PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/34622
H04Q 3/00, HO4M 3/42 Al . o

(43) International Publication Date: 8 July 1999 (08.07.99)

(21) International Application Number: PCT/US98/27892 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 31 December 1998 (31.12.98)

(30) Priority Data:

09/002,193 us

31 December 1997 (31.12.97)
(71) Applicant: ALCATEL USA SOURCING, L.P. [US/US]; 1000
Coit Road, Plano, TX 75075 (US).

(72) Inventor: NIGHTINGALE, Peter, D.; 8650 Southwestern
#3208, Dallas, TX 75206 (US).

(74) Agent: FISH, Charles, S.; Baker & Botts, L.L.P., 2001 Ross
Avenue, Dallas, TX 75201-2980 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, T™, TR, TT, UA, UG, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND SYSTEM FOR SERVICE ENGINEERING IN AN ADVANCED INTELLIGENT NETWORK

CLIENT SERVER
40 80 Y 2 P
ey T == -
62 | [INTERFACE | [Twiereace] | | PLATEORY
se~ oul el tettatetet —f-===== =
60— {AOvIN] SERVICE | [CUSTONER SERVICE | | Pevecenr
(ene][V] L L
7] T T \ \
\ { 1) 7
64 66 68 70 5\6 74 6
SO TRANSACTION
50 > ~{ITEM] SB~[TEM] [>52
S8~{Trew |
SOP TRANSACTION
o [g
S8~[TTem]

(57) Abstract

A method of engineering services in a telecommunications network includes storing an engineering file (56) including a plurality of
engineering attributes associated with a class of services. A service package (50) is received for a service within the class of services. The

engineering attributes of the engineering file (56) are loaded into the

service package (50).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
T
™
TR
TT
UA
UG
us
vz
VN
YU
VAU

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/34622 PCT/US98/27892

METHOD AND SYSTEM FOR SERVICE ENGINEERING IN AN ADVANCED
INTELLIGENT NETWORK

NOTICE

"Copyright 1997 DSC Communications Corporation." A
portion of the disclosure of this patent document contains
material which is subject to copyright protection. The
copyright owner has no objection to the facsimile
reproduction by any one of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or

records, but otherwise reserves all copyright rights

whatsoever.

TECHNICAL FIELD QF THE INVENTION

This invention relates generally to the field of

telecommunications, and more particularly to a method and

system for service engineering in an advanced intelligent
network (AIN).

B ROQUND QF THE INVENTION

With the advent of the advanced intelligent network
(AIN), it has become possible to rapidly design and
introduce many new enhanced telecommunications services
that provide subscribers with added flexibility and
convenience in the use of telephone equipment. Examples of
such services are free phone (FPH) services such as time
dependeht routing, calling card (CCD) services, virtual
private network (VPN) services and personal 1-800 services.

In the advanced intelligent network, new services are
typically designed in a service creation environment.

After a service has been created, it needs to be bundled

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

together, engineered, deployed and initially provisioned
before it is capable of carrying live traffic on the
network. The engineering process provides engineering data
for the operating environment in which the service will be
deployed.

Conventional methods for engineering a service in an
advanced intelligent network suffer several disadvantages.
For example, the engineering data is manually determined
and entered by a programmer, which is time consuming,
expensive and prone to mistakes. In addition, engineered
services generally cannot be modified. As a result,
engineered services cannot be corrected in case of mistakes

or redeployed to other operating environments.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method and
system for service engineering are provided that
substantially reduces or eliminates disadvantages and
problems associated with prior systems and methods. In
particular, the method and system stores attributes
associated with a class of services in an engineering file
that can be loaded into a service package to minimize
engineering time and expense.

In one embodiment, the method of engineering a service
in a telecommunications network includes storing an
engineering file including a plurality of engineering
attributes associated with a class of services. A service
package 1is received for a service within the class of
services. The engineering attributes of the engineering
file are loaded into the service package.

Technical advantages of the present invention include
providing an improved method of engineering a service in a
telecommunications network. In particular, engineering
attributes associated with a class of services are stored

in an engineering file and together loaded into a service

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

package for a service within the class of services. The
class of services may include services of a particular type
or a particular customer. Accordingly, a service package
may be efficiently engineered for one or more
telecommunications environments. Thus, engineering time
and expense are reduced.

Other technical advantages will be readily apparent to
one skilled in the art from the following figures,

description, and claims.

BRIEF DESCRIPTION QF THE DRAWINGS

For a more complete understanding of the present

invention, and its advantages thereof, reference is now
made to the following description taken in conjunction with
the accompanying drawings in which:

FIGURE 1 is a block diagram illustrating an exemplary
telecommunications network such as an advanced intelligent
network (AIN) for wuse in connection with the present
invention;

FIGURE 2 is a block diagram illustrating details of
client and server systems for service related internode
communication in accordance with the present invention;

FIGURE 3 is a flow diagram illustrating a computer
method for engineering services in accordance with the
present invention;

FIGURE 4 is a flow diagram illustrating a computer
method for editing services in accordance with the present
invention;

FIGURE 5 1is a flow diagram illustrating a computer
method for communicating service information between nodes
in accordance with the present invention; and

FIGURES 6A-B are object diagrams illustrating an
object-oriented view of the client, server, and graphical
user interface (GUI) of FIGURE 2 in accordance with a

particular embodiment of the present invention.

10

15

20

25

30

WO 99/34622 PCT/US98/27892

DETAILED DESCRIPTION OF THE INVENTION
FIGURE 1 is a block diagram illustrating an advanced

intelligent network (AIN) 10 for use in connection with the
present invention. The advanced intelligent network 10
includes a service management system (SMS) 12 that
interfaces with a plurality of service control points (SCP)
14 and a plurality of signal transfer points (STP) 16 via
an industry standard protocol, such as X.25. The service
management system 12 provides network information, database
management, and administrative support for the advanced
intelligent network 10. The service management system 12
generally interfaces with service control points 14 for
provisioning, database management, service control point
application program management, and collecting traffic
metering measurement data.

The service control points 14 may be directly linked
to the signal transfer points 16 via a signaling system
number 7 (SS7) link set 18. The signal transfer points 16
are further coupled through signaling system number 7 link
set 18 to one or more service switching points 20, which
perform switching and call handling functions in the
network 10. The service control points 14 are transaction-
based processing systems whose primary responsibility is to
respond to queries from service switching points 20 for
data needed to complete the routing of a call. The service
switching points 20 are part of a publicly-switched
telephone network (PSTN) and are coupled to the telephone
service subscribers, which include wire-based telephones
and wireless telephones 22, intelligent peripherals 24 and
home location registers (HLR) 26.

A service creation environment 28 allows the creation
and testing of service 1logic programs outside of the
network 10. Completed service logic programs are

downloaded to the service control points 14 and the signal

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

transfer points 16 through the service management system 12
for execution on the network 10.

FIGURE 2 is a block diagram illustrating details of a
client system 40, a server system 42 and a network services
interface 44 for service related internode communication in
a telecommunications network. For the advanced intelligent
network 10, the client system 40 may reside in the service
management system 12 and the server system 42 may reside in
each of the service control points 14. It will be
understood that the client and server systems 40 and 42 are
network centric and may reside in other suitable network
elements capable of storing and processing data. For
example, the client system 40 may reside in the service
creation environment 28. The server system 42 resides in
the service management system 12, the intelligent
peripherals 24 and the home location register 26.

Referring to FIGURE 2, the client system 40 includes
a plurality of service definition packages (SDP) 50, a
plurality of transactions 52, a graphical user interface
(GUI) 54 and engineering files 56. The service definition
packages 50, transactions 52, graphical user interface 54
and engineering files 56 comprise computer software that is
loaded into memory and executed by the client system 40.
It will be understood that the computer software may be
otherwise suitably combined or divided for processing.
Accordingly, labels of the packages, transactions,
interfaces and files are for illustrative purposes and may
be varied without departing from the scope of the present
invention.

