64 A1 |0 O OO O O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O 5000

International Bureau

(43) International Publication Date
25 September 2008 (25.09.2008)

(10) International Publication Number

WO 2008/115644 Al

(51) International Patent Classification:
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2008/054319

(22) International Filing Date:
19 February 2008 (19.02.2008)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

11/725,258 19 March 2007 (19.03.2007) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: MARIUS, Gabriel; One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ,DE, DK, DM, DO, DZ, EC, EE,

EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(54) Title: USING COLLABORATIVE DEVELOPMENT INFORMATION IN A TEAM ENVIRONMENT

DEVELOPER MACHINE 1 DEVELOPER MACHINE 2

DEVELOPER MACHINE N

I A

L
—_—

| \ I
14a 14b

FIG.1

14c

CENTRAL INFORMATION STORE

L) (57) Abstract: Various technologies and techniques are disclosed that provide and interact with a collaborative development infor-
mation store in a team software development environment. A submission service updates an active meta-model of an application in
a central information store that is used by multiple users. A notification service operating in a particular software development envi-
@& ronment receives notice that changes have been made to the active meta-model. Information received from the notification service
S is then used to update a display in the particular software development environment. On the database server, a reception service is
provided that receives active meta-model information of the application being developed by the multiple users as the information
changes. A storage service is provided to store the received active meta-model information in a specific relational database structure
that is operable to allow artifacts to be added without alteration to the specific relational database structure.

/11

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

USING COLLABORATIVE DEVELOPMENT INFORMATION
IN A TEAM ENVIRONMENT
BACKGROUND
[001] Software applications must be transformed from source code into machine
instructions in order for the application to execute. This transformation process is
called “compiling”. During compilation, the source code is first turned into a
language-agnostic and machine-agnostic set of instructions, sometimes referred to
as “intermediate code”. The intermediate code is then turned into machine
instructions specific to the particular computer platform on which the particular
application will run. Compilation typically occurs on a single computer, and when
completed, the intermediate code generated by the compilation process is
discarded. Thus, any useful information that could be obtained from this
intermediate code later in the development process is lost.
[002] In many cases, software applications are developed in team-based
environments. These teams are comprised of team members playing several roles
that support the overall project goals. Each team member typically runs the
software development application on their own local computer. When a particular
team member compiles the program, runs a code analyzer to analyze performance,
performs debugging, or other various development-related tasks, the resulting
details from these processes are typically stored on that team member’s local
computer. While that team member may submit the source code to a source code
control server that the entire team can access, the various system generated artifacts
resulting from the development process that led up to the version being checked in
to the server are typically either lost or are not easily distributable. This means that
other team members do not get whatever benefit may be gained by accessing those
results. For example, as a developer team member is working on a given
application, the developer may use a code profiler to analyze the performance of
the application. In doing so, the developer gains specific knowledge about the
applications performance. The artifacts and knowledge gained by creating the
artifacts from profiling the applications are local to the developer and are not easily

shared.

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

[003] Furthermore, in the course of executing their assigned roles, team members
often create other artifacts related to the project in addition to the source code itself,
such as models, diagrams, work items, etc. Just like with the system generated
artifacts, in many cases, these user-created artifacts are also stored on a particular
team member’s computer only, are lost, or are not easily distributable to the other
team members. Thus, large amounts of valuable development data and artifacts
related to a particular software development project being developed in a team
environment are either dispersed across various team member computers and thus
inaccessible by the entire team, or they are lost forever.

SUMMARY
[004] Various technologies and techniques are disclosed that provide and interact
with a collaborative development information store in a team software development
environment. A submission service updates an active meta-model of an application
in a central information store that is used by multiple users. A notification service
operating in a particular software development environment receives notice that
changes have been made to the active meta-model. Information received from the
notification service is then used to update a display in the particular software
development environment being used by a particular user. As one non-limiting
example, the information can be displayed as the particular user is typing code to
note something relevant to that particular code that has occurred as a result of an
action of another team member.
[005] On the database server, a reception service is provided that receives active
meta-model information of the application being developed by the multiple users as
the information changes. A storage service is provided to store the received active
meta-model information in a specific relational database structure that is operable
to allow artifacts to be added without alteration to the specific relational database
structure.
[006] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This

