports simple
request/reply semantics. Developers who wish to employ a request/reply design
pattern must either do all their own communications programming utilizing sockets
API as in Fig 1 or use unsuitable middleware APIs. Such an implementation is

complex and time consuming to design even for a highly skilled developer.



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

6

SUMMARY OF THE INVENTION

The present invention overcomes these and other deficiencies of the related art
by providing a request/reply middleware wrapper that transposes an application’s
request/reply communications into publish/subscribe communications implemented

by publish/subscribe middleware.

The request/reply programming semantics presented herein are simpler than
publish/subscribe programming semantics. By using a middleware wrapper that
implements request/reply programming semantics, an application component can send
a message to all components of a particular type by specifying a target type or it can
send a message to a single component by specifying a target component type and
name. When a message is sent, the sender can indicate to the request/reply
middleware wrapper that it expects to receive replies. In order to receive replies, the
sender supplies a callback object, which the middleware wrapper can call to process
the reply. Any replies received after a timeout value has expired are not passed to the

listener object, and hence to the sender.

In an embodiment of the invention, a method for facilitating communications
between components of a distributed application comprises the steps of: receiving a
request from a first distributed application component directed to a second distributed
application component; and publishing the request on a publish/subscribe request
topic identified by a component type of the second distributed application component.
If a reply is expected in response to the request, a subscription is created on a
publish/subscribe reply topic identified by the component type of the first application
component. In order to receive requests from other distributed application
components, a subscription is created on a publish/subscribe request topic identified
by the component type of the first application component. If a reply to the received
request is necessitated, the reply is published on a second publish/subscribe reply
topic identified by the component type of requesting distributed application

component.

In another embodiment of the invention, a system for facilitating request/reply

communications among components of a distributed application comprises: a



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

7

publish/subscribe request topic for every type of distributed application component; a
publish/subscribe reply topic for every type of distributed application component; and
for every distributed application component, a publisher on each publish/subscribe
request topic within a portion of the publish/subscribe request topics; a publisher on
each publish/subscribe request topic within a portion of the publish/subscribe reply
topics; a subscription on the publish/subscribe request topic pertaining to the
component type of the distributed application component; and a subscription on the
publish/subscribe reply topic pertaining to the component type of the distributed
application component. The portion of the publish/subscribe request topics includes
all publish/subscribe request topics associated with the types of distributed application
components that receive requests from the distributed application component.
Similarly, the portion of the publish/subscribe reply topics includes all
publish/subscribe reply topics associated with the types of distributed application
componenté that receive replies from the distributed application component. Callback
objects are provided to facilitate delivery of requests and replies between the
distributed application components and the publishers or subscriptions. Moreover,

routing logic is employed to route a request or reply to a particular callback object.

An advantage of the invention is its relative ease of implementation.
Particularly, ease of implementation arises from the fact that a request/reply
middleware wrapper is built around, i.e., utilizes or employs, aspects of existing
publish/subscribe middleware. Accordingly, a relatively simple distributed
programming semantic is provided, which lets existing middleware perform the actual
work of managing the communications across the network so that distributed
computing projects are completed quickly with higher quality by a smaller and less

highly skilled team.

Another advantage of the invention is the simplicity and utility of the
request/reply semantics. Other middleware, in order to justify it’s cost of
implementation, must provide a very rich API that can be used in many different
applications. Request/reply is less general, but much easier to use than other APIs.
Because it is implemented using publish/subscribe middleware, the cost of

implementation, and therefore the number of users needed to justify the cost, is



WO 2004/031973 PCT/US2003/029963

reduced.

The foregoing, and other features and advantages of the invention, will be
apparent from the following, more particular description of the preferred

embodiments of the invention, the accompanying drawings, and the claims.



WO 2004/031973 PCT/US2003/029963

10

15

9

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, the objects and
advantages thereof, reference is now made to the following descriptions taken in

connection with the accompanying drawings in which:

Fig. 1 illustrates a conventional distributed application architecture utilizing

sockets API;

Fig. 2 illustrates a conventional architecture of a middleware-based distributed
application;
Fig. 3 illustrates a distributed application architecture implementing a

request/reply middleware wrapper according to an embodiment of the invention; and

Fig. 4 illustrates an application component registration process according to an

embodiment of the invention; and

Fig. 5 illustrates a request/reply middleware wrapper system according to an

embodiment of the invention.