The service definition packages 50 and transactions 52
are each constructed of one or more items 58. The service
definition package 50 is a transaction 52 that includes a
specific set of ordered dependent items 58. The items 58
each have the same format for querying, provisioning and

administering a service over the advanced intelligent

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

network 10. As a result, a common interface may be used to
query, provision and administer services in the advanced
intelligent network 10,

Each item 58 includes discrete information blocks that
identify a destination server system 42 for the item 58, an
operation to be performed in the destination server system
42, a service on which the operation is to be performed and
data for performing the operation. The operation may be a
platform manager operation requesting information
pertaining to destination server system 42, a database
operation requesting modification of information pertaining
to a service in the destination server system 42 or a
service manager operation requesting administration of the
service in the destination server system 42.

As shown by Tables 1-19 and described in more detail
below, each item 58 may include eight fields of data. 1In
this embodiment, a service field identifies the service to
which the item 58 is directed. The service field forms the
service information block of the item 58. An operation
(Op) field identifies the operation that will be performed
in response to the item 58. A type field identifies the
type of operation. Thus, the operation and type fields
together form the operation information block of the item
58. A destination (Dest) field identifies nodes or network
elements to which the item 58 will be distributed. The
destination field forms the destination information block
of the item 58. The engineering description (EngDesc)
field is used during service engineering to identify the
type of item 58 and thus determine which of the fields may
be engineered. The engineering description field may also
be used in connection with the operation field to determine
the operation to be performed by the item 58. The argument
(argl, arg2 and arg3) fields are the data portion of the
item 58 and have specific meaning based on the operation of

the item 58. For example, the argument fields may include

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

a user ID and password for a login operation and database
data for a provisioning operation. The argument fields
form the data information block of the item 58. It will be
understood that the items 58 may comprise other standard
formats operable to identify the destination server system
42 for the item 58, the operation to be performed in the
destination server system 42, the service on which the
operation is to be performed and data for performing the
operation.

The graphical user interface 54 is a main interface
and includes an administration graphical user interface 60,
a provisioning graphical user interface 62, an engineering
graphical user interface 64 and an advanced engineering
graphical user interface 66. As described in more detail
below, the administration graphical user interface 60
displays all services distributed to network elements.
Available administration actions are displayed and executed
per request. The provisioning graphical user interface 62
allows the insertion, updating, modifying and deleting of
records in the service databases of the network elements.

The engineering and advanced engineering graphical
user interfaces 62 and 64 are used for service engineering.
The engineering graphical user interface 64 enables the
insertion, modification and deletion of items 58 in a
service definition package 50. The advanced engineering
graphical user interface 64 enables advanced operations in
the service definition package 50.

As best shown by Table 1, the engineering and advanced
engineering graphical user interfaces 62 and 64 graphically
display the service definition package 50 as an array of
items 58 with corresponding fields arranged in columns. As
a result, a programmer can easily perceive relationships
between items 58 of the service definition package 50,
engineer the service definition package 50 for deployment

and reengineer the service definition package 50 for

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

disparate deployment. Accordingly, a service package may
be efficiently engineered for one or more
telecommunications environments. Thus, engineering time
and expense are reduced.

The engineering graphical user interface 62 also loads
relevant engineering files 56 into the service definition
package 50, The engineering files 56 each include a
plurality of engineering attributes associated with a class
of services. The class of services may be services of a
particular type, such as, for example, 1-800 services and
services of a particular customer, such as, for example, a
regional telephone company. In this embodiment, the
engineering files 56 include one or more service files 68
and customer files 70. It will be understood that the
engineering files 56 may include files for other suitable
classes of service.

The server system 42 includes a platform manager 72,
a service manager 74 and a database subsystem 76. The
platform manager 72, service manager 74 and database
subsystem 76 comprise computer software that is loaded into
memory and executed by the server system 42. It will be
understood that the computer software may be otherwise
suitably combined or divided for processing. Accordingly,
labels of the manager and system are for illustrative
purposes and may be varied without departing from the scope
of the present invention.

As described in more detail below, the platform
manager 72 1is operable to store and provide information
pertaining to the server system 42. The service manager 74
is operable to administer services in the server system 42.
The database subsystem 76 is operable to store, provision
and provide information pertaining to a service.

The network services interface 44 includes a client
interface 80 and a server interface 82. The client

interface 80 is operable to transmit items 58 of the

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

service definition packages 50 and other transactions 52 to
the server interface 82. The server interface 82 1is
operable to process each item 58 and pass the identified
operation to the platform manager 72, the service manager
74 or the database subsystem 76. In particular, if the
operation 1is a platform manager operation, the server
intefface 82 passes the operation to the platform manager
72. If the operation is a service manager operation, the
server interface 82 passes the operation to the service
manager 74. If the operation is a database operation, the
server interface 82 passes the operation to the database
subsystem 76. In this way, the network services interface
44 1s used to communicate all administrative, deployment,
provisioning and other service information or messages in
the advanced intelligent network 10. As a result, the
expenses assoclated with using and maintaining disparate
interfaces are reduced. 1In addition, as described in more
detail below, the network services interface 44 may use an
open protocol, such as, for example, the Common Object
Request Broker Architecture (CORBA) ver. 2.0 protocol, that
allows subscribers to remotely access the server interface
82 with a web browser to provision personal service data
such as, for example, call forwarding information.

FIGURE 3 1s a flow diagram illustrating a computer
method for engineering a service package in accordance with
one aspect of the present invention. The service package
may be the service definition package 50 or any other type
of file including a service logic program or other set of
instructions for performing a service in a
telecommunications network. For the advanced intelligent
network 10, the service definition package 50 is initially
received from the service creation environment 28 and
requires more processing before it can be used in a network
element. The process of completing the service definition

package 50 1is called service engineering in which

10

15

20

25

30

35

WO 99/34622 ‘ PCT/US98/27892
10

configuration data, database schema and other engineering
attributes are loaded into the service definition package
50.

Referring to FIGURE 3, the method begins at step 90 in
which an identification of a service definition package 50
to be engineered is received. In one embodiment, the
identification of the service definition package 50 is
received from a programmer via the engineering graphical
user interface 64. At step 92, the identified service
definition package 50 1is retrieved for engineering
processing. The service definition package 50 may be in
the format from which it was received from the service
creation environment 28 or may have been previously
engineered.

Proceeding to step 94, an identification of a customer
engineering file 70 is received. In one embodiment, the
identification of the customer engineering file 70 is
received from the programmer via the engineering graphical
user interface 64. In this embodiment, the engineering
graphical user interface 64 may identify and display, as
choices for selection, customer engineering files 70 having
engineering attributes associated with the customer of the
service definition package 50. The programmer may then
select the desired customer engineering file 70 to have the
attributes of that file 70 1loaded 4into the service
definition package 50. It will be understood that the
customer engineering file 70 may be otherwise suitably
identified without departing from the scope of the present
invention. For example, the engineering graphical user
interface 64 may automatically identify the customer
engineering file 70 based on information provided in the
service definition package 50 or by the programmer.

Next, at step ‘96, the engineering graphical user
interface 64 retrieves the identified customer engineering

file 70. At step 98, the engineering graphical user

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892
11

interface 64 loads engineering attributes from the customer
engineering file 70 into the service definition package 50.
The customer engineering attributes provide specific item
configuration information for the customer of the service
definition package 50. The item configuration information
may include specific items 58 and specific services
operations, operation types, destinations, data and other
information for items 58.

Proceeding to step 100, an identification of a service
engineering file 68 is received. In one embodiment, the
identification of the service engineering file 68 is
received from the programmer via the engineering graphical
user interface 64. In this embodiment, the engineering
graphical user interface 64 may identify and display, as
choices for selection, service engineering files 68 having
engineering attributes associated with the service of the
service definition package 50. The programmer may then
select the desired service engineering file 68 to have the
attributes of that file 68 loaded into the service
definition package 50. It will be understood that the
service engineering file 68 may be otherwise suitably
identified without departing from the scope of the present
invention. For example, the engineering graphical user
interface 64 may automatically identify the service
engineering file 68 based on information provided in the
service definition package 50 or by the programmer.

