woO 2009/050187 A1 |00 00 OO0 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 April 2009 (23.04.2009)

lﬂfb A0 00 00

(10) International Publication Number

WO 2009/050187 Al

(51) International Patent Classification:
HO4L 12/24 (2006.01) GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/EP2008/063850

(22) International Filing Date: 15 October 2008 (15.10.2008)
English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/872,235 15 October 2007 (15.10.2007) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): GILFIX, Michael

[CA/US]; 4301 Canyonside Trail, Austin, Texas 78731
(US). MOORE, Victor [US/US]; 776 S. W. Dyal Av-
enue, Lake City, Florida 32024 (US). WROBEL JR,
Anthony William [US/US]; 10612 Leslie Drive, Raleigh,
North Carolina 27615 (US). CHEN, Benson Kwuan-Yi
[US/US]; 1014 Chancellors Ridge Drive, Durham, North
Carolina 27713 (US). GILMORE, Mark David [US/US];
1 Silverwood Court, Durham, North Carolina 27713 (US).
TAL-AVIY, Ofira [IL/IL]; P.O. Box 109, 60946 Moshav
Bitzaron (IL).

Agent: PYECROFT, Justine, Nicola; IBM United King-
dom Limited, Intellectual Property Law, Hursley Park,
Winchester, Hampshire SO21 2JN (GB).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR HANDLING FAILOVER IN A DISTRIBUTED ENVIRONMENT THAT USES SES-

SION AFFINITY

402 DETECT FAILURE OF ANOTHER
SERVER IN CLUSTER
404\{

406\{
;

408\{
410 GET MESSAGE FROM FAILED
SERVER'S SUBSCRIPTION QUEUE

STOP PROCESSING OWN
SUBSCRIPTION MESSAGES

OPEN FAILED SERVER'S
SUBSCRIPTION QUEUE

PUBLISH MARKER MESSAGE
TOALL SUBSCRIBERS

}1 4 g 6
12
WARKER RECORD PrOREaaNG
MESSAGE FOUND MESSAGE AS ON FELATED
“READ"
SESSION
CLOSE FAILED SERVER'S
418 SUBSCRIPT!ON QUEUE
RESUME PROCESSING OWN
420 SUBSCRIPTION QUEUE
I
GET MESSAGE FROM OWN
422 SUBSCRIPTION QUEUE
MARKER NO
MESSAGE FOUND
2
494 : HAS PERFORM
PROCESSING
RESUME NORMAL MES,,?E\%,EEEN ON RELATED | ']
426 PROCESSING b SESSION
~
END 430
FIG. 4

(57) Abstract: A system for managing failover in a
server cluster. In response to detecting a failed server,
subscription message processing of a failover server is
stopped. A subscription queue of the failed server is opened.
A marker message is published to all subscribers of a
particular messaging topic. The marker message includes an
identification of the failover server managing the subscription
queue of the failed server. Messages within the subscription
queue of the failed server are processed. In response to
determining that a message in the subscription queue of the
failed server is the marker message, the subscription queue of
the failed server is closed. Then, the failover server resumes
processing of its original subscription queue looking for the
marker message, while processing yet unseen messages from
the queue. Once the marker message is found in the original
subscription queue, normal operation is resumed.



WO 2009/050187 A1 NI DA 00 0T 0001000 0 0O O

MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, 7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, 17, European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
ZW. NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH, Published:
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, — with international search report



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

METHOD AND SYSTEM FOR HANDLING FAILOVER IN A DISTRIBUTED
ENVIRONMENT THAT USES SESSION AFFINITY

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to an improved data processing system. More
specifically, the present invention is directed to a computer implemented method, system,
and computer usable program code for handling server failover in a distributed network

environment that utilizes session affinity.

Description of the Related Art

Today, most computers are connected to some type of network. A network allows a
computer to share information with other computer systems. The Internet is one example of
a computer network. The Internet is a global network of computers and networks joined
together by means of gateways that handle data transfer and the conversion of messages from a
protocol of the sending network to a protocol used by the receiving network. On the Internet,
any computer may communicate with any other computer with information traveling over the
Internet through a variety of languages, also referred to as protocols. Typically, the Internet

uses a set of protocols called Transmission Control Protocol/Internet Protocol (TCP/IP).