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

10

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Preferred embodiments of the present invention and their advantages may be
understood by referring to Fig. 3-5, wherein like reference numerals refer to like
elements, and are described in the context of a request/reply middleware wrapper that
transposes request/reply communications into publish/subscribe middleware
semantics. The inventive concept provides a middleware wrapper software layer that
allows application components implementing request/reply semantics to communicate

with each other through aspects of publish/subscribe middleware.

Fig. 3 illustrates a distributed application architecture 300 implementing a
request/reply middleware wrapper according to a preferred embodiment of the
invention. The use of the term “wrapper” denotes that one programming semantic,
request/reply in the present case, is built, 1.e., wrapped, around -existing
publish/subscribe middleware. As such, an additional software layer, herein referred
to as the middleware wrapper layer, is provided between the application layer and the
middleware layer at each computing device executing an application component of
the distributed application. In a two component system, which is presently illustrated
in order to simplify the discussion as a distributed application may comprise tens or
hundreds of components, the middleware wrapper layer is provided by a middleware
wrapper 312 or 322 at respective computing devices 110 or 120. Middleware
wrappers 312 and 322 each comprise a set of routines, which implement the processes
described herein, to translate request/reply programming semantics to
publish/subscribe semantics implemented by middleware 212 and 222. Middleware
wrappers 312 and 322 present respective middleware wrappers API 314 or 324 to
respective programs 112 and 122. Any call by an application component to
middleware wrapper 312 or 322 is facilitated through respective middleware wrappers

API 314 or 324.

In order to facilitate a way of describing a distributed computing system as a
set of components where instances of various components run on different computers
in the system, every application component is referenced according to a two-tuple

naming scheme. In an embodiment of the invention, the two-tuple naming scheme



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

11

references each application component by its component type and component name.
The component type is a categorical identifier based on, for example, the kind or sort
of component. In an exemplary information distribution embodiment, the component
type can be identified as a console, database, network monitor, event correlator, etc.
In another exemplary embodiment presented in the context of a bank, the component
type can be identified as a teller terminal, automated teller machine (ATM), check
clearing machine, etc. The component name is preferably an IP address or some other

unique identifier of the computing device that the application component resides on.

If application component 112 running on computing device 110 wants to send
a request to application component 122, which is a database for example, running on
computing device 120 having the IP address 192.168.22.187, component 112
generates and sends a request with component type identified as “DATABASE” and
component name identified as “192.168.22.187” to the middleware wrapper 312, and
then waits for a reply. There are two exemplary ways that component 112 knows a
database resides at 192.168.22.187. For instance, component 112 can send a “send me
your component name” request to all components of type DATABASE in which an
appropriate informative response is obtained, or component 112 can obtain the
pertinent information from a lightweight directory access protocol (LDAP) registry.
Nevertheless, the middleware wrapper 312 views the component types and
component names as mere strings, i.e., middleware wrapper 312 performs simple
string matching when analyzing the component types and names. This two-tuple
naming scheme is particularly useful because it facilitates broadcasting to a group of
components based on type, e.g., all databases, or sending to a single application
component. Because the convention of using IP addresses as component names breaks
down if two or more instances of one component type reside on a single computing
device, a modified 1P address can be used as the component name. For example, two
databases located on computing device are designated by the names
“192.168.22.187.PRIMARY” and “192.168.22.187.SECONDARY”. The general
point is that the distributed application must insure that, each component has a name
that is unique among all instances of that component type. In an alternative

embodiment, each application component is identified by two parameters other than



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

12
component type and name.

