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INTERACTIVE SYSTEM FOR CONTROLLING MULTIPLE INPUT MULTIPLE
OUTPUT CONTROL (MIMO) STRUCTURES

RELATED APPLICATIONS

[001] The instant application claims priority to U.S. Provisional Patent Application No.:
12/893670 filed September 29, 2010 the contents of which are incorporated by reference

herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[002] The accompanying drawings, which are incorporated in and constitute a part of
this specification, illustrate one or more embodiments of the invention and, together with the

description, explain the invention. In the drawings,

[003] Fig. 1 illustrates a conventional configuration for employing Hoo synthesis
techniques;
[004] Fig. 2 illustrates an exemplary system for implementing embodiments and

techniques of the invention;

[005] Fig. 3 illustrates an exemplary implementation of a modeling environment that
can be used for implementing aspects of the invention;

[006] Figs. 4-6 illustrate exemplary controller architectures to which exemplary
embodiments of the invention can be applied to tune components of the architectures;

[007] Fig. 7 illustrates an exemplary implementation of the invention that employs a
structured controller for tuning parameters in conjunction with a Hoo synthesis representation
of a system;

[008] Fig. 8 illustrates an exemplary desired loop shape for a feedback loop used in

connection with an embodiment of the invention;
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[009] Fig. 9 illustrates an exemplary configuration including a plant and controller
having tunable elements to which exemplary techniques can be applied for tuning the
components;

[0010] Fig. 10 illustrates an exemplary desired loop shape for use with a multiple input
multiple output control problem that can be tuned using an embodiment of the invention;
[0011] Figs 11-14 illustrate exemplary interfaces for displaying commands, objects, and
outputs that can be used with embodiments of the invention;

[0012] Fig. 15 illustrates an exemplary controller having tunable components that can be
tuned using an embodiment of the invention;

[0013] Figs. 16A and 16B illustrate an exemplary interface for displaying commands
and/or outputs that can be used with an embodiment of the invention;

[0014] Figs. 17 and 18 illustrate an exemplary autopilot system that includes tunable
components that can be tuned using an embodiment of the invention;

[0015] Fig. 19 illustrates an exemplary interface that can be used to receive inputs and/or
display outputs related to the autopilot system of Figs. 17 and 18;

[0016] Fig. 20 illustrates an exemplary target loop shape that can be used with an
embodiment of the invention that tunes components of the autopilot system of Figs. 17 and
18;

[0017] Figs. 21 and 22 illustrate exemplary interfaces for receiving inputs and/or
displaying outputs related to the autopilot system of Figs. 17 and 18;

[0018] Fig. 23 illustrates an exemplary step response associated with the autopilot system
of Figs. 17 and 18;

[0019] Fig. 24 illustrates a plot that can be used for evaluating the gain of a sensitivity

function associated with the autopilot system of Figs. 17 and 18;
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[0020] Fig. 25 illustrates exemplary processing that can be used for practicing
embodiments of the invention;

[0021] Fig. 26 illustrates an exemplary architecture that can be used for implementing
embodiments of the invention; and

[0021] Fig. 27 illustrates an exemplary system for implementing a distributed

embodiment of the invention.

DETAILED DESCRIPTION

[0022] Conventional approaches for designing multiple input multiple output (MIMO)
controller can include a technique referred to as Hoo synthesis.

CONVENTIONAL Hoo SYNTHESIS TECHNIQUE
[0023] Fig. 1 illustrates a configuration representing application of a standard Hoo
synthesis technique. Fig. 1 can include plant H(s) 110 and controller C(s) 120. In Fig. 1,
standard Hoo synthesis computes a controller C(s) 120 that minimizes the closed-loop peak
gain from input w 130 to output z 140. The controller C(s) 120 may represent a lumped Hoo
controller which may operate as a black box (e.g., a user may not have ready access to
internal representations within the black box). H(s) 110 may represent a plant which can be
controlled using controller C(s) 120. Plant H(s) 110 can be a linear plant model.
[0024] Conventional Heo synthesis may be used to minimize the peak input/output gain of
the closed-loop response (the so-called Hoo norm) for system 100. A user may have a design
specification for a control problem that specifies aspects, or goals, of a design, such as
bandwidth, roll-off, overshoot, and/or stability margins for the controlled plant H(s). An Heo
synthesis based framework may be applicable to helping users achieve specifications;
however, few users (such as engineers) are comfortable or proficient at using conventional
Hoo techniques. For example, users may find it tedious, non-intuitive, and/or time-consuming

to convert ordinary specifications with which the user is familiar into a normalized closed-
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loop gain constraint required by conventional Hoo synthesis techniques. In addition, the
technical restrictions of the conventional Heo synthesis tools and techniques may further
hinder and/or confuse typical users.
[0025] Conventional Hoo synthesis techniques may further be undesirable to users
because they do not support typical design workflows of the users. In addition, conventional
Hoo synthesis techniques treat controller C(s) 120 as a black box that does not allow the user
easy access to internal representations of the system structure that controller C(s) 120
represents. Further, conventional Hoo synthesis techniques couple separate input connections
and insert a control block between those connections when generating C(s) 120 for a given
system. This approach results in a structure for C(s) 120 that does not represent a system
structure from which C(s) 120 was derived, which further exacerbates difficulties that typical
users can face when working with conventional Heo synthesis techniques.
[0026] For example, users may desire design tools that provide substantially real-time
operation (i.e., the tools allow the user to interactively design, modify, and run aspects of a
design with out encountering processing delays that unduly annoy the user or that adversely
interfere with the user’s interactions with the design tool). Conventional Hoo synthesis
techniques may not support interactive operation for a number of reasons. For example,
conventional techniques may attempt to compute an optimal controller by repeatedly solving
a pair of Riccati equations when no particular structure or order constraint is imposed on the
controller C(s) 120. These repeated attempts to solve the pair of equations can be time
consuming and computationally expensive, which tends to make conventional Hoo synthesis
techniques undesirable particularly for interactive design applications.

OVERVIEW OF EXEMPLARY TECHNIQUES AND EMBODIMENTS
[0027] Exemplary embodiments provide a novel technique that allows users to use

intuitive user interfaces to formulate and solve multivariable feedback control problems. For
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example, exemplary embodiments allow users to work with control problems having a
plurality of control elements distributed over one or more feedback loops that need to be
jointly tuned to optimize the overall performance and robustness of a control system.
Exemplary embodiments are scalable and can be applied to control problems having
substantially any number of feedback loops and/or of any degree of complexity.

[0028] Exemplary embodiments can make use of a system representation that is similar to
Fig. 1 but that allows a user to treat controller C(s) as a white box instead of a black box. For
example, exemplary embodiments allow controller C(s) to have a block diagonal structure
where each block itself has some fixed structure and complexity. The additional complexity
of C(s) allows users to represent controller C(s) in a way that is consistent with a control
architecture of a system being analyzed. Exemplary embodiments can use non-smooth Heo
optimizers to automatically tune arbitrary MIMO control structures. Exemplary techniques
specialize the solvers to the canonical structure of an Hoo synthesis representation where C(s)
includes a block diagonal structure.

[0029] Exemplary embodiments and techniques remove obstacles presented by
conventional techniques when attempting to perform MIMO tuning tasks. For example,
exemplary embodiments and techniques automate the translation of the control architecture
and controller structure into a cost function and parameter vector suitable for the optimizer.
Exemplary embodiments and techniques further allow gradients to be computed
inexpensively (o(N) per iteration where N is the number of parameters), and further allow
gradients to be computed in an object-oriented fashion where each tunable block type (gain
PID, transfer function, state-space, raw parameter, etc.) provides its own contribution to the
gradient. Exemplary embodiments make use of gradients without requiring that a user
compute block-wise gradients and combine them together to get the overall gradient of the

cost function as done in conventional approaches. The conventional approaches can further
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be manually intractable except for simple architectures and can be orders of magnitude less
efficient that techniques employed in aspects of the invention.
[0030] The exemplary techniques of the invention ,when embodied in computational
hardware allow users to perform MIMO tuning tasks interactively. For example, exemplary
embodiments allow users to experience typical tuning times ranging from less than a second
to under 30 seconds using a standard personal computer (PC) and a technical computing
environment, such as the MATLAB technical computing and programming environment.
Embodiments can be deployed in multi-core or other types of multi-processing devices or
environments to reduce processing times.
[0031] Embodiments described herein will be discussed in connection with linear control
systems for ease of presentation; however, embodiments of the invention can be used to solve
nonlinear control problems. For example, exemplary techniques can support approaches to
nonlinear control design, including but not limited to, gain scheduling.

EXEMPLARY SYSTEM
[0032] Fig. 2 illustrates an exemplary system 200 for practicing an embodiment. System
200 may be used to construct a model that includes one or more entities, to design and
implement a PID controller for the model, and/or to generate code from the model, e.g., to
generate code for the controller. System 200 may include computer 205, acquisition logic
210, operating system 215, modeling environment 220, model 230, input device 240, display
device 250, model representation 260, and plant 270. The system in Fig. 2 is illustrative and
other embodiments of system 200 can include fewer devices, more devices, and/or devices in
configurations that differ from the configuration of Fig. 2.
[0033] Computer 205 may include a device that performs processing operations, display
operations, communication operations, etc. For example, computer 205 may include logic,

such as one or more processing or storage devices, that can be used to perform and/or support
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processing activities on behalf of a user. Embodiments of computer 205 may include a
desktop computer, a laptop computer, a client, a server, a mainframe, a personal digital
assistant (PDA), a web-enabled cellular telephone, a smart phone, smart sensor/actuator, or
another computation or communication device that executes instructions to perform one or
more activities and/or to generate one or more results.

[0034] Computer 205 may further perform communication operations by sending data to
or receiving data from another device (not shown in Fig. 2). Data may refer to any type of
machine-readable information having substantially any format that may be adapted for use in
one or more networks and/or with one or more devices. Data may include digital information
or analog information. Data may further be packetized and/or non-packetized.

[0035] Acquisition logic 210 may acquire data from devices external to computer 205
and may make the data available to computer 205. For example, acquisition logic 210 may
include analog-to-digital converters, digital-to-analog converters, filters, multiplexers, etc.,
which are used to make data available to computer 205. Computer 205 may use acquired
data to perform modeling operations, controller design activities, etc.

[0036] Operating system 215 may manage hardware and/or software resources associated
with computer 205. For example, operating system 215 may manage tasks associated with
receiving user inputs, operating computing environment 205, allocating memory, prioritizing
system requests, etc. In an embodiment, operating system 215 may be a virtual operating
system. Embodiments of operating system 215 may include Linux, Mac OS, Microsoft
Windows, Solaris, UNIX, etc. Operating system 215 may further run on a virtual machine,
which can be provided by computer 205.

[0037] Modeling environment 220 may provide a computing environment that allows
users to perform simulation or modeling tasks related to disciplines, such as, but not limited

to, mathematics, science, engineering, medicine, business, etc. Modeling environment 220
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may support one or more applications that execute instructions to allow a user to construct a
model having executable semantics. For example, in an embodiment, modeling environment
220 may allow users to create free-form models (e.g., first, second, third, fourth, fifth, etc.,
order models) having executable semantics. Modeling environment 220 may further support
time-based, event-based, etc., modeling activities.