Next, at step 102, the engineering graphical user
interface 64 retrieves the identified service engineering
file 68. At step 104, the engineering graphical user
interface 64 loads engineering attributes from the service
engineering file 68 into the service definition package 50.
The service engineering attributes provide specific item
configuration information for the service of the service
definition package 50. The item configuration information

may include specific items 58 and specific service

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

12

operations, operation types, destinations, data and other
information for items 58.

Proceeding to step 106, the service definition package
50 with the customer and service engineering attributes is
saved. Thus, attributes that are standard for a particular
type of service or a particular customer may be stored in
an engineering file 56 and loaded by programmer request or
by default when engineering the service definition package
50. It will be understood that other engineering
attributes associated with other classes of services may be
likewise loaded into the service definition package 50.

FIGURE 4 is a flow diagram illustrating a computer
method for engineering services in accordance with one
aspect of the present invention. Referring to FIGURE 4,
the method begins at step 110 in which the engineering
graphical user interface 64 receives a request to engineer
a service definition package 50. The service definition
package 50 may be in the format from which it was received
from the service creation environment 28 or may have been
previously engineered. In the latter case, the service
definition package 50 may be reengineered, or edited, for
a disparate environment or to correct problems. At step
112, the engineering graphical user interface 64 retrieves
the identified service definition package 50 for
engineering processing.

Proceeding to decisional step 114, if the service
definition package 50 is not yet formatted into items 58,
such as, for example, when in the format from which the
service definition package 50 was received from the service
creation environment 28, the NO branch of decisional step
114 leads to step 115. At step 115, the engineering
graphical wuser interface 64 translates the service
definition package 50 into a set and order of items 58. In
one embodiment, the service definition package 50 is

translated by determining each action required by the

10

15

20

25

30

WO 99/34622 PCT/US98/27892

13

service definition package 50 and providing an appropriate
item 58 for the actions. It will be understood that the
service definition package 50 may be otherwise translated
as long as the resulting items 58 are capable of performing
the service logic program or other instructions of the
service definition package 50. Step 115 leads to step 116.

Returning to decisional step 114, if the service
definition package 50 is item-formatted, the YES branch of
decisional step 114 also leads to step 116. At step 116,
the engineering graphical user interface 64 determines
first level engineering fields of the items 58. The first
level engineering fields may be fields of the items 58 that
need to be engineered for deployment of the service. The
first level engineering fields of each item 58 may be
determined based upon the service definition field of the
item 58. 1In this embodiment, a lookup table in the client
system 40 defines the first level engineering fields for
each service definition of the items 58.

Proceeding to state 118, the engineering graphical
user interface 64 displays the first level engineering
fields in an array. As best shown by Table 1, the array is
arranged by item 58 and by related fields. In this
embodiment, each item 58 is displayed in a separate row and
related fields are displayed in the same column. As a
result, a programmer can easily perceive relationships
between operations in the service definition package 50.

From the display, the programmer may engineer, or
edit, the first level engineering fields by entering a new
value in the field. In response to an entry, state 118
leads to step 120 in which the entry is validated. In one
embodiment, the entry is validated by determining if the
characters of the entry match the character type of the
field. If the entry is invalid, it will not be entered.

If the entry is valid, it will be entered into the field.

10

15

20

25

30

WO 99/34622 PCT/US98/27892

14

Step 120 returns to state 118 in which the first level
engineering fields are displayed.

From the display, the programmer may also select
advanced engineering. In response to an advanced
engineering selection, state 118 leads to step 122. At
step 122, the advanced engineering graphical user interface
64 determines second level engineering fields of the items
58. The second level engineering fields may be fields of

the 1items 58 that optionally can be engineered for

deployment of the service. The second level engineering
fields of each item 58 may be determined based upon the
service definition field of the item 58. In this

embodiment, a lookup table in the client system 40 defines
the second level engineering fields for each service
definition of the items 58. In a particular embodiment,
the second level engineering fields may include at least
one field, such as, for example, the destination field, for
each item 58.

Proceeding to state 124, the engineering graphical
user interface 64 displays the second level engineering
fields in the array. From the display, the programmer may
engineer, or edit, the second level engineering fields by
entering a new value in the field. In response to an
entry, state 124 leads to step 125 in which the entry is
validated. In one embodiment, the entry is validated by
determining if the characters of the entry match the
character type of the field. If the entry is invalid, it
will not be entered. If the entry is valid, it will be
entered into the field. Step 125 returns to state 124 in
which the second level engineering fields are displayed.
It will be understood that the first level engineering
fields may be displayed with the second level engineering
fields at state 124. It will be further understood that

other suitable engineering levels may be likewise provided

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

15

in addition to or in place of the first and second
engineering levels. v

In response to completion of advanced engineering,
state 124 returns to state 118 in which the first level
engineering fields are displayed. After engineering has
been completed, the engineering complete branch of states
118 and 124 lead to step 126 in which the engineered
service definition package 50 is saved. Step 126 leads to
the end of the process. After the service definition
package 50 has been engineered, it may be deployed to the
server system 42 using the administration graphical user
interface 60.

FIGURE 5 is a flow diagram illustrating a computer
method for communicating service information between nodes
in accordance with one aspect of the present invention.
Referring to FIGURE 5, the method begins at step 130 in
which a transaction 52 to be downloaded is received. The
transaction 52 may be received from the administration,
provisioning or other graphical user interface. The
transaction 52 is constructed of one or more items 58 and
includes at least one of a platform manager operation
requesting information pertaining to a server system, a
database operation requesting modification of information
pertaining to a service in the server system and a service
manager operation requesting administration of the service
in the server system.

Proceeding to step 132, the graphical user interface
receives one or more destinations for the transaction 52.
At step 134, the <client interface 80 transmits the
transaction 52 to the server interface 82 of the
destination server systems 42. For the transaction 52,
items 58 have the destination server system included within
the destination information block are transmitted to the
destination server system. This transaction may be

transmitted to a variety of network elements with the

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

16

items 58 being transmitted to appropriate network elements.
Next, at step 135, the server interface 82, at each
destination server system 42, receives the transaction 52.
At step 136, for each item 58 of the transaction 52, the
server interface 82 determines the type of operation.

Proceeding to decisional step 138, if the operation is
a platform manager operation, the platform manager branch
of decisional step 138 leads to step 140. At step 140 the
server interface 82 passes the item 58 to the platform
manager 72 for execution. At step 142, the platform
maﬁager 82 executes the item 58. Next, at step 144, the
platform manager 72 returns a result of executing the item
58 to the server interface 82. Step 144 leads to step 155.

Returning to decisional step 138, if the operation is
a service manager operation, the service manager branch of
decisional step 138 leads to step 145. At step 145, the
server interface 82 passes the item 58 to the service
manager 74. At step 146, the service manager 74 executes
the item 58. Next, at step 148 the service manager 74
returns a result of executing the item 58 to the server
interface 82. Step 148 leads also to step 155.

Returning again to decisional step 138, if the
operation is a database operation, the database branch of
decisional step 138 leads to step 150. At step 150, the
server interface 82 passes the item 58 to the database
subsystem 76. At step 152, the database subsystem 76
executes the item 58. Next, at step 154 the database
subsystem 76 returns a result of executing the item 58 to
the server interface 82. Step 154 leads also to step 155.

At step 155, the server interface 82 transmits the
result to the client interface 80. At step 156, the result
is received at the client interface 80. Next, at step 158,
the result is reported to the programmer via the graphical
user interface. Step 158 leads to the end of the process.

In this way, the network services interface 44 is used to

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

17

communicate deployment, provisioning and other service
information. As a result, expenses associated with using
and maintaining disparate interfaces are reduced.