Two publish/subscribe topics are associated with each type of application
component. One topic is for requests directed to that component type and another
topic is for replies directed to that component type. In an embodiment of the
invention, the title of each topic comprises the component type and the type of
messages, €.g., request or reply, it will handle. For example, for the component type
“database,” the request topic is referred to as “database.request” and the reply topic is
referred to as “database.reply.” In an alternative embodiment, the request topic is
referenced by the component type only. As such, the request topic is referred to as
“database” and the reply topic is referred to as “database.reply.” The important point
is that two topics are associated with each component type and each of the two topics
is delineated by the type of message, €.g., request or reply, that the topic handles. The
semantics for creating topics may vary depending on the particulars of the
publish/subscribe middleware being used. For example, topics can be created by
middleware wrappers 312 or 322 when they initialize or when components 112 or 122
register upon start-up. In an alternative embodiment of the invention, the
publish/subscribe topics are configured by a system administrator before the

middleware wrappers are initialized.

In order to send and receive requests and replies, each application component
must first register with its respective middleware wrapper. Fig. 4 illustrates an
application component registration process 400 implemented by the middleware
wrapper 312 or 322 for creating publishers, subscriptions, and topics according to an
embodiment of the invention. When an application component first initializes, i.e.,
announces its presence to the network on start-up, its middleware wrapper receives
(step 410) from the application component the following information: component
type, component name, all the component types it will be receiving requests or replies
from, and all the component types it will be sending requests or replies to. For an
application component to receive requests, the middleware wrapper creates (step 420)
a publish/subscribe subscription on that application component’s type request topic
with an optional filter that only accepts incoming requests addressed to that

application component or addressed to “all”. For the application component to send



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

13

replies in response to received requests, the middleware wrapper further creates (step
430) a publish/subscribe publisher on the reply topic of each application component
type that this application component will receive requests from. For an application
component to send requests, the middleware wrapper creates (step 440) a
publish/subscribe publisher on the request topic of each application component type
that this application component will send requests to. For an application component to
receive rteplies, the middleware wrapper creates (step 450) a publish/subscribe
subscription on that application component’s type reply topic with an optional filter
that only accepts incoming requests addressed to that application component. Once
registered, the component can send or receive requests and replies. Moreover, the

registration process 400 is transparent to the application component.

When a message, i.e., request or reply, is sent, the message sender’s
component type and component name are added to the header of the message along
with the message receiver’s component name. The receiver’s component type is
indicated by the topic the message is published on. The header of the message
therefore comprises sender component type, sender component name, and receiver
component name and does not contain receiver component type because that can be
inferred from the topic the message is flowing on. If a request is meant for all

instances of a particular component type than the receiver name is set to “all”.

In an embodiment of the invention, an application component implements two
middleware wrapper registration APIs. For example, the application component sends
a “register sender” command to the middleware wrapper and passes a target
(receiving) component type and a target component name. If the target component
name is omitted, then the middleware wrapper understands that the application
component wishes to broadcast to all component names of that component type. For
each “register sender” command received from the application component, the
middleware wrapper supplies a callback object to the application component it can
utilize to send to a specified target. Callback objects are utilized to facilitate the
transferring of replies and requests between application components 112 or 122 and
respective middleware wrappers 312 or 322. A callback object comprises a memory

address or some other reference, depending on the nomenclature of the programming



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

14

language implemented, to enable the hand off of messages to and from application
components 112 or 122. For each component type that requests are received from, the
application component sends a “register receiver” command to the middleware
wrapper. In addition, the application component passes a callback object where it
wants the middleware wrapper to pass incoming requests coming from the given
component type. When this is all done, the middleware wrapper has a set of callback
objects to route incoming requests to and a set of callback objects routing outgoing
requests from. When each callback object is registered, the middleware wrapper notes
the specific publisher or subscriber it is associated with. Preferably, a single
registration call is placed from the application component to register and pass a data
structure with all the outgoing targets, incoming senders, and a callback object for
each incoming sender. The middleware wrapper then returns the data structure with a

callback object for each outgoing target added.

Fig. 5 illustrates a request/reply middleware wrapper system 500
implementing according to the distributing computer architecture 300 embodied in
Fig. 3. In order to better illustrate the inventive concept, middleware wrapper system
500 is described in the context of a hospital setting wherein application component
112 is a patient monitor and application component 122 is a nurse personal digital
assistant (PDA). In an exemplary configuration, application component 112 is
identified by the component type “Patient Monitor” and the component name “Room
706.” Application component 122 is identified by the component type “Nurse PDA”

and the component name “Nurse Ratchet.”

