Title: PROCESS FOR EXTRACTING FATTY ACIDS FROM AQUEOUS BIOMASS IN A MEMBRANE CONTACTOR MODULE

Abstract: The present invention relates to a new process for extracting fatty acids from aqueous biomass in a membrane contactor module. The present invention also relates to an integrated process combining biomass concentration and/or diafiltration and fatty acid extraction in said membrane contactor module.
Process for extracting fatty acids from aqueous biomass in a membrane contactor module.

1. Field of invention

The present invention relates to a new process for extracting fatty acids from aqueous biomass in a membrane contactor module. The present invention also relates to an integrated process combining biomass concentration and/or diafiltration and fatty acid extraction in said membrane contactor module.

2. Background of the invention

Long-chain omega-3 polyunsaturated fatty acids are essential fatty acids for humans and must be supplied by the diet. Of these, docosahexaenoic acid, C22:6 Δ4,7,10,13, 16,19 (DHA) has particular health benefits, and is used not only as a food supplement but also as a pharmaceutical compound for treatment of coronary diseases (Wynn et al, 2005).

DHA is a superior polyenoic acid, as this can easily be converted to other essential polyenoic fatty acids like eicosapentaenoic acid (EPA). Conversion of EPA to DHA is not possible in the human body.

For enrichment of oils to be used in functional foods, and for pharmaceutical applications, there is a need for concentrates of fatty acids or their alkyl ester derivatives. Currently, compositions containing polyunsaturated fatty acids are obtained from fish oils. However, there is a concern that sufficient fish oil will not be available in the future (Lewis et al, 1999). Moreover, reports of the possible accumulation of toxic pollutants, including heavy metals, dioxins and polychlorinated biphenyls (PCBs) from the marine environment into fish lipids, have imposed the needs for extensive purification processes for fish oils intended for human consumption and animal feed (Ratledge, 2004).

An alternative to fish oil is microbial sources. Some marine, heterotrophic microalgae accumulate large quantities of DHA, such as Cryptothecodinium cohnii (e.g. US Patent No. 5407957) and thraustochytrids (e.g. WO Patent No. 9408467; US Patent No. 6509178). These microorganisms often accumulate more than 50% of their dry weight
as lipids, with DHA frequently constituting more than 25% of total lipids (Lewis et al., 1999; Yokochi et al., 1998; Yaguchi et al., 1997). An additional advantage of microbial production of DHA, compared to fish oils, is that DHA is the only, or dominating, long-chain Polyunsaturated Fatty Acid (PUFA), making the purification process simpler.

Conventionally, marine and vegetable oils are isolated from the biomass by thermal-mechanical processes and/or solvent extraction. When fatty acid alkyl esters are the desired product, the extracted oil is transesterified, often in the presence of a catalyst. In general, the conventional way of obtaining fatty acids from microalgae or fish includes several steps that might be detrimental to the fatty acids, particularly the unstable polyunsaturated fatty acids. The fatty acids are subjected to extensive and tough handling, and high temperature.

Thus, there is a need for new processes for the extraction of fatty acids, particularly LC-PUFA to meet the growing market and the demand for high quality polyunsaturated fatty acids, especially DHA.

3. Description of the invention
One object of the invention is to provide a new process for extracting fatty acids.

Another object of the invention is to provide a new process wherein the fatty acids are extracted from aqueous biomass.

Yet another object of the invention is to provide a new process wherein the hydrolysis of the biomass lipids is performed in an aqueous phase.

Yet another object of the invention is to provide a new process for sequential release of fatty acids with different characteristics.

Yet another object of the invention is to provide a new process for extracting polyunsaturated fatty acids, especially DHA.

These and further objects are achieved by the present invention.
Thus, one aspect of the present invention relates to a process for extracting fatty acids from aqueous biomass in a membrane contactor module M1, comprising the following steps:

a) hydrolysing the lipids of the aqueous biomass to release free fatty acids;

b) feeding the aqueous hydrolyzed biomass containing free fatty acids to the aqueous compartment of said membrane contactor module M1; and

c) extracting the fatty acids across a hydrophobic membrane to the organic compartment of said membrane contactor module M1 containing an organic solvent or solvent mixture.

The new and inventive process represents a simplified process for obtaining fatty acids, particularly DHA or its alkyl ester derivative, from aqueous biomass, without extraction of the oil phase from the biomass. The lipids are hydrolysed in the aqueous biomass. The fatty acids may be converted to their fatty acid ethyl esters in the organic phase by the presence of an alcohol, a catalyst and/or esterification enzyme in the organic phase.

The term aqueous biomass means any biomass suspended, dispersed, homogenized or dissolved in an aqueous medium. The aqueous biomass is preferably a fermentation broth of microorganisms. Oleaginous microorganisms are particularly suitable according to the invention as they contain more than 20% lipids based on the dry weight. The microorganisms may be, but are not limited to, photo or heterotrophic microalgae, preferably thraustochytrids.

However, marine biomass and their by products, especially fish and fish-by products, and also vegetable biomass with a sufficient lipid content, e.g. higher than 10% is encompassed by the present invention. The aqueous biomass may be reconstituted from dried biomass. The aqueous biomass may contain intact cells and disrupted cells.

The water content and the properties of the aqueous biomass should enable proper circulation in the system. The process is particularly applicable to biomass with high water content, e.g. higher than 50%.

The term lipids includes both mono-, di- and triglycerids and phospholipids.
A schematic representation of the membrane contactor module is set forth in figure 1. The aqueous biomass is circulated from a biomass tank T1 preferably equipped with a stirrer, to the aqueous compartment (1) of the membrane contactor module M1 and back to the biomass tank T1. The organic solvent or solvent mixture is circulated from a product recovery tank T2 to the organic compartment (3) of the membrane contactor module and back to the product recovery tank T2, while the free fatty acids are extracted across the hydrophobic membrane (2) by diffusion to the organic compartment where the product of interest accumulates.