[0038] Model 230 may include information for executable textual or graphical models.
For example, model 240 may include information for textual models or a graphical models
that can be time-based models, event-based models, state transition models, data flow
models, component diagrams, entity flow diagrams, equation based language diagrams, etc.
Graphical embodiments of model 230 may include entities (e.g., blocks, icons, etc.) that
represent executable code for performing operations. Code for the entities may be executed
to perform a simulation using the model. Entities may be connected together using lines that
represent pathways for transferring data from one entity to another in the model.

[0039] Input device 240 may receive user inputs. For example, input device 240 may
transform a user motion or action into a signal or message that can be interpreted by
computer 205. Input device 240 can include, but is not limited to, keyboards, pointing
devices, biometric devices, accelerometers, microphones, cameras, haptic devices, etc.
[0040] Display device 250 may display information to a user. Display device 250 may
include a cathode ray tube (CRT), plasma display device, light emitting diode (LED) display
device, liquid crystal display (LCD) device, etc. Embodiments of display device 250 may be
configured to receive user inputs (e.g., via a touch sensitive screen) if desired. In an
embodiment, display device 250 can display one or more graphical user interfaces (GUIs) to
a user. The GUIs may include model 240 and/or other types of information.

[0041] Model representation 260 may include a visual representation of model 230 and/or

a visual representation provided by model 230, e.g., a plot window. For example, model



WO 2012/050970 PCT/US2011/053974

representation 260 may be displayed to a user and may include a number of entities
connected by lines. When model 230 is executed, model representation 260 may change to
show, for example, the flow of data through the model.

[0042] Plant 270 may include one or more devices that provide data to computer 205.
For example, plant 270 may include an engine system that is monitored using sensors, such
as accelerometers, thermocouples, opto-electric transceivers, strain gauges, etc. In an
embodiment, acquisition logic 210 may receive signals from plant 270 in analog or digital

form and may transform the signals into a form suitable for use in computer 205.

EXEMPLARY MODELING ENVIRONMENT
[0043] Fig. 3 illustrates an exemplary embodiment of a modeling environment 220.
Modeling environment 220 can include simulation tool 310, entity library 320, interface logic
330, compiler 340, controller logic 350, optimizer 360, simulation engine 370, report engine
380, and code generator 390. The embodiment of modeling environment 220 illustrated in
Fig. 3 is illustrative and other embodiments of modeling environment 220 can include more
entities or fewer entities without departing from the spirit of the invention.
[0044] Simulation tool 310 may be an application for building a model. Simulation tool
310 can be used to build a textual model or a graphical model having executable semantics.
In the case of graphical models, simulation tool 310 may allow users to create, modify,
diagnose, delete, etc., model entities and/or connections. Simulation tool 310 may interact
with other entities illustrated in Fig. 2 or 3 for receiving user inputs, executing a model,
displaying results, generating code, etc. Simulation tool 310 may provide a user with an
editing window for constructing or interacting with textual models and/or a GUI for creating

or interacting with graphical models.
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[0045] Entity library 320 may include code modules or entities (e.g., blocks/icons) that a
user can drag and drop into a display window that includes model representation 360. In the
case of graphical models, a user may further couple entities using connections to produce a
graphical model of a system, such as plant 370.

[0046] Interface logic 330 may allow modeling environment 220 to send or receive data
and/or information to/from devices (e.g., plant 270, a target environment, etc.) or software
modules (e.g., a function, an application program interface, etc.). In an embodiment,
interface logic 330 may interface acquisition logic 310 with modeling environment 220.
[0047] Compiler 340 may compile a model into an executable format. Compiled code
produced by compiler 340 may be executed on computer 205 to produce a modeling result.
In an embodiment, compiler 340 may also provide debugging capabilities for diagnosing
errors associated with the model.

[0048] Controller logic 350 may be used to create and implement controllers in model
330. For example, controller logic 350 may provide functionality for entities that represent
types of controllers in model representation 260. When a model executes, controller logic
350 may perform control operations on the model by interacting with entities in model
representation 260. In an embodiment, controller logic 350 may include control algorithms
that implement controllers in model representation 360. Embodiments of controller logic 350
may be configured to operate in standalone or distributed implementations.

[0049] Optimizer 360 may optimize code, parameters, performance (e.g., execution
speed), etc., for a model. For example, optimizer 360 may optimize code to cause the code to
occupy less memory, to cause the code to execute more efficiently, to cause the code to
execute faster, etc., than the code would execute if the code were not optimized. Optimizer
360 may also perform optimizations for controller logic 350, e.g., to optimize parameters for

a controller. In an embodiment, optimizer 360 may operate with or may be integrated into
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compiler 340, controller logic 350, code generator 390, etc. Embodiments of optimizer 360
may be implemented via software objects that interact with other object oriented software,
e.g., for receiving data on which optimizer 360 operates.

[0050] Simulation engine 370 may perform operations for executing a model to simulate
a system. Simulation engine 370 may be configured to perform standalone or remote
simulations based on user preferences or system preferences.

[0051] Report engine 380 may produce a report based on information in modeling
environment 220. For example, report engine 380 may produce a report indicating whether a
controller satisfies design specifications, a report indicating whether a controller operates in a
stable manner, a report indicating whether a model compiles properly, etc. Embodiments of
report engine 380 can produce reports in an electronic format for display on display device
250, in a hardcopy format, and/or a format adapted for storage in a storage device.

[0052] Code generator 390 can generate code from a model. In an embodiment, code
generator 390 may receive code in a first format and may transform the code from the first
format into a second format. In an embodiment, code generator 390 can generate source
code, assembly language code, binary code, interface information, configuration information,
performance information, task information, etc., from at least a portion of a model. For
example, code generator 390 can generate C, C++, SystemC, Java, Structured Text, etc., code
from the model.

[0053] Embodiments of code generator 390 can further generate Unified Modeling
Language (UML) based representations and/or extensions from some or all of a graphical
model (e.g., System Modeling Language (SysML), Extensible Markup Language (XML),
Modeling and Analysis of Real Time and Embedded Systems (MARTE), Hardware
Description Language (HDL), Automotive Open System Architecture (AUTOSAR), etc.). In

an embodiment, optimizer 370 can interact with code generator 390 to generate code that is

11
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optimized according to a parameter (e.g., memory use, execution speed, multi-processing,
etc.). Embodiments of modeling environments consistent with principles of the invention can

further include components such as verification components, validation components, etc.

[0054] Embodiments of the invention may be used to interactively formulate and solve
multivariable feedback control problems and to design controllers for use in non-linear
models of substantially any order and/or delay. Embodiments can be configured to use exact
linearization techniques to produce linear time invariant models that can represent at least a
portion of a non-linear model.

EXEMPLARY CONTROL ARCHITECTURES

[0055] By way of example, embodiments of the invention can be applied to control
architectures having a plurality of components that can include, among other things,
controller blocks, arranged in substantially any order and having one or more feedback loops.
[0056] Fig. 4 illustrates an exemplary control architecture to which embodiments of the
invention can be applied, namely an autopilot used in an F-14 in a high angle of attack mode.
The autopilot may be displayed in GUI 400 and may contain § tunable parameters that
include gains and time constants.

[0057] Fig. 5 illustrates an exemplary architecture for a controller used in a distillation
column. The controller of Fig. 5 can be displayed to a user via GUI 500 and can include four
proportional integral (PI) gains and a 2x2 gain matrix that require tuning.

[0058] Fig. 6 illustrates an exemplary architecture for a pitch and yaw control for a wind
turbine. The architecture of Fig. 6 can be displayed to a user via GUI 600 and can include
three PI controllers and two gains that require tuning. As illustrated in Fig. 6, GUIs used with
embodiments of the invention can include a plurality of interfaces, such as windows, panes,

etc.

12
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[0059] Exemplary embodiments of the invention can be used with still other types of
architectures and with architectures that are more complex or less complex than the
architectures illustrated in Figs. 4-6 and elsewhere in the instant application.
[0060] Exemplary embodiments and/or techniques disclosed herein allow for efficient
tuning of arbitrary control structures by allowing the structures to be reduced to a single
generic representation.

EXEMPLARY CANONICAL STRUCTURE
[0061] Fig. 7 illustrates an exemplary canonical structure that can be used to represent
transformed arbitrary control structures.
[0062] Referring to Fig. 7, System 700 can be displayed to a user via an interface and can
include H(s) 710 that can be a linear model that combines fixed components of a control
system into a single lumped model. In an embodiment of the invention, H(s) 710 may
represent all fixed control components of a system. System 700 may further include
controller 720 that can include elements to be tuned. For example, in an exemplary
embodiment, controller 720 can be a structured controller that includes one or more blocks,
B 730 to By 740, that represent control elements to be tuned. By way of example, when
controller 720 includes a single block the block is referred to as Bj, and a controller 720
having three blocks will include blocks, B, B; and B;. Control elements to be tuned can vary
in design. For example, elements to be tuned can include gains, dynamic elements (e.g.,
transfer functions, state-space models, etc.) and/or design parameters in the plant or
controller.
[0063] Exemplary embodiments of controller 720 may include a block-diagonal
aggregate of blocks B; to By and may be referred to as a structured controller 720. Structured
controllers 720 can include blocks that are repeated (i.e., a particular block, such as B,, may

appear multiple times along the diagonal).

13
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[0064] System 700 may be represented using corresponding equations in the frequency

domain, such as:

HRCTH

Bi(s) - 0 (Eq. 1)

u = y

6 B N:(S)
[0065] In Eq. 1, H(s) and the tuned blocks (B, to By) interact in a feedback fashion
through the signals u# and y. The canonical structure of Eq. 1has three properties:
() signal-flow diagrams where By, ..., By appear as blocks can be transformed to
this canonical structure by separating the blocks By, ..., By from the rest of the

diagram and appending their inputs and outputs to create the block-diagonal structure

B, - 0

0 - By

C(s) = (Eq. 2)

2) transfer function or state-space models whose coefficients are rational
functions of some parameters py, ..., pycan be transformed to this canonical form

where the blocks By, ..., By are of the form

Bj=1|: ™~ (Eq. 3)
3) this canonical representation is closed under series, parallel, and feedback

interconnection, meaning that any interconnection of such canonical structures yields

another canonical structure with a bigger block list.

[0066] The above properties, (1) —(3), ensure that any method for tuning the canonical

structure of Fig. 7 consistent with principles of the invention is applicable to virtually any

control structure with linear control elements of any order and structure.

