发明名称
带副产煤气补燃的烧结余热发电系统

摘要
本发明涉及一种余热发电系统，是一种带副产煤气补燃的烧结余热发电系统，包括冷却机、余热锅炉、汽包、汽轮机、锅炉给水泵、引风机、鼓风
机、烟囱，余热锅炉从上到下依次设有燃烧炉膛、高温过热器、低温过热器、蒸发器、省煤器，高温过热器出口和汽轮机汽口通过管道相连，余热锅炉
有一个烧结废气进口，还有一个副产煤气进口，冷却机上部设有高温废气出口、中温废气出口和低温废气出口。本发明可大幅提高烟气温度，使汽轮
机进口过热蒸汽的温度和压力得到提高，增加发电能力。
1. 带副产煤气补燃的烧结余热发电系统，包括冷却机（1）、余热锅炉（16）、汽包（8）、汽轮机（9）、发电机（10）、凝汽器（11）、冷却塔（12）、凝结水泵（13）、除氧器（14）和锅炉给水泵（15），其特征在于：所述冷却机（1）上设有三个废气出口，分别是位于高温区的高温废气出口（23）、位于中温区的中温废气出口（22）和位于低温区的低温废气出口（21），所述余热锅炉（16）内从上至下依次设有燃烧炉膛（26）、高温过热器（24）、低温过热器（25）、蒸发器（4）和省煤器（5），所述余热锅炉（16）的燃烧炉膛（26）上设有一个与高温废气出口（23）、中温废气出口（22）和低温废气出口（21）都相连的废气进口（27），所述余热锅炉（16）的燃烧炉膛（26）上还设有一个煤气进口（28），所述锅炉给水泵（15）与省煤器（5）的进口相连，所述省煤器（5）的出口与汽包（8）的进水口相连，所述蒸发器（4）的进水口与汽包（8）的出水口相连，所述蒸发器（4）的出口与汽包（8）的汽液两相进口相连，所述低温过热器（25）进汽口与汽包（8）的出汽口相连，所述低温过热器（25）的出汽口与高温过热器（24）的进汽口相连，所述高温过热器（24）的出汽口与汽轮机（9）的进汽口相连。

2. 如权利要求1所述的带副产煤气补燃的烧结余热发电系统，其特征在于：所述余热锅炉（16）内从上至下依次设有燃烧炉膛（26）、高压过热器（29）、高压蒸发器（30）、高温省煤器（31）、低压过热器（32）、低压蒸发器（33）和低温省煤器（34），所述汽包（8）分为高压汽包（35）和低压汽包（36），所述锅炉给水泵（15）与低温省煤器（34）的进口相连，所述低温省煤器（34）的出口与高温省煤
器（31）的进口和低压汽包（36）的进水口相连，所述低压蒸发器（33）的进水口与低压汽包（36）的出水口相连，所述低压蒸发器（33）的出口与低压汽包（36）的汽液两相进口相连，所述低压过热器（32）的进汽口与低压汽包（36）的出汽口相连，所述低压过热器（32）的出汽口与汽轮机（9）的低压进汽口相连，所述高温省煤器（31）的出水口与高压汽包（35）的进水口相连，所述高压蒸发器（30）的进水口与高压汽包（35）的出水口相连，所述高压蒸发器（30）的出水口与高压汽包（35）的汽液两相进口相连，所述高压过热器（29）的进口与高压汽包（35）的出汽口相连，所述高压过热器（29）的出口与汽轮机（9）的高压进汽口相连。

3. 如权利要求1或2所述的带副产煤气补燃的烧结余热发电系统，其特征在于：所述废气进口（27）位于燃烧炉膛（26）的侧面，所述煤气进口（28）位于燃烧炉膛（26）的顶部。

4. 如权利要求1或2所述的带副产煤气补燃的烧结余热发电系统，其特征在于：所述高温废气出口（23）、中温废气出口（22）和低温废气出口（21）的出气管上设有一根支管与所述煤气进口（28）的煤气管相连接。

5. 如权利要求1或2所述的带副产煤气补燃的烧结余热发电系统，其特征在于：所述余热锅炉（16）下部设有废气出口，所述废气出口与引风机（7）相接后分成两路，一路接烟囱（20），另一路与鼓风机（6）的出口相接后接冷却机（1）的风池。