The aqueous biomass rich in fatty acids flows at a higher flow rate than that of the organic phase. Fatty acids are extracted from the aqueous phase into the bulk of the organic phase through the organic solvent wetting the hydrophobic membrane (in figure 1, arrow in the membrane module indicates the direction of solute transport). The hydrophobic membrane avoids water breakthrough the membrane and, consequently, the contamination of the organic phase receiving the solute.

The hydrophobic membrane may be made of any hydrophobic polymeric material. Polyimide membranes were preferred, due to their highly hydrophobic characteristics, avoiding water breakthrough the membrane. Different polymers may be used, preferably, but not limited to Lenzing P84 and Matrimid 5218. Membranes may be reinforced by a porous supporting layer made of for instance non-woven polyester baking paper.

Membranes applied in the presented invention may be porous (low ultrafiltration or nanofiltration range) or nonporous membranes. Hydrophobic membrane may also function as a barrier between hydrolysed and unhydrolysed lipids. Membranes may present a rejection greater than 50% for diglycerides molecules containing one or two molecules of DHA, preferably greater than 70%, even more preferably greater than 95%.

Membrane contactor module configuration is adapted in accordance with the membrane design chosen. The membrane utilized in the present invention can be configured with regard to any of the designs known, such as plate and frame, spiral wound, shell and tube, and derived designs thereof. Tubular, hollow fibers or flat sheet membranes may be used.
Lipid hydrolysis is carried out chemically or enzymatically, and is performed directly on the aqueous biomass. Enzymatic hydrolysis may be performed by applying one or more lipases. Mono-, di-, and triglycerides and phospholipids are hydrolysed releasing free fatty acids and the aqueous hydrolyzed biomass is fed to the aqueous compartment of the membrane contactor module. In the membrane contactor the free fatty acids are extracted by concentration gradient diffusion through the hydrophobic membrane to the organic compartment of the membrane contactor module. The organic compartment comprises suitable organic solvent or solvent mixture optionally admixed with alcohols and or catalyst if alkyl ester derivatives of the fatty acids are the preferred product.

The fatty acids to be separated according to the present invention are any fatty acids of interest. It might be medium to long chain fatty acids comprising between fourteen and twenty carbons, either saturated or monounsaturated. Examples are the saturated myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0) and arachidic acid (C20:0), and the monounsaturated oleic acid (C18:1) and gadoleic acid (C20:1).

However, preferred fatty acids to be separated according to the present invention are long chain polyunsaturated fatty acids (LC-PUFA) with a carbon chain longer than eighteen carbons and at least three double bonds, particularly EPA and DHA.

According to one embodiment of the invention the fatty acids are released sequentially by enzymatic hydrolysis. In the first stage, saturated and monounsaturated medium to long chain fatty acids are released, especially C16 and C18, by a first lipase. The last stage releases medium to long chain polyunsaturated fatty acids, especially DHA, which can be achieved by leaving the first lipase to act for a longer period of time, or adding a different lipase. In between the first and the last stage, further stages may occur, depending on the fatty acids of interest. The order of the fatty acid release may be changed depending on the experimental conditions. The fatty acids release in the first stage are extracted across the membrane before initiating the next stage.

The lipases used according to the invention may be immobilized on a solid support or dissolved in aqueous biomass.

The enzymes applied are lipases, e.g., but not limited to, lipases of microbial origin, such as 1. 3 position specific and non-specific lipases from Candida rugosa, Candida
cylindracea, Candida antarctica, Pseudomonas sp, Mucor javanicus, Mucor mihei, Thiermomyces lanuginosus (Lipozyme TL 100L), and mixtures thereof.

The principle of the hydrolysis process is removal of the undesired fatty acids in the triglyceride molecule, i.e. the saturated and monounsaturated compounds. Attack of the ester bonds between such fatty acids and the glycerol is facilitated by their linear configuration. Saturated and monounsaturated fatty acids are released earlier in the enzymatic reaction and are firstly removed. Consequently, the remaining biomass hydrolysate mixture is enriched in LC-PUFA, particularly DHA. Therefore, either a different enzyme is added to release the LC-PUFA, especially DHA, or the first lipase is left to act for a longer period of time.

More specifically, in a preferred embodiment, palmitic (C16:0), stearic (C18:0) and/or oleic (C18:1) acids, among other easily attacked fatty acids, are removed during first stage of the stepwise enzymatic hydrolysis, preferably more than 50% of their initial composition, more preferably more than 70%, and even more preferably more than 90%. DHA released at this stage should not be greater than 10%, more preferably not greater than 5%. Largest fraction of DHA, among other long chain polyunsaturated fatty acids, is released in the last stage of the stepwise enzymatic hydrolysis either by the action of the first enzyme or a second enzyme.

In a preferred embodiment of the present invention the polyunsaturated fatty acids constitutes at least 50%, preferably 60%, most preferably 80% by weight of the total fatty acids extracted in the last stage of enzymatic hydrolysis.

In an other preferred embodiment DHA constitutes about 60%, preferably about 70%, most preferably about 90% of the total fatty acids extracted in the last stage of enzymatic hydrolysis.

The organic phase circulating from the product recovery tank T2 to the organic compartment of the membrane contactor and back to the product recovery tank is initially filled with a suitable organic solvent or solvent mixture. Preferably, the solvent is a nonpolar solvent, preferably but not limited to hexane, cyclohexane, heptane, pentane, toluene, dichloroethane, dichloromethane, diethylether, ethylacetate, acetone, or any mixtures thereof.
In a preferred embodiment of the present invention, the fatty acids being extracted through the membrane to the organic compartment are converted to their alkyl ester derivative by esterification. Thus, the solvent or solvent mixture circulating from the product recovery tank may further comprise an alcohol selected from the group of lower alkyl alcohols, preferably methanol or ethanol. As such the products of interest accumulating in T2 are ester derivatives of the fatty acids. To facilitate the esterification a catalyst in the form of an acid, a base, an enzyme (lipase) or mixtures thereof may be present in the organic phase circulating from T2 to the organic compartment of the membrane contactor and back to the product recovery tank T2.