Middleware wrapper system 500 comprises four topics: patient monitor
request topic 502, patient monitor replies topic 504, nurse PDA requests topic 506,
and nurse PDA replies topic 508. One of ordinary skill in the art recognizes that
system 500 can be expanded to comprise more than two application components. For
example in most typical real-world applications, several hundred application
components can be present. As such, the total number of topics necessary to

implement the inventive concept is double the number of component types.

During registration, application component 112 instructs middleware wrapper

312 that it wants to send requests and replies to Nurse PDA component types (e.g.



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

15

“Nurse Ratchet” or “all”) and to receive requests and replies from Nurse PDA
component types, and supplies middleware wrapper 312 with a callback where it will
receive requests from the Nurse PDAs. With that information, middleware wrapper
312 creates incoming request subscription 511 on patient monitor request topic 502,
incoming reply subscription 512 on patient monitor reply topic 504, outgoing request
publisher 513 on nurse PDA request topic 506, and outgoing reply publisher 514 on
nurse PDA reply topic 508. Incoming request subscriber Sills created with a filter that
only accepts messages where the target component name is “Room 706 or “all”.
Incoming reply subscription 512 is constructed with a filter that only accepts replies
intended for “Room 706”.

Application component 112 further supplies a callback object 5715 to
middleware wrapper 312 to hand off incoming requests to the application component
112. Middleware wrapper 312 notes the association between callback object 515 and
subscription 511. Middleware wrapper 312 provides application component 112 with
a callback object 516 associated with publisher 513 that the application component
112 can invoke to send requests. Each time the callback object 516 is employed to
send a request, the application component 112 supplies a callback object 517
associated subscription 512 in order for middleware wrapper 312 to hand off any
reply to that request back to the application component 112. Similarly, each time
middleware wrapper 312 passes a request to application component 112 through
callback object 515, middleware wrapper supplies a callback object 518 associated
publisher 514 to application component 112 in order to return a reply in response to
the received request. In other words, handing off a request in either direction entails

supplying a callback object that can be invoked to handle the reply.

Similarly during the registration of application component 122, application
component 122 instructs middleware wrapper 322 that it wants to send and receive
requests and replies to and from patient monitor component types (e.g. “Room 706"
or “all”), and supplies middleware wrapper 322 with a callback object where it will
receive requests from the patient monitors. With that information, middleware
wrapper 322 creates incoming request subscription 521 on nurse PDA request topic

506, incoming reply subscription 522 on nurse PDA reply topic 508, outgoing request



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

16

publisher 523 on patient monitor request topic 502, and outgoing reply publisher 524
on patient monitor reply topic 504. Incoming request subscriber 521 is created with a
filter that only accepts messages where the target component name is “Nurse Ratchet”
or “all”. Incoming reply subscription 522 is constructed with a filter that only accepts
replies intended for “Nurse Ratchet”. Callback objects 525, 526, 527, and 528
associated with application component 122 and respective publishers 523 and 524,
and subscriptions 521 and 522 are provided in an analogous manner to that

implemented for application component 112.

For an application component to send requests and receive replies, the
middleware wrappers 312 and 322 provide routing logic to route each reply to the
correct callback object. One implementation employs a routing table, i.e., hash table,
that is hashed by request message IDs. Each entry contains the callback object
associated with the request. When a reply is received, the middleware wrapper 312 or
322 uses the reply’s correlation ID to fetch the correct callback object from the table.
The reply is then passed to the callback object and hence to the appropriate

application component.