Summary is not intended to identify key features or essential features of the

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[007] Figure 1 is a diagrammatic view of a computer system using a collaborative
development information store.
[008] Figure 2 is a diagrammatic view of submission and notification application
of one implementation of the system of Figure 1.
[009] Figure 3 is a diagrammatic view of meta-model storage application of one
implementation operating on the system of Figure 1.
[010] Figure 4 is a process flow diagram for one implementation illustrating the
high level stages of the system of Figure 1.
[011] Figure 5 is a process flow diagram for one implementation illustrating the
stages involved in interacting with an active meta-model of an application in a
central information store.
[012] Figure 6 is a diagram illustrating element-specitic fields contained in the
central information store in one implementation of the system of Figure 1.
[013] Figure 7 is a diagram illustrating an exemplary element definition that has
been defined using the element-specific fields shown in Figure 6.
[014] Figure 8 is a diagram illustrating connection-specific fields contained in the
central information store in one implementation of the system of Figure 1.
[015] Figure 9 is a diagram illustrating an exemplary connection definition that
has been defined using the connection-specific fields shown in Figure 8.
[016] Figure 10 is a diagram illustrating a special property that can be used with a
connection definition in one implementation of the system of Figure 1.
[017] Figure 11 1s a diagrammatic view of a computer system of one
implementation of the system of Figure 1.

DETAILED DESCRIPTION

[018] For the purposes of promoting an understanding of the principles of the
invention, reference will now be made to the embodiments illustrated in the
drawings and specific language will be used to describe the same. It will

nevertheless be understood that no limitation of the scope is thereby intended. Any

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

alterations and further modifications in the described embodiments, and any further
applications of the principles as described herein are contemplated as would
normally occur to one skilled in the art.

[019] The system may be described in the general context as a software
development application. One or more of the techniques described herein can be
implemented as features within a software development program such as
MICROSOFT® VISUAL STUDIO®, or from any other type of program or service
that participates in the software development process in a team environment.

[020] In one implementation, a system is provided that uses a centralized database
or other information store to store real-time, active meta-model information about a
particular software application being developed by a team of developers and/or
other users. The term “active meta-model” as used herein refers to system-
generated artifacts and user-generated artifacts that reflect a current state of the
application, the structure of the application, and a history of how the application
has evolved. System-generated artifacts include application structure, intermediate
code, annotations, and other analysis data that the system generates. User-
generated artifacts include work items, project plans, diagrams, annotations
explaining certain code, and so on that could potentially be associated with the
underlying application structure. The centralized database is then accessed by the
software development applications being used by the team of developers to provide
the team with access to the active meta-model information. By having access to
this information, developers are provided with real-time, relevant information about
the active state of the application under development by a team of other people. As
one non-limiting example, this information can include notifying developer A that a
code profiling process that was run by developer B has just marked a certain
portion of code as “slow” that developer A is about to call from his code. In one
implementation, this is accomplished by associating the performance characteristics
of a given code module, type, method etc. with the meta-representation. Thus, as
developer B adds a call to the method in question, the associated performance data

can be found which was added by A and action can be taken.

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

[021] As shown in Figure 1, an exemplary computer system to use for
implementing one or more parts of the system includes one or more development
machines, such as central information store 10, network 12, and development
machines 14a, 14b, and 14c. Development machines are computers that are used
by software developers for the purpose of writing software applications. Central
information store 12 includes one or more computers that store data and allow other
network resources to access that data. In one implementation, central information
store 12 stores active meta-model information of an application being developed by
multiple users in a team environment. In one implementation, a local central
information store 12 can alternatively or additionally be stored on one or more of
development machines 14a, 14b, and 14c, such as to allow participation in a more
peer-to-peer level sharing on larger projects and/or for implementations that do not
use a central store. Network 12 is used to provide communication between
development machines 14a, 14b, 14c¢, and central information store 10. Network
12 can be implemented as a local area network, wide area network, over the
Internet, using a wired or wireless connection, and/or in other such variations as
would occur to one of ordinary skill in the computer software art.

[022] Turning now to Figure 2 with continued reference to Figure 1, a submission
and notification application 200 operating on computing device 600 is illustrated.
Submission and notification application 200 is one of the application programs that
reside on computing device 600 (of Figure 11). In one implementation, submission
and notification application 200 is located on one or more of developer
workstations 14A, 14B, or 14C (from Figure 1). However, it will be understood
that submission and notification application 200 can alternatively or additionally be
embodied as computer-executable instructions on one or more computers and/or in
different variations than shown on Figure 11. Alternatively or additionally, one or
more parts of submission and notification application 200 can be part of system
memory 604 (of Figure 11), on other computers and/or applications 615 (of Figure
11), or other such variations as would occur to one in the computer software art.
Submission and notification application 200 includes program logic 204, which is

responsible for carrying out some or all of the techniques described herein.