A large number of emerging Internet applications require information dissemination across
different organizational boundaries, heterogeneous platforms, and a large, dynamic
population of publishers and subscribers. A publish-subscribe (pub-sub) network service is a
communication infrastructure that enables information dissemination across a potentially
unlimited number of publishers and subscribers. A pub-sub system is often implemented as
a collection of spatially disparate nodes communicating on top of a peer-to-peer overlay

network.

In such an environment, publishers publish information in the form of events and subscribers

have the ability to express their interests in an event or a pattern of events by sending



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

subscription filters to the pub-sub network. The pub-sub network uses content-based routing
schemes to dynamically match each publication against all active subscriptions, and notifies

the subscribers of an event if and only if the event matches their registered interest.

A converged service is an application that spans communication over multiple network
protocols and protocol sessions to provide higher level function. In the case of the hypertext
transfer protocol (HTTP) and session initiation protocol (SIP), a converged service joins
together session information from both the HTTP and SIP protocols, allowing interactions
over one protocol to influence communication over the other, subject to the constraints of the
protocol. A converged service may span multiple protocol sessions from across each of

these protocols.

In order to simplify structuring of code and high availability services, a mechanism called
session affinity is used in conjunction with converged services. Session affinity is a
mechanism in a clustered environment for associating requests within the session with a
particular server within a cluster of servers. This association is accomplished via a routing
mechanism that maps sessions to managing servers. When using session affinity with
converged services, converged session data may live in a single application server instance
within the lifetime of a session, avoiding the need for application code to perform inter-

cluster communication when processing requests related to a converged session.

However, many converged applications also require accessing and manipulating common
resources or data structures across multiple converged sessions. Even with session affinity,
these converged sessions may be assigned to different server instances within a cluster. As a
result, a method is needed for notifying all converged sessions of common information
relevant to those sessions, regardless of the location of the interested sessions in the cluster.
For example, consider a three-server clustered environment that includes servers A, B, and
C. A subscription is set up for notifications about an application resource on server A and
server C. A publish request comes in and is directed to server B. Server B does not know
which server in the cluster contains the interested subscription sessions. Server B must be
able to reliably broadcast the subscription data. In addition, when server B fails, it is

unknown where sessions managed by server B will be reactivated within the cluster.



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

Therefore, it would be beneficial to have an improved computer implemented method,
system, and computer usable program code for managing server failover in a pub-sub

distributed network environment that utilizes session affinity.

SUMMARY OF THE INVENTION

Ilustrative embodiments provide a computer implemented method, system, and computer
usable program code for managing failover in a server cluster. In response to detecting a
failed server in the server cluster within a distributed network, subscription message
processing of a failover server is stopped. A subscription queue of the failed server is
opened. A marker message is published to all subscribers of a particular messaging topic.
The marker message includes an identification of the failover server that is now managing
the subscription queue of the failed server. Messages within the subscription queue of the
failed server are processed. It is determined if a message in the subscription queue of the
failed server is the marker message. In response to determining that the message in the
subscription queue of the failed server is the marker message, the subscription queue of the
failed server is closed. Then, the failover server resumes processing of its original

subscription queue.

Preferably the marker message is looked for, while processing yet unseen messages from the
original subscription queue. Once the marker message is found in the original subscription

queue, normal operation is preferably resumed.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be described, by way of example
only, and with reference to the following drawings:

Figure 1 is a pictorial representation of a network of data processing systems in
which illustrative embodiments may be implemented;

Figure 2 is a block diagram of a data processing system in which illustrative

embodiments may be implemented;



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

Figure 3 is a flowchart illustrating an exemplary process for normal server operation
in accordance with an illustrative embodiment; and
Figure 4 is a flowchart illustrating an exemplary process for failover server operation

in accordance with an illustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference now to the figures and in particular with reference to Figures 1-2, exemplary
diagrams of data processing environments are provided in which illustrative embodiments
may be implemented. It should be appreciated that Figures 1-2 are only exemplary and are
not intended to assert or imply any limitation with regard to the environments in which
different embodiments may be implemented. Many modifications to the depicted

environments may be made.

Figure 1 depicts a pictorial representation of a network of data processing systems in which
illustrative embodiments may be implemented. Network data processing system 100 is a
network of computers in which the illustrative embodiments may be implemented. Network
data processing system 100 contains network 102, which is the medium used to provide
communications links between various devices and computers connected together within
network data processing system 100. Network 102 may include connections, such as wire,

wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 also connect to network 102.
However, it should be noted that network data processing system 100 may include additional
servers, clients, and other devices not shown. Clients 110, 112, and 114 are clients to server
104 and/or server 106. Also, clients 110, 112, and 114 may be, for example, personal

computers or network computers.