In operation, application component (patient monitor - room 706) 112 may
send a request to application component 122 (nurse PDA _nurse Ratchet). To do so, a
request message 1s formed by the middleware wrapper 312 with a header comprising
“Patient Monitor” as the sender component type, “Room 706” as the sender
component name, and a receiver component name designated as ‘“Nurse Ratchet.”
Alternatively, if the request was directed to all nurse PDAs, e.g., if more than one
nurse PDA existed within system 500, the receiver component name would be set to
“all”. As noted above, the choice of whether an outgoing request is sent to a particular
component instance or “all” is made by the sending component when it registers. The
header does not comprise a receiver component type as that is given by the particular
topic the message is routed through. The payload of the request comprises the
instructions or data for application component to execute or interpret. Once the
request is formed, application component 112 sends the request and a callback object
517 to middleware wrapper 312 via the callback object 516. Middleware wrapper 312
sends the request to request publisher 513, which publishes the request on nurse PDA



WO 2004/031973 PCT/US2003/029963

10

15

20

25

30

17

request topic 506. Request subscription 523 identifies that the recipient of the new
request published at topic 506 is “Nurse Ratchet” corresponding to application
component 122, and accordingly forwards the request to middleware wrapper 322.
When a request is received by middleware wrapper 322 by way of subscription 521,
the request is handed off to application component 122 through callback object 526.
As part of the hand off, middleware wrapper 322 provides the callback object 527.

Application component 122 generates a reply message if necessary, i.e., if the
request instructions necessitated a reply. This reply message features a header
comprising “Nurse PDA” as the sender component type, “Nurse Ratchet” as the
sender component name, and a receiver component name designated as “Room 706.”
Once application component 122 provides a reply through callback object 527,
middleware wrapper 322 sets the correlation ID in the reply’s header to the message
ID of the original request and publishes the reply through publisher 524, which
publishes the reply on patient monitor reply topic 504. Reply subscription 512
identifies that the recipient of the new reply published at topic 504 is “Room 706”
corresponding to application component 112. When a reply armives through
subscription 512, middleware wrapper 312 uses the correlation ID in the message
header to determine which request is being replied to and hands off the reply to

application component 112 using the callback object 517.

In an embodiment of the invention, an application component can supply a
timeout value to the middleware wrapper to indicate a duration that component will
receive replies in response to a sent request. Replies received after the timeout value
has expired are not to be delivered. The middleware wrapper’s reply routing table is

culled periodically to remove entries for requests that have timed out.

The present invention provides a very simple way to develop distributed
application components. A very simple API is provided and it is believed that
inexperienced programmers can begin developing distributed systems using the
request/reply semantics describe herein much faster than with any other conventional
middleware API.

Other embodiments and uses of the invention will be apparent to those skilled



WO 2004/031973 PCT/US2003/029963

18

in the art from consideration of the specification and practice of the invention
disclosed herein. Although the invention has been particularly shown and described
with reference to several preferred embodiments thereof, it will be understood by
those skilled in the art that various changes in form and details may be made therein
5 without departing from the spirit and scope of the invention as defined in the

appended claims.



WO 2004/031973 PCT/US2003/029963

19
CLAIMS
I claim:
1. A method for facilitating communications between components of a

distributed application comprising the steps of:
receiving a request from a first distributed application component, wherein a
recipient of said request is a second distributed application component; and
publishing said request on a first publish/subscribe request topic, wherein said
first publish/subscribe topic is identified by a first property of said second distributed

application component.

2. The method of claim 1, wherein said first property is a type of said second

distributed application component.

3. The method of claim 2, wherein said recipient is identified by a second
property of said second distributed application component included within said

request.

4, The method of claim 3, wherein said second property is a unique identifier of

said second distributed application component.

5. The method of claim 2, further comprising the steps of:

subscribing to a first publish/subscribe reply topic, wherein said first
publish/subscribe reply topic is identified by a type of said first distributed application
component;

forwarding a reply posted on said first publish/subscribe reply topic to said

first distributed application component.

6. The method of claim 5, wherein said reply is generated by said second

distributed application component in response to said request.

7. The method of claim 1, further comprising the steps of:



WO 2004/031973 PCT/US2003/029963

20

subscribing to a second publish/subscribe request topic, wherein said second
publish/subscribe request topic is identified by a type of said first distributed
application component;

forwarding a request posted on said second publish/subscribe request topic to
said first distributed application component, wherein said request is generated by a
third distributed application component;

receiving a reply from said first distributed application component, wherein a
recipient of said reply is said third distributed application component; and

publishing said reply on a second publish/subscribe reply topic, wherein said
second publish/subscribe reply topic is identified by a type of said third distributed

application component.