14
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EXEMPLARY TECHNIQUE FOR PARAMETERIZING TUNABLE BLOCKS
[0067] Exemplary embodiments can be configured to parameterize tunable elements in a
system to formulate a tuning task as an optimization problem. For example, in an
embodiment, all tunable elements in a system may be parameterized. Table 1 summarizes the
parameterization of some common control elements, such as a proportional integral

derivative (PID) block, a fixed-order transfer function block, and a fixed-order state-space

block.
Tunable control element Parameterization
Gain block Every entry of the gain matrix is a
parameter
PID block Kp, Ki, Kd, and Tf are the
K; Kys parameters
B =K, +—+
(s) P's  14Tgs
Fixed-order transfer function block The numerator and denominator
B(s) b,s™+ -+ b, coefficients are the parameters
S) =
s"+a,_s" 14+ +ag
Fixed-order state-space block The entries of the A,B,C,D
B(s) {x = Ax + Bu matrices are the parameters. By
y=Cx + Du default we restrict A to be tri-
diagonal, which is fully general
and reduces the number of
parameters needed.
Table 1. Parameterization of selected control elements
[0068] Exemplary embodiments can further be configured to provide and/or use

software-based tools to allow users to create custom parameterizations of control elements by
writing expressions involving basic parameters. For example, an exemplary software tool
used in an embodiment of the invention can allow a user to create tunable blocks with
additional structures, such as, but not limited to:

A low-pass filter a/(s + a) parameterized by the real value a

A state-space controller in observer form:

{5c=Ax+Bu+L(y—Cx—Dy)

Eq. 4
u= —Kx (Eq. 4)

15



WO 2012/050970 PCT/US2011/053974

In Eq. 4, the parameters are the gain matrices K and L.

EXEMPLARY TECHNIQUE FOR MULTIOBJECTIVE SUPPORT
[0069] By way of example, two Heo constraints may be provided, namely

1Tl <1, Tl <1

involving two separate closed-loop transfer functions

{Tl = F(H,,C) (Eq. 5)

T, = F(H,,C)
where F(.,.) denotes the linear fractional transformation (LFT) interconnection depicted in

Fig. 7 and

B, - 0

0 - By

C(s) = (Eq. 2)

represents the structured compensator to be tuned.

[0070] The two Hoo constraints ( ||T;|l. < 1, ||T;|| < 1) can be combined into the
single Hoo constraint

Tl <1

on the aggregate transfer function
., 01 o
T(s)=F [ ! ] Eq. 6
©=Fg r|ly P Ea0

[0071] Even when C(s) is a full-order multiple input multiple output (MIMO) controller,

conventional Hoo synthesis techniques cannot solve the resulting problem because of the

c 0

0 C] block-diagonal structure of the resulting controller.
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[0072] In contrast, exemplary embodiments of the invention support [g 2] block-

diagonal structure as well as block repetition. Therefore, exemplary embodiments of the
invention can be used for solving problems on which conventional Heo synthesis techniques
fail, such as the multi-objective problem:

Tune C(s) so that ||T;|l, < 1 and || T,||l, < 1
or equivalently,
Tune C(s) so that ||T||, < 1

is no different than solving a single-objective problem. From a practical standpoint,
exemplary embodiments allow users to independently constrain each loop transfer function
so that the user does not have to come up with a single MIMO constraint that captures all
requirements. This is a desirable feature to many users because coming up with a single
MIMO constraint capturing all requirements is typically a challenging task for users because

of cross-terms interfering with the way users set up problems.

EXEMPLARY TECHNIQUE FOR AUTOMATICALLY FORUMLATING LOOP
SHAPING REQUIREMENTS
[0073] Loop Shaping is a popular frequency-domain technique for tuning feedback
control systems. By way of example, for a single input single output (SISO) feedback loop,
the loop shaping procedure can consist of:

1. Expressing the design requirements in terms of desired gain profile for the open-
loop response L(s) (gain as a function of frequency). For example, the gain
should be high (>1) at low frequency for good tracking and disturbance rejection,
and the gain should be low (<1) at high frequency for insensitivity to noise and
modeling errors. The transition frequency (gain=1) is called the crossover

frequency w, and directly influences the speed of response of the control system.
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2. Adjusting the tunable parameters of the compensator to approach the desired loop
shape while maintaining closed-loop stability and adequate stability margins

[0074] For multi-loop control systems, this procedure can be applied to the MIMO open-
loop response with some adjustments as discussed below.
[0075] Step (1), immediately above, is usually well-understood by control engineers
familiar with frequency-domain techniques. For example, a desired loop shape for a
feedback loop with integral action may be represented by plot 800 illustrated in Fig. 8. In an
embodiment, plot 800 may be displayed to a user via a GUI using display device 250.
[0076] Referring to Fig. 8, the 0dB crossover frequency is
w, = 10 (o is at callout 805 in Fig. 8), which corresponds to a response time of about 1/10
=0.1 second. In Fig. §, the response time may refer to how fast the feedback loop reacts to
changes. Increasing or decreasing w.can speed up or slow down, respectively, the response.
The loop shape in Fig. 8 has high gain for w<10 (region 810) and low gain for w>10 (region
820).
[0077] Exemplary embodiments and techniques are suited for adjusting tunable
parameters of compensators in a system to arrive at or near a desired loop shape. Techniques
used with embodiments of the invention may benefit from formulating the loop shaping goal
(i.e., shaping the open-loop gain to match a specified profile) into some Hoo norm constraint.
There are several known techniques for formulating the loop shaping goal in an Heo norm
constraint; however, such a translation often stymies engineers not trained in robust control
theory and Hoo synthesis. Exemplary embodiments employ a technique that simplifies the
reformulation step so as to remove difficulties faced by engineers (e.g., users) when
employing conventional approaches. For example, embodiments may automate the

reformulation step to remove configuration and/or computing burdens from the user.
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[0078] Fig. 9 illustrates a system 900 that can be used for implementing aspects of the
invention. System 900 can include a SISO and MIMO feedback loop along with input signal
r, output signal y, controller C(s) 910, and plant G(s) 920. System 900 further includes
signals u and n. In Fig. 9, C(s) 910 may include one or more tunable blocks and signals u and
y may be assumed to include the same number of entries (i.e., the same number of controls
and measurements).

[0079] In Fig. 9, the open-loop transfer function can be represented as:

L=GC (Eq.7)

and the closed-loop transfer functions are:

A | A R
with the notation:

S=U+L)"LT=LS (Eq9

[0080] Given a target loop shape p(s) and a disturbance rejection factor f3, consider

X —10T—TGS(1)19 8 Eq. 10
=0 A 7% sl(0 e 0|10

[0081] It can be verified that the Heo constraint

X1l <1

ensures that:

ISGe) | < min (1,~=)
ITG@)ll < min (1,p(@))  (Eq. 1)
I6S )l < B min (1,=)

[0082] Because
e S~ 1/LandT = 1 where the loop gain ||L(jw)|| is greater than 1
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¢ T =L and S = 1 where the loop gain is smaller than 1

this is equivalent to:

LGl > p(w) where ILGw)l > 1
LGl < p(w) where IL(o)]l < 1

ISGa)Il <1 (Eq. 12)
ITGu)ll <1

165 Gw) | < f min (1, =)
[0083] The first two constraints of Eq. 12 enforce a desired loop shape by making the
loop gain large enough or small enough away from the crossover frequency. For example, an
implementation may include desired values for the loop gain, such as an upper value and a
lower value away from the crossover frequency. The third and fourth constraints of Eq. 12
may operate to keep the gain of S and T close to 1 near crossover, which is important to
ensure adequate overshoot and stability margins. Finally, the last constraint of Fig. 12 lets
users improve disturbance rejection properties by decreasing f5.
[0084] Summarizing the above discussion with respect to Fig. 9, it has been illustrated
that the Hoo constraint

X1l <1

impresses the desired loop shape, provides adequate margins, and optimizes disturbance
rejection through f. This provides a systematic way to translate loop shaping objectives into
an Hoo constraint suitable for use with exemplary techniques of the invention. For example,
exemplary embodiments and techniques allow for the creation of software tools that can
operate using only the following basic information from users, such as:

¢ The target loop shape p(s) (in an embodiment, only the gain may matter)

¢ The tunable blocks
e The location of the signals r, d, y in the block diagram of the closed-loop system

[0085] From this information, software tools implementing aspects of the invention can

automatically extract G and C, construct X(s), and tune the block parameters using structured
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Hoo synthesis techniques consistent with aspects of the invention. These software tools and
techniques can further eliminate the need for a target loop shape p(s) by automatically
generating an adequate loop shape from the desired crossover frequency w, and by
determining whether integral action is needed.
[0086] Software implemented aspects of the invention can also apply to MIMO problems.
For example, exemplary techniques can be applied to the control of a robot arm with four
separate feedback loops, each controlling a particular joint. In the MIMO case, a refinement
can consist of using a loop shape that may differ from the loop shape used with SISO
problems.
[0087] Fig. 10 illustrates a loop shape that can be used to address MIMO problems in
accordance with aspects of the invention. In Fig. 10, trace 1010 includes a flattened portion
1015 having on the order of OdB gain. Flattened portion 1015 allows for a range of crossover
frequencies. Allowing a range of crossover frequencies can help account for the fact that in
coupled multi-loop control systems, it may not be possible for all loops to cross 0dB at the
same frequency.

EXEMPLARY SOFTWARE-BASED TOOLS FOR IMPLEMENTING ASPECTS OF

THE INVENTION

[0088] Exemplary embodiments of the invention can be implemented in software for
practicing techniques described herein. Software implemented embodiments of the invention
provide users with interfaces, such as graphical user interfaces (GUIs) that allow users to
enter information in formats and using terminologies readily understood by typical users.
Software implemented embodiments further employ algorithms and processing techniques
that support rapid design and/or analysis of control systems. In fact, embodiments of the

invention can be configured to support interactive control design and analysis applications
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that allow users to utilize workflows that encourage efficient design and analysis of control
systems.

[0089] For example, when exemplary embodiments employ one or more software tools
for implementing techniques described herein, software tools can provide users with services
such as, but not limited to:

1. Specifying the structure of control elements and automatically generating a

parameterization of the elements;

2. Creating custom elements and parameterizations;

3. Mapping a given control architecture to a corresponding canonical structure of Fig. 7;

4. Translating simple design requirements into Hoo constraints;

5. Automatically tuning control elements by solving the underlying structured Heo
synthesis problem;

6. Presenting results in terms of an original control element; and

7. Facilitating validation of the design through tight integration with the ordinary linear
analysis tools.

[0090] For clarity of presentation, exemplary embodiments and techniques are described
in connection with the MATLAB programming language and/or MATLAB language
compatible toolboxes, such as MathWorks’ control system toolbox. Embodiments of the
inventions and/or techniques associated with the embodiments can be implemented in other
programming environments, using other software packages and/or applications, etc., without
departing from the spirit of the invention. For example, embodiments and/or techniques can
be implemented using applications including, but not limited to, MATLAB-compatible
products/languages, Octave; Python; Comsol Script; MATRIXx from National Instruments;
Mathematica from Wolfram Research, Inc.; Mathcad from Mathsoft Engineering &
Education Inc.; Maple from Maplesoft; Extend from Imagine That Inc.; Scilab from The
French Institution for Research in Computer Science and Control (INRIA); Virtuoso from

Cadence; Modelica or Dymola from Dynasim; C/C++ libraries; etc.
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[0091] In some embodiments, the environment for implementing techniques of the
invention may include hardware or hardware/software based logic that provides a computing
environment that allows users to perform tasks related to disciplines, such as, but not limited
to, mathematics, science, engineering, medicine, business, etc., more efficiently than if the
tasks were performed in another type of computing environment, such as an environment that
required the user to develop code in a conventional programming language, such as C++, C,

Fortran, Pascal, etc.