In the depicted example, server 104 and server 106 are clustered servers. In addition, servers
104 and 106 provide pub-sub network services to clients 110, 112, and 114, which are

subscribers. The pub-sub network supports publishing messages to a particular message



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

topic. A topic represents a subject of interest to a plurality of subscribers. Typically,
messages are assigned to a topic during the publishing process and then are received by all
consumers that have subscribed to that particular topic. Zero or more subscriber clients may

register interest in receiving messages on a particular message topic.

A subscription is configured so that the subscription is durable and persistent. A
subscription indicates the interest of a consumer to receive some class of events. A
subscription within a messaging service environment, such as, for example, Java™
Messaging Service (JMS), acts as a “virtual queue” for receiving events for a topic in the
order that the events were published. Durable means that when a client stops reading
messages from the subscription, the unread messages remain in the subscription queue where

the client left off.

Furthermore, network data processing system 100 is a distributed network environment that
utilizes session affinity. Session affinity makes use of load balancing elements to route
requests that are part of the same converged session to the same application server instance.
In order to address a converged session, illustrative embodiments encode a request with
session information that may be used to route the request. This session information
encoding may be done in two ways. One way is for the client application to obtain a session
reference, such as, for example, a cookie, from a converged application. Then the client
application replays that cookie in its request. Alternatively, the client application encodes
the uniform resource identifier (URI) of the request so that the request is directed to the

appropriate server.

In the depicted example, network data processing system 100 is the Internet with network
102 representing a worldwide collection of networks and gateways that use the TCP/IP suite
of protocols to communicate with one another. At the heart of the Internet is a backbone of
high-speed data communication lines between major nodes or host computers, consisting of
thousands of commercial, governmental, educational and other computer systems that route
data and messages. Of course, network data processing system 100 also may be

implemented as a number of different types of networks, such as for example, an intranet, a



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

local area network (LAN), or a wide area network (WAN). Figure 1 is intended as an
example, and not as an architectural limitation for the different illustrative embodiments.
With reference now to Figure 2, a block diagram of a data processing system is shown in
which illustrative embodiments may be implemented. Data processing system 200 is an
example of a computer, such as server 104 or client 110 in Figure 1, in which computer
usable program code or instructions implementing the processes may be located for the

illustrative embodiments.

In the depicted example, data processing system 200 employs a hub architecture including
interface and memory controller hub (interface/MCH) 202 and interface and input/output (I/0)
controller hub (interface/ICH) 204. Processing unit 206, main memory 208, and graphics
processor 210 are coupled to interface/MCH 202. Processing unit 206 may contain one or more
processors and even may be implemented using one or more heterogeneous processor systems.
Graphics processor 210 may be coupled to interface/MCH 202 through an accelerated graphics
port (AGP), for example.

In the depicted example, local area network (LAN) adapter 212 is coupled to interface/ICH 204
and audio adapter 216, keyboard and mouse adapter 220, modem 222, read only memory
(ROM) 224, universal serial bus (USB) and other ports 232, and PCI/PCle devices 234 are
coupled to interface/ICH 204 through bus 238, and hard disk drive (HDD) 226 and CD-ROM
230 are coupled to interface/ICH 204 through bus 240. PCI/PCle devices may include, for
example, Ethernet adapters, add-in cards, and PC cards for notebook computers. PCI uses a
card bus controller, while PCle does not. ROM 224 may be, for example, a flash binary
input/output system (BIOS). HDD 226 and CD-ROM 230 may use, for example, an integrated
drive electronics (IDE) or serial advanced technology attachment (SATA) interface. A super

I/O (SIO) device 236 may be coupled to interface and I/O controller hub 204.

An operating system runs on processing unit 206 and coordinates and provides control of
various components within data processing system 200 in Figure 2. The operating system may
be a commercially available operating system such as Microsoft® Windows Vista' . Microsoft
and Windows Vista are trademarks of Microsoft Corporation in the United States, other

countries, or both. An object oriented programming system, such as the Java'™ programming



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

system, may run in conjunction with the operating system and provides calls to the operating
system from Java™ programs or applications executing on data processing system 200. Java™™
and all Java™-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,

other countries, or both.