6. 如权利要求1或2所述的带副产煤气补燃的烧结余热发电系统，其特征在于：所述冷却机（1）的高温废气出口（23）还与一个烟囱（20）相接，所述冷却机（1）的中温废气出口（22）也与一个烟囱（20）相接。
带副产煤气补燃的烧结余热发电系统

技术领域

本发明涉及一种余热发电系统，具体的说是一种带副产煤气补燃的烧结余热发电系统。

背景技术

现有的烧结余热发电系统如图 1 所示，包括冷却机 1、余热锅炉 16、锅炉给水泵 15、除氧器 14、汽轮机 9、发电机 10、凝汽器 11、冷却塔 12 和汽包 8，冷却机 1 内有矿石 2，冷却机 1 上设有高温抽风口 17，和低温抽风口 18，余热锅炉 16 内从上到下依次设有过热器 3、蒸发器 4 和省煤器 5。余热锅炉 16 进口废气来自冷却机 1 中的两个抽风口 17 和 18，进气温度约 350～400℃，该废气经过除尘器 19 后进入余热锅炉 16，然后通过布置在锅炉内的过热器 3、蒸发器 4、省煤器 5，逐步降温至 150～200℃，这些废气经引风机 7 部分通过烟囱 20 排到大气中，其余部分废气和来自鼓风机 6 的自然环境中的冷风混合一起进入冷却机 1 的风池，在不影响烧结矿冷却效果的前提下，提高冷却风温度，以提高余热资源的品位，回收更多的余热。来自除氧器 14 的锅炉给水经锅炉给水泵 15 打到余热锅炉 16 的省煤器 5 加热后进入汽包 8，汽包 8 内的水通过自然循环方式经蒸发器 4 吸热沸腾后回到汽包 8 内，从汽包 8 内分离出来的饱和蒸汽经过过热器 3 吸热后变成过热蒸汽，然后进入汽轮机 9 膨胀做功，经凝汽器 11 冷却后变成凝结水，由凝结水泵 13 打到除氧器 14。

现有的这种烧结余热发电系统存在以下问题：①冷却机 1 的高温废气出口 17 和低温废气出口 18 的余风混合后进入过热器 3，这样没
有尽量提高废气温度。冷却机 1 的废气温度低，故过热蒸汽参数低，
系统热效率低，发电量少。

发明内容

本发明的要解决的技术问题是：针对以上现有技术存在的缺点，
提出一种提高废气温度，使得汽轮机进口过热蒸汽的温度和压力得到
提高，可增加发电能力的带副产煤气补燃的烧结余热发电系统。

本发明解决以上技术问题的技术方案是：带副产煤气补燃的烧结
余热发电系统，包括冷却机、余热锅炉、汽包、汽轮机、发电机、凝
汽器、冷却塔、凝结水泵、除氧器和锅炉给水泵，冷却机上设有三个
废气出口，分别是位于高温区的高温废气出口、位于中温区的中温废
气出口和位于低温区的低温废气出口，余热锅炉内从上至下依次设有
燃烧炉膛、高温过热器、低温过热器、蒸发器和省煤器，余热锅炉的
燃烧炉膛上设有一个与高温废气出口、中温废气出口和低温废气出口
都相连的废气进口，余热锅炉的燃烧炉膛上还设有一个煤气进口，锅
炉给水泵与省煤器的进口相连，省煤器的出口与汽包的进水口相连，
蒸发器的进水口与汽包的出水口相连，蒸发器的出口与汽包的汽液两
相进口相连，低温过热器进汽口与汽包的出汽口相连，低温过热器的
出汽口与高温过热器的进汽口相连，高温过热器的出汽口与汽轮机的
进汽口相连。

本发明的带副产煤气补燃的烧结余热发电系统，余热锅炉内还可
以从上至下依次设有燃烧炉膛、高压过热器、高压蒸发器、高温省煤
器、低压过热器、低压蒸发器和低温省煤器，汽包分为高压汽包和低
压汽包，锅炉给水泵与低温省煤器的进口相连，低温省煤器的出口与
高温省煤器的进口和低压汽包的进水口相连，低压蒸发器的进水口与
低压汽包的出水口相连，低压蒸发器的出口与低压汽包的汽液两相进
口相连，低压过热器的进汽口与低压汽包的出汽口相连，低压过热器的进汽口与汽轮机的低压进汽口相连，高温省煤器的出水口与高压汽包的进水口相连，高压蒸发器的进水口与高压汽包的出水口相连，高压蒸发器的出水口与高压汽包的汽液两相进口相连，高压过热器的进口与高压汽包的出汽口相连，高压过热器的出口与汽轮机的高压进汽口相连。