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

Program logic 204 includes logic for providing a submission service that is
operable to submit at least a portion of an active meta-model (e.g. intermediate
code, annotations, user-generated artifacts, etc.) of an application to a central
information store for use by a plurality of users 206; logic for providing a
notification service that is operable to receive a notification relating to a change in
the active meta-model (e.g. by a process, by a user, etc.) 208; logic for enabling
notification service to be further operable to display meta-model information to the
user 210; logic for enabling notification service to be integrated into a development
environment such that meta-model information is displayed therein 212; and other
logic for operating the application 220. In one implementation, program logic 204
1s operable to be called programmatically from another program, such as using a
single call to a procedure in program logic 204.

[023] Turning now to Figure 3 with continued reference to Figure 1, a meta-model
storage application 240 operating on computing device 600 (of Figure 11) is
illustrated. Meta-model storage application 240 is one of the application programs
that reside on computing device 600. However, it will be understood that meta-
model storage application 240 can alternatively or additionally be embodied as
computer-executable instructions on one or more computers and/or in difterent
variations than shown on Figure 11. Alternatively or additionally, one or more
parts of meta-model storage application 240 can be part of system memory 604 (of
Figure 11), on other computers and/or applications 615 (of Figure 11), or other
such variations as would occur to one in the computer software art.

[024] Meta-model storage application 240 includes program logic 244, which is
responsible for carrying out some or all of the techniques described herein.
Program logic 244 includes logic for providing a reception service to receive active
meta-model information of an application being developed by a plurality of users
246; logic for providing a storage service that is operable to store the received
active meta-model information in a specific relational database structure that is
operable to allow artifacts to be added without alteration to the specific relational
database structure 248; logic for receiving a request to retrieve active meta-model

information from a notification service that is operable to notify one or more client

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

devices of changes to the active meta-model 250; logic for enabling the specific
relational database structure to store a name identifying the specific element and
data describing the element 252; logic for enabling the specific relational database
structure to store a name identifying the specific connection, data describing the
specific connection, the source of the specific connection, and the destination of the
specific connection 254; logic for enabling the specific relational database structure
to store a field containing relevancy information for a specific connection 256; and
other logic for operating the application 260. In one implementation, program logic
244 is operable to be called programmatically from another program, such as using
a single call to a procedure in program logic 244.

[025] Turning now to Figures 4-5 with continued reference to Figure 1, the stages
for implementing one or more implementations of the system of Figure 1 are
described in further detail. Figure 4 is a process tlow diagram illustrating the high-
level stages for one implementation of the system of Figure 1. In one form, the
process of Figure 4 is at least partially implemented in the operating logic of
computing device 600 (of Figure 11). While the steps identified in Figure 4 are
described in a certain order, it will be appreciated that these steps can occur in any
order, and/or simultaneously with each other, or not at all. The process begins at
start point 270 with providing a framework for dynamic definition of elements and
relevancy that are used to express system-generated and user-generated artifacts
under development by multiple users in a team environment (stage 272). The
system-generated and user-generated artifacts are stored as an active meta-model in
a central information store as each team member creates and/or changes the
artifacts (stage 274). The software development application used by each team
member periodically interacts with the central information store to identify relevant
updates that have been made to the active meta-model (stage 276). The updated
information is used appropriately, such to notify a particular team member of a
problem, of information that would be helpful to something they are currently
doing, etc. (stage 278). The process ends at end point 280.