Instructions for the operating system, the object-oriented programming system, and applications
or programs are located on storage devices, such as HDD 226, and may be loaded into main
memory 208 for execution by processing unit 206. The processes of the illustrative
embodiments may be performed by processing unit 206 using computer implemented
instructions, which may be located in a memory such as, for example, main memory 208,

ROM 224, or in one or more peripheral devices.

The hardware in Figures 1-2 may vary depending on the implementation. Other internal
hardware or peripheral devices, such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to or in place of the hardware
depicted in Figures 1-2. Also, the processes of the illustrative embodiments may be applied

to a multiprocessor data processing system.

In some illustrative examples, data processing system 200 may be a personal digital assistant
(PDA), which is generally configured with flash memory to provide non-volatile memory for
storing operating system files and/or user-generated data. A bus system may be comprised
of one or more buses, such as a system bus, an 1/0 bus and a PCI bus. Of course the bus
system may be implemented using any type of communications fabric or architecture that
provides for a transfer of data between different components or devices attached to the fabric
or architecture. A communications unit may include one or more devices used to transmit
and receive data, such as a modem or a network adapter. A memory may be, for example,
main memory 208 or a cache such as found in interface/MCH 202. A processing unit may
include one or more processors or CPUs. The depicted examples in Figures 1-2 and above-
described examples are not meant to imply architectural limitations. For example, data
processing system 200 also may be a tablet computer, laptop computer, or telephone device

in addition to taking the form of a PDA.



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

Iustrative embodiments provide a computer implemented method, system, and computer
usable program code for managing failover in a server cluster within a distributed network.
In response to detecting a failed server in the server cluster, a failover server stops
subscription message processing of its subscription messaging queue. Then, the failover
server opens a subscription queue of the failed server and publishes a marker message to all
subscribers of the particular messaging topic. The marker message includes an identification
of the failover server that is now managing the subscription queue of the failed server. In

addition, the marker message is ignored by all other servers not participating in the failover.

In addition, the failover server processes messages within the subscription queue of the
failed server. While processing messages in the failed server’s subscription queue, the
failover server determines if a message in the subscription queue is the marker message. In
response to finding the marker message in the subscription queue of the failed server, the
failover server closes the subscription queue of the failed server and resumes subscription

message processing its subscription queue.

Illustrative embodiments may be implemented in a distributed pub-sub network
environment. Each application server at startup generates a unique subscription
identification that lives in the lifetime of the session. Each subscription is both persistent
and durable. Whenever a session is created in an application server, the application server
stores the unique subscription identification in a session attribute so that the session attribute
is replicated as part of session state replication. When a failover occurs, the sessions of the

failed server are activated on another server application.

Typically in an application server environment, such as, for example, a J2EE application
server, the failover server application code is signaled of this activation via lifecycle
listeners. However, it should be noted that the application code may be notified of this
activation in many different ways by the platform besides via lifecycle listeners. On an
activation event, the failover server application looks up the failed over subscription from
the session. Then, the failover server immediately publishes a marker message to all
subscriptions, which is delivered in a first in/first out (FIFO) order and also appears in the

failed server’s subscription queue.



10

15

20

25

30

WO 2009/050187 PCT/EP2008/063850

The failover server then stops processing on its primary subscription and proceeds to recover
from the failed over subscription, processing only messages that are associated with failed
server’s sessions. While recovering, failover server builds a map of messages that it has
processed. Once the marker message is hit in the failed server’s subscription queue, the first

phase of recovery completes.

The failover server application then resumes processing the primary queue until it finds the
marker message. The marker message indicates that the queues are now synchronized.
While traversing the primary queue, the failover server skips over messages that are in the
map so it doesn't process any messages for the recovered session. Once the failover server
finds the marker message, the failover server terminates the failed over subscription and
resumes normal processing. However, it should be noted that if the failed server comes up
while the failover server is recovering, the failover server is not affected because the failed
server generates a new unique subscription identification, thereby avoiding conflict with the

failover server.

With reference now to Figure 3, a flowchart illustrating an exemplary process for normal
server operation is shown in accordance with an illustrative embodiment. The process
shown in Figure 3 may be implemented in a server, such as, for example, server 104 in

Figure 1.

The process begins when the server starts up (step 302). After startup, the server generates a
unique subscription identification that lives in the lifetime of the session (step 304). The
server uses the unique subscription identification to connect to a messaging topic used for

publishing notifications of changes to subscription data to subscriber clients.