To further enhance initial release rates of fatty acids from the aqueous biomass, the biomass might be subjected to pre treatment prior to or simultaneously with the lipid hydrolysis. This pre treatment may include protein and or phospholipid hydrolysis. Any proteases or phospholipases known by those skilled in the art can be used. For instance, proteases from *Streptomyces griseus*, Alcalase, and mixtures thereof, as recommended by the supplier. Phospholipases are preferably of classes A1, A2, and most preferably of classe B.

Salts and other low molecular compounds contaminating the aqueous biomass might be removed by diafiltration. Further, if sub-optimal biomass concentrations are provided, the cell mass should be dewatered. Thus, the present invention relates to a process further comprising a cross-flow filtration module M2 for dewatering of biomass and/or diafiltration.

Thus, another aspect of the present invention relates to an integrated process for extracting fatty acids from aqueous biomass comprising the following steps:

a) dewatering and/or diafiltering said aqueous biomass in a cross-flow filtration module M2, generating a retentate for further processing in a membrane contactor module M1;

b) hydrolysing the lipids in the retentate to release free fatty acids;

c) feeding the hydrolyzed retentate containing free fatty acids to the aqueous compartment of said membrane contactor module M1; and

d) extracting the fatty acids across a hydrophobic membrane to the organic compartment of said membrane contactor module M1 containing an organic solvent or solvent mixture.
A schematic representation of the integrated process is set forth in figure 2. The fatty acid rich aqueous phase is circulated to the cross-flow membrane module M2, and back to the biomass tank T1. Water and low molecular compounds permeates across the membrane (4) generating a waste permeate (6). At a desired cell concentration, the circulation through M2 is stopped, and the aqueous retentate (5) containing the free fatty acids starts circulating into the membrane contactor as in the first aspect of the present invention.

The cross-flow filtration module M2, generates a concentrated aqueous biomass to be fed into the membrane contactor M1. Concentration of the cell mass from e.g. a fermentation broth by cross-flow filtration, is easily adapted to the succeeding processing in M1 and is preferably set up as an integrated process. Concentration of the cell mass by e.g. centrifugation is not easily adapted to the succeeding processing in M1.

In one embodiment, the aqueous biomass is first circulated from a biomass tank T1 through the cross-flow membrane module M2, whereafter the retentate (5) is circulated to the aqueous compartment (1) of the membrane contactor module M1, extracting the fatty acids to the organic solvent/solvent mixture circulating the organic compartment (3) of the membrane contactor accumulating in a product recovery tank T2.

The permeate generated through the cross-flow membrane contains water and low molecular weight compounds to be discharged.

Step d) above may also comprise a further step of esterification, thus obtaining fatty acid ester derivative.

Both microfiltration (MF) and ultrafiltration (UF) techniques are suitable for the concentration of aqueous biomass. The choice is normally done according to the cell broth characteristics. Ceramic membranes are often preferred to organic membranes in some industrial operations, because of their higher chemical and thermal stability. Cross-flow filtration modules suitable according to the invention contains an inorganic tubular membrane, e.g. membranes made for instance of titanium or zirconium.
suitable inorganic tubular membrane has a cut off in the micro (0.1-10 \(\mu \)m) or ultrafiltration range (\(10^3 - 10^6 \) Da).

The process according to the invention, is normally operated as a batch process or as a semi-continuous process.

After terminating the process or the integrated process according to the invention, the solvent/solvent mixture might be recovered. Solvent recovery is preferably achieved by organic solvent nanofiltration (OSN) rather than distillation in the proposed system. The organic phase is concentrated while recovering the organic solvent by nanofiltration (existing MET patent). However, any suitable process for solvent mixture recovery might be used.

The free fatty acids or ester derivatives thereof obtained in the product recovery tank T2 may be further purified by methods well known by persons skilled in the art, such as molecular distillation or chromatography, but particularly by high performance counter current chromatography (HPCCC).

The process according to the invention is a cost effective process for extracting fatty acids or their alkyl ester derivatives. The process also reduces the demand for fish oil. The process is easy to scale up. The fatty acids are of high quality suitable for both food and pharma industry.

4. Figures

Figure 1 shows a schematic representation of the process according to the invention. The fatty acid rich aqueous phase is circulated from a biomass tank T1 to the aqueous compartment (1) of the membrane contactor module and back to the biomass tank T1. The solvent/solvent mixture is circulated from a product recovery tank T2 to the organic compartment (3) of the membrane contactor module M1 and back to the product recovery tank T2. The fatty acids are extracted across the hydrophobic membrane (2) by diffusion to the organic compartment where the product of interest accumulates.
Figure 2 shows a schematic representation of the integrated process according to the invention. The fatty acid rich aqueous phase is circulated to the cross-flow membrane module M2, and back to the biomass tank T1. Water and low molecular compounds permeates across the membrane (4) generating a waste permeate (6). At a desired cell concentration, the circulation through M2 is stopped, and the aqueous retentate (5) containing the free fatty acids starts circulating into the membrane contactor as explained in figure 1.

Figure 3 shows concentrations of DHA and palmitic acid in the aqueous and organic phases throughout the experiment. Plots are divided in two sections. 1st stage corresponds to the separation achieved when the first lipase was in use. As expected, concentration of C16:0 in the organic phase was greater than the concentration of DHA at the end of this stage. 2nd stage started when second lipase was added for the hydrolysis of remaining glycerides, consequently more DHA was released and concentration of DHA in the organic phase increased linearly.