[026] Figure 5 is a process flow diagram for one implementation illustrating the

stages involved in interacting with an active meta-model of an application in a

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

central information store. In one form, the process of Figure 5 is at least partially
implemented in the operating logic of computing device 600 (of Figure 11). While
the steps 1dentified in Figure 5 are described in a certain order, it will be
appreciated that these steps can occur in any order, and/or simultaneously with each
other, or not at all. The process begins at start point 290 with communicating with
a submission service, such as a component of the software development
application, to update an active meta-model of an application in a central
information store (stage 292). In one implementation, these updates are sent by
each respective team member workstation as the team member further develops a
particular software application. At any given moment, one or more of the
respective team member workstations can receive notifications from a notification
service of changes to the active meta-model (stage 294). These changes could have
been inspired by work done by the particular team member himself, or by a
different team member. The notifications can be configurable beyond just changes,
and can be for varying reasons indicate a particular event has happened with the
underlying information. For example, the logic that is used to identify the
corresponding notifications and people can be limited and/or enhanced based upon
policy. As an example of this, a developer working on a section of code a year ago
may not receive an update notification of a specification change that just happened,
but a developer that worked on the source code two weeks ago would, based on a
system-wide setting to indicate who should be notified and when.

[027] The notification service is used to update a display in the software
development application used by a respective team member with appropriate
information describing the change (stage 296). In one implementation, the
software development application intercepts and analyzes the changes to the active-
meta model and then determines when and how to notify the user. In another
implementation, the software development application receives the notices and just
displays them without filtering and/or interpreting them. Some non-limiting
examples of the type of information that can be displayed to users include policy
violation alerts, dependency alerts, performance alerts, modification alerts, etc.

(stage 296). A policy violation alert can indicate that the user has made a change

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

that impacted the active-meta model in a way that violates a policy set for the
system. A dependency alert can inform the user that some code they are changing
now depends on something that is no longer available, that has been marked as
slow, that is currently being edited by another user, and so on. A performance alert
can inform the user that that same code was marked as slow performing by another
user who worked on it before. These are just a few non-limiting examples of the
types of information that the system can issue upon analyzing the active meta-
model contained in the central information store. The process ends at end point
298.

[028] Turning now to Figures 6-10, several diagrams are used to illustrate an
exemplary database structure that can be used to implement the active meta-model
stored in the central information store and used in the team development
environment. Figure 6 is a diagram illustrating element-specific fields 350
contained in the central information store in one implementation of the system of
Figure 1. In one implementation, an abstract storage definition is necessary since
programs and annotations vary widely. However, the overall structure of the
schema described herein for one implementation 1s non-limiting, and various other
database schemas could also be used for implementing some or all of the
techniques discussed herein. In one implementation, elements are generic items
which serve as nouns in the central information store. A few non-limiting
examples of elements include methods, types, assemblies, metadata attributes, etc.
Individual elements can have any number of properties as needed in their general
definition. Each tool, vendor, and/or system can define elements dynamically and
provide data as needed. Each element contains a name field 352 as well as the data
field 354. The name field 352 is a string that describes the element in the system.
The data field 354 is a binary packet that stores details about the element.

[029] Figure 7 is a diagram 370 that illustrates an example of an element that is
being used to define an assembly in one implementation. The program structure is
part of the general system provided information. The assembly is not referenced by
the data store as an element, but tools from vendors and/or systems can annotate

these assembly elements as needed. This in turn enables developers that work on

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

lower level parts of this particular assembly to get the associated information.
Without the shared element in the system, the association between tools working
from the assembly on local desktops would be difficult to correlate to the smaller
artifacts and/or work happening to the assembly. Suppose for example that
developer X works on a test case for method 1 that is part of a class that is part of a
namespace that is part of assembly Z which is marked as not needing test coverage
at all. The system 1s now able to notify developer X that the test case being written
1s non-essential, though the user defining the requirement on assembly Z had no
specific knowledge of what was happening on developer X’s desktop.

[030] Turning now to Figure 8, a diagram is shown that illustrates connection-
specific fields 400 contained in the central information store in one implementation
of the system of Figure 1. In one implementation, connections are generic items
which serve as verbs in the central information store. A few non-limiting examples
of connections include depends, contains, authored, etc. Connections are used to
relate two or more elements. Each connection contains a source field 402 and a
destination field 404. Figure 9 is a diagram 450 that illustrates an example of a
connection that is being used to define a “depends” connection type. The central
information store relies on the expression of relationships between defined types.
These relationships serve as dynamic working links between nouns and provide an
additional dimension of relation. For example, suppose you have an Assembly A
as an element, and a Class Z as an element. Both can have annotations from tools
associated with them once the system reflects these in the shared store. However, a
Connection of type “contains” would further express that Assembly A contains
Class Z and thus allows associative lookups to take place where without the
connection, this association may not be possible. In one implementation, dynamic
relationships are themselves dynamically defined.