Subsequent to generating the unique subscription identification in step 304, the server
connects to the messaging topic using the unique subscription identification (step 306).

After connecting to the messaging topic in step 306, the server makes a determination as to
whether this is a new session (step 308). If this is a new session, yes output of step 308, then
the server stores the unique subscription identification in a session object as an attribute (step

310). Thereafter, the process proceeds to step 312.



10

15

20

25

30

WO 2009/050187 10 PCT/EP2008/063850

If this is not a new session, no output of step 308, then the server services requests (step
312). The server services requests by performing request processing (step 314). In addition,
the server publishes changes to the particular subscription messaging topic (step 316).
Further, the server replicates the session object for session state replication (step 318).

Thereafter, the process returns to step 314 where the server continues to service requests.

With reference now to Figure 4, a flowchart illustrating an exemplary process for failover
server operation is shown in accordance with an illustrative embodiment. The process
shown in Figure 4 may be implemented in a server, such as, for example, server 106 in

Figure 1.

The process begins when the server detects a failure of another server within a server cluster,
such as, for example, server 104 in Figure 1 (step 402). After detecting the other server’s
failure in step 402, the server stops processing its own subscription messages (step 404).
Then, the server opens the failed server’s subscription queue (step 406). In addition, the
server publishes a marker message, which includes a unique subscription identification for
the server that is now providing services for the session of the failed server, to all subscribers
(step 408). Also, the marker message appears in a FIFO order in both the server’s and the
failed server’s subscription queues at the time failover occurred. The server uses this marker

message to synchronize the subscription queues of both servers as described below.

Subsequently, the server gets a message from the failed server’s subscription queue (step
410). Then, the server makes a determination as to whether the message is the marker
message (step 412). If the message is not the marker message, no output of step 412, then
the server records the message as “read” (step 414). After recording the message as seen in
step 414, the server performs processing on the related session (step 416). Thereafter, the
process returns to step 410 where the server gets another message from the failed server’s

subscription queue.

Returning now to step 412, if the message is the marker message, yes output of step 412,
then the server closes the failed server’s subscription queue (step 418). Afterward, the

server resumes processing of its own subscription queue (step 420). Subsequent to resuming



10

15

20

25

30

WO 2009/050187 1 PCT/EP2008/063850

processing of its subscription queue, the server gets a message from its subscription queue
(step 422). Then, the server makes a determination as to whether the message is the marker
message (step 424). If the message is the marker message, yes output of step 424, then the

server resumes normal processing (step 426). The process terminates thereafter.

If the message is not the marker message, no output of step 424, then the server makes a
determination as to whether the message was previously read (step 428). If the message was
read, yes output of step 428, then the process returns to step 422 where the server gets
another message from its subscription queue. If the message was not read, no output of step
428, then the server performs processing on the related session (step 430). Thereafter, the

process again returns to step 422.

Thus, illustrative embodiments provide a computer implemented method, system, and
computer usable program code for handling server failover in a publish-subscribe distributed
network environment that utilizes session affinity. The invention may take the form of an
entirely hardware embodiment, an entirely software embodiment, or an embodiment
containing both hardware and software elements. In a preferred embodiment, the invention
is implemented in software, which includes but is not limited to firmware, resident software,

microcode, etc.

Furthermore, the invention may take the form of a computer program product accessible
from a computer-usable or computer-readable medium providing program code for use by or
in connection with a computer or any instruction execution system. For the purposes of this
description, a computer-usable or computer-readable medium may be any tangible apparatus
that may contain, store, communicate, propagate, or transport the program for use by or in

connection with the instruction execution system, apparatus, or device.

The medium may be an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a read-only memory

(ROM), a rigid magnetic disk, and an optical disk. Current examples of optical disks include



10

15

20

25

30

WO 2009/050187 12 PCT/EP2008/063850

compact disk — read only memory (CD-ROM), compact disk — read/write (CD-R/W), and
DVD.

Further, a computer storage medium may contain or store a computer readable program code
such that when the computer readable program code is executed on a computer, the
execution of this computer readable program code causes the computer to transmit another
computer readable program code over a communications link. This communications link

may use a medium that is, for example without limitation, physical or wireless.