FIGURES 6A~B are object diagrams illustrating an
object-oriented view of a client 160 and a server 162 in
accordance with a particular embodiment of the present
invention. Referring to FIGURE 6A, the client 160 includes
a graphical user interface (GUI) 164, a dbiface 166, a
service definition package (SDP) 168, a DbTrans 170 and a
DbItem 172. The server 162 includes a dbCorbaServer 174,
an object activation demon (OAD) 176, a platform manager
178, a service manager 180 and a database subsystem 182.
The platform manager 178 includes a dbControl object 184,
a telecom platform object (NodePM) 186 and a services table
(ScpServiceAccess) 188. The service manager 180 includes
a network platform manager (NetPM) 190, a descriptor file
192, a service manager file 194, a service logic
interpreter (SLI) 196 and a service logic program (SLP)
198. The database subsystem 182 includes a database
manager 200, an imserver 202 and a structured query
language (SQL) server 204.

For the client 160, the graphical user interface 164
is general representation of any graphical user interface
using service deployment. Particular graphical user
interface objects are described in more detail below in
connection with FIGURE 6B. The dbiface 166 is a client
object that is used to interface with dbCorbaServer 174.
The dbiface 166 uses standard I/0 to interact with users
either directly from the command-line or via the graphical
user interface. The DbTrans 170 is a representation of the
contents of the service definition package 168. The
DbTrans 170 is a collection of DbItems 172. The DbItem is
a single entry within the DbTrans object 170. The DbItem
172 contains the specific request that is to be processed

by service deployment.

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

18

For the server 162, the dbCorbaServer 174 is a server
capable of receiving requests for executing SQL requests.
Implemented using the CORBA 2.0 standard, the dbCorbaServer
174 is instantiated dynamically when the OAD receives a
request from a client. When the client instance 1is
deleted, the server instance is also terminated. The
object activation demon 176 provides the CORBA support to
bind dbiface 166 to dbCorbaServer 174. The dbCorbaServer
174 receives DblItems 172 transmitted by the dbiface 166 as
part of a DbTrans 170. The dbCorbaServer 174 instantiates
a smalias and dbaccess object for use in performing the
requested action. The dbCorbaServer 174 passes operations
called by the DblItems 172 to the platform manager 178, the
service manager 180 and the database subsystem 182.

In the platform manager 178, the dbControl object 184
is a telecom platform configurable element that registers
dbCorbaServer 174 with the CORBA 2.0 OAD 176. The
dbControl object 178 uses the site name and a key to
register the dbCorbaServer 174. The dbCorbaServer 174 and
dbControl object 178 communicate using a CORBA protocol.
The telecom platform object 186 manages the network element
states. The dbCorbaServer 174 registers for events with
telecom platform object 186 via the dbControl object 184,
which receives event notifications from the telecom
platform object 186. The dbControl object 184 and telecom
platform object 186 communicate using a distributed object
messaging environment (DOME) protocol. The services table
188 records all services deployed on the network element.
The dbCorbaServer 174 uses a service name to obtain a
database name from the services table 188 via dbaccess 206,
with actual access via the SQL Server 204. The services
table 188 communicates using an 0OC/0S protocol.

In the service manager 180, the network platform
manager 190 is a program that runs on the platform manager

intelligent units (IPU) and is responsible for application

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

19

management across the telecom platform nodes. The network
platform manager 190 also performs operational actions on
nodes and applications such as Remove, Restore, Enable, and
Disable. The dbCorbaServer 174 uses smalias 208 to add and
delete services to and from the network platform manager
190. The smalias 208 is implemented as a combination of
SmAlias and/or BackSmAlias objects. The network platform
manager 190 generates the descriptor file 192. The
descriptor file 192 contains all information required for
the managing of a configurable element. The descriptor
file 192 is managed by the service manager file 194. The
dbCorbaServer 174 uses smalias 210 to interface with the
service manager file 194 for service state administration
(e.g., query, create, 1lock, wunlock, terminate). The
service manager file 194 uses one or more service logic
interpreters 196 to manage the service logic programs 198
(e.g., create, remove). The service logic program 198 runs
in an advanced intelligent network node which usually
directs all processing in a service switching point so as
to provide a customer service. The service manager file
194, service logic interpreters 196 and service logic
programs 198 communicate using the distributed object
messaging environment (DOME) protocol.

In the database subsystem 182, the database manager
200 is used for replication on network elements on which
the database 1is installed on multiple nodes. If the
network element contains only a single database (e.g., a
small SCP), the access goes straight to SQL Server 204.
The dbCorbaServer 174 communicates with the database
manager 200 wusing the distributed object messaging
environment (DOME) protocol.

The database manager 200 resides only on the platform
manager intelligent processing unit. The database manager
200 distributes updates to one or more imservers 202. The

imserver 202 is the back half of database manager 200 and

10

15

20

25

30

35

WO 99/34622 v PCT/US98/27892

20

resides only on the application intelligent processing
units. The database manager 200 communicates with the
imservers 202 wusing the distributed object messaging
environment (DOME) protocol. The imservers 202 sends SQL
to the SQL server 204. The SQL server 204 is a Sybase SQL
server and used for all Sybase database access. The
imservers 202 communicates with the SQL server 204 using
the OC/0S protocol.

Referring to FIGURE 6B, the graphical user interface
164 sends commands to dbiface 166. The graphical user
interface 164 includes an svcMain graphical user interface
224, an svcAdmin graphical user interface 226, an svcEng
graphical wuser interface 228, an advEng graphical user
interface 230 and an svcProv graphical user interface 232.
The svcMain graphical user interface 224 is implemented in
TCL/TK and alternately displays the 1list of network
elements currently using the specified port number and the
set of intelligent processing units that compromise a
selected network element. The svcMain graphical user
interface 224 dispatches control to the svcAdmin graphical
user interface 226, the svcEng graphical user interface 228
and the svcProv graphical user interface 232.

The svcAdmin graphical user interface 226 is
implemented in TCL/TK and displays all services distributed
to specified network elements. Available administration
actions are displayed and executed per request. The svcEng
graphical user interface 228 is implemented in TCL/TK and
enables the insertion, modification, and deletion of items
in a service definition package. These items consist of
SQL requests (INSERTS, DELETES, CREATE DB, etc.). The
advEng graphical user interface 230 is implemented in
TCL/TK and enables the advanced operations of items in a
service definition package. Advanced operations including
adding more than one userID/passwords to a service

definition package, changing destination of an item,

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892

21

configuring pegCounter/globalvVar/TCAP value, etc. The
advEng graphical user interface 230 uses svcProv object.
The svcProv graphical user interface 232 is implemented in
TCL/TK and allows the inserting, updating, modifying, and
deleting of records in the database.

In operation, to connect the dbCorbaServer 174 on a
given node with a dbiface 166 via OAD 176, the dbiface 166

issues a dbClient ("server type", site) to OAD 176 (server

type is ServDepl). The dbCorbaServer 174 has to have been
registered previously with the OAD 176 for the connect to
succeed. The way that the dbCorbaServer 174 gets

registered with the OAD 176 is as follows: the dbcontrol
process 184 1is only concerned with ServDepl and has the
path to dbCorbaServer 174. Dbcontrol 184 registers with
telecom platform object 186 for event notification. When
the node enters its information, dbcontrol 184 is notified
and registers the dbCorbaServer 174 in the node with the
OAD 176. More specifically, the client 160 broadcasts
queries to the osagent process. The osagent process looks
for registered receivers. This may either be an OAD 176
process or an actual server. The OAD 176 receives the
request from the osagent process, and executes the server
executable. For example, during unit testing, an engineer
would not have to use the OAD 176, but could run the server
executable. Running it manually registers it with the
osagent. The client 160 on the other hand, first
broadcasts to the osagent process, which will then direct
it to all registered implementations. After the
registration is done, dbiface 166 is able to connect with
the dbCorbaServer 174.

The dbiface 166 is a C++ executable that uses standard
I/0 to accept requests from the user and to return the
request. The same mechanism is used to interface with the
graphical user interfaces, the executable is "opened" in
the TCL/TK interface.