废气进口位于燃烧炉膛的侧面，煤气进口位于燃烧炉膛的顶部。高温废气出口、中温废气出口和低温废气出口的出气管上设有一根支管与煤气进口的煤气管相连接，这根支管可提供煤气燃烧的助燃风。

本发明的优点是：对冷却机废气加多一抽气口，使进入余热锅炉的废气温度提高。余热锅炉顶部采用副产煤气补燃，大幅提高烟气温度，增大了蒸汽参数，提高了蒸汽的做功能力，增加了发电量。另外，锅炉给水泵出来的给水先经过低温省煤器吸热后，大部分进入高温省煤器继续吸热，然后进入高压汽包，小部分进入低压汽包，低压汽包的水和蒸汽在低温烟气段吸热，高压汽包的水和蒸汽在高温烟气段吸热，减少了传热温差，降低了熵产，同时增大了高压蒸汽参数，提高了蒸汽的做功能力，增加了发电量。本发明在烧结矿冷却机出现故障的情况下，增加补燃烟气量，可维持余热发电系统继续运行，避免余热发电系统因冷却机故障而停机，从而提高余热发电系统的可靠性。

附图说明

图 1 是现有的烧结余热发电系统结构示意图。

图 2 是本发明实施例一的结构示意图。

图 3 是本发明实施例二的结构示意图。

具体实施方式

实施例一
本实施例的结构如图2所示，带副产煤气补燃的烧结余热发电系统，包括冷却机1、余热锅炉16、汽包8、汽轮机9、发电机10、凝汽器11、冷却塔12、凝结水泵13、除氧器14和锅炉给水泵15，冷却机1上设有三个废气出口，分别是位于高温区的高温废气出口23、位于中温区的中温废气出口22和位于低温区的低温废气出口21，余热锅炉16内从上至下依次设有燃烧炉膛26、高温过热器24、低温过热器25、蒸发器4和省煤器5，余热锅炉16的燃烧炉膛26上设有一个与高温废气出口23、中温废气出口22和低温废气出口21都相连的废气进口27，余热锅炉16的燃烧炉膛26上还设有一个煤气进口28，锅炉给水泵15与省煤器5的进口相连，省煤器5的出口与汽包8的进水口相连，蒸发器4的进水口与汽包8的出水口相连，蒸发器4的出口与汽包8的气液两相进口相连，低温过热器25进汽口与汽包8的出汽口相连，低温过热器25的出汽口与高温过热器24的进汽口相连，高温过热器24的出汽口与汽轮机9的进汽口相连。冷却机1的高温废气出口23还与一个烟囱20相接，冷却机1的中温废气出口22也与一个烟囱20相接。余热锅炉16下部设有废气出口，这些废气经引风机7部分通过烟囱20排到大气中，其余部分废气和来自鼓风机6的自然环境中的冷风混合一起进入冷却机1的风池，在不影响烧结冷却效果的前提下，提高冷却风温度，以提高余热资源的品位，回收更多的余热。高温废气出口23、中温废气出口22和低温废气出口21的出气管上设有一根支管与所述煤气进口28的煤气管相连接，这根支管可提供煤气燃烧的助燃风。

冷却机1上部设有高温废气出口23、中温废气出口22和低温废气出口21，冷却机1下部设有鼓风机6和引风机7，鼓风机6引入环境中的冷风，引风机7进口与余热锅炉16出气口相连，引风机7出风
一部分经过烟囱 20 排入大气中，其余部分和鼓风机 6 出风混合一起进入冷却机风池。冷却机 1 的高温废气出口 23，中温废气出口 22 和低温废气出口 21 与余热锅炉 16 的烧结废气进口 27 通过管道相连，烧结废气温度一般在 400～500℃，在燃烧炉膛 26 和煤气燃烧后的烟气混合后（温度一般在 550～600℃），从上到下依次经过高温过热器 24、低温过热器 25、蒸发器 4 和省煤器 5，废气出余热锅炉 16 的温度一般是 150～200℃。