[031] Figure 10 1s a diagram 500 illustrating a special relevancy property that can
be used with a connection definition in one implementation of the system of Figure
1. In one implementation, relevancy is a specialized property associated with every
connection. In general terms, relevancy expresses how important a relationship

between two elements is in relation to relationships between elements. A specitic

10

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

relevancy value for a relationship between two elements is assigned to the
connection between the elements. Relevancy units can be defined by the individual
vendor noting the connection and/or can be defined by the system. As the changes
are made to the central information store, the overall use of the data and its
effectiveness is reflected by the store. Relevancy provides a mechanism to enable
weighting of verbs between artifacts. In this way, the system is able to use various
torms of relationships differently. In one implementation, relevancy is an
important part of the system as associations between items can number in the
hundreds of thousands. In other implementations, relevancy is less important
and/or is not even used.

[032] In one implementation, trust is an additional specialized property given by
the system to users, vendors and/or vendor-provided tools. As the system’s data
evolves, tool and user findings change over time. If tools are found to be
inaccurate, the default trust weight associated with a specific vendor, tool or user
can be changed. Doing so means the relevancy calculation is altered, weighting the
calculation positively or negatively depending on the power of the trust factor. For
example, static analysis of code can be used to find the links between test cases and
code by examining the calling relationship of the test case to the development
method. For this example, Tool X looks at these relationships and adds links
between test code and development methods based on static relationships. By
default, the system examines these relationships and notifies users of changes to
modules connected by these links. If test A calls development method B, and
method B changes, then the author of A should be notified. However, as the
development cycle progresses, many times the users being notified of the changes
may be notified when they do not care. This is because Tool X does not take into
account additional factors (such as code complexity, number of calls, etc) that can
mean a more or less important connection. Due to all of the negative feedback
from users, the administrator or the system can lesson Tool X’s Trust rating. As a
direct result, when the calculation for which users are to be notified of a change
takes place, a connection between two users from Tool X’s links will be rated

differently for Tool Y, in which case, Tool X’s information will be trusted less.

11

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

[033] As shown in Figure 11, an exemplary computer system to use for
implementing one or more parts of the system includes a computing device, such as
computing device 600. In its most basic configuration, computing device 600
typically includes at least one processing unit 602 and memory 604. Depending on
the exact configuration and type of computing device, memory 604 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory, etc.) or some
combination of the two. This most basic configuration is illustrated in Figure 1 by
dashed line 606.

[034] Additionally, device 600 may also have additional features/functionality.
For example, device 600 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in Figure 11 by removable storage 608 and
non-removable storage 610. Computer storage media includes volatile and
nonvolatile, removable and non-removable media implemented in any method or
technology for storage of information such as computer readable instructions, data
structures, program modules or other data. Memory 604, removable storage 608
and non-removable storage 610 are all examples of computer storage media.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
tflash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other medium which can be used
to store the desired information and which can accessed by device 600. Any such
computer storage media may be part of device 600.

[035] Computing device 600 includes one or more communication connections
614 that allow computing device 600 to communicate with other
computers/applications 615. Device 600 may also have input device(s) 612 such as
keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s)
611 such as a display, speakers, printer, etc. may also be included. These devices
are well known in the art and need not be discussed at length here. In one
implementation, computing device 600 includes submission and notification

application 200 and/or meta-model storage application 240.

12

10

WO 2008/115644 PCT/US2008/054319

[036] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specitic
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to be protected.

[037] For example, a person of ordinary skill in the computer software art will
recognize that the client and/or server arrangements, user interface screen content,
and/or data layouts as described in the examples discussed herein could be
organized differently on one or more computers to include fewer or additional

options or features than as portrayed in the examples.

13

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

What is claimed is:
1. A computer-readable medium having computer executable instructions for
causing a computer to perform steps comprising:

provide a submission service that is operable to submit at least a portion of
an active meta-model of an application to a central information store for use by a
plurality of users; and

provide a notification service that is operable to receive a notification
relating to a change in the active meta-model.
2. The computer-readable medium of claim 1, wherein the notification service
1s operable to receive changes that are made by a process.
3. The computer-readable medium of claim 1, wherein the notification service
1s operable to receive changes that are made by a user operation.
4, The computer-readable medium of claim 1, wherein the active meta-model
contains intermediate code.
S. The computer-readable medium of claim 1, wherein the active meta-model
contains annotations.
6. The computer-readable medium of claim 1, wherein the active meta-model
contains user-generated artifacts.
7. The computer-readable medium of claim 1, wherein the notification service
1s further operable to display meta-model information to a particular one of the
plurality of users.
8. The computer-readable medium of claim 1, wherein the notification service
1s operable to be integrated into a development environment such that meta-model
information is displayed in the development environment.
0. A computer-readable medium having computer-executable instructions for
causing a computer to perform the steps comprising:

provide a reception service that is operable to receive active meta-model
information of an application being developed by a plurality of users; and

provide a storage service that is operable to store the received active meta-

model information in a specific relational database structure that is operable to