10

15

20

25

30

WO 99/34622 PCT/US98/27892

22

For the dbiface 166, the available commands are
entered as a string which is parsed and performed. Invalid
requests are rejected. Exemplary commands include
maketrans, makePkg, itemAdd, itemAddFile, itemGet,
itemModify, connect and sendDbTrans. The maketrans command
is used to generate a new transaction. The makePkg command
is used to generate a file that contains the current
transaction. The itemAdd command is used to add a new item
into the existing transaction. The itemAddFile command is
used to add a new item that is saved in a file in the
existing transaction. The itemGet command is used to query
the existing transaction. The itemModify command modifies
an item in the current transaction. The connect command
specifies the sites for distributing the transaction.
Previously specified sites are deleted. The sendDbTrans
command distributes the current transaction to the sites
specified by the connect command.

As previously described, the service definition
package 168 1is simply a database transaction 170 that
includes a specific set of order dependent items 172. The
server 162 assumes that a transaction 170 has been ordered
correctly. There is a limit on the total size based on
available memory. Exemplary items 172 for a service
definition package 168 are illustrated in Table 1 as they
are displayed to a. programmer via the graphical user
interface 164. For Table 1, (l..n) indicates more than one
item of the specified type, *o indicates that the item is
optional, *prov data is of the form: <column name>,<column
type>, 'column value' and *sql data is a valid sql
statement. The items 172 are normalized to minimize

repetition of data in the service definition package 168.

10

15

WO 99/34622 PCT/US98/27892
23
Table 1
Service Type Op Des EngDesc arg 1 arg2,arg3
t
MASTER password addLo~ ALL addLogin <userid> <password>
gin
SCPSERACC password addLo- ALL addLogin <userid> <password>
gin
* (1 ..n) password addUse- ALL addUserid <userid> <password>
rid
<svcName> svcAdmin initSve ALL initSvc <dbname> *none
SCPSERACC sqgl runsql ALL Slp <slp> *none
SCPSERACC prov insert ALL Selection- Selectio *prov data
Criteria n- (does not
Criteria include
service
name)
SCPSERACC prov insert ALL ScpSer- ScpSer- *prov data
viceAccess viceAcces (does not
s include
dbname,
userid, or
pass-
word)
SCPSERACC prov insert ALL globalCon- globalCo *prov data
fig n-fig (does not
include
service
name)
SCPSERACC prov insert ALL TcapCon- TcapCon- *prov data
(1 ..n) fig fig (does not
include
service
name)
SCPSERACC prov insert ALL SccpAd- SccpAd~ *prov data
(1 ..n) dress dress (does not
include
service
name)

10

15

20

25

30

WO 99/34622 PCT/US98/27892
24
Service Type Op Des EngDesc arg 1 arg2,arg3
t
SCPSERACC prov insert ALL Globalvar Globalvar *prov data
(1 ..n) (does not
include
service
name)
MASTER sql runsqgl ALL dropDB *none *none
(*o)
MASTER sql runsql ALL createDB <dev = *none
(*o) #mb> {log
ON <dev>
= #mb}
MASTER sqgl runsql ALL sp_addlogi *none *none
(*o) n
(1 ..n)
MASTER sql runsql ALL sp_dboptio *none *none
(*o) n
<svcName> sgl runsql ALL sp_adduser *none *none
(*o) (1
..n)
<svcName> sql runsql ALL grantALL *none *none
(*o) (1
..n)
<svcName> sgl runsql ALL sp_role *none *none
(*o) (1
.n)
<svcName> sql runsql ALL dropObj objType *object
(*o) (1 (table, name
..n) proc, or
trigger)
<svcName> sql runsql ALL TABLE *sgl data *table
(*o) (1 name
.n)
<svcName> sql runsql ALL Sp *sql data *sp name
(*o) (1
.n)
<svcName> sql runsql ALL TRIGGER *sql data *trigger
(*o) (1 name

..n)

10

15

20

25

30

WO 99/34622 PCT/US98/27892

25
Service Type Op Des EngDesc arg 1 arg2,arg3
t
<svcName> sql runsql ALL grantOb- *none *none
(*o) (1 jects
..n)
<svcName> svcAdmin createCE ALL createCE *none *none

General items 172 for the network services interface
may include Login, Userid, Query Service States and Query
Node States Transaction items. Exemplary Login item is
illustrated in Table 2. In order for any transaction
involving a database to be successfully completed, either a
password item is included at the start of the transaction
(preceding any database items) or was completed in a
previous transaction. The specified userid and password are
used to login into the service specified database, which is
mapped from the entry in the ScpServiceAccess table 188.
This is required either prior to or as part of a service
definition package transaction, as well as any of the

provisioning transactions.

Table 2
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> password addLogin dest* *none userid password

Exemplary Userid item is illustrated in Table 3. The
specified userid and password are created as part of a

distribution of a service definition package 168.

Table 3

Service Type Op Dest EngDesc arg 1 arg2,arg3

<svcName> password addUserid dest* *none userid password

10

15

20

25

30

WO 99/34622 PCT/US98/27892

26

Exemplary Query Service States item is illustrated in
Table 4. This item queries the service state for the
specified service on the specified node. Bypass indicates
if an audit is to be performed. "*all" is used to indicate
that the first inservice application IPU will be used to

query the service state. "*bypass" specified for arg?

indicates that the audit is not to be performed. The result
string is set to contain the service states.
Table 4
Service Type op Dest EngDesc arg 1 arg2,arg3
<service> svcAdmin querySM dest* *none <nodeName> <Bypass>

Exemplary Query Node States

illustrated in Table 5.

Transaction item is
This item queries telecom platform
for the node state information. The result string contains

the node state information.

Table 5
Service Type Op Dest EngDesc arg 1 arg2,arg3
none svcAdmin queryNodes dest *none *none
Service administration items 172 for the network

services interface may include Initialize Service Download,

Create Service, Remove Service, Unlock Service, Lock
Service, Locked Forced Service, Terminate Service and
Terminate Bypass Service items. Exemplary Initialize

Service Download item is illustrated in Table 6. This item
first confirms that the <svcName> configurable element is
not currently in a descriptor file on any intelligent
processing unit. If it is not found, the <svcName> and
<dbName> are registered for subsequent items/transactions.

Until a create service transaction is received, all requests

WO 99/34622 PCT/US98/27892

27

involving the
"MASTER"

<svcName> will be performed through the

service.

Table 6

Service

Type

Op

Dest

EngDesc

arg 1

arg2,arg3

<svcName>

svcAdmin

initsvc

ALL

initSve

<dbName>

*none

Exemplary Create Service item is illustrated in Table

7. This will send a message to service manager file 194 to

10 insert a new entry into the descriptor file to administer
the specified service. It is always included during the

It resets the

flag set by the initSvc item to use the userid associated

deployment of a service switching point 20.

with the service name rather than the Master database.
15

Table 7

Service Type Op Dest EngDesc arg 1 arg2,arg3

<svcName> svcAdmin createCE ALL createCE *none *none

20 Exemplary Remove Service item is illustrated in Table
8. This will remove the SCPConfig entries along with the

<svcName> CE entry in the descriptor file.

Table 8

25

30

Service

Type

Op

Dest

EngDesc

arg 1

arg2,ar

g3

SCPSERACC

sql

removeDB

dest*

*none

<svcName>

*none

<svcName>

svcAdmin

removeCE

dest*

*none

*none

*none

Exemplary Unlock Service item is illustrated in Table

9. This will send a message to service manager file 194 to

enable

the

configurable

element

created during

deployment of the service definition package 168.

the

10

15

20

25

30

WO 99/34622 PCT/US98/27892

28
Table 9
|| Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> svcAdmin unlock dest* *none *none *none

Exemplary Lock Service item is illustrated in Table 10.
This will send a message to service manager file 194 to
disable the configurable element created during the
deployment of the service definition package 168.

Table 10
Service Type Op Dest EngDesc arg 1 arg2,arg3 "
<svcName> svcAdmin lock dest* *none *none *none "

Exemplary Locked Forced Service item is illustrated in
Table 11. This will send a message to service manager file
134 to disable the configurable element created during the
deployment of the service definition package 168 regardless

of any error conditions.