5. EXAMPLES
The following examples illustrates the invention.

Example 1 - Chemical versus enzymatic hydrolysis of aqueous biomass
This example demonstrates that:
- With the reaction time and conditions applied, enzymatic hydrolysis of the lipids of the aqueous biomass released about 70% of the amounts fatty acids released by chemical hydrolysis (compare results presented in sub-sections A and B, see values in table 1 and 2).
- Pre-treatment of the biomass with protease before enzymatic lipid hydrolysis may be advantageous to facilitate contact between the lipase and the lipids.

A) Chemical hydrolysis of aqueous biomass
1.33 ml water was added to several tubes containing 200 mg dried biomass in order to give a biomass concentration of 150 g/L dry weight. 5 ml of 0.5M KOH solution in ethanol were added and the solution was blended for 30 seconds (Ultraturrax - UT - 9500 rpm). Tubes were incubated at 60°C in a water bath for 2 hours. 2 ml of water were added after the incubation period and the resulting solution acidified to pH 1. Free fatty acids were extracted washing the hydrolysed solution with three aliquots of 2 ml hexane each. An exact volume of the hexane phase (2 ml), containing the free fatty
acids, was withdrawn to a pre-weighed tube and the hexane further evaporated under nitrogen. Free fatty acids were then dissolved in ethanol for analyses.

B) Enzymatic hydrolysis of aqueous biomass

B1) Concentrated aqueous biomass (150 g/L DW) without protease treatment

300 mg freeze-dried biomass was suspended in 2 ml phosphate buffer (0.1M, pH 7.0 at 37°C) to reconstitute to a biomass concentration of 150 g/L. 3000U of lipase LPZ (Lipozyme TL 100L, Novozymes, Denmark) per gram biomass was added after boiling the wet biomass (10 min in a water bath at 98°C) and cooling to room temperature.

B2) Aqueous biomass (50 g/L DW) without protease treatment

2 ml phosphate buffer (pH 7 at 37°C) was added to 100 mg of freeze-dried biomass, giving a biomass concentration of 50 g/L dry weight. The cell mass suspension was then boiled for 10 min (at 98°C) and immediately cooled to room temperature. Two enzyme concentrations were tested for lipase LPZ, namely 1000 and 2000 units per gram biomass.

B3) Aqueous biomass (50 g/L DW) pre-treated by protease

100 mg of freeze-dried biomass was suspended in 2 ml phosphate buffer (pH 7 at 37°C), giving a biomass concentration of 50 g/L dry weight. The cell mass suspension was then boiled for 10 min (at 98°C) and immediately cooled to room temperature. Enzymatic pre-treatment was performed by addition of 20 mg of Alcalase (Novozymes, Denmark) per ml solution. Reaction with the protease lasted for 30 min in a water bath at 60°C. After this period, tube was cooled again to less than 30°C before addition of lipase. The equivalent to 1000 U of lipase LPZ per gram biomass was added.

All tubes were flushed with nitrogen and properly sealed before being placed on a multi-position stirring plate in an incubator at 37°C, for the desired reaction period. B1 and B3 were incubated for 36 hours and B2 for 12 hours. After incubation, 2 ml of deionised water were added to all tubes. Then, three aliquots of 2 ml hexane were added to the resulting aqueous/hydrolysed solution, mixing between additions. The resulting emulsion formed by hydrolysed solution and hexane was separated by centrifugation (10 min, 4000 rpm). An exact volume of the hexane phase containing the free fatty acids was withdrawn to a pre-weighed tube and the solvent evaporated under nitrogen. Hydrolysed oil/free fatty acids were then dissolved in ethanol for analysis. Table 1
presents the amounts of main fatty acids released at the different conditions described above.

Table 1: Amounts of main fatty acids released per gram of biomass after chemical and enzymatic hydrolysis of aqueous biomass. Analysis by LC-MS

<table>
<thead>
<tr>
<th>Fatty Acid (FA)</th>
<th>Concentration (mg FA / g biomass)</th>
<th>Chemical Hydrolysis</th>
<th>Enzymatic Hydrolysis (using LPZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RV</td>
<td></td>
<td>B1</td>
</tr>
<tr>
<td>C16:0</td>
<td>153</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>C18:1</td>
<td>85</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>C22:6</td>
<td>137</td>
<td></td>
<td>81</td>
</tr>
</tbody>
</table>

RV - Reference Values

Comparison of B2 and B3 shows that protease pre-treatment had no effect on the final yield of released fatty acids, however (data not shown), facilitates contact between the lipase and the lipids and increases the initial rates, thereby reducing the total reaction time. Results from enzymatic hydrolysis was comparable with chemical hydrolysis, especially for the concentrated aqueous biomass (B1). 70% of total fatty acids were recovered, namely 81% of palmitic acid (C16:0), 77% of oleic acid (C18:1) and 46% of DHA (C22:6).

Example 2 - Sequential Release of Fatty Acids by Enzymatic Hydrolysis

This example demonstrates the hydrolysis efficiency of four commercially available microbial lipases: Candida rugosa (CR), Mucor javanicus (MJ), Pseudomonas sp (PS), all from Sigma Aldrich (Germany), and Lipozyme (LPZ) from Novozymes (Denmark).

200 mg freeze-dried biomass was suspended in 4 ml phosphate buffer (0.1 M, pH 7 for CR, PS and LPZ, and pH8 for MJ, at 37°C) to a biomass concentration of 50 g/L dry weight. Tubes were placed in a water bath at 98°C and boiled for 10 minutes. After this period, tubes were immediately removed from the water bath and cooled to room temperature. Enzyme amounts equivalent to 2000U per gram biomass were added to the tubes. After flushing with nitrogen and properly sealed, tubes were placed on a multi-stirring plate (350 rpm) in an incubator at 37°C. After 24 hours incubation, 4 ml deonised water were added to each tube. Then, five aliquots of 2 ml hexane were added to the resulting aqueous/hydrolysed solution, mixing between additions. The resulting emulsion formed by hydrolysed solution and hexane was separated by centrifugation (10 min, 4000 rpm). An exact volume of the hexane phase containing the free fatty
acids was withdrawn to a pre-weighed tube and the solvent evaporated under nitrogen. Hexane was then evaporated under nitrogen and the free fatty acids dissolved in ethanol for analysis. Table 2 shows the total amount of the main fatty acids released in each case.