[0092] In one implementation, the environment can include a dynamically typed
language that can be used to express problems and/or solutions in mathematical notations
familiar to those of skill in the relevant arts. For example, the environment may use an array
as a basic element, where the array may not require dimensioning. These arrays may be used
to support array programming in that operations can apply to an entire set of values, such as
values in an array. Array programming may allow array based operations to be treated as a
high-level programming technique or model that lets a programmer think and operate on
whole aggregations of data without having to resort to explicit loops of individual non-array,

i.e., scalar operations.

[0093] The environment may further be adapted to perform matrix and/or vector
formulations that can be used for data analysis, data visualization, application development,
simulation, modeling, algorithm development, etc. These matrix and/or vector formulations
may be used in many areas, such as statistics, finance, image processing, signal processing,
control design, life sciences, education, discrete event analysis and/or design, state based

analysis and/or design, etc.

[0094] When desired, embodiments and techniques consistent with aspects of the

invention may be implemented in a graphically-based environment using products such as,
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but not limited to, the Simulink® modeling environment, the Stateflow® environment, the
SimEvents™ environment, etc., by The MathWorks, Inc.; Simulink/Stateflow/SimEvents-
compatible products; VisSim by Visual Solutions; LabView® by National Instruments;
Dymola by Dynasim; SoftWIRE by Measurement Computing; WiT by DALSA Coreco; VEE
Pro or SystemVue by Agilent; Vision Program Manager from PPT Vision; Khoros from
Khoral Research; Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from Cadence;
Rational Rose from IBM; Rhopsody or Tau from Telelogic; Ptolemy from the University of
California at Berkeley; or aspects of a Unified Modeling Language (UML) or SysML

environment.

EXEMPLARY TECHNIQUES FOR SPECIFYING TUNABLE BLOCKS

[0095] Embodiments of the invention may allow a user to specify tunable blocks in a
system, where tunable blocks are components of the control system that must be tuned for
optimal performance and robustness. For example, tunable components of the control system
can correspond to the blocks By, ..., Byin the canonical structure of Fig. 7 in an embodiment
of the invention.

[0096] Exemplary embodiments may use objects for controlling elements such as gains,
PIDs, transfer functions, and state-space models. The objects may further be used to account
for tunable parameters and to allow users to initialize, set (e.g., fix), or free parameters.
[0097] By way of example, a user may interact with an interface, such as a textual user
interface, for creating a tunable gain having two inputs and one output. Modeling
environment 220 may generate interface 1100. For example, interface 1100 may be a textual
editing window displayed to a user via display device 250. Referring to Fig. 11, in an

exemplary embodiment, the user may enter command 1105 at a prompt (e.g., >>).
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[0098] In response to command 1105, modeling environment 220 may return an object G
1110 that can be displayed to the user via interface 1100. In an embodiment, modeling
environment 220 may be configured to display object G 1110 in a format that is similar to a
format used to display other types of objects compatible with modeling environment 220.
For example, object G 1110 may be similar to ordinary linear time invariant (LTI) objects in
a control system toolbox, except for the “Gain” property which may include a description of
the tunable parameters rather than a numeric value. For example, and referring to Fig. 12, a
user may enter command 1205 and modeling environment 220 may return answer 1210 that
can include values for G.Gain.

[0099] Still referring to Fig. 12, answer 1210 may include default values for G.Gain. In
an exemplary embodiment, default values may be current values that are used with modeling
environment 220 until a user changes one or more values from the default value to another
value. For example, a default/current “value” of gain is [0 0] in answer 1210. A user may be
able to set the first entry of the gain matrix to 1 by entering commands 1215 and 1220. For

example, the user may enter:

>> (G.Gain.Value(1) =1
>> (5.Gain.Free(1) = false

[00100] The user may then enter G.Gain and modeling environment 220 may return output
1225. In Fig. 12, output 1225 may display a parameterization of the gain matrix that reflects
this new constraint (i.e., changing *“value” from a default setting to a user specified setting).
[00101] Exemplary embodiments may allow users to create other types of blocks, such as
tunable PID block, transfer function block, or state-space block using commands 1305, 1310,
and 1315, respectively, shown in Fig. 13 within interface 1300.

[00102] Exemplary embodiments can provide users with pre-defined blocks that may

address typical, or mainstream, needs. For some users, pre-defined blocks may be adequate
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to satisfy their needs. However, other users may have different needs, such as a need for
more sophisticated and/or robust control elements, such as blocks having more structure as
compared to structure in pre-defined blocks.

[00103] Exemplary embodiments can be adapted to support the needs of users requiring
blocks that differ from pre-defined blocks, such as low-pass filter blocks, notch filter blocks,
state-space models in observer form, etc. For example, embodiments can be configured to
provide a suite of blocks that differ from pre-defined blocks; however, the suites may need to
include a large number of blocks to satisfy the needs of certain users. In an embodiment of
the invention, a framework is provided to users that allows the users to construct their own
parameterization using simple algebra. This framework eliminates the need to maintain a
large suite of blocks that attempts to cover all the needs of users.

[00104] In an embodiment, the framework may include:

1. A “parameter” object that embodies the basic notion of parameter; and
2. A computer algebra that automatically transforms ordinary operations on parameters

into the canonical structure of Fig. 7.

[00105] By way of example, consider the low-pass filter:

a/s

Flo) = sta 1+a/s

(Eq.13)

where a is areal parameter. Eq. 13 is a first-order transfer function; however, the transfer-
function block introduced above (Fig. 13, command 1310) cannot express the constraint that
the same coefficient a appears in both numerator and denominator (in other words, that the
DC gain is constrained to 1). In an exemplary embodiment, a user can specify this control
element by entering commands 1320 (Fig. 13), such as:

>> s = tf('s");

>>a =realp('a’,2);
>> F = feedback(a/s,1)

26



WO 2012/050970 PCT/US2011/053974

[00106] Commands 1320 are processed by modeling environment 220, and a @ genss
object “F” is returned, where the returned object embodies the canonical structure of Fig. 7
with “a” as sole block. A user may type command 1325 into interface 1300 and modeling

environment 220 may return answer 1330, such as:

ans =
a: [1x1 realp]

[00107] Embodiments of the invention can use a syntax for creating F that is the same as if
“a” were just an ordinary double value. This feature eliminates the need for users having to
learn a new API for interacting with parameters. By way of example, the syntax for
manipulating ordinary LTI objects in the control system toolbox is seamlessly extended to
handle parameters and parametric models. Embodiments of the invention can also support
alternative syntaxes for interacting with parameters when desired. For example, an

alternative syntax for specifying the parametric low-pass filter F(s) can be expressed via

commands 1335 (Fig. 13), such as:

>>a =realp('a’,2);
>>F =tf(a,[1 a])

[00108] The alternative syntax of commands 1335 is also similar (i.e., parallels) the
syntax for creating an ordinary transfer function in Control System Toolbox, which is

expressed via commands 1340, such as:

>>a=2;
>>F =tf(a,[1 a])

[00109] Entering commands 1335 or 1340 may return answer 1345, which display the

resulting transfer function via interface 1300.
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[00110] Embodiments of the invention can be used to solve control problems of a more
complex nature as compared to the example above. By way of example, a state-space

controller in observer form can be provided as:

{a'c:Ax+Bu+L(y—Cx—Dy) (Eq. 14)

u= —Kx

[00111] 1InEq. 14, A, B, C, D are known matrices and the tunable variables are the gain
matrices K (state-feedback gain) and L (observer gain). This structured state-space
parameterization of controllers is useful, e.g., for gain scheduling. For illustration purposes,
when using an embodiment of the invention, it can be assumed there are two measurements
y, one control signal u, and three states x. A user may create this tunable block by typing

command 1410 (Fig. 14), such as:

>> K =realp('K',zeros(1,3));

>> L. =realp('L',zeros(3,2));

>> OBC = ss(A-B*K-L*C+L*D*K,L,-K,0)

[00112] The user may then type command 1420, such as:
>> OBC.Blocks

[00113] Modeling environment 220 may process the command and may display answer

1430 via interface 1400, such as:

ans =

K: [1x3 realp]
L: [3x2 realp]

[00114] As with the example discussed in connection with Fig. 13, the example discussed
in connection with Fig. 14 employs a syntax similar (i.e., that substantially mirrors) the
syntax for creating ordinary state-space models in modeling environment 220. In an
embodiment, the result of entering the commands of Fig. 14 is a @ genss model encapsulating

the canonical structure of Fig. 7, having the structure compensator:
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C(s) = (Eq. 15)

cCoo oo X
coooXRO
OCoCcCOoOXROCO
oo~ OO
o~oc o000
~No o000

[00115] Referring back to Fig. 7, there are two pieces to the canonical structure of Fig. 7,
namely (1) the interconnection model H(s), and (2) the tunable blocks By, ..., By. Figs. 8- 14
and the accompanying text have discussed tools and techniques for specifying the tunable
blocks (item (2) in the preceding sentence). Tools and techniques for building the
interconnection model H(s) are discussed below.

EXEMPLARY TECHNIQUE FOR DERIVING A CANONICAL STRUCTURE
[00116] Exemplary embodiments and techniques can be used to support two or more
approaches. For example, embodiments and techniques can support (1) automatically
extracting H(s) using tools that exist within a modeling environment (e.g., a graphical
modeling environment such as the Simulink modeling environment, a Simulink-compatible
environment, etc.). For example, H(s) can be automatically extracted using existing
linearization tools in the Simulink modeling environment. And, (2) H(s) can automatically
be built using standard commands associated with a textual computing and/or modeling
environment (e.g., the MATLAB programming environment, a MATLAB-compatible
environment, etc.). For example, H(s) can be built using commands for building block
diagrams by a user interacting with the MATLAB programming environment.

[00117] Exemplary embodiments can be used to specify tunable blocks in graphically-
based environments, such as graphical modeling environments. By way of example, a user
may interact with a Simulink modeling environment to specify tunable blocks for use in

control systems.
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[00118] In the Simulink environment, H(s) may be fully determined by the knowledge of
(1) the blocks By, ..., By to be tuned (Fig. 7), and (2) the external I/O signals w and z (Fig. 7).
When the tunable blocks appear as Simulink blocks in the block diagram, this information is
readily provided as:

1. A list of block paths to each of the blocks By, ..., By; and

2. Linearization input and output points specifying where the signals making up w and z

enter and exit the block diagram.

[00119] Once this information is specified, a command like LINLFT can compute and
return H(s) as an LTI model. The above procedure can be applied to linear and nonlinear
models. When the procedure is applied to nonlinear models, a linearized model of the control
architecture is produced.
[00120] The derivation of H(s) in a textual programming environment, such as the
MATLAB environment, may rely on the computer algebra discussed above for the
specification of tunable blocks (e.g., Figs. 11-14 and accompanying text). Exemplary
embodiments make it possible for users to extend typical operations for combining ordinary
LTI models (e.g., as may be done with MathWorks control system toolbox) to also handle
parameter objects, parametric blocks, and the type of parametric LFT models shown in Fig. 7.
Examples of some typical operations can include, but are not limited to,

¢ Ordinary algebra: plus, minus, multiply, divide, inverse, etc; and

¢ Interconnection operations: input or output concatenation, append, parallel, series,

feedback, Ift, connect, etc.