14

10

15

20

25

30

WO 2008/115644 PCT/US2008/054319

allow artifacts to be added without alteration to the specific relational database
structure.
10. The computer-readable medium of claim 9, further having computer-
executable instructions for causing a computer to perform the step comprising:

receive a request to retrieve active meta-model information from a
notification service, the notification service being operable to notify one or more
client devices of changes to the active meta-model.
11. The computer-readable medium of claim 9, wherein the specific relational
database structure is operable to store a name identifying the specific element and
data describing the element.
12. The computer-readable medium of claim 9, wherein the specific relational
database structure is operable to store a name identifying the specific connection,
data describing the specific connection, the source of the specific connection, and
the destination of the specific connection.
13. The computer-readable medium of claim 12, wherein the specific relational
database structure is operable to store relevancy information for a specific
connection.
14. A method for providing a software development application comprising the
steps of:

communicating with a submission service to update an active meta-model of
an application in a central information store used by a plurality of users;

receiving a notification from a notification service of changes to the active
meta-model; and

using the notification service to update a display in a software development
application.
15. The method of claim 14, wherein the submission service is a component of
the software development application.
16. The method of claim 14, wherein the notification service provides policy
violation alerts.
17. The method of claim 14, wherein the notification service provides

dependency alerts.

15

WO 2008/115644 PCT/US2008/054319

18. The method of claim 14, wherein the notification service provides
performance alerts.

19. The method of claim 14, wherein the notification service provides alerts to
indicate application code currently being modified by another user.

20. A computer-readable medium having computer-executable instructions for

causing a computer to perform the steps recited in claim 14.

16

PCT/US2008/054319

WO 2008/115644

179

0l

- T

34018 NOILVINHOANI TVH1IN3O

Wl

e

N INIHOVIN ¥3d4013A3A

ORON®

4!

AE
dyl eyl
\J \J

% %

Q o
R R
¢ ANIHOVIN ¥3d4013A3d L INIHOVI ¥3d4013A3d

PCT/US2008/054319

WO 2008/115644

2/9

0ce
NOILVOIlddV IHL ONILYH3IdO 404 O1907 d3H10

4%
NIFH3HL d3AV1dSIA SINOILYWHOANI T3AON-VLIW LVHL HONS
INFANOHIANT INFNJOT1IAIA ¥V OLNI d3LVHDOFLNI 38 OL FOIALG3S NOILYOIFILON ONIMEYNT 404 01901

01e
d3SN JHL OL NOILVINHOANI
13A0ON-V13IW AV1dSId OL 319vd3d0 d3HLENS 38 OL FOIAGES NOILVOIHILON ONIMEVYNT €04 D190

80¢
(013 M3SN V A8 'SSI00Ud V A9 '9'3) T3AOW-YLIN FAILOV FHL NI FONVHO ¥ OL ONILYI3Y
NOILVOI4ILON V FAIF03d O1 318vH3d0 SI LVHL F0IAH3S NOILVOIFILON V ONIAQIAOHd 404 O190T

90¢
Sd3SN 40 ALMVENTd V A9 3SN 404 34018 NOILYIWHOANI TVHLINTO V OL NOILVYOITddV NV 40
(013 'S1OVAHILYY A31VH43INTD-¥3ISN ‘SNOILYLONNY ‘FA0D FLVIAIWHTLNI '9'3) T3A0W-YLIN FAILDV NV
40 NOILHOd V 1SV 1V LINGNS OL 318vH3dO SI LVHL F0IAF3S NOISSINGNS V ONIAIAOEd 404 J1901