A data processing system suitable for storing and/or executing program code will include at
least one processor coupled directly or indirectly to memory elements through a system bus.
The memory elements may include local memory employed during actual execution of the
program code, bulk storage, and cache memories which provide temporary storage of at least
some program code in order to reduce the number of times code must be retrieved from bulk

storage during execution.

Input/output or I/O devices (including but not limited to keyboards, displays, pointing
devices, etc.) may be coupled to the system either directly or through intervening 1/0

controllers.

Network adapters may also be coupled to the system to enable the data processing system to
become coupled to other data processing systems or remote printers or storage devices
through intervening private or public networks. Modems, cable modems, and Ethernet cards

are just a few of the currently available types of network adapters.

The description of the present invention has been presented for purposes of illustration and
description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in
the art. The embodiment was chosen and described in order to best explain the principles of
the invention, the practical application, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with various modifications as are suited

to the particular use contemplated.



10

15

20

25

30

WO 2009/050187 13 PCT/EP2008/063850

CLAIMS

1. A computer implemented method for managing failover in a server cluster, the
computer implemented method comprising:

responsive to detecting a failed server in the server cluster within a distributed
network, stopping subscription message processing of a failover server;

opening a subscription queue of the failed server;

publishing a marker message to all subscribers of a particular messaging topic,
wherein the marker message includes an identification of the failover server that is now
managing the subscription queue of the failed server;

processing messages within the subscription queue of the failed server;

determining if a message in the subscription queue of the failed server is the marker
message;

responsive to determining that the message in the subscription queue of the failed
server is the marker message, closing the subscription queue of the failed server; and

resuming the subscription message processing of the failover server.

2. The computer implemented method of claim 1, further comprising:
responsive to determining that the message in the subscription queue of the failed
server is not the marker message, recording the message as read; and

performing processing on a related subscription session for the failed server.

3. The computer implemented method of claim 1 or 2, further comprising:
determining if a message in a subscription queue of the failover server is the marker
message; and
responsive to determining that the message in the subscription queue of the failover

server is the marker message, resuming normal operation.

4. The computer implemented method of claim 1, 2 or 3, further comprising:
responsive to determining that the message in the subscription queue of the failover
server is not the marker message and the message has not been read, performing processing

on a related subscription session for the failover server.



10

15

20

25

30

WO 2009/050187 14 PCT/EP2008/063850

5. The computer implemented method of claim 1, 2, 3 or 4 further comprising:
responsive to a startup of a server, generating a unique subscription identification for
the server; and
responsive to creating a new session, storing the unique subscription identification in
the new session, wherein the unique subscription identification persists in the new session

for a lifetime of the new session.

6. The computer implemented method of claim 5, wherein the unique subscription

identification is used to connect with a subscription messaging topic.

7. The computer implemented method of any preceding claim, wherein the distributed

network is a distributed publish-subscribe network that utilizes session affinity.

8. The computer implemented method of claim 3, wherein the marker message appears
at a same time in the subscription queue of the failed server and the subscription queue for

the failover server.

9. The computer implemented method of claim 3 or 8, wherein the marker message is
used to synchronize the subscription queue of the failed server and the subscription queue

for the failover server prior to the failover server resuming the normal operation.

10. A data processing system for managing failover in a server cluster, comprising:

a bus system;

a storage device connected to the bus system, wherein the storage device includes a
set of instructions; and

a processing unit connected to the bus system, wherein the processing unit executes
the set of instructions to stop subscription message processing of a failover server in
response to detecting a failed server in the server cluster within a distributed network, open a
subscription queue of the failed server, publish a marker message to all subscribers of a
particular messaging topic, wherein the marker message includes an identification of the
failover server that is now managing the subscription queue of the failed server, process

messages within the subscription queue of the failed server, determine if a message in the



10

15

20

25

30

WO 2009/050187 15 PCT/EP2008/063850

subscription queue of the failed server is the marker message, close the subscription queue of
the failed server in response to determining that the message in the subscription queue of the
failed server is the marker message, and resume the subscription message processing of the

failover server.

11.  The data processing system of claim 10, wherein the processing unit executes a
further set of instructions to record the message as read in response to determining that the
message in the subscription queue of the failed server is not the marker message and perform

processing on a related subscription session for the failed server.

12.  The data processing system of claim 10 or 11, wherein the processing unit executes a
still further set of instructions to determine if a message in a subscription queue of the
failover server is the marker message and resume normal operation in response to
determining that the message in the subscription queue of the failover server is the marker

message.