[00121] Exemplary embodiments make use of an object-oriented framework and the
notions of static and dynamic linear fractional transtform (LFT) models (defined as the LFT
interconnection of a matrix or LTI model with a block-diagonal arrangement of tunable
blocks, as shown in Fig. 7). Exemplary embodiments may create an object system that

allows users to combine double arrays, LTI models, parameters, tunable blocks, and LFT
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models. For example, LFT models are the most general models and can be of three types,
such as @genmat, @genss, and @ genfrd, that correspond to three different numerical
representations of H, such as double array, state-space model, frequency response data model,
respectively. A resulting object system is closed and substantially any combination of LTI
models with tunable (parametric) elements will produce a @genss or @ genfrd model with the
canonical structure of Fig. 7.

[00122] Fig. 15 illustrates an executable graphical model 1500 that can be interacted with
using the object based framework provided by exemplary embodiments of the invention. Fig.
15 may include model 1500 that can include a plurality of executable blocks. Some blocks in
model 1500 may not be tunable, such as scope block 1505 and distillation column (plant)
block 1510 (hereinafter plant block 1510). In contrast, other blocks in model 1500 may be
tunable, such as gain block 1515 and PI controller blocks 1520 and 1525. Embodiments of
modeling environment 220 can be configured to indicate tunable blocks using a first type of
visual identifier (e.g., line width, shading, color, fill pattern, text pattern, etc.) and to indicate
non-tunable blocks using a second type of visual identifier.

[00123]  Still referring to Fig. 15, an LTI model G of plant block 1510 can be provided in
model 1500 and a user may be able to interact with model 1500 to construct an LFT model of
the closed-loop transfer from r to y. For example, the user may enter commands 1605 and

1610 (Fig. 16A), such as:

% Specify tunable blocks

>> DM = ltiblock.gain('Decoupler',eye(2));
>> PI_L = Itiblock.pid('PI_L','pi");

>> PI_V = ltiblock.pid('PI_V','p1");

and
% Derive closed-loop transfer T

>> C = append(PI_L.,PI_V) * DM;
>> T = feedback(G * C, eye(2));
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[00124] Modeling environment 220 may process commands 1605 and 1610 and may
produce a @genss model T. A user may interact with modeling environment 220 and may

decompose model T into its part H and B (as in Fig. 7) by entering command 1615, such as:

>> [H,B] = getLFTModel(T)
[00125] Modeling environment 220 may process command 1615 and may return answer

1620, such as:

x1 x2
x1 -0.01333 0
x2 0 -0.01333

b=
ul u2 u3 u4 uvd ub
x 002000
x2 000200
Cc =
x1 x2

yD 0.5853 -0.576
yB 0.7213 -0.7307
7 -0.5853 0.576
? -0.7213 0.7307
? -0.5853 0.576
? -0.7213 0.7307

d=
u2 u3

00
00

4 u5 ub

0
0

ul
D 0
B 0

<

ud u
00
00

10
01
10
01

OO OO
OO OO

0
1
0
0

OO O -

[00126] Continuous-time model.
B =
[1x1 Itiblock.pid ]

[1x1 Itiblock.pid ]
[2x2 Itiblock.gain]
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EXEMPLARY TECHNIQUE FOR OPTIMIZING TUNABLE PARAMETERS
[00127] Once a user has interacted with model 1500 and modeling environment 220 to
formulate the design requirements as an Hoo constraint
IT ()l <1
in terms of some weighted closed-loop model T(s), the user may invoke an optimizer by

entering a command, such as:

>> T = hinfstruct(T0,options)

where TO is the un-tuned closed-loop model and options is some option set for the optimizer.
Modeling environment 220 may process the command and may return a tuned closed-loop
model T where tunable parameters are set to certain values found by the optimizer. For
example, in an embodiment all tunable parameters may be set to a best values as determined

by optimizer 360.

[00128] A user may wish to access tuned values for one or more tunable blocks. For
example, in an embodiment, a user may access tuned values of each tunable block by

entering a command, such as:

>> T.Blocks

[00129] In certain situations, CO may consist of a compensator that includes one or more
tunable blocks. In these situations, a user can “push” tuned parameter values to the LFT
model for CO using an exemplary embodiment of the invention. For example, the user may

type a command, such as:

>> C = replaceBlock(CO,T.Blocks)
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Modeling environment 220 may process the command and may automatically replace
relevant parameter values in CO by their tuned values in T. Exemplary embodiments can
include, function, such as helper functions to facilitate streamlining the tuning of block
parameters in a model, such as a Simulink, or Simulink-compatible model. By way of

example and referring to a Simulink model,

e LINLFT can be extended to automatically pick and configure the right tunable block
objects (Itiblock.gain, Itiblock.tf,...) based on the Simulink blocks selected for tuning
¢ A helper function can be provided to push the tuned parameter values computed by
hinfstruct back to the Simulink blocks.
Helper functions can include functions, such as undocumented functions, that are used by
documented functions when the documented functions operate.
EXEMPLARY TECHNIQUE FOR VALIDATING A RESULT
[00130] Exemplary embodiments may treat tunable blocks and LFT models as peers of
ordinary LTI models. Doing so may allow exemplary embodiments to directly analyze the
tuned control system using standard commands like STEP or BODE. For example, a user

may type a command, such as:

>>bode(T) % Plots Bode response of T

[00131] Modeling environment 220 may process the command and may display one or
more Bode plots to the user via a display device.

[00132] Exemplary embodiments may further allow users to convert tunable elements to
an ordinary LTI model using the standard tf(), ss(), zpk(), frd(), pid() commands. For
example, if F is one of the tunable blocks making up T, a user can convert F to a transfer

function using a command, such as:

>> Ftuned = tf(T.Blocks.F) % Gets tuned value of F as a transfer function
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[00133] The commands and techniques described above provide users with robust tuning
capabilities that are not available when users interact with conventional tools. These
techniques/commands further provide robust capabilities without making a textual or
graphical modeling environment overly complex or confusing for users.

EXEMPLARY WORKFLOW FOR PRACTICING AN EMBODIMENT OF THE
INVENTION

[00134] Fig. 17 illustrates an exemplary model 1700 of an analog autopilot used with an
F14 jet fighter. Exemplary embodiments and techniques of the invention can be applied to
model 1700 to tune the analog autopilot system for the F14. For example, embodiments and
techniques may tune the autopilot for a longitudinal axis of the F14 using the Simulink
modeling environment. Model 1700 may include controller block 1705 that may implement
a standard cascade-loop autopilot.

[00135] Referring to Fig. 17, model 1700 may include an inner loop 1710 that commands
the pitch rate q, and an outer loop 1715 that commands the angle of attack alpha.

[00136] Fig. 18 illustrates controller block 1705 in greater detail. As seen in Fig. 18,
window 1705-A includes components and connections included in controller block 1705 in
Fig. 17. In Fig. 18, the autopilot has a fixed structure and consists of gain and prefilter blocks
that may need to be tuned. For example, tunable gain blocks 1820, 1825 and 1830 are
shown with a triangular shape and shading, where the shading may indicate to a user that a
gain block is tunable. Prefilter blocks 1805, 1810, and 1815 may be rectangular in shape and
may be shaded, where the shading may indicate that a prefilter block is tunable. Fig. 18 may
further include a shaded PI compensator 1840 that can be tuned. Embodiments of the
invention may use a first color and/or shading density to indicate tunable gain blocks and a
second color and/or shading density to indicate tunable prefilter blocks and/or PI

compensator blocks.
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[00137] Exemplary embodiments and techniques allow a user to automatically and jointly
tune tselected control elements to achieve a desired level of performance and robustness.
[00138] Referring to Fig. 19, a user may enter commands 1905, such as:
s =tf('s");
pKa = realp('Ka',0);
pKq = realp(Kq’,0);
pKf = realp('’Kf',0);
pKi = realp('Ki',1);
pTal = realp('Tal’,1);
pW1 =realp(‘W1',0);
pW2 =realp('W2',0);
to define parameters for the autopilot of Figs. 17 and 18. In Fig. 19, the user may choose to
define all parameters as real scalar parameters. In command 1905, the user may decide to
initialize most of the parameters to zero.
[00139] The user may interact with modeling environment 220 to create the integrator and
the alpha and pitch prefilters as expressions involving the parameters of command 1905. For
example, the user may enter command 1910 to create the integrator, alpha and pitch
prefilters, such as:
Integrator = pKi/s; % Ki/s
AlphaSensor = tf(1,[pTal 1]); % 1/(Tal*s+1)
PitchFilter = tf([1 pW1],[1 pW2]); % (s+W1)/(s+W?2)
EXEMPLARY TECHNIQUE FOR TRACKING AN OBJECTIVE
[00140] The user may wish to formulate a tracking objective as an Hoo constraint when
interacting with the autopilot model of Figs. 17 and 18. A desired bandwidth may be 1 rad/s
(radian/second), and the user may desire to have the angle of attack alpha track the stick input
(pilot demand) with little overshoot. Exemplary embodiments and techniques can be used to

formulate the user’s requirements in terms of open-loop shape for the outer loop (alpha) 1715

(Fig. 17).

36



WO 2012/050970 PCT/US2011/053974

[00141] The user may define what he believes to be a realistic target loop shape by

entering commands 1915, such as:

wc=1; % target crossover

LS = (1+0.01*s/wc)/(0.01+s/wc);

bodemag(LS,{1e-3,1e3}), grid, title('Target loop shape’)
[00142] Modeling environment 220 may process command 1915 and may display a Bode
plot as shown in Fig. 20 via GUI 2000. GUI 2000 displays a loop shape that ensures a
bandwidth on the order of 1 rad/s (0dB crossover) and a steady-state error that likely will not
exceed 1% (i.e., 40dB gain at w=0). The user may realize that he cannot realistically expect
more gain at w=0 because the outer loop does not include an integrator (i.e., the integrator is
in the pitch rate loop of Fig. 17).
[00143] A closed-loop model mapping (r, n, d) to alpha, where r is the alpha command, n
is the measurement noise on alpha, and d is a disturbance entering at the actuator may need to
be derived so that exemplary loop shaping techniques discussed hereinabove can be used. In
an exemplary embodiment, a user may derive the closed-loop model by: (1) listing the tuned
blocks in the model, (2) marking the signals r, n, d, alpha as linearization inputs/outputs
(I/0s), and (3) using the LINLFT command to extract an LFT model of the closed-loop
transfer from (r, n, d) to y=alpha. By way of example, the user may create code illustrated in

Fig. 21. For example, a user may create code portion 2105 and 2110 by entering text into

interface 2100, such as:

% Tuned blocks

TunedBlocks = {...
f14/Controller/Alpha-sensor Low-pass Filter',...
'f14/Controller/Pitch Rate Lead Filter',...
'f14/Controller/Ka',...
'f14/Controller/Kq',...
'f14/Controller/Kf',...
‘f14/Controller/Integrator'};

% Structured compensator of Fig. 4

C = blkdiag(AlphaSensor,PitchFilter,pKa,pKq,pKf,Integrator);
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linios =[...
linio('f14/Controller/Stick Prefilter',1,'in") ; ... % r
linio(‘f14/Aircraft Dynamics Model',4,'outin’) ; ... % alpha,n
linio('f14/Controller’,1,'in") ]; % d
H = linlft('f14',linios, TunedBlocks);
% Closed-loop transfer [r;n;d] -> y=alpha
Ta0 = 1ft(H,C);
[00144] Here, the user may require the error signal e = r-y, which can be added as an
output of T10 by entering:
T1I0=[000;100] +[1;-1] * Ta0;
[00145] The user may complete the formulation as the Hoo constraint by adding the loop
shaping weights discussed hereinabove. For example, the user may enter command 2205 into
interface 220 (Fig. 22), such as:
beta = 3;
Win = blkdiag(1,1/LS,beta);
Wout = blkdiag(1,LS);
T10 = Wout * T10 * Win;
T10.InputName = {'r",'n','d'};
T10.OutputName = {'y','e'};
[00146] In an alternative embodiment, the loop shaping weights may be added
programmatically by modeling environment 2200 without requiring user input.
[00147] When inputs associated with Figs. 21 and 22 have been entered into modeling
environment 220, a loop shaping goal of Fig. 20 may be captured by the Heo constraint

1T ()l < 1.