8. The method of claim 7, wherein said second and third distributed application

components are the same distributed application component.

9. The method of claim 7, further comprising the step of, prior to forwarding said
request posted on said second publish/subscribe request topic,

identifying that a recipient of said request posted on said second
publish/subscribe request topic is either said first distributed application component or

all distributed application components.

10.  The method of claim 7, further comprising the step of,
sending a callback object to said first distributed application component with

said request posted on said second publish/subscribe request topic.

11.  The method of claim 1, further comprising the step of,
registering said first applicant component prior to receiving said request,
wherein said step of registering comprises:
receiving a type of said first distributed application component, a name
of said first distributed application component, a list of all other types of distributed
application components that will send request or replies to said first distributed

application component, and a list of all other types of distributed application



WO 2004/031973 PCT/US2003/029963

21

components that will be receiving requests or replies from said first application.

12.  The method of claim 11, wherein said step of registering further comprises:
receiving a callback object, wherein said callback object directs requests from
other distributed application components to said first distributed application

component.

13. The method of claim 12, further comprising the step of,
invoking said callback object to deliver said request to said first distributed

application component.

14. The method of claim 11, wherein said step of registering further comprises:

sending a callback object to said first distributed application component.

15.  The method of claim 11, wherein said step of registering further comprises:

creating a publisher on a publish/subscribe request topic of each of said other
type of distributed application component receiving a request from said first
distributed application component;

creating a publisher on a publish/subscribe reply topic of each of said other
type of distributed application component types receiving a reply from said first
distributed application component;

creating a subscription on a publish/subscribe request topic of said type of said
first distributed application component; and

creating a subscription on a publish/subscribe reply topic of said type of said

first distributed application component.

16.  The method of claim 15, wherein said subscription on a publish/subscribe
request topic of said type of said first distributed application component includes a
filter that only accepts requests addressed to said first distributed application

component or all distributed application components.

17.  The method of claim 15, wherein said subscription on a publish/subscribe



WO 2004/031973 PCT/US2003/029963

22

reply topic of said type of said first distributed application component includes a filter

that only accepts replies addressed to said first distributed application component.

18. The method of claim 1, wherein said request comprises one or more
instructions directed toward a task to be performed by said second distributed

application component.

19. A system for facilitating request/reply communications among components of
a distributed application comprising:
a publish/subscribe request topic for every type of distributed application
component;
a publish/subscribe reply topic for every type of distributed application
component; and for each distributed application component,
a publisher on every publish/subscribe request topic within a portion of
said publish/subscribe request topics;
a publisher on every publish/subscribe request topic within a portion of
said publish/subscribe reply topics;
a subscription on the publish/subscribe request topic pertaining to a
type of said distributed application component; and
a subscription on the publish/subscribe reply topic pertaining to a type

of said distributed application component.

20.  The system of claim 19, wherein said portion of said publish/subscribe request
topics includes publish/subscribe request topics pertaining to all types of distributed
application components that receive requests from said distributed application

component.

21.  The system of claim 19, wherein said portion of said publish/subscribe reply
topics includes publish/subscribe reply topics pertaining to all types of distributed
application components that receive replies from said distributed application

component.



WO 2004/031973 PCT/US2003/029963

23

22.  The system of claim 19, further comprising:
one or more callback objects to facilitate delivery of requests and replies

between said distributed application components and said publishers or subscriptions.

23.  The system of claim 22, further comprising:

routing logic to route a request or reply to a particular callback object.

24. A method of communicating messages between components of a distributed
application comprising the steps of:

receiving a message formulated according to request/reply semantics from a
first distributed application component;

translating said message into publish/subscribe communications implemented
by a publish/subscribe middleware program; and

forwarding said translated message to a second distributed application

component.

