用于电动交通工具的动力系统的电机

摘要

本发明涉及电动交通工具的动力系统的电机，该电机包括定子和转子，转子可转动地安装到定子内，转子包括转子铁芯和安装到转子铁芯的磁铁，所述磁铁形成2P个磁极，P为大于1的整数；定子包括定子铁芯和绕组。所述定子铁芯具有S个齿，S等于3•m•P，其中，m为所述电机的相数；所述绕组包括m•P个线圈元件组，每个线圈元件组包括串联的一个大线圈元件和一个小线圈元件，所述大线圈元件的节距大于所述小线圈元件的节距，所述大线圈元件的匝数大于所述小线圈元件的匝数。本发明的电机可用于电动汽车中作为提供动力的电动机或者作为发电机，这种电机具有较高的效率、较高的功率密度、较小的齿槽效应以及正弦化的反电动势曲线，从而具有较小的震动噪音。
1. 一种用于电动交通工具的动力系统的电机，包括定子和转子，所述转子可转动地安装到定子内，所述转子包括转子铁芯和安装到转子铁芯的磁铁，所述磁铁形成 2P 个磁极，P 为大于 1 的整数，其特征在于：所述定子包括定子铁芯和绕组，所述定子铁芯具有 S 个齿，S 等于 3mP，其中，m 为所述电机的相数；所述绕组包括 mP 个线圈元件组，每个线圈元件组包括串联的一个大线圈元件和一个小线圈元件，所述大线圈元件的节距大于所述小线圈元件的节距，所述大线圈元件的匝数大于所述小线圈元件的匝数。

2. 如权利要求 1 所述的电机，其特征在于，对于每个线圈元件组，大线圈元件的中心与小线圈元件的中心重合。

3. 如权利要求 2 所述的电机，其特征在于，对于每个线圈元件组，大线圈元件的匝数是小线圈元件的两倍。

4. 如权利要求 2 所述的电机，其特征在于，对于每个线圈元件组，大线圈元件的节距与小线圈元件的节距的差值等于 2。

5. 如权利要求 3 所述的电机，其特征在于，P = 4，S = 36，m = 3。

6. 如权利要求 5 所述的电机，其特征在于，每根电路包括 4 个线圈元件组，所述 4 个线圈元件组的电路连接关系是：连接成一个串联支路；或者连接成两个并联支路，每个并联支路包括串联的两个线圈元件组；或者连接成四个并联支路，每个并联支路包括一个线圈元件组。

7. 如权利要求 1 至 6 中任意一项所述的电机，其特征在于，所述定子和所述转子之间具有气隙，所述转子相对于定子转动，与相邻两个磁极的中心对应的气隙径向尺寸大于每个磁极的中心对应的气隙径向尺寸。

8. 如权利要求 7 所述的电机，其特征在于，所述磁铁轴向地绕装到所述转子铁芯内。

9. 如权利要求 8 所述的电机，其特征在于，每个磁极的结构为下面之一种：每个磁极包括一块磁铁，所述一块磁铁在转子的横截面上形成“一”形，并关于所述转子的某个径向对称；每个磁极包括一块磁铁，所述一块磁铁在转子的横截面上形成一个开口朝外的“V”形，所述一个开口朝外的“V”形，并关于所述转子的某个径向对称。

10. 如权利要求 9 所述的电机，其特征在于，所述转子铁芯具有磁桥用于隔开所述一对磁铁。

11. 如权利要求 8 至 10 中任意一项所述的电机，其特征在于，所述转子铁芯具有若干轴向的通孔，所述若干通孔均匀隔开，排成环状。
用于电动交通工具的动力系统的电机

技术领域

本发明涉及电动交通工具的动力系统，尤其涉及用于电动汽车动力系统的电机。

前述电动汽车，是指使用电能作为动力的汽车，包括纯电动汽车、混合动力汽车等。

背景技术

电能作为一种清洁环保的能源越来越广泛地用到汽车中，作为一种动力能源。

现有的电动汽车的动力系统通常使用永磁同步电机，该永磁同步电机可以作为电动机，将电能转换成机械能从而供给汽车提供动力。在混合动力汽车中，该永磁同步电机还可以作为发电机，将其他形式的能量转换成电能。

现有的永磁同步电机具有效率低、振动噪音大的缺点。因此，亟需一种效率高、振动噪音小的永磁同步电机。

发明内容

本发明提供一种用于电动交通工具的动力系统的电机，包括定子和转子，所述转子可转动地安装到定子内，所述转子包括转子铁芯和安装到转子铁芯的磁铁，所述磁铁形成2P个磁极，P为大于1的整数，其中：所述定子包括定子铁芯和绕组，所述定子铁芯具有S个齿，S等于3×m×P，其中，m为所述电机的相数，所述绕组包括m×P个线圈元件组，每个线圈元件组成串联的一个大线圈元件和一个小线圈元件，所述大线圈元件的节距大于所述小线圈元件的节距，所述大线圈元件的匝数大于所述小线圈元件的匝数。