Table 11
|| Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> svcAdmin lockForced dest* *none *none *none

Exemplary Terminate Service item is illustrated in
Table 12. This will éend a message to service manager file
194 to kill the configurable element created during the
deployment of the service definition package 168.

Table 12
" Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> svcAdmin terminate dest* *none *none *none

Exemplary Terminate Bypass item is illustrated in Table

13. This will send a message to service manager file 194 to

10

15

20

25

30

WO 99/34622 PCT/US98/27892
29

kill the configurable element created during the deployment
of the service definition package 168 regardless of any

error conditions.

Table 13
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> svcAdmin terminat dest* *none *none *none
e-Bypass

Service provisioning items 172 for the network services
interface may include Table, Column, Insert, Delete, Update
and Query items. Exemplary Table item is illustrated in
Table 14. This will return a list of tables included in the
database associated with <svcName>.

Table 14
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> prov tables dest* *none *none *none

Exemplary Column item is illustrated in Table 15. This
will return a list of columns included in the database
associated with <svcName> in the table specified by <table
name>. The data 1s returned in the format <column
name>,<column length>, <column type>. The column name and

column type returned are required for use in the remaining

provisioning items.

Table 15
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> prov columns dest* *none <tableName> | *none

Exemplary Insert item is illustrated in Table 16. This

will insert the specified data into the database associated

10

15

20

25

30

WO 99/34622 PCT/US98/27892
30
with <svcName>. The data is in the form <colName>,
<colType>, ' wvalues'.
Table 16
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> prov insert dest *none *tableName *prov
data
Exemplary Delete item is illustrated in Table 17. This
will delete the specified data from the database associated
with <svcName>. The data 1s in the form <colName>,
<colType>, ' values'.
Table 17
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> prov delete dest *none *tableName *prov
data
Exemplary Update item is illustrated in Table 18. This

will insert the specified data into the database associated

with <svcName>.

The format for the data is <column name>,

<column type>, '<column. value>' new, <column name>, <column
type>, '<column value>'.
Table 18
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> prov insert dest *none *tableName *prov
data
Exemplary Query item is illustrated in Table 19. This

fields specified in data.

will query the database associated with <svcName> for the

The format for the data is:

<queryColumn>, <queryColumnType> followed by optional where

10

15

20

25

30

35

40

45

WO 99/34622 PCT/US98/27892

31
clauses <whereColumnname>, <whereColumnType>,
'<whereColumnValue>"'.
Table 19
Service Type Op Dest EngDesc arg 1 arg2,arg3
<svcName> sql query dest *none *tableName *prov data

For the client 160 and server 162, the interface may be
defined by a transaction format IDL, a data type IDL and a
processing IDL. Exemplary transaction format IDL, named

ServPack.idl, is as follows:

#ifndef sServPack idl
#define ServPack_idl

// service properties defined in this interface
interface dbtypes {

// all item types are defined here

enum ItemType {
sql,
prov,
svcAdmin,
password,
filesSys,
type 1,
type2,
type3

}i

// all operations are defined here in one place.
// Error checking is implemented in the client/server coding.

enum Op {

// valid operations for type "sql”
runsql,
removeDB,

// valid operations for type "prov"
insert,

update,

removeRec,

10

15

20

25

30

35

40

45

50

WO 99/34622

};

//
//

enum

}:

//
//

enum

32

tables,
columns,
query,
next,

// valid operations for type
initsve,
createCE,
removeCE,
querysSM,
queryNodes,
create,

unlock,

lock,
lockForced,
terminate,
terminateBypass,

// valid operations for type
addLogin,
addUserid,

// valid operations for type
uudecode,
execute,

"svcAdmin"

"password"

"fileSys"

// Extra operations for future use

opl,
op2,
op3,
op4,
op5S

Specifies the destination for each service item

This part will be used later on

Dest {
SMS,
sCp,
SCE,
SMSSCP,
SMSSCE,
SCESCP,
destl,
dest2,
dest3

Specifies the engineer description

This part will be used later on

EngDesc {
SLP,

PCT/US98/27892

for each service item

10

15

20

25

30

35

40

45

50

WO 99/34622

33

SMP,
GlobalConfig,
SelectionCriteria,
TcapConfig,
SccpAddress,
ScpServiceAccess,
dropDB,
createDB,
sp_addLogin,
trunclog,
addUser,
grantALL,
createTable,
createSp,
grantTables,
engDescl,
engDesc2,
engDesc3

}i

}; // ServProperties
typedef sequence<octet> ItemData:;

// structure for db item
struct DbItem f{

string servicename;
dbTypes::ItemType type;
dbTypes: :0p op:

string dest;

string engdesc;
string arg 1;
string argz;

string arg3;

string spare;

}; // Servitem
typedef sequence <DbItem> DbItemList;
// dbiface transaction structure defined
struct DbTrans
string description;
string version;
DbItemList dbItems;
}: // ServicePackage

#endif

where:

here

* serviceName is used to identify the scope
item. For example, it is used as the KEY to log

PCT/US98/27892

of the

into

10

15

20

25

30

35

40

45

50

WO 99/34622 PCT/US98/27892

34
a database when "type" = "prov". It is used as the
CE name sent to the TP when "type" = "svcAdmin".

* type is used to classify the item into a broader area
{"sql", "prov", "pass-word", "svcAdmin",
"fileSys, ...}

* dest is used to filter the item for execution on the
NE {"sSMsS", "SCp", "HLR", "ISP", "<sitename>", ...}

* op refers to a specific operation that will be
performed using the data in the associated item. ops
are associated with a particular type. Refer to idl
file "ServPack.idl" for details.

* engbesc is exclusively used for SDP'S. It is used to
identify dbItems that require the service name be
added to the arguments list (This avoids having the

service name defined in multiple locations). It is
also used to determine the order of item
distribution.

* argl, arg2, and arg3 are data items associated with
the item.

Exemplary data type IDL, named ServType.idl, is as
follows:

#ifndef ServType idl
#define ServType idl

A —
// interface ServDeplAttr
// the interface class for service deployment attributes

/) mm e
interface ServDeplAttr {

// all error codes passed from server to client are declared
here

enum SdErr e {

NO_ERR,

CLIENT_OBJ NOT BAKED,

INVALID_ INPUT PARAM,

SERVDEPL_BIND ERR,

// download (distribute) method error
DISTRIBUTE_MEMORY_ERR,
DISTRIBUTE~LIB_LOAD_ERR,
DISTRIBUTE_LIB_UNLOAD_ERR,

10

15

20

25

30

35

40

45

50

WO 99/34622
35

DISTRIBUTE_METHOD ERR,

// SM DAT errors

SM_DAT_LOOKUP_SLI_ERR,
SM_DAT_INSERT_APPL_HEADER_ ERR,
SM_DAT_INSERT_APPL_INST HEADER_ ERR,
SM_DAT_LOOKUP_APPL_HEADER_ERR,
SM_DAT_REMOVE_APPL_HEADER.ERR,
SM_DAT_REMOVE_APPL_INST_HEADER_ERR,
SM_DAT_UPDATE_APPL_HEADER_TESTFLAG_ERR,

// requests to SM
CREATE_REQ_TO_SM ERR,
UNLOCK_REO_TO_SM_ERR,
LOCK_REQ_TO_SM_ERR,
TERMINATE_REQ TO SM ERR,

// response time out after SM request
CREATE_WAIT_TIME_OUT,
UNLOCK_WAIT TIME, OUT,
LOCK_WAIT_TIME OUT,

TERMINATE_WAIT TIME_OUT,

// remove failure
REMOVE_SP_EXEC_ERR,

// memory alloc errors
GET_NODES_INFO_MEMORY_ ERR,
GET_SERV_STATUS_FOR_ALL_SERV_MEMORY_ ERR,
GET_SERV_STATUS_FOR_SPECIFIC_SERV_MEMORY ERR,

// get service status error
GET_SERV_STATUS_ERR,
GET_SERV_STATUS_REQ TO_SM ERR,
GET_SERV_STATUS_SM_INVALID_STATE_ERR,
GET_SERV_STATUS_NODE_MISMATCH ERR,