Table 2: Amounts of main fatty acids released by enzymatic hydrolysis of aqueous biomass (24 hours reaction) for the four enzymes in study (Candida rugosa - CR, Lipoyzyme - LPZ, Mucor javanicus - MJ and Pseudomonas sp - PS) and an enzyme concentration of 2000U per gram biomass. Analysis by LC-MS

<table>
<thead>
<tr>
<th>Fatty Acid (FA)</th>
<th>Concentration (mg FA / g biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16:0</td>
<td>RV 153 CR 115 LPZ 131 PS 149 MJ 155</td>
</tr>
<tr>
<td>C18:1</td>
<td>RV 85 CR 60 LPZ 57 PS 74 MJ 70</td>
</tr>
<tr>
<td>C22:6</td>
<td>RV 137 CR 23 LPZ 45 PS 95 MJ 26</td>
</tr>
</tbody>
</table>

RV - Reference Values

The results show that LPZ released the highest amounts of fatty acids during the reaction period. However, CR and MJ were more selective, i.e. they removed preferentially C16:0 and C18:1, with a complete recovery of C16:0 while using MJ. Therefore, MJ may be used in the first stage of the desired stepwise hydrolysis of the present invention, and PS in a second stage. In a possible scenario, access of lipase PS to ester bond between DHA (C22:6) and the glyceride molecule will be facilitated after removal of C16:0 and C18:1 by lipase MJ.

Example 3 - Fatty Acids Separation using a Membrane Contactor

The experiments described below were carried out to demonstrate the efficiency of the membrane contactor and polyimide membranes for the fatty acids extraction without direct contact of the organic solvent with the aqueous solution. From these preliminary experiments it was surprisingly found that the hydrophobic polyimide membranes function perfectly as a barrier between aqueous (fatty acids rich phase) and organic (extraction solvent) phases. Water breakthrough was not observed and fatty acids were successful extracted from the aqueous to the organic phase.

For preliminary tests for the study of mass transfer in the membrane contactor, the solution rich in fatty acids was prepared by direct chemical hydrolysis of microalgae biomass. 10 g of freeze-dried biomass were suspended in 300 ml 0.5M KOH in ethanol, homogenized (9500rpm, Ultraturrax) and left overnight with continuous stirring at room
temperature. Then, the flask was incubated in a water bath at 60°C for 30 minutes. After cooling to room temperature, 150 ml deonised water were added. Aqueous solution containing the salts of fatty acids was then acidified to pH 1 using a solution of 6M HCl, in order to obtain the free fatty acids.

Hydrophobic membrane used was a polyimide membrane. Matrimid 5218 was chosen because of the well known hydrophobic characteristics of this polymer. Flat sheet matrimid membrane, prepared in TV-methyl pyrrolidinone (NMP), had a filtration area of 41 cm², a molecular weight cut off (MWCO) ~5 kDa.

As described previously, the two liquid circuits, separated by the hydrophobic membrane, namely the fatty acids rich phase and the organic phase, were in continuous circulation (gear pump), one on each side of the membrane contactor. Fatty acids rich phase was circulating at a higher flow rate (90 L/h) than that of the organic phase (20 L/h), in order to avoid the water breakthrough and also to facilitate the membrane to be wetted by the solvent. Initial volumes of fatty acids rich phase and organic phase were 500 ml and 100 ml, respectively. Experiments were conducted at room temperature and atmospheric pressure. Due to some limitations of the experimental set-up capacity, trials were run for a maximum of 22 hours. Samples were collected periodically until 22 hours running. Collected samples were methylated and analysed by GC.

Table 3: Initial and final composition of main fatty acids in the aqueous and organic phases circulating in the membrane contactor.

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Total amount (initial - final - me)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fatty Acids Rich Phase</td>
</tr>
<tr>
<td>C16:0</td>
<td>710 ; 480</td>
</tr>
<tr>
<td>C18:1</td>
<td>604 ; 426</td>
</tr>
<tr>
<td>C22:6</td>
<td>814 ; 554</td>
</tr>
</tbody>
</table>

Extraction yields reached at this stage were about 30-32%, i.e. about 30-32% of main fatty acids in the microalgae biomass were recovered from the emulsion formed after chemical hydrolysis.

Overall mass transfer coefficient, OMTC - K_{aq}, was calculated based on the variation of DHA (C22:6) concentration in the organic phase during the 22 hours running. The estimated value for K_{aq} was 7.0×10^7 m.s⁻¹.
Example 4 - Fatty Acids Separation using a Membrane Contactor

The experiment described in the present example was run in the same basis as Example 3. However, the initial volumes of both phases were changed and a new membrane was used in order to improve the separation performance.

5 g of freeze-dried biomass were suspended in 150 ml 0.5M KOH in ethanol, homogenized (9500rpm, Ultraturrax) and left overnight with continuous stirring at room temperature. Then, the flask was incubated in a water bath at 60°C for 30 minutes. After cooling to room temperature, 75 ml deonised water were added. Aqueous solution containing the salts of fatty acids was then acidified to pH 1 using a solution of 6M HCl, in order to obtain the free fatty acids.

Hydrophobic membrane used was again a flat sheet polyimide membrane, with a filtration area of 41 cm², prepared with Matrimid 5218 and N,N-TV-Dimethylformamide (DMF), and with a molecular weight cut off (MWCO) of -35 kDa.