25. The method of claim 24, wherein said message is a request or reply.



WO 2004/031973 PCT/US2003/029963

100
p

110 120
2 2

Application Layer Application Layer
PP APV 122

Component Component

Operating System Operating System

OS Layer OS Layer

130
2

FIG. 1

(Prior Art)



WO 2004/031973 PCT/US2003/029963

gl 10 gEQ il 20

Application Layer Application Layer
PP o2 P o

Middleware Middleware

Middleware Layer Middleware Layer
116

______________

Operating System [ Operating System

OS Layer OS Layer

130
£

FIG. 2

(Prior Art)



WO 2004/031973 PCT/US2003/029963

il 10 i@ 5120

Application Layer Application Layer
112 o

Component Component

Middleware Wrapper Middleware Wrapper

Middleware Wrapper Layer Middleware Wrapper Layer

Middleware Middleware
Middleware Layer Middleware Layer
116

Operating System Operating System

OS Layer OS Layer

130
1

FIG. 3



WO 2004/031973 PCT/US2003/029963

FIG. 4

£410

Receive type and name from component, all other component
types sending requests to this component, and all other component
types receiving requests from this component.

l 5420

Create a subscription on the component type’s request topic
with a filter that only accepts messages addressed to the
application component or addressed to “all.”

Create a publisher on the reply topic of each component type
sending requests to this component.

l 5440

Create a publisher on the request topic of each component
receiving requests from this component.

l 450

Create a subscription on this component type’s reply topic
with a filter that only accepts replies addressed to this
~ component.

400
2




PCT/US2003/029963

WO 2004/031973

(44 ﬁw

S OId

103[q0
yoeq[ed

10090
Yoeq[red

¢0S

13(q0
Aoeqqred

193[q0
Xoeq[ied

00S

10940 uonduosqng sdo], Joysiiqng
] you n:a 5 (] Kidoyg —] Aidoy «—— Aidoyg
W Sutwroouy VAd 9sIN Suro8inQ
< 8zs Nmmw womw Emw 815
5%
s G uondurosqng oido], Joysiqng
M 1930q0
82 |l yowquey [¢— sonboy | g—] 1sanboy —| 1sonbay
M .,m Wx aireo Furwosuy Vdd asmyN Sutodinp
U .. W
By % 1zs ooww e o1
M.M M 100 ysiqng odoy Ajdoy uonduosqng
=4 g » 130 » Aidoyg > JONUOIN > A1doyg
g 2 o8aIIED Surogin 8
S & 1031nQ juened unuosuy
S St
Les yzs y0S 4ty L1s
f Jaysiqng ordo, 1sonbay uonduosqng
> 1990 » 1sanbay IONUOIA] » 1s9nbay] »
Adeq[red
Sui08InO juoned Sunuoouy W
5es 2 e $1s

4

90, wooy :dweN jusuodwo)
IONIUO Jusneq :adKL 1u9uodmog

N:W




INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/29963

A CLASSIFICATION OF SUBJECT MATTER

IPC(7)
US CL

:GOGF 15716
: 709/246; 719/810

According to [nternational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

us. :

709/245, 246, 201; 719/828, 310

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US2002/0116205 A1 (ANKIREDDIPALLY et al), 22 August 2002, | 1-25
page 3, [0030] - page 14, [1000].
Y US 6,189,045 Bl (O'SHEA et al) 13 February 2001, col. 3, line 59| 1-25
- col. 7, line 33.
A US 6,021,443 A (BRACHPO et al) 1 February 2000, col. 4, line 33| 1-25
- col. 22, line 23.
A US 6,154,781 A (BOLAM et al) 28 November 2000, col. 4, line 41| 1-25

- col. 7, line 8.

D Further documents are listed in the continuation of Box C. D See patent family annex.

*

"A"

o

o

uon

upn

Special categories of cited documents:

document defining the general state of the art which is not
considered to be of particular relevance

earlier document published on or after the international filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

e

DG

nyn

ngn

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

24 DECEMBER 2003

Date of mailing of the international search report

27 JAN 2004

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20281

Facsimile No.

(703) 305-3230

Authorized officer

MENG-AI AN Q

Telephone No.

ek

(703) 305 9657

Form PCT/ISA/210 (second sheet) (July 1998)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