EXEMPLARY TECHNIQUE FOR IDENTIFYING A ROBUSTNESS OBJECTIVE

[00148] The cascade loop structure of Fig. 17 is a MIMO control structure with two
measurements (alpha and q) and one control (the elevator deflection delta). In some
instances, a user may attempt to assess the stability margins of each SISO loop; however,

such an approach is not always sufficient to guarantee sufficient MIMO margins. A more
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reliable and accurate approach that is supported by embodiments of the invention ensures that
the peak gain of the sensitivity function

S=U+GK)™'  (Eq 16)

remains close to 1. In Eq. 16, G maps delta to (alpha, q) and K is the aggregate controller

generating delta from (alpha, q)). In other words, a second requirement is

T, ()l <1 with T, =S5  (Eq. 18)
[00149] A closed-loop model of T,, can be derived by observing that the sensitivity
function S is measured at the output (alpha, q) of the plant and use LINLFT as previously
discussed. For example, a user may enter command 2210 (Fig. 22), such as:
linios =[...
linio('f14/Aircraft Dynamics Model'.4,'inout') ; ... % alpha
linio('f14/Aircraft Dynamics Model',3,'inout) ]; % q
H = linlft('f14',linios, TunedBlocks);
S0 = Ift(H,C);
T20 = S0;

EXEMPLARY TUNING TECHNIQUE

[00150] Once the closed-loop model of T2 is derived, the user may wish to tune the
controller parameters. Exemplary embodiments facilitate combining the Heo constraints for
tracking and robustness into a single constraint. For example, the single constraint may be
represented when the user defines:

TO = blkdiag(T10,T20);
[00151] Modeling environment 220 may instruct the HINFSTRUCT solver to run 5
optimizations using optimizer 360. For example, optimizer 360 may run the five
optimizations from five different starting points to mitigate the risk of premature termination
at a local minimum. Optimizer 360 may further limit the magnitude of the closed-loop poles
to 50 to prevent high gain designs. A user may configure optimizer 360 to perform the above
optimization by entering a command such as:

39



WO 2012/050970 PCT/US2011/053974

Options = hinfstructOptions('Display', final','RandomStart',4,'SpecRadius',50);

[00152] The user may run the specified optimization by entering a command such as:

T = hinfstruct(T0,Options);
[00153] Modeling environment 220 may return the tuned objective T when the commands
are executed.

EXEMPLARY TECHNIQUE FOR VALIDATING A SOLUTION
[00154] A user may wish to validate a controller design and exemplary embodiments
allow the user to interactively perform validations. In an embodiment, the design may be
validated by pushing tuned parameter values to the closed-loop transfers Ta0 (for the alpha
loop) and S (sensitivity function). The user may enter two commands, such as:

Ta = replaceBlock(Ta0,T.Blocks);
S = replaceBlock(S0,T.Blocks);

[00155] Modeling environment 220 may process the commands and may simulate the

closed-loop response of the alpha loop.

[00156] Fig. 23 illustrates an exemplary plot 2300 showing the closed-loop response for

the alpha loop of model 1700. For example, a user may enter a command, such as:
step(Ta(1,1)) % alpha command to alpha

for causing plot 2300 to be displayed via display device 250.

[00157] Exemplary embodiments may further allow the user to verify that the peak gain of
S is close to OdB. For example, the user may type:

sigma(S) % peak gain of sensitivity function
[00158] Modeling environment 220 may process the command and may display the plot
2400 of Fig. 24 via display device 250.
[00159] Exemplary embodiments further allow a user to access the value of the tuned
parameters (e.g., Kq) by interacting with modeling environment 220. For example, a user

may type:
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T.Blocks.Kq.Value % tuned value of Kq gain
and modeling environment 220 may produce an answer when the command is processed. For

example, the following may be displayed to the user:

ans =

4.3486e-001
EXEMPLARY PROCESSING

[00160] Fig. 25 illustrates exemplary processing for practicing one or more embodiments
of the invention. A user may create a model that includes one or more tunable components
(act 2505). For example, a user may interact with a graphical model and may build a
freeform graphical model that includes a number of components connected by lines
representing signals. The model may include one or more feedback loops and may include
fixed components that can be represented as a plant and one or more tunable components that
can be represented via a controller. A user may further create a model using a textual
environment in which the user enters commands to create fixed and tunable model
components. In an embodiment, act 2505 may be optional, such as when an embodiment of
the invention receives an existing model.

[00161] When a model is identified, design requirements associated with the model may
be received (act 2510). For example, a user may specify a desired gain profile for an open
loop response for the model, may specify tunable blocks in the model that can be grouped
into a structured controller, and/or may identify locations in a model for an input, output, and
disturbance to a closed loop representation of the model. The user may alternatively interact
with a command in textual environment that can be used to specify design requirements for
the model. In other embodiments, design requirements may be read from a data store,

received programmatically via an API, etc.
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[00162] Design requirements may be formulated into an Heo constraint using an exemplary
embodiment of the invention (act 2515). For example, an embodiment of the invention may
automatically transform design requirements (e.g., a loop shape goal) received via a user
input device into an Heo constraint for use in tuning components of the model. Computer 205
may perform processing operations using Hoo synthesis techniques and may extract a plant,
controller, and transfer function (act 2520). In an embodiment, the controller may include
tunable parameters of the tunable components arranged in a block diagonal structure. For
example, transforming the design requirements into Hoo constraint may include mapping a
control architecture into a canonical structure as shown in Fig. 7.
[00163] After transformation, the plant, controller and transfer function may be in a format
compatible with an optimizer that can be used to tune parameters of the model. The
compatible format may be input to the optimizer and the optimizer may tune components
associated with the structured controller (act 2525). In an embodiment, the optimizer may
receive untuned components.
[00164] The optimizer may produce a result that includes tuned components (act 2530).
For example, tuned components may satisfy design requirements received in act 2510 while
satisfying a stability goal for the model.
[00165] The result produced by the optimizer may be validated to ensure that the result
will allow the model to operate in a desired manner (act 2535). For example, validating a
result may ensure that an overshoot margin is not exceeded, that a desired response rate is
achieved, that a stability margin is maintained, a desired loop gain is achieved, that a desired
disturbance rejection is achieved, etc.

EXEMPLARY ARCHITECTURE
[00166] Fig. 26 illustrates an exemplary computer architecture that can be used to

implement computer 205 of Fig. 2. Fig. 26 is an exemplary diagram of an entity
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corresponding to computer 205. As illustrated, the entity may include a bus 2610, processing
logic 2620, a main memory 2630, a read-only memory (ROM) 2640, a storage device 2650,
an input device 2660, an output device 2670, and/or a communication interface 2680. Bus
2610 may include a path that permits communication among the components of the entity.
[00167] Processing logic 2620 may include a processor, microprocessor, or other types of
processing logic (e.g., field programmable gate array (FPGA), graphics processing unit
(GPU), digital signal processor (DSP), application specific integrated circuit (ASIC),
application specific integrated processor (ASIP), programmable logic device (PLD), etc.) that
may interpret and execute instructions. For an implementation, processing logic 2620 may
include a single core processor or a multi-core processor. In another implementation,
processing logic 2620 may include a single processing device or a group of processing
devices, such as a processing cluster or computing grid. In still another implementation,
processing logic 2620 may include multiple processors that may be local or remote with
respect each other, and may use one or more threads while processing.

[00168] Main memory 2630 may include a random access memory (RAM) or another type
of dynamic storage device that may store information and instructions for execution by
processing logic 2620. ROM 2640 may include a ROM device or another type of static
storage device that may store static information and/or instructions for use by processing
logic 2620. Storage device 2650 may include a magnetic, solid state and/or optical recording
medium and its corresponding drive, or another type of static storage device that may store
static information and/or instructions for use by processing logic 2620.

[00169] Input device 2660 may include logic that permits an operator to input information
to the entity, such as a keyboard, a mouse, a pen, a touchpad, an accelerometer, a
microphone, voice recognition, camera, biometric mechanisms, etc. In an embodiment, input

device 2660 may correspond to input device 240.
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[00170] Output device 2670 may include a mechanism that outputs information to the
operator, including a display, a printer, a speaker, a haptic interface, etc. Communication
interface 2680 may include any transceiver-like logic that enables the entity to communicate
with other devices and/or systems. For example, communication interface 2680 may include
mechanisms for communicating with another device or system via a network.
[00171] The entity depicted in Fig. 26 may perform certain operations in response to
processing logic 2620 executing software instructions stored in a computer-readable storage
medium, such as main memory 2630. A computer-readable storage medium may be defined
as a physical (e.g., tangible) or logical memory device. The software instructions may be
read into main memory 2630 from another computer-readable storage medium, such as
storage device 2650, or from another device via communication interface 2680. The software
instructions contained in main memory 2630 may cause processing logic 2620 to perform
techniques described herein when the software instructions are executed on processing logic.
Alternatively, hardwired circuitry may be used in place of or in combination with software
instructions to implement techniques described herein. Thus, implementations described
herein are not limited to any specific combination of hardware circuitry and software.
[00172] Although Fig. 26 shows exemplary components of the entity, in other
implementations, the entity may contain fewer, different, or additional components than
depicted in Fig. 26. In still other implementations, one or more components of the entity may
perform one or more tasks described as being performed by one or more other components of
the entity.

EXEMPLARY DISTRIBUTED EMBODIMENT
[00173] Distributed embodiments may perform processing using two or more processing
resources. For example, embodiments can perform processing using two or more cores in a

single processing device, distribute processing across multiple processing devices installed
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within a single enclosure, and/or distribute processing across multiple types of processing
logic connected by a network.

[00174] Fig. 27 illustrates an exemplary system that can support interactively designing
controllers for non-linear models on behalf of a client device (e.g., computer 205) using a
distributed computing environment. System 2700 may include computer 205, network 2730,
service provider 2740, remote database 2750 and cluster 2760. The implementation of Fig.
27 is exemplary and other distributed implementations of the invention may include more
devices and/or entities, fewer devices and/or entities, and/or devices/entities in configurations
that differ from the exemplary configuration of Fig. 27.