13.  The data processing system of claim 10, 11 or 12, further comprising:
means, responsive to determining that the message in the subscription queue of the
failover server is not the marker message and the message has not been read, performing

processing on a related subscription session for the failover server.

14.  The data processing system of claim 10, 11, 12 or 13 further comprising:

means, responsive to a startup of a server, for generating a unique subscription
identification for the server; and

means, responsive to creating a new session, for storing the unique subscription
identification in the new session, wherein the unique subscription identification persists in

the new session for a lifetime of the new session.

15.  The data processing system of claim 14, wherein the unique subscription

identification is used to connect with a subscription messaging topic.



10

15

20

25

30

WO 2009/050187 16 PCT/EP2008/063850

16.  The data processing system of any of claims 10 to 15, wherein the distributed

network is a distributed publish-subscribe network that utilizes session affinity.

17.  The data processing system of claim 12, wherein the marker message appears at a
same time in the subscription queue of the failed server and the subscription queue for the

failover server.

18.  The data processing system of claim 12 or 17, wherein the marker message is used to
synchronize the subscription queue of the failed server and the subscription queue for the

failover server prior to the failover server resuming the normal operation.

19. A computer program product for managing failover in a server cluster, the computer
program product comprising:

a computer usable medium having computer usable program code embodied therein,
the computer usable medium comprising:

computer usable program code configured to stop subscription message processing of
a failover server in response to detecting a failed server in the server cluster within a
distributed network;

computer usable program code configured to open a subscription queue of the failed
server;

computer usable program code configured to publish a marker message to all
subscribers of a particular messaging topic, wherein the marker message includes an
identification of the failover server that is now managing the subscription queue of the failed
server;

computer usable program code configured to process messages within the
subscription queue of the failed server;

computer usable program code configured to determine if a message in the
subscription queue of the failed server is the marker message;

computer usable program code configured to close the subscription queue of the
failed server in response to determining that the message in the subscription queue of the

failed server is the marker message; and



10

15

20

25

30

WO 2009/050187 17 PCT/EP2008/063850

computer usable program code configured to resume the subscription message

processing of the failover server.

20.  The computer program product of claim 19, further comprising:

computer usable program code configured to record the message as read in response
to determining that the message in the subscription queue of the failed server is not the
marker message; and

computer usable program code configured to perform processing on a related

subscription session for the failed server.

21.  The computer program product of claim 19 or 20, further comprising:

computer usable program code configured to determine if a message in a subscription
queue of the failover server is the marker message; and

computer usable program code configured to resume normal operation in response to
determining that the message in the subscription queue of the failover server is the marker

message.

22.  The computer program product of claim 19, 20 or 21, further comprising:

computer usable program code configured to perform processing on a related
subscription for the failover server in response to determining that the message in the
subscription queue of the failover server is not the marker message and that the message has

not been read.

23.  The computer program product of claim 19, 20, 21 or 22, further comprising:
computer usable program code configured to generate a unique subscription
identification for a server in response to a startup of the server; and
computer usable program code configured to store the unique subscription
identification in a new session in response to creating the new session, wherein the unique

subscription identification persists in the new session for a lifetime of the new session.

24.  The computer program product of claim 23, wherein the unique subscription

identification is used to connect with a subscription messaging topic.



10

WO 2009/050187 18 PCT/EP2008/063850

25.  The computer program product of any of claims 19 to 24, wherein the distributed

network is a distributed publish-subscribe network that utilizes session affinity.

26. The computer program product of claim 21, wherein the marker message appears at a
same time in the subscription queue of the failed server and the subscription queue for the

failover server.

27. The computer program product of claim 21 or 26, wherein the marker message is
used to synchronize the subscription queue of the failed server and the subscription queue

for the failover server prior to the failover server resuming the normal operation.

28. A computer program comprising program code means adapted to perform the method

of any of claims 1 to 9 when said program is run on a computer.