// generic error codes
GET_NODES_INFO_ERR,
INVALID_ SERV_STATE_CHG,
ALL NODES_NOT_ENABLED,
UNDEFINED_ERR

[/ =
// service related data types

A ——

// enums for services
enum CreateFlag_e {CRhLOCKED, CR_UNLOCKED} ;
enum LockFlag e {GRACEFUL, FORCED};

PCT/US98/27892

10

15

20

25

30

35

40

45

50

WO 99/34622 PCT/US98/27892

36

enum ServTestFlag_e (REALMODE, TESTMODE};

//

//

//

the following are the status values of the service defined
for SMs

Note: a service not existing on the SCP will be returned with
NOTFOUND

status, when the status of that specific service is asked
for.

enum ServStatus_e {

}:

//

NOTFOUND,
INACTIVE,
UNLOCKED,
LOCKED,
SHUTTINGDOWN

structure storing the name and status information for the
service

struct ServStatus {

}:

string servName;
ServStatus_e servStatus;

typedef sequence<ServStatus> ServStatusList;

//
//
/7

node related data types

enum NodeStatus e {

};

PM_0OS,
OS_MIN,
IN_SVC,
UNDEFINED NODESTATUS

enum NodeMode e {

}:

//
//

ACTIVE_PM,

STANDBY_ PM,
IPU_ACTIVE STANDBY,
STAND ALONE,
UNDEFINED NODEMODE

Type is determined in sdServer based on the applications

struct NodelInfo

string name;
NodeStatus_e status;
string type:;

10

15

20

25

30

35

40

45

50

WO 99/34622

37
NodeMode e mode;
bi
typedef sequence<NodeInfo> NodeInfolist;
typedef sequence<string> NodeNamelist;
}; // ServDeplAttr

#endif

Exemplary processing IDL, named ServDepl.idl, is

follows:

#iffidef ServDepl idl
#define ServDepl_idl

// the following include defines the service package
#iffidef ServPack_idl

#include "ServPack.idl"”

#define ServPack idl

#endif

// the following include defines the ServDepl types
#iffidef ServType idl

#include "ServType.idl"

#define ServType idl

#endif

A R T T ———
// interface ServDepl
// the interface class for service deployment methods

/] e

interface ServDepl ({
// all the interface functions are defined below

// this function is not directly exported to the client
interface.

// the function exported to the client is called download.

boolean distribute (in string servName,
in DbItem item,
in boolean bypassInitCheck,
out string dbString,
out ServDeplAttr::SdErr e sderr);

boolean distItem (in DbItem item,
in boolean bypassInitCheck,
in boolean deployInProgress,

PCT/US98/27892

as

10

15

20

25

30

35

40

45

50

WO 99/34622 PCT/US98/27892

38

out string dbString,
out ServDeplAttr::SdErr e sderr);

// boolean execDbItem (in DbItem item,

// in boolean bypassInitCheck,
// out string dbString,
// out ServDeplAttr:: SdErr e sderr);

boolean restoreDbmConn/{();

boolean broadcastNewSvcToImServ (in string servName, out
ServDeplAttr::SdErr_e sderr);

boolean broadcastRemoveSvcToImServ {in string servName, out
ServDeplAttr::SdErr_e sderr);

// In future, this will also take the ApplHeader as a parameter

// currently this function is not directly exported to the
client interface.

// boolean insertDescTcl (in string servName,

// in ServDeplAttr::NodeNamelist nodelist,
// in boolean bypassInitCheck,
// out ServDeplAttr::SdErr_e sderr);

// In future, this will also take the ApplHeader as a parameter

// currently this function is not directly exported to the
client interface.

// boolean removeDescTcl (in string servName,

// in ServDeplAttr::NodeNameList nodelist,
// in boolean bypassInitCheck,
// out ServDeplAttr::SdErr e sderr);

boolean create (in string servName,
in ServDeplAttr::CreateFlag e flag,
in ServDeplAttr::NodeNameList nodelist,
in boolean bypassInitCheck,
out ServDeplAttr::SdErr e sderr

boolean unlock (in string servName,
in ServDeplAttr::NodeNameList nodelList,
in boolean bypassInitCheck,
out ServDeplAttr::SdErr e sderr);

boolean lock (in string servName,
in ServDeplAttr::LockFlag e flag,
in ServDeplAttr::NodeNameList nodelist,
in boolean bypassInitCheck,
out ServDeplAttr::SdErr_e sderr);

boolean terminate (in string servName,
in servDeplAttr::NodeNamelList nodelist,

10

15

20

25

30

35

40

45

WO 99/34622 PCT/US98/27892
39

in boolean bypassInitCheck,
out ServDeplAttr::SdErr_e sderr);

boolean remove (in string servName,
in boolean remServDatabase,
in boolean bypassInitCheck,
out ServDeplAttr::SdErr_e sderr);

boolean getServiceStatus (in string servName,
out ServDeplAttr::ServStatusList servStatusList,
in string nodeName,
in boolean bypassInitcCheck,
out ServDeplAttr::SdErr_ e sderr);

boolean getNodeInfolist (out ServDeplAttr::NodeInfolist
nodeInfolist,

out ServDeplAttr::SdErr_e sderr);

boolean changeServMode (in string servName,
in ServDeplAttr::ServTestFlag e flag,
in ServDeplAttr::NodeNamelList nodelist,
in boolean bypassInitCheck,
out ServDeplAttr::SdErr e sderr);

boolean dbQuery (in string servName,

in string dbParams,

out string dbOutput);
boolean servVersion (out string version);
boolean getNodeType (out string nodeType);

boolean getSiteName (out string siteName);

}; // interface ServDepl

#endif

Although the present invention has been described with
several embodiments, various changes and modifications may
be suggested to one skilled in the art. It is intended that
the present invention encompass such changes and
modifications as fall within the scope of the appended

claims.

10

15

20

25

30

WO 99/34622 PCT/US98/27892
40

WHAT IS CLAIMED IS:

1. A method of engineering a service in a
telecommunications network, comprising the steps of:
storing an engineering file including a plurality of
engineering attributes associated with a class of services;
receiving a service package for a service within the
class of services; and
loading the engineering attributes of the engineering

file into the service package.

2. The method of Claim 1, wherein the class of

services are services of a particular type.

3. The method of Claim 1, wherein the class of

services are services of a particular customer.

4, The method of Claim 1, further comprising the step
of editing the engineering attributes loaded into the

service package.

5. The method of Claim 1, wherein the service package
is received from a service creation environment of an

advanced intelligent network.

6. The method of Claim 5, wherein the service package
is received at a service management system of the advanced
intelligent network and the engineering attributes are
loaded into the service package at the service management

system.

7. The method of Claim 1, further comprising the step
of storing the service package with the loaded attributes as

a series of items, each item having a standard format.

10

WO 99/34622 PCT/US98/27892
41

8. The method of Claim 7, wherein each item includes

a first, a second, a third and a fourth information block,
the step of storing the service package with the loaded
attributes in the standard format further comprising for
each item the steps of:

identifying in the first information block a
destination system for the item;

identifying in the second information block an
operation to be performed in the destination system;

identifying in the third information block a service
on which the operation is to be performed; and

identifying in the fourth information block data for

performing the operation.

10

15

20

25

30

35

WO 99/34622 PCT/US98/27892
42

9. A method of engineering a service

telecommunications network, comprising the steps of:

storing a plurality of engineering files, each file
including a plurality of engineering attributes associated
with a class of services;

receiving a service package within at least one of
the classes of services; and

loading into the service package the engineering
attributes of at 1least one engineering file including
engineering attributes associated with the class of service

of the service package.

10. The method of Claim 9, further comprising the
steps of:
automatically determining each engineering file
including engineering attributes associated with the class
of service of the service package;
displaying for selection each engineering file
including engineering attributes associated with the class
of service of the service package;
receiving a selection of at least one engineering
file; and
loading into the service package the engineering

attributes of the selected engineering file.