[00175] Computer 205 may include graphical user interface (GUI) 2710 and modeling
environment 220. GUI 2710 may include an interface that allows a user to interact with
computer 205 and/or remote devices (e.g., service provider 2740). In an exemplary
embodiment, GUI 2710 may be similar to the interfaces of Figs. 4-6 and 15-18.

[00176] Network 2730 may include any network capable of transferring data (e.g., packet
data or non-packet data). Implementations of network 2730 may include local area networks
(LANSs), metropolitan area networks (MANs) and/or wide area networks (WANs), such as the
Internet, that may operate using substantially any network protocol, such as Internet protocol
(IP), asynchronous transfer mode (ATM), synchronous optical network (SONET), user
datagram protocol (UDP), IEEE 8§02.10, etc.

[00177] Network 2730 may include network devices, such as routers, switches, firewalls,
and/or servers (not shown). Network 2730 may be a hardwired network using wired
conductors and/or optical fibers and/or may be a wireless network using free-space optical,
radio frequency (RF), and/or acoustic transmission paths. In an implementation, network
2730 may be a substantially open public network, such as the Internet. In another

implementation, network 2730 may be a more restricted network, such as a corporate virtual
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network. Implementations of networks and/or devices operating on networks described
herein are not limited to any particular data type, protocol, architecture/configuration, etc.
For example, in an embodiment, network 2730 may be a quantum network that uses
quantum-compatible networking protocols.

[00178] Service provider 2740 may include a device that makes a service available to
another device. For example, service provider 2740 may include an entity that provides one
or more services to a destination using a server and/or other devices. Services may include
instructions that are executed by a destination to perform an operation. Alternatively, a
service may include instructions that are executed on behalf of a destination to perform an
operation on the destination’s behalf.

[00179] Assume, for sake of example, that a service provider operates a web server that
provides one or more web-based services to a destination, such as computer 205. The web-
based services may allow computer 205 to perform distributed simulations of electrical
and/or mechanical systems using hardware that is operated by the service provider. For
example, a user of computer 205 may be allowed to interactively design PID controllers for
system models using the service provider’s hardware. In an implementation, a customer
(user) may receive services on a subscription basis. A subscription may include an
arrangement, such as a monthly subscription, a per-use fee, a fee based on an amount of
information exchanged between service provider 2740 and the customer, a fee based on a
number of processor cycles used by the customer, a fee based on a number of processors used
by the customer, etc.

[00180] Remote database 2750 may include a device that stores machine-readable
information for use by other devices, such as computer 205. In an embodiment, remote

database 2750 may include an array or grid of storage devices (e.g., hard disks, optical disks,
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solid-state storage devices, etc.) that store data structures containing information about
system models, controllers, etc.
[00181] Cluster 2760 may include a group of processing devices, such as units of
execution 2770 that can be used to perform remote processing (e.g., distributed processing,
parallel processing, etc.). Units of execution 2770 may include hardware and/or
hardware/software based devices that perform processing operations on behalf of a requesting
device, such as computer 205. In an embodiment, units of execution 2770 may each compute
a partial result and the partial results can be combined into an overall result for a model.
EXEMPLARY IMPLEMENTATIONS
[00182] An embodiment can include a computer implemented method or machine
executable instructions residing on non-transitory computer readable media. The method
and/or instructions can be implemented for tuning design parameters in an arbitrary feedback
control structure, where the computer implemented method can be practiced using a
standalone, e.g., local machine, or in a distributed environment (e.g., using a cluster or grid of
computing devices).
[00183] For example, when practiced as a computer-implemented method, the method can
include identifying one or more tunable components having one or more free parameters that
are tuned. The tunable components can be part of a textual or graphical model of the
arbitrary feedback control structure. The method can further include identifying one or more
feedback loops that include the one or more tunable components.
[00184] The method can further include transforming the arbitrary feedback control
structure into a standard form that includes a lumped linear model that includes known and
fixed components in the arbitrary feedback control structure, and a collection formed using
the tunable components. The collection formed from the tunable components can be

grouped, or arranged, into a block diagonal fashion. In the method, the components in the
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block diagonal arrangement may be accessible in that individual components or parameters in
the block diagonal arrangement by be visible to a user, available to an algorithm, able to be
read from or written to, etc.

[00185] The method can use Heo objectives or constraints for expressing design objectives
and/or design requirements. In an implementation of the method, the Hoo objectives or
constraints pertain to one or more point-to-point transfer functions in a closed-loop system.
The method can further parameterize tunable components. For example, the method can
statically parameterize tunable components or dynamically parameterize tunable components.
Once tunable components are parameterized, the method may interact with free parameters of
the tunable components based on the parameterizing.

[00186] The method may tune the feedback control structure using a tuner. For example,
in an implementation, the method may tune the feedback control structure using a tuner that
is in a class of non-smooth Heo optimization algorithms. The tuner may operate on the
standard form, and may operate on the tunable parameters when the tunable components are
in the block diagonal form. The tuner may further tune the parameters to minimize the Hoo
objectives and/or to enforce the Hoo constraints.

[00187] The computer implemented method can be implemented in a technical computing
environment, such as a MATLAB-compatible environment. The method can further be
implemented in a textual or graphical environment, such as a Simulink-compatible
environment or a Labview-compatible environment. Implementations can further interact
with block sets that can include, for example, tunable components, fixed components,
connections, algorithms, etc.

[00188] The computer implemented method can further be implemented in a manner that
supports interactive design and tuning of arbitrary feedback control structures. For example,

a method can be implemented that supports real-time interactive design and tuning activities
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of a user. Implementations of the method can be implemented using FPGAs, ASICs, ASIPs,
PLDs, GPUs, DSPs, multi-core devices, distributed computing resources, etc.

[00189] Implementations of the method can further allow a user or a device to specify
separate objectives or constraints on a plurality of point-to-point closed loop transfer
functions in order to simplify multi-objective or multi-requirement design tasks on behalf of a
user. Implementations of the method can do this by supporting traditional workflows
employed by a user or a group of users. The method can be augmented to include applying
the design requirements to the point-to-point transfer functions, where the applying facilitates
formulation of multi-objective and multi-requirement design tasks. The method can further
be deployed in an object oriented framework when desired.

[00190] Embodiments of the invention can further include computer-implemented method
acts and/or executable instructions residing on non-transitory computer-readable media. For
example, when implemented as a media/executable-instructions, the media can store
instructions that when executed practice an embodiment or implementation of the invention.
In an implementation, the executed instructions can perform a method or technique of the
invention on behalf of a user. In an implementation, the media can hold executable
instructions that when executed on a processor implement an API for statically specifying
tunable components, dynamically specifying tunable components, and/or for interacting with
the parameters of the tunable components. In an implementation, the API can be object-
based.

[00191] The executable instructions, when executed can identify predefined interfaces that
embody parameterizations for a predefined set of components. The instructions can further
implement a set of arithmetic operations and/or implement a set of helper functions. The

executed instructions can further dynamically create tunable components using the arithmetic
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operations and the helper functions. In an implementation, dynamically creating can include
combining elementary parameter components, and fixed coefficients or fixed components.
[00192] Executed instructions can further produce a parametric model of the tunable
components. In an implementation, the parametric model can account for tunable parameters
of the tunable components, and can allow user inputs to interact with the tunable parameters.
For example, user inputs can initialize the tunable parameters, fix the tunable parameters, or
freeing selected ones of the tunable parameters.

[00193] Another embodiment of the invention can be implemented as a computer-
implemented method or via executable instructions residing on one or more non-transitory
computer-readable media. The embodiment can implement, deploy, operate, etc., an
application program interface (API) for building a standard form of an arbitrary feedback
control structure and for specifying point-to-point transfer functions used in an Hoo
formulation of design requirements. Embodiments of the API can be object-based when
desired.

[00194] The embodiment can interact with a user input mechanism that specifies
arithmetic operators and/or block diagramming operations using an input syntax. For
example, the input syntax can be a syntax familiar to a user in that the user has used the
syntax for interacting with other types of control structures, such as PID controllers. The
input syntax can allow the user to input a linear time invariant model component, where the
linear time invariant model component is used in linear time invariant models and as input
software based interfaces, where the software based interfaces describe tunable components
having tunable parameters.

[00195] The embodiment can combine the linear time invariant model component with the
software based interfaces using one or more of arithmetic operators, and block diagramming

operations. Examples of block diagramming operations can include, but are not limited to, a
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series connection, a parallel connection, or a feedback connection. The embodiment can
interact with the user input mechanism and the interacting can allow the input syntax to
incrementally construct a standard form of an overall control system. The standard form can
include the linear time invariant model components and the tunable components. The input
syntax can further be used to facilitate generating a parametric model based on the standard
form. The parametric model can be in a form compatible with an optimizer, where the
compatible form allows the parametric model to be input to the optimizer. The parametric
model can be set up in a way that allows it to be tuned in a manner that allows design
requirements to be satisfied.

[00196] The embodiment can further be configured to support optimizing the parametric
model using an optimizer that interacts with the standard form and with the tunable
parameters to minimize Hoo objectives, and/or to enforce Hoo constraints. The embodiment
can further be configured to provide helper functions to the user input mechanism. The
embodiment may allow the helper functions to be accessible to the user via the input
mechanism when the user interacts with the API using the input syntax. Still further, the
embodiment can be configured to provide functions that are compatible with the input
mechanism and that can operate with the input mechanism. The functions can be used to
query the control system, and/or to analyze the control system.

[00197] An embodiment of the invention can include a computer-implemented method
and/or computer-executable instructions that can reside on non-transitory media for
programmatically formulating loop shaping requirements into an Hoo formulation. The
embodiment, when practiced as a method, can be implemented using standalone or
distributed devices and can be configured to support interactive (e.g., real-time) operation on
behalf of one or more users. The method can include receiving a target shape for the open-

loop gain, or a proxy for the target shape. For example, the target loop shape or proxy can be
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received from an input mechanism (e.g., keyboard, GUI, etc.) on behalf of a user or may be
programmatically retrieved, for example, from a computer-readable storage medium.
[00198] The method may include interacting with a software tool that derives a control
structure and filters from the target loop shape or the proxy. The software tool may further
construct a standard form from the derived control structure and filters, and construct an Hoo
constraint from the derived control structure and filters. In the method, the standard form and
the Hoo constraint can capture design requirements for a control system.

[00199] An additional embodiment can include a computer-implemented method and/or
executable instructions residing on a computer readable media for exploiting a structure of a
standard form. Exploiting the structure for the standard form can enhance performance of a
tuner algorithm that can support interactive workflows on behalf of a user. The embodiment
can receive values of tunable parameters supplied by an optimizer during an optimization
procedure. Optimization procedures can include machine implemented techniques for
performing optimization activities.

[00200] The embodiment can further construct, using a construction procedure/technique,
a state-space model of the standard form for the tunable parameter values by using software
objects to implement tunable components associated with the tunable parameters, making
each software object responsible for providing its state-space representation for the received
parameter values, aggregating state-space matrices to produce an aggregated state-space
matrix for the tunable components, and/or combining the aggregated state-space matrices of
the tunable components with the state-space representation of a lumped plant model to obtain
a desired closed-loop state-space model of the standard form.