WO 2009/050187

PCT/EP2008/063850

1/3
100
’/ 110
104~ .
102 oYYy
CLIENT
SERVER NETWORK 112
BN
106~ CLIENT
= 114
SERVER STORAGE SR
108 CLIENT
FIG. 1
206~ | PROCESSING
S 200
210 202 208 216 236
\ N / / /
GRAPHICS INTERFACE/ MAIN AUDIO
PROCESSOR [N MCcH <=1 MEMORY ADAPTER | | SO
204
240 « 238
\ BUS INTERFACE/ BUS __/ |
[ V=1 T T I
USB KEYBOARD
LAN AND | |Pcypclel| AND
ADD (1 CD-ROMY | sompter || othen | | pevices | | mouse | | MODEM | | Rom
PORTS ADAPTER
/ / / / N N \ N
226 230 212 23 234 220 222 224

2
FIG. 2



WO 2009/050187

2/3

302~ SERVER START UP
304~ GENERATE UNIQUE
SUBSCRIPTION IDENTIFICATION
306 CONNECT TO MESSAGING
N TOPIC USING UNIQUE
SUBSCRIPTION IDENTIFICATION

308
NO

YES

STORE UNIQUE SUBSCRIPTION
310—] DENTIFICATION IN SESSION
OBJECT AS AN ATTRIBUTE
v
3121 SERVICE REQUESTS
PERFORM REQUEST
314 PROCESSING
316 PUBLISH CHANGES TO TOPIC
31871 REPLICATE SESSION OBJECT

I

FIG. 3

PCT/EP2008/063850



3/3

PCT/EP2008/063850

WO 2009/050187
402~ DETECT FAILURE OF ANOTHER
SERVER IN CLUSTER
v
404-\ STOP PROCESSING OQWN
SUBSCRIPTION MESSAGES
v
406\ OPEN FAILED SERVER'S
SUBSCRIPTION QUEUE
¥
408\ PUBLISH MARKER MESSAGE
TO ALL SUBSCRIBERS
v
41 O\ GET MESSAGE FROM FAILED

SERVER'S SUBSCRIPTION QUEUE 414 416
/ /
PERFORM
MERsEsCAOGREDAs | PROCESSING
READ" ON RELATED
SESSION
CLOSE FAILED SERVER'S
418-"1  SUBSCRIPTION QUEUE
y
RESUME PROCESSING OWN
420" SUBSCRIPTION QUEUE
Y
GET MESSAGE FROM OWN
42271  SUBSCRIPTION QUEUE
MARKER NO
MESSAGE FOUND
?
424 HAS PROCESSING
MESSAGE BEEN
P RESUME NORMAL "READ"? ON RELATED
426 PROCESSING SESSION
428 <
END 430

FIG. 4




INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/063850

A. CLASSIFICATION OF SUBJECT MATTER
INV. HO4L12/24 G06F15/16

According to International Paient Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2004/268357 A1 (JOY JOSEPH M [US] ET 1-28
AL) 30 December 2004 (2004-12-30)
figures 1,2,29

page 3, paragraph 64

page 4, paragraph 79-81

page 16, paragraph 228

page 23, paragraph 302-304

A US 2006/129684 A1 (DATTA ANINDYA [US]) 1-28
15 June 2006 (2006-06-15)
figures 1,4

page 1, paragraphs 3,7
page 2, paragraph 19-21
page 3, paragraph 24
page 5, paragraph 46

m Further documents are listed in the continuation of Box C. E See patent family annex.

* Special categories of cited documents : ' N .

"T* later document published after the international filing date
or priorily date and not in conflict with the application but
cited to understand the principle or theory undertying the
invention

"A* document defining the general state of the art which is not
considered 1o be of particular relevance

*E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered 10

"L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to eslablish the publication date of another *Y* document of particular relevance; the claimed invention
cilation or other special reason (as specified) cannot be considered to involve an inventive step when the

*0* document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled

in the art.

*P* document published prior to the international filing date but

later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
2 February 2009 06/02/2009
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk -

Tel. (+31-70) 340-2040, .
iR s Mircescu, Alexander

Form PCT/ISA/210 (second sheet) {April 2005)



INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/063850
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2006/026290 Al (PULITO BRIAN [US] ET 1-28
AL) 2 February 2006 .(2006-02-02)
figures 1-4

page 1, paragraph 5-8
page 2, paragraph 17-19
page 3, paragraph 27
page 4, paragraph 36

Form PCT/ISA/210 (continuation of second sheet) (April 2005)



INTERNATIONAL SEARCH REPORT

Information on patent famlly members

International application No

PCT/EP2008/063850
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004268357 Al 30-12-2004 = ZA 200404376 A 14-01-2005
US 2006129684 Al 15-06-2006  NONE
US 2006026290 Al 02-02-2006  NONE

Fom PCT/tSA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report
	Page 26 - wo-search-report