0z
19071 AVEO0Hd

00¢
NOILVOI'lddV NOILVOI4ILON ANV NOISSIANGNS

¢ Ol

PCT/US2008/054319

WO 2008/115644

3/9

R

9¢ NOILYOITddY 3HL ONILYH3Id0 404 O1901d3HLO0

9G¢ NOILD3NNOD D14103dS V 404 NOILYNHOANI ADNVAT T3
ONINIVINOD dT314 V 3H0LS OL FHNLONHLS ISVEVLVA T¥YNOILVY 13 O14103dS FHL ONIMEYNT §04 1901

¥S¢ NOILD3NNOD D14103dS FHL 40 NOILYNILSIA FHL ANV ‘NOILOINNOD
J14193dS FHL 40 304NOS FHL ‘NOILIINNOD J14103dS FHL ONIFIIISIA V.LVA ‘NOILIOINNOD J14103dS
JHL ONIAFIINIAI JNVN V 3401S O1 FdN.LINHLS ISVEVLVA TYNOILY13d D14103dS FHL ONINMEYNT 404 31901

¢SC INIWN3TI IHL ONIGIMOSIA V1vA ANY LNINF T3 O14103dS
JHL ONIAFIINIAI FNVN V FH01S OL FdNLONHLS ISVAVLVA TYNOILY 134 D14103dS FHL ONIMEGYNT 404 J1901

0S¢ 130OW
V1AW IAILOV IHL OL SFONVHO 40 S3OIAFA LNFIMO FHON HO INO A4ILON OL 318Vd3d0 SI LYHL FOIAG3S
NOILYOI4ILON ¥V NO¥4 NOILYWHOANI 130NV L3N FAILOY FATIYLTY OL 1STNDIY V ONIAIFOTY ¥04 19071

87¢ I™NLONYLS ISVYAVLVA TYNOILYTIY O14103dS IHL OL NOILYHILTY LNOHLIM a3aav
39 OL1 SL1OV4ILdY MOTIV Ol 318VH3d0 SI LYHL FdN1LONHLS 3SVEVLVA TYNOILY 13d O14103dS V NI NOILYINHOANI
13A0ONW-VL3IW FAILOV d3AIFOFd IHL FHOLS OL F18VH3dO SI LVHL FOIAGFS FOVHOLS V ONIAIAOHd 404 D190

9%¢ S¥3ASN 40 ALITYENTd V A9 A3d0TIAIA ONIFF NOILYDITddY
NV 40 NOILVINHOANI 1T3AOW-VLIN JAILOY JAIFOIH OL FOIAH3S NOILd3O3d V ONIAIAOHd d04 D107

vv¢ OI190TNVHO0dd
0FC NOILYDINddY 39VH0LS T3A0N-V1IN

WO 2008/115644 PCT/US2008/054319

479

START
270

A

PROVIDE A FRAMEWORK FOR DYNAMIC DEFINITION OF ELEMENTS AND
RELEVANCY THAT ARE USED TO EXPRESS SYSTEM-GENERATED AND USER-
GENERATED ARTIFACTS UNDER DEVELOPMENT BY MULTIPLE USERS IN A
TEAM ENVIRONMENT
272

A

STORE THE SYSTEM-GENERATED AND USER-GENERATED ARTIFACTS AS AN
ACTIVE META-MODEL IN A CENTRAL INFORMATION STORE AS EACH TEAM
MEMBER CREATES AND/OR CHANGES THE ARTIFACTS
274

A

ALLOW THE SOFTWARE DEVELOPMENT APPLICATION USED BY EACH TEAM
MEMBER TO PERIODICALLY INTERACT WITH THE CENTRAL INFORMATION
STORE TO IDENTIFY RELEVANT UPDATES THAT HAVE BEEN MADE TO THE

ACTIVE META-MODEL
276

A

USE THE UPDATED INFORMATION APPROPRIATELY, SUCH TO NOTIFY A
PARTICULAR TEAM MEMBER OF A PROBLEM, OF INFORMATION THAT WOULD
BE HELPFUL TO SOMETHING THEY ARE CURRENTLY DOING, ETC.