余热锅炉 16 的高温过热器 24 出口通过管道与汽轮机 9 进汽口相连，来自除氧器 14 的锅炉给水由锅炉给水泵 15 打到余热锅炉 16 的省煤器 5 加热后进入汽包 8。汽包 8 内的水通过自然循环方式经蒸发器 4 吸热沸腾后到达汽包 8，从汽包 8 分离出来的饱和蒸汽经低温过热器 25 和高温过热器 24 过热后，进入汽轮机 9 内膨胀做功，做功后的乏汽经凝汽器 11 冷却变成凝结水，由凝结水泵 13 把它打到除氧器 14。

由于采用了副产煤气补燃使废气温度提高到 550～600℃，大幅提高了进入余热锅炉 16 炉内的烟气温度，提高了进入汽轮机 9 的过热蒸汽参数（中温中压），提高了蒸汽的做功能力和热力系统朗肯循环效率，提高了发电量。

在烧结矿冷却机出现故障的情况下，增加补燃烟气量，可维持余热发电系统继续运行，避免余热发电系统因冷却机故障而停机，从而提高余热发电系统的可靠性。

实施例二

本实施例的结构如图 3 所示，与实施例一的区别在于：余热锅炉 16 内从上至下依次设有燃烧炉膛 26、高压过热器 29、高压蒸发器 30、高温省煤器 31、低压过热器 32、低压蒸发器 33 和低温省煤器 34，
汽包分为高压汽包 35 和低压汽包 36，锅炉给水泵 15 与低温省煤器 34 的进口相连，低温省煤器 34 的出口与高温省煤器 31 的进口和低压汽包 36 的进水口相连，低压蒸发器 33 的进水口与低压汽包 36 的出水口相连，低压蒸发器 33 的出口与低压汽包 36 的汽液两相进口相连，低压过热器 32 的进汽口与低压汽包 36 的出汽口相连，低压过热器 32 的出汽口与汽轮机 9 的低压进汽口相连，高温省煤器 31 的出水口与高压汽包 35 的进水口相连，高压蒸发器 30 的进水口与高压汽包 35 的出水口相连，高压蒸发器 30 的出水口与高压汽包 35 的汽液两相进口相连，高压过热器 29 的进口与高压汽包 35 的出汽口相连，高压过热器 29 的出口与汽轮机 9 的高压进汽口相连。

烧结废气温度一般在 400～500℃，在燃烧炉膛 26 和煤气燃烧后的烟气混合后（温度一般在 550～600℃），从上到下依次经过高压过热器 29、高压蒸发器 30、高温省煤器 31、低压过热器 32、低压蒸发器 33 和低温省煤器 34，废气出余热锅炉 16 的温度一般是 150～200℃。

余热锅炉 16 的高温过热器 29 出口通过管道与汽轮机 9 高压进汽口相连，低压过热器 32 出口通过管道与汽轮机 9 低压进汽口相连。来自除氧器 14 的锅炉给水由锅炉给水泵 15 打到余热锅炉 16 的低温省煤器 34 加热后分两路，一路进入低压汽包 36，另一路进入高温省煤器 31。高压汽包 35 和低压汽包 36 内的水通过自然循环方式各自经高压蒸发器 30 和低压蒸发器 33 吸热沸腾后到达各自汽包，从高压汽包 35 和低压汽包 36 分离出来的饱和蒸汽经各自的过热器过热后，变成了高压过热蒸汽和低压过热蒸汽，分别进入汽轮机 9 的高、低压进汽口在汽轮机 9 内膨胀做功，做功后的乏汽经凝汽器 11 冷却变成凝结水，由凝结水泵 13 把它打到除氧器 14。
由于采用了双压系统，低压汽包 36 的水和蒸汽在低温烟气段吸热，高压汽包 35 的水和蒸汽在高温烟气段吸热，减少了传热温差，降低了熵产，同时增大了进入汽轮机 9 的高压蒸汽参数，提高了蒸汽的做功能力，增加了发电量。由于采用了副产煤气补燃，同时在冷却机 1 上增加了一个中温抽气口，大幅提高了余热锅炉 16 内的烟气温度，提高了汽轮机 9 进口过热蒸汽的温度和压力，从而增加了发电能力。

本发明还可以有其它实施方式，凡采用同等替换或等效变换形成的技术方案，均落在本发明要求保护的范围之内。