[00201] The embodiment can cache intermediate results of the construction procedure to
accelerate subsequent gradient computations. Gradient information can be computed by

applying a rule, such as a chain rule, to differentiate the objective and constraints, using the
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same software objects that were used for constructing a state-space model of the standard
form, making each software object responsible for providing a gradient of a scalar-valued
function with respect to the received parameters, where the scalar-valued function is a by-
product of applying the rule, and/or using the cached intermediate results to efficiently
aggregate the gradient data supplied by each tunable component into overall gradients of the
objective and constraints.

[00202] The embodiment can make gradient information available without requiring
additional computations on behalf of a processor. For example, gradient information can be
made available for no additional computing cost as compared to a computing cost incurred
without making gradient information available. The embodiment can further derive a closed
loop system for a given value of the tunable parameters at substantially no computational
cost, e.g., the cost is negligible in that factoring in the cost does not adversely affect

computational budgets associated with system design, modeling times, etc.

CONCLUSION
[00203] Implementations may allow users to interactively design controllers for system
models using characteristics familiar to the user.
[00204] The foregoing description of exemplary embodiments of the invention provides
illustration and description, but is not intended to be exhaustive or to limit the invention to
the precise form disclosed. Modifications and variations are possible in light of the above
teachings or may be acquired from practice of the invention. For example, while a series of
acts has been described with regard to Fig. 25, the order of the acts may be modified in other
implementations consistent with the principles of the invention. Further, non-dependent acts
may be performed in parallel.
[00205] In addition, implementations consistent with principles of the invention can be

implemented using devices and configurations other than those illustrated in the figures and
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described in the specification without departing from the spirit of the invention. Devices
and/or components may be added and/or removed from the implementations of Fig. 2, 3, 26
or 27 depending on specific deployments and/or applications. Further, disclosed
implementations may not be limited to any specific combination of hardware.

[00206] Further, certain portions of the invention may be implemented as “logic” that
performs one or more functions. This logic may include hardware, such as hardwired logic,
an application-specific integrated circuit, a field programmable gate array, a microprocessor,
or a combination of hardware and software. No element, act, or instruction used in the
description of the invention should be construed as critical or essential to the invention unless
explicitly described as such. Also, as used herein, the article “a” is intended to include one or
more items. Where only one item is intended, the term “one” or similar language is used.
Further, the phrase “based on,” as used herein is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

[00207] Headings and sub-headings used herein are to aid the reader by dividing the
specification into subsections. These headings and sub-headings are not to be construed as

limiting the scope of the invention or as defining features of the invention.
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What is claimed is:

1. A computer implemented method for tuning design parameters in an arbitrary feedback

control structure, the method comprising:

identifying one or more tunable components, where each tunable component includes:

one or more free parameters that are tuned;

identifying one or more feedback loops, where the one or more feedback loops

include the one or more tunable components;

transforming the arbitrary feedback control structure into a standard form, where the

standard form includes:

a lumped linear model that includes known and fixed components in the

arbitrary feedback control structure, and

a collection formed using the tunable components, where the collection is

grouped into a block diagonal fashion;

using Hoo objectives or constraints for expressing design objectives and design
requirements, where the Hoo objectives or constraints pertain to one or more point-to-point

transfer functions in a closed-loop system;

statically or dynamically parameterizing the tunable components;

interacting with the free parameters of the tunable components based on the

parameterizing; and

tuning the feedback control structure using a tuner based on a member selected from a

class of non-smooth Hoo optimization algorithms, where the tuner:
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operates on the standard form,

operates on the tunable parameters when the tunable components are in the

block diagonal form, and

tunes the parameters to:

minimize the Hoo objectives, or

enforce the Hoo constraints.

2. The method of claim 1, where the tuning is performed using a MATLAB-compatible

language.

3. The method of claim 1, where the tunable components are selected from a block set used

with a graphical modeling environment.

4. The method of claim 1, where a speed of the tuning supports interactive design and tuning

of the arbitrary feedback control structure.

5. The method of claim 1, where specifying separate objectives or constraints on a plurality
of point-to-point closed loop transfer functions simplifies multi-objective or multi-

requirement design tasks on behalf of a user.
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6. The method of claim 1, where the using further comprises:

applying the design requirements to the point-to-point transfer functions, and

where the applying facilitates formulation of multi-objective and multi-requirement

design tasks.

7. One or more non-transitory computer-readable media holding executable instructions that
when executed on a processor implement an API for statically specifying tunable
components, dynamically specifying of tunable components, and interacting with the
parameters of the tunable components, the media holding one or more executable instructions

for:

identifying predefined interfaces, where the predefined interfaces embody

parameterizations for a predefined set of components;

implementing a set of arithmetic operations;

implementing a set of helper functions;

dynamically creating tunable components using the arithmetic operations and the

helper functions, the dynamically creating further including:

combining elementary parameter components, and

fixed coefficients or fixed components; and

producing a parametric model of the tunable components, the parametric model:

accounting for tunable parameters of the tunable components, and

allowing user inputs to interact with the tunable parameters, the user inputs:
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initializing the tunable parameters,

fixing the tunable parameters, or

freeing selected ones of the tunable parameters.

8. The media of claim 7, where the tunable components are implemented in a MATLAB-

compatible language.

9. The media of claim 7, where the tunable components are selected from a block set, where

the block set is associated with a graphical modeling environment.

10. One or more non-transitory computer-readable media holding executable instructions
that when executed on a processor implement an application program interface (API) for
building a standard form of an arbitrary feedback control structure and for specifying point-
to-point transfer functions used in an Hoo formulation of design requirements, the media

holding one or more executable instructions for:

interacting with a user input mechanism, where the user input mechanism specifying
arithmetic operators and block diagramming operations using an input syntax, where the

input syntax allows the user to:

input a linear time invariant model component, where the linear time invariant

model component is used in linear time invariant models;
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input software based interfaces, where the software based interfaces describe

tunable components having tunable parameters;

combining the linear time invariant model component with the software based

interfaces using one or more of:

arithmetic operators, and

block diagramming operations, where the block diagramming operations

comprise:

a series connection,

a parallel connection, or

a feedback connection;

interacting with the user input mechanism, the interacting allowing the input syntax

to:

construct, incrementally, a standard form of an overall control system
including the linear time invariant model components and the tunable components,

and

generate a parametric model based on the standard form, where:

the parametric model is adapted for input to an optimizer, and

the parametric model is configured for tuning to meet design

requirements.

11. The method of claim 10, further comprising:
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optimizing the parametric model using an optimizer, where the optimizing:
interacts with the standard form and the tunable parameters to:
minimize Hoo objectives, or

enforce Hoo constraints.

12. The method of claim 10, further comprising:

providing helper functions to the user input mechanism, the helper functions

accessible to the user via the input mechanism when the user is interacting with the API using

the input syntax.

13. The method of claim 10, further comprising:
providing functions, where:
the functions are compatible with the input mechanism, and
the functions are interacted with in accordance with the input syntax; and
using the functions to:
query the control system, or

analyze the control system.
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14. The method of claim 10, where the standard form is constructed using a MATLAB-

compatible language.

15. The method of claim 10, where the tunable components are selected from a block set

used with a graphical modeling environment.

16. The method of claim 10, where a speed of the tuning supports interactive design and

tuning of the arbitrary feedback control structure.

17. The method of claim 10, where the arbitrary feedback control structure is controlled

using gain scheduling.

18. A computer-implemented method for programmatically formulating loop shaping

requirements into an Hoo formulation, the method comprising:

receiving:

a target shape for the open-loop gain, or

a proxy for the target shape; and

interacting with a software tool that:

derives a control structure and filters from the target loop shape or the proxy,

constructs a standard form from the derived control structure and filters, and
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constructs an Hoo constraint from the derived control structure and filters,

where,

the standard form and the Hoo constraint capture design requirements

for a control system.

19. The method of claim 18, where the standard form is constructed using a MATLAB-

compatible language.

20. The method of claim 18, where the software tool interacts with a Simulink-compatible

environment or a Labview-compatible environment.

21. The method of claim 18, where a speed of the software tool supports interactive control

system design.

22. A computer-implemented method for exploiting a structure of a standard form, where
exploiting the structure for the standard form enhances performance of a tuner algorithm, the

method comprising:

receiving values of tunable parameters supplied by an optimizer during an

optimization procedure;

constructing, using a construction procedure, a state-space model of the standard form

for the tunable parameter values by:
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using software objects to implement tunable components associated with the

tunable parameters,

making each software object responsible for providing its state-space

representation for the received parameter values,

aggregating state-space matrices to produce an aggregated state-space matrix

for the tunable components, and

combining the aggregated state-space matrices of the tunable components with
the state-space representation of a lumped plant model to obtain a desired closed-loop

state-space model of the standard form;

caching intermediate results of the construction procedure to accelerate subsequent

gradient computations;

computing gradient information by:

differentiating the objective and constraints,

using the same software objects that were used for constructing a state-space

model of the standard form,

having each software object be responsible for providing a gradient of a
scalar-valued function with respect to the received parameters, where the scalar-

valued function is a by-product of applying the rule, and

using the cached intermediate results to aggregate the gradient data supplied

by each tunable component into overall gradients of the objective and constraints.
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23. The method of claim 22, where gradient information is made available without requiring

additional computations on behalf of a processor.

24. The method of claim 22, where a cost of deriving a closed loop system for a given value

of the tunable parameters is substantially negligible.

25. The method of claim 22, where a chain rule is used to differentiate the objective and

constraints.

26. The method of claim 22, where the tuner algorithm operates in real-time.

27. The method of claim 26, where the tuner algorithm is implemented in one or more field
programmable gate arrays (FPGAs), application specific integrated circuits (ASICs),
application specific integrated processors (ASIPs), programmable logic devices (PLDs),
multi-core devices, graphics processing units (GPUs), digital signal processors (DSPs), or

cores.

28. The method of claim 26, where the tuner algorithm is implemented in a distributed

computing environment.
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\
% Specify tunabhle blocks
>> DM = ltiblock.gain('Decoupler’ ,eye(2)); 1605
>> PI_L = ltiblock.pid('PI_L', 'pi');
>> PI_V = ltiblock.pid('FI_V', 'pi');
% Derive closed-loop transfer T
>> C = append(PI_L,PI_V) * DM; 1610
>> T = feedback(G * C , eye(2));
>> [E,B] = getLFTMbdel(T) — 1615
a= 3
x1 x2
xi -0.01333 0
x2 0 =-0.01333
h =
ul w2 u3 ud us ueé
x1 0 0 2 0 0 0
x2 0 0 0 2 0 0
1620
o =
xl x2
yD 0.5853 ~0.576
vB 0.7213 -0.7307
? -0.5853 0.576
? -0.7213 0.7307
? -0.5853 0.576
? -0.7213 0.7307 )
S

FIG. 16A
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1600
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| 1620 (continued
from Fig. 16A)

Continucus-time model.
B =
[1x1 ltiblock.pid ]

[1x1 ltiblock.pid ]
[2x2 ltibleck.gain]

FIG. 16B
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