Experimental set up and flow rates were the same as in Example 3. Initial volumes of fatty acids rich phase and organic phase were 250 ml and 200 ml, respectively. Organic phase contained 0.1% BHT (Butylated hydroxytoluene) in order to prevent oxidation. Experiments were conducted at room temperature and atmospheric pressure. Collected samples were methylated and analysed by GC. Initial and final concentrations of main fatty acids in the feed (fatty acids rich phase) and product phase (organic phase) are shown in table 4.

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Total amount (initial ; final - nig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fatty Acids Rich Phase</td>
</tr>
<tr>
<td>C16:0</td>
<td>625 ; 2i</td>
</tr>
<tr>
<td>C18:1</td>
<td>315 ; 4</td>
</tr>
<tr>
<td>C22:6</td>
<td>875 ; 36</td>
</tr>
</tbody>
</table>

Separation performance was considerably improved if compared with results presented in Example 3. Extraction yields reached were between 95-98%, i.e. about 95-98% of
main fatty acids in the microalgae biomass were recovered from the emulsion formed after chemical hydrolysis. Overall mass transfer coefficient, OMTC - $K_{aq'}$ was calculated based on the variation of DHA (C22:6) concentration in the organic phase. The estimated value for K_{aq} was $17.0 \times 10^{-7} \text{ m.s}^{-1}$.

Example 5 - Fractionation of fatty acids by simultaneous enzymatic hydrolysis and separation from the aqueous biomass in a membrane contactor.

The experiments described below were conducted in order to prove that fractionation between saturated and polyunsaturated fatty acids may be achieved by performing simultaneous hydrolysis and separation of fatty acids from aqueous biomass to an organic phase in a membrane contactor system at mild conditions.

The solution rich in fatty acids was prepared by enzymatic hydrolysis of microalgae biomass. 5g of freeze-dried biomass were suspended in 100ml of 0.1M potassium phosphate buffer (pH 5), and heated to 98°C in a water bath for 10 minutes. For pre-treatment, 1g of phospholipase was added to the biomass suspension which was further placed in a water bath at 50°C for 2 hours with continuous stirring. After finishing the pre-treatment, the biomass suspension was cooled to around 30°C. pH was then adjusted to 7. 100 ml of ethanol were added to the biomass suspension, and the flask was incubated in a water bath at 37°C. First lipase was added when the optimum temperature was reached. Recirculation of the biomass suspension to the aqueous compartment of the membrane contactor was initiated 2 hours after the beginning of the triglycerides hydrolysis. The second lipase was added to the biomass suspension when saturated fatty acids were satisfactorily removed and solvent in the organic phase was replaced by clean solvent.

Hydrophobic membrane used and the experimental set up was the same as in example 4, as well as the operating conditions, e.g. flow rates. Initial volumes of fatty acids rich phase and organic phase were 250 ml and 200 ml, respectively. Solvent circulating in the organic compartment contained 0.1% BHT (Butylated hydroxytoluene) in order to prevent oxidation. Experiments were conducted at atmospheric pressure. Samples were collected periodically and immediately methylated to be further analysed by GC.

As depicted in Figure 3, from these experiments it was proved that saturated fatty acids, namely C16:0, were preferably extracted in the first stage, while polyunsaturated fatty acids remain in the aqueous phase. By the addition of the second lipase, remaining
glycerides were hydrolysed. Therefore, at the second stage of the experiment, an enhancement of the mass transfer rates of polyunsaturated fatty acids, namely DHA, was observed. By the end of this experiment, DHA transport was still increasing linearly, whilst C16:0 was stabilizing. Overall mass transfer coefficient obtained for DHA was $0.36 \times 10^7 \text{ m}^{-1} \text{s}^{-1}$ and for C16:0 was $1.48 \times 10^7 \text{ m}^{-1} \text{s}^{-1}$, in the first stage.

Example 6 - Cell harvesting/diafiltration using Cross Flow Microfiltration - CFMF

Fermentation broth was concentrated from 45-50 g/L to 180 g/L by cross flow microfiltration.

CFMF system and tubular membranes used in the present tests were supplied by Orelis (Novasep, Applexion, France). Microfiltration Kerasep™ ceramic membranes utilized, namely KERMBMM1 and KERMBMM2, had a cut-off of 100 nm and 200 nm, respectively, and a filtration area of 0.008 m2 (as given by the supplier).

Fresh fermentation broth with an initial cell concentration of about 45-50 g/L (dry weight basis) was continuously recycled from and to the vessel T1 through the tubular membrane in the membrane filtration module (M2) by a monoscrew pump, with a constant speed of 5 m/s (as indicated by the supplier). Filtration flux was calculated based on the permeate weight and the concentration factor based on the difference between the dry weight of the original fermentation broth and the retentate solution at the end of the experiment.

Different transmembrane pressures (TMP) were compared using the membrane KERMBMM1. Filtration flux obtained after 30 minutes operation at each TMP is presented in table 5.

Table 5: Permeate flux for the same microfiltration membrane (KERMBMM1) operating at different transmembrane pressures ($P_{\text{in}} - P_{\text{out}}$ (bar); initial broth concentration -45 g/L; $T=25^\circ\text{C}$, $v=5 \text{ m/s}$; pH~7).

<table>
<thead>
<tr>
<th>TMP (bar, $P_{\text{in}} - P_{\text{out}}$)</th>
<th>Flux (L/m2/h/bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 (0.7-0.5)</td>
<td>164</td>
</tr>
<tr>
<td>0.7 (0.8-0.6)</td>
<td>184</td>
</tr>
<tr>
<td>1.1 (1.2-1.0)</td>
<td>102</td>
</tr>
<tr>
<td>1.3 (1.4-1.2)</td>
<td>82</td>
</tr>
</tbody>
</table>
A TMP of 0.7 bar ($P_{\text{in}}=0.8\text{ bar}; P_{\text{out}}=0.6\text{ bar}$) was found as the ideal for this system. Performances of two membranes in study were evaluated according to the permeation flux and final cell concentration achieved while working at same TMP (table 6).