11. The method of Claim 9, further comprising the
steps of:
automatically determining each engineering file
including engineering attributes associated with the class
of service of the service package; and
automatically loading into the service package the
engineering attributes of each engineering file including

engineering attributes associated with the class of service

of the service package.

10

15

20

WO 99/34622 PCT/US98/27892
43

12. The method of Claim 9, wherein at least one of the

classes of services is services of a particular type.

13. The method of Claim 9, wherein at least one of the

classes of services is services of a particular customer.

14. The method of Claim 9, further comprising the step
of editing the engineering attributes 1loaded into the

service package.

15. The method of Claim 9, wherein the service
package 1s received from a service creation environment of

an advanced intelligent network.

l16. The method of Claim 15, wherein the service
package is received at a service management system of the
advanced intelligent network and the engineering attributes
are loaded into the service package at the service

management system.

17. The method of Claim 9, further comprising the step
of storing the service package with the loaded attributes as

a series of items, each item having a standard format.

10

WO 99/34622 PCT/US98/27892
44

18. The method of Claim 17; wherein each item includes

a first, a second, a third and a fourth information block,
the step of storing the service package with the loaded
attributes in the standard format further comprising for
each item the steps of:

identifying in the first information block a
destination system for the item;

identifying in the second information block an
operation to be performed in the destination system;

identifying in the third information block a service
on which the operation is to be performed; and

identifying in the fourth information block data for

performing the operation.

WO 99/34622

1/4

SCE

|~ 28

SMS

PCT/US98/27892

CLIENT
40 80
S G — |
62 1 [INTERFACE |
54~ U [|b=mm=—======—v
60— LADMIN | | PROV SERVICE | [CUSTOMER
| ENG || ADv | FILE FILE
(J (} () () \
64 66 68 70 565
SOP TRANSACTION
50 58*@ 58 [TEM ~52
58
TEM
SOP TRANSACTION
58
50 “ONLITEM] B[] 52
28~[ITem |

SERVER

82 i
——————— 1 [PLATFORM
INTERFACE | | | \anAGER
————— -
SERVICE | [DATABASE
MANAGER | | SYSTEM
\ \
74 76
FIG. 2

WO 99/34622

RECEIVE [DENTIFICATION OF
SOP TO BE ENGINEERED

\

92~ RETRIEVE IDENTIFIED SOP

Y

RECEIVE IDENTIFICATION OF

94~ CUSTOMER ENGINEERING FILE

!

RETRIEVE [DENTIFIED

96~ LUSTOMER ENGINEERING FILE

Y

LOAD ATTRIBUTES FROM
CUSTOMER ENGINEERING
FILE INTO SDP

98 ~

!

RECEIVE [DENTIFICATION OF

10071 SERVICE ENGINEERING FILE

Y

RETRIEVE IDENTIFIED
SERVICE ENGINEERING FILE

102

!

LOAD ATTRIBUTES FROM
SERVICE ENGINEERING
FILE INTO SDP

104 —

Y

SAVE SDP

\
(END)

FIG. 3

106

PCT/US98/27892

2/4

RECEIVE REQUEST TO
ENGINEER SDP

L~110

Y

RETRIEVE IDENTIFIED SDP (112

114

[TEM
FORMATTED?

YES

TRANSLATE INTO
ITEM FORMAT

~115

V‘

\

DETERMINE FIRST LEVEL
ENGINEERING FIELDS

L —~116

-

Y

DISPLAY FIRST

FIELDS IN AN
ARRAY

ADVANCED

A

LEVEL ENGINEERING \ENTRY 120

| ENGINEERING L ——

118

/

VALIDATE
ENTRY

DETERMINE SECOND LEVEL

ENGINEERING FIELDS [-122
ADVANCED
ENGINEERING
COMPLETE §*
DISPLAY 124
SECOND LEVEL \ENTRY 125
ENGINEERING)
FIELDS VALIDATE
ENGINEERING ENTRY
COMPLETE . — |
Y
SAVE ENGINEERED |
SDP FILE 126
END

FIG. 4

WO 99/34622

3/4

PCT/US98/27892

RECEIVE A TRANSACTION
TO BE DOWNLOADED

Y

RECEIVE DESTINATION
SERVER(S) FOR TRANSACTION

Y

TRANSMIT TRANSACTION [TEMS
TO DESTINATION SERVER

Y

AT EACH DESTINATION,
RECEIVE THE TRANSACTION

Y

FOR EACH ITEM OF THE
TRANSACTION, DETERMINE

OPERATION TYPE

138
DATABASE SYSTEM OPERATION PLATFORM MANAGER

TYPE?
| 145 SERVICE MANAGER |
150~] PASS OPERATION T0 | [PASS OPERATION TO PASS OPERATION T0 | 140
DATABASE SYSTEM SERVICE MANAGER PLATFORM MANAGER
v 146 v Y
152~ execute oPeraTiON |\ EXECUTE OPERATION EXECUTE OPERATION |~ 142
Y 148 Y v
154~ RETURN RESULT U™ RETURN RESULT RETURN RESULT | -144
OF ITEM OF ITEM OF ITEM
| T]
\ 4
TRANSMIT RESULT TO CLIENT |~_ 155
\]
RECEIVE RESULT AT CLIENT 156
)\ 4
REPORT RESULT 158
Y
CEN)

FIG. 5

PCT/US98/27892

WO 99/34622

4/4

AYAN A0J4oAS @cu>bo \OMN
8¢C
] ot
9 9Ol4d bugons | | ulwpyors |—9CC
UIDYOAS
22
$07-" _mamw 10S g6L—1 dIS 10)dudsap ~— 761 /ﬁ
_ | 900)iqp nd
991 : ~t
7071 B?_wme_ 961—1 IS wdidaN ~—061 o
— _ __
(8l 08l
00z=1_YP__ | wusasans| | v61-1_HS YIOVNVA
3Svaviva 10[AY3S wayjqQ ~¢L|
0L & 0Ll
— solows |-~ 80¢
SDIDWS : suoJ|qq 891
717 —8s92200p - ran)
| das
ssa00y | {881 q0z—1582900ap LIV vl V9 9Jd
wm/_, 3911135ddg 7 0qJoQqp > a20i9p (~ 991
791
Wd3PON — 1053u0)qp g 78l AYII\ avo N9 9 091
8l1 __ IN3IMD
JIOVNVA WHO4LVTd 9.1 edl
/N EN)

INTERNATIONAL SEARCH REPORT

Iy ational Application No

PCT/US 98/27892

CLASSIFICATION OF SUBJECT MATTER

A,
IPC 6 H04Q3/00 HO04M3/42

According to Internationai Patent Classification (IPC) or to both national classification and IPC

8. FIELDS SEARCHED

IPC 6 HO4Q HO4M

Minimum documentation searched (classification system followed by classification symbols)

Documaentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

10 October 1996
see page 8, line 1-19

; SUORSA ASKO (FI); SIVOLA LEENA (FI);)

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to ctaim No.
A US 5 323 452 A (DICKMAN BERNARD N ET AL) 1,3-6,9,

21 June 1994 13-16

see column 4, line 40-45

see column 5, line 15-29
A WO 96 31987 A (NOKIA TELECOMMUNICATIONS OY 1,9

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the generai state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“t* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the ctaimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
meﬂr‘ns, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the internationat search

18 May 1999

Date of mailing of the international search repost

07/06/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Cremer, J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

rational Application No

PCT/US 98/27892

Patent document Publication Patent famity Publication

cited in search report date member(s) date

US 5323452 A 21-06-1994 Al 9177791 A 22-07-1992
CA 2098607 A,C 19-06-1992
EP 0563319 A 06-10-1993
JP 6502752 T 24-03-1994
Wo 9211724 A 09-07-1992

W0 9631987 A 10-10-1996 FI 951602 A 05-10-1996
AU 5149696 A 23-10-1996
BR 9604866 A 26-05-1998
CA 2216446 A 10-10-1996
EP 0882365 A 09-12-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