278

END
280

FIG. 4

WO 2008/115644 PCT/US2008/054319

519

START
290

COMMUNICATE WITH A SUBMISSION SERVICE, SUCH AS A COMPONENT OF
THE SOFTWARE DEVELOPMENT APPLICATION, TO UPDATE AN ACTIVE META-
MODEL OF AN APPLICATION IN A CENTRAL INFORMATION STORE
292

:

RECEIVE A NOTIFICATION FROM A NOTIFICATION SERVICE OF CHANGES TO
THE ACTIVE META-MODEL
294

i

USE THE NOTIFICATION SERVICE TO UPDATE A DISPLAY IN THE SOFTWARE
DEVELOPMENT APPLICATION (E.G. WITH POLICY VIOLATION ALERTS,
DEPENDENCY ALERTS, PERFORMANCE ALERTS, MODIFICATION ALERTS, ETC.)
296

v

END
298

FIG. 5

WO 2008/115644 PCT/US2008/054319

352

354

6/9

350

¥
ELEMENT SPECIFIC FIELDS:

\
NAME, STRING(1024): The moniker for the

Element in the system

\
DATA, BINARY(MAX): A generic binary packet

for the Element

FIG. 6
370

¥
ELEMENT EXAMPLE:

ELEMENT TYPE: Assembly

FIELD: Name, String (1024)

FIELD: Data, Binary(MAX)

PROPERTY: ContainsTestCases, Boolean,
Default: False

PROPERTY: IsGhost, Boolean, Default: True
PROPERTY: StaticallyParsed, Boolean, Default:
False

FIG. 7

WO 2008/115644 PCT/US2008/054319

402

404

119

400

¥
CONNECTION SPECIFIC FIELDS:

\
SOURCE, UNIQUEID: The source Element of

the Connection

o
DESTINATION, UNIQUEID: The destination

Element of the Connection

FIG. 8
450

CONNECTION EXAMPLE: *

CONNECTION TYPE: Depends

FIELD: Name, String (1024)

FIELD: Data, Binary(MAX)

FIELD: Source, Uniqueld

FIELD: Destination, Uniqueld

PROPERTY: TwoWay, Boolean,

Default; False

PROPERTY: Static, Boolean, Default: False
PROPERTY: Documented, Boolean, Default:
False

FIG.9

WO 2008/115644 PCT/US2008/054319

8/9

500
¥

502 CONNECTION SPECIAL PROPERTY:

RELEVANCY, FLOAT: Expresses how
important a given Connection is in relation
to other Connections of the same type

FIG. 10

PCT/US2008/054319

WO 2008/115644

9/9

LL 91

SNOILYDIT1ddY (SINOILDANNOD
/SYALNANOD | NOLLYOINNWOO
YIHLO . ¥3HLO
\ 7y TILYTOA-NON
519 719-> (S)301A30 LNdNI
LINN ONISS300dd JLYI0A
W AHOWIW WILSAS
(3)321A3a 1NdLNO
209 \.
a
019 o
d JOVHOLS
F IVAONSEHON 30IA3A ONILNWOD
%09 4 IOVIO0LS
J1aVAOWIY
009 \

909

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2008/054319

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 GOGF

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS (KIPO internal) & Keywords: "software, development, collaborative, sever, information"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y JP 2000-235496 A NTT COMMUNICATIONWARE CO.) 29 Aug. 2000 1-20
See the abstract; figures 1, 4; paragraphs [0012] - [0024].

Y JP 2001-092650 A (HITACHI INFORMATION SYSTEMS LTD.) 06 Apr. 2001 1-20
See the abstract; figures 1-3; paragraphs [0013] - [0024].

A US 05911073 A (MATTSON, JR. et al.) 08 Jun. 1999 1-20
See the abstract; figures 4A-4C; column 9 line 37 - column 10 line 29.

A US 05848274 A (HAMBY et al.) 08 Dec. 1998 1-20
See the abstract; figures 2A, 2B; column 15 lines 18-42.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
24 JULY 2008 (24.07.2008) 24 JULY 2008 (24.07.2008)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- BAE, Kyung Hwan
. gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5768

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2008/054319
Patent document Publication Patent family Publication
cited in search report date member(s) date
JP 2000-23549%6 A 29.08.2000 NONE
JP 2001-092650 A 06.04.2001 NONE
US 05911073 A 08.06. 1999 DE 69823153 T2 14.10.2004
EP 0026592 A2 30.06.1999
EP 0926592 A3 16.08.2000
EP 0926592 B1 14.04.2004
JP 11-232138 A 27.08. 1999
US 05848274 A 08.12. 1998 AU 1997-19568 A1 16.09. 1997
CA 2248181 A 04.09. 1997
EP 0883844 A1 16.12.1998
JP 2000-507373 A 13.06.2000
WO 9732250 A 04.09. 1997

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