Table 6: Flux variation with cell concentration for two microfiltration membranes (KERMBMM1 - 100 nm and KERMBMM2 - 200 nm), operating at same transmembrane pressure ($P_{\text{in}}=0.8\text{ bar}; P_{\text{out}}=0.6\text{ bar}$; initial broth concentration 45 g/L; $T=25\degree\text{C}, v=5\text{ m/s}; \text{pH}~7$).

<table>
<thead>
<tr>
<th>Cell Concentration (g/L)</th>
<th>Flux (L/m²/h/bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KERMBMM1</td>
</tr>
<tr>
<td>100</td>
<td>103</td>
</tr>
<tr>
<td>130</td>
<td>74</td>
</tr>
<tr>
<td>180</td>
<td>~</td>
</tr>
</tbody>
</table>

It was evident that for the same broth concentration and operating conditions, membrane KERMBMM2 (200 nm) had the best performance. A final cell concentration of 180 g/L was reached.
Claims

1. Process for extracting fatty acids from aqueous biomass in a membrane contactor module M1, comprising the following steps:

 a) hydrolysing the lipids of the aqueous biomass to release free fatty acids;
 b) feeding the aqueous hydrolyzed biomass containing free fatty acids to the aqueous compartment (1) of said membrane contactor module M1; and
 c) extracting the fatty acids across a hydrophobic membrane (2) to the organic compartment (3) of said membrane contactor module M1 containing an organic solvent/solvent mixture.

2. Process according to claim 1, wherein the aqueous biomass is circulated from a biomass tank (T1) to the aqueous compartment (1) of the membrane contactor module M1 and back to the biomass tank (T1). The organic solvent/solvent mixture is circulated from a product recovery tank (T2) to the organic compartment (3) of the membrane contactor module and back to the product recovery tank T2, while the free fatty acids are extracted across the hydrophobic membrane (2).

3. Process according 1, wherein the set up is as set forth in figure 1.

4. Process according to claim 1, wherein the lipid hydrolysis is enzymatic applying one or more lipases.

5. Process according to claim 1-4, wherein fatty acids are released sequentially, the saturated and monounsaturated medium to long chain fatty acid being released in a first stage and the polyunsaturated fatty acids being released in a last stage.
6. Process according to claim 5, wherein the fatty acid released in the first stage are extracted across the membrane before initiating the next stage.

7. Process according to any of the preceding claims wherein the sequential release is achieved by leaving a first lipase to act for a longer period of time, or adding a different lipase.

8. Process according to 5, wherein the polyunsaturated fatty acids constitutes at least 50%, preferably 60%, most preferably 80% by weight of the total fatty acids extracted in the last stage.

9. Process according to 5, wherein DHA constitute about 60%, preferably about 70%, most preferably about 90% of the total fatty acids extracted in the last stage.

10. Process according to claim 1, further comprising a step of esterification of the fatty acids to their alkyl ester derivative in the organic compartment.

11. Process according to claim 1, wherein the aqueous biomass is subjected to protease treatment before lipid hydrolysis.

12. Process according to claim 1, wherein the aqueous biomass is subjected to phospholipase treatment before lipid hydrolysis.
13. Process according to claim 1, wherein the aqueous biomass is a fermentation broth of an oleaginous microorganism.

14. Process according to claim 13, wherein the oleaginous microorganism is a heterotrophic microalgae, preferably thraustochytrids.

15. Process according to claim 1, wherein said solvent is selected from the group of nonpolar solvents, preferably hexane, cyclohexane, heptane, pentane, toluene, dichloroethane, dichloromethane, diethylether, ethylacetate, acetone, and mixtures thereof.

16. Process according to claim 1, wherein said solvent or solvent mixture further comprises an alcohol selected from the group of lower alkyl alcohols, preferably methanol or ethanol.

17. Process according to claim 1, wherein said solvent or solvent mixture further comprises a catalyst in the form of an acid, a base, an enzyme or mixtures thereof.

18. Process according to claim 1, further comprising a cross-flow filtration module M2 for dewatering of biomass and/or diafiltration.

19. Process according to claim 18, wherein said cross-flow filtration module contains an inorganic membrane.
20. Process according to claim 18, wherein said inorganic tubular membrane has a cut off in
the micro (0.1-10 µm) or ultrafiltration range (10^3 - 10^6 Da).

21. Integrated process for extracting fatty acids from aqueous biomass comprising the
following steps:
 a) dewatering and/or diafiltering said aqueous biomass in a cross-flow filtration
 module M2, generating a retentate (5) for further processing in a membrane
 contactor module M1;
 b) hydrolysing the lipids in the retentate (5) to release free fatty acids;
 c) feeding the hydrolyzed retentate containing free fatty acids to the aqueous
 compartment (1) of said membrane contactor module M1; and
 d) extracting the fatty acids across a hydrophobic membrane (2) to the organic
 compartment (3) of said membrane contactor module M1 containing an
 organic solvent or solvent mixture.

22. Process according to claim 21, wherein the aqueous biomass is first circulated from a
biomass tank T1 through the cross-flow membrane module M2, wherein water and low
molecular compounds permeates across the membrane (4) generating a waste permeate
(6), whereafter the retentate (5) is circulated to the aqueous compartment (1) of the
membrane contactor module M1, extracting the fatty acids to the organic solvent/solvent mixture circulating the organic compartment (3) of the membrane
contactor accumulating in a product recovery tank T2.

23. Process according to 21, wherein the set up is as set forth in figure 2.

24. Process according to any of the preceding claims, wherein the process is operated as a
batch process or a semi-continuous process.
25. Process according to any of the preceding claims, further comprising solvent recovery step(s), preferably by organic solvent nanofiltration (OSN).

26. Process according to any of the preceding claims, further comprising purification step(s), preferably by high performance counter current chromatography (HPCCC).
Membrane Contactor Module (M1)

Fatty Acids Rich Aqueous Phase

Organic Phase Solvent / Solvent Mixture

Figure 1
Figure 3: Concentration profile of DHA and C16:0 in the aqueous and organic phases.
INTERNATIONAL SEARCH REPORT

International application No
PCT/NO2010/000220

A CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C1 1B, C11C, C12N, C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, PAJ, WPI data, BIOSIS, EMBASE, MEDLINE, PUBCHEM

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4579660 A1 (TOUSHEK DIMKOV K ET AL), 1 April 1986 (1986-04-01); claim 1</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>WO 01 601 82 A1 (LIPOGENICS INC ET AL), 23 August 2001 (2001-08-23); figure 1; claims 1, 7, 13, 25</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>US 200301 43659 A1 (BIJL HENDRIK LOUIS ET AL), 31 July 2003 (2003-07-31); page 4, paragraph [0058]; page 4, paragraph [0072]; figure 3; claims 1, 12-18; Example 7 in page 9.</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>US 200501 70479 A1 (WEAVER CRAIG A ET AL), 4 August 2005 (2005-08-04); page 3, paragraph [0020]; claims 1, 6, 8, 12, 18, 28-41</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>US 20060286205 A1 (FICHTALI JAOUAD ET AL), 21 December 2006 (2006-12-21); page 2, paragraph [0019]; claims 1, 7, 15, 34, 37, 46; Example 1</td>
<td>1-26</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

k document member of the same patent family

Date of the actual completion of the international search
09-09-2010

Date of mailing of the international search report
10-09-2010

Name and mailing address of the ISA/SE
Patent- och registreringsverket
Box 5055
S-102 42 STOCKHOLM
Facsimile No +46 8 666 02 86

Authorized officer
Hakan Yildirim
Telephone No +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 03092628 A2 (MARTEK BIOSCIENCES CORP ET AL), 13 November 2003 (2003-1-13); claims 1, 11, 31, 32, 38, 46, 47, 56</td>
<td>1-26</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2006046943 A2 (MARTEK BIOSCIENCES CORP ET AL), 4 May 2006 (2006-05-04); claims 1, 8, 12, 33, 50, 57, 61, 81, 102, 105, 109, 130</td>
<td>1-26</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 02076588 A1 (MEMBRANE EXTRACTION TECH LTD ET AL), 3 October 2002 (2002-1-03); figure 1; claims 1, 15, 19, 23, 24, 25, 27, 30; Page 1: hydrophobic membranes in Table 1.</td>
<td>1, 15, 16, 18, 21, 24, 25</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Continuation of: second sheet

International Patent Classification (IPC)

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12P</td>
<td>7/64</td>
<td>2006.01</td>
</tr>
<tr>
<td>C11B</td>
<td>1/02</td>
<td>2006.01</td>
</tr>
<tr>
<td>C11B</td>
<td>1/10</td>
<td>2006m</td>
</tr>
<tr>
<td>C11B</td>
<td>3/00</td>
<td>2006.01</td>
</tr>
<tr>
<td>C11C</td>
<td>1/04</td>
<td>2006.01</td>
</tr>
<tr>
<td>C11C</td>
<td>1/08</td>
<td>2006.01</td>
</tr>
<tr>
<td>C12N</td>
<td>7/72</td>
<td>2006.01</td>
</tr>
<tr>
<td>C12N</td>
<td>9/20</td>
<td>2006.01</td>
</tr>
</tbody>
</table>

Download your patent documents at www.prv.se

The cited patent documents can be downloaded:
- From "Cited documents" found under our online services at www.prv.se (English version)
- From "Anförda dokument" found under "e-tjanster" at www.Bry.se (Swedish version)

Use the application number as username. The password is CJXATOKKKKN.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application No.</th>
<th>Date</th>
<th>Code</th>
<th>Application No.</th>
<th>Date</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>4579660</td>
<td>01/04/1986</td>
<td>DE</td>
<td>3422111</td>
<td>20/1/1984</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FR</td>
<td>2548214</td>
<td>04/01/1985</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IT</td>
<td>1199140</td>
<td>30/1/1988</td>
<td>B</td>
</tr>
<tr>
<td>JP</td>
<td></td>
<td></td>
<td></td>
<td>60070037</td>
<td>20/04/1985</td>
<td>A</td>
</tr>
<tr>
<td>WO</td>
<td>0160182</td>
<td>23/08/2001</td>
<td>AU</td>
<td>3822501</td>
<td>27/08/2001</td>
<td>A1</td>
</tr>
<tr>
<td>CN</td>
<td></td>
<td></td>
<td></td>
<td>1423531</td>
<td>11/06/2003</td>
<td>A1</td>
</tr>
<tr>
<td>US</td>
<td>20030143659</td>
<td>31/07/2003</td>
<td>US</td>
<td>20090326267</td>
<td>31/1/2009</td>
<td>A1</td>
</tr>
<tr>
<td>US</td>
<td>20050170479</td>
<td>04/08/2005</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20060286205</td>
<td>21/12/2006</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>03092628</td>
<td>13/1/2003</td>
<td>AU</td>
<td>2003237182</td>
<td>17/1/2003</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AU</td>
<td>2008252072</td>
<td>08/01/2009</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA</td>
<td>2484334</td>
<td>13/1/2003</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>1503715</td>
<td>09/02/2005</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>20060099693</td>
<td>11/05/2006</td>
<td>A1</td>
</tr>
<tr>
<td>WO</td>
<td>2006046943</td>
<td>04/05/2006</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>02076588</td>
<td>03/10/2002</td>
<td>AT</td>
<td>416025</td>
<td>15/1/2008</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DE</td>
<td>60230123</td>
<td>15/01/2009</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>1372829</td>
<td>02/01/2004</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GB</td>
<td>2373743</td>
<td>02/10/2002</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>20040097766</td>
<td>20/05/2004</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>7255792</td>
<td>14/08/2007</td>
<td>B2</td>
</tr>
</tbody>
</table>