作为本发明的一种改进，对于每个线圈元件组，大线圈元件的中心与小线圈元件的中心重合，大线圈元件的节距与小线圈元件的节距的差值等于2。

作为本发明的一种改进，对于每个线圈元件组，大线圈元件的匝数是小线圈元件的两倍。

作为本发明的一种改进，P=4，S=36，m=3，每相电路包括4个线圈元件组，所述4个线圈元件组形成三个并联支路，每个并联支路包括串联的两个线圈元件组。

作为本发明的一种改进，P=4，S=36，m=3，每相电路包括4个线圈元件组，所述4个线圈元件组形成四个并联支路，每个并联支路包括一个线圈元件组。

作为本发明的一种改进，P=4，S=36，m=3，每相电路包括4个线圈元件组，所述4个线圈元件组形成一个串联支路。

作为本发明的一种改进，所述定子和所述转子之间具有气隙以容许转子相对于定子转动，与相邻两个磁极的中心对应的气隙径向尺寸大于每个磁极的中心对应的气隙径向尺寸。

作为本发明的一种改进，所述磁铁导向地嵌装到所述转子铁芯内，每个磁极包括一对磁铁，所述一对磁铁在转子的横截面上形成一个开口朝外的“V”形，所述一对磁铁关于所述转子的某个径向对称。

本发明的实施例具有以下有益效果：实施本发明的电机具有较高的效率，较高的
功率密度、较小的齿槽效应以及正弦化的反电动势曲线，从而具有较小的震动噪音。

附图说明

图 1A 是本发明第一实施例的永磁同步电机的截面示意图；
图 1B 是图 1A 所示的永磁同步电机的局部放大图；
图 2 是本发明第一实施例的永磁同步电机的磁路组成示意图；
图 3 是本发明第一实施例的永磁同步电机的磁路组成示意图；
图 4 是本发明第一实施例的反电动势的曲线图；
图 5 是本发明第一实施例的波谱阶次示意图；
图 6 是本发明第一实施例的齿槽转矩的示意图；
图 7 是本发明第二实施例的永磁同步电机的截面示意图；
图 8 是本发明第二实施例的永磁同步电机的磁路组成示意图；
图 9 是本发明第三实施例的永磁同步电机的截面示意图；
图 10 是本发明第三实施例的永磁同步电机的磁路组成示意图。

具体实施方式

下面结合附图，通过对本发明的具体实施方式详细描述，将使本发明的技术方案及其他有益效果显而易见。

图 1A 是本发明第一实施例的永磁同步电机的截面示意图，图 1B 是其局部放大图。该永磁同步电机是 3 相交流永磁同步电机，该电机可作为电动机将电能转换成机械能，或者作为发电机将机械能转换成电能，尤其适于电动汽车中的动力系统中。

参考图 1A 和图 1B，该电机包括定子和转子，转子可转动地安装到定子内，转子包括转子铁芯 3 和安装到转子铁芯的若干块磁铁 4，若干块磁铁共形成 8 个磁极。如果用 P 表示磁极对数，则本实施例中 2P = 8 或者 P = 4。

本实施例中，转子铁芯 3 具有若干轴向的磁铁安装孔，磁铁 4 轴向地嵌装到转子铁芯内，每块磁铁对应一个磁铁安装孔。转子 3 具有 16 块磁铁，每个磁极由一对磁铁形成，该对磁铁在转子的横截面上形成一个开口朝外的“V”形。参考图 1B，用来安装该对磁铁 4 的两个磁铁安装孔不是连通的，而是被一个磁桥 32 隔开，换言之，形成“V”形的该对磁铁被磁桥 32 隔开。转子转动时，磁铁 4 以及磁铁外侧的部分转子铁芯 31 都会受到离心力，磁桥 32 有助于定位磁铁 4，能够防止磁铁 4 相对于转子铁芯进行周向的滑动，并能够防止或者减小转子铁芯受磁铁的离心力而出现的变形。

此外，转子铁芯 3 具有若干轴向的通孔 5，该若干通孔均匀隔开，排成环状。通孔 5 有助于散热，并能减小转子铁芯 3 的质量，减小转子铁芯 3 的惯性。

定子包括定子铁芯 1 以及设置在定子铁芯上的绕组（图 1 中未示出）。定子和转子之间具有气隙以容许转子相对于定子转动。本实施例中，该气隙的径向尺寸是不均匀的，具体地，定子铁芯的各个齿 2 的极表面基本上位于同一个圆周上，而转子铁芯 3 的外周表面
不是位于同一个圆周上，使得相邻两个磁极的中心处对应的气隙径向尺寸大于与每个磁极的中心处对应的气隙径向尺寸。参考图 1B，与相邻两个磁极的中心处 M 对应的气隙径向尺寸小于与磁极的中心处 N 对应的气隙的径向尺寸。这种气隙设计能够改善齿槽效应，改善反向电动势波形（back EMF）。下文将会总结测试结果进行说明。

[0032] 定子铁芯 1 具有 36 个齿 2，相邻两个齿 2 之间的线圈槽（下文简称为“槽”），定子铁芯 1 共具有 36 个槽。如果用 S 表示槽数，本实施例的槽数 S 与极对数 P 的关系是：

\[S = 3 \times m \times P \]

其中，m 为电机的相数，本实施例中 m = 3。

[0033] 图 2 是与其中一相电路对应的绕组的示意图。参考图 2，该相电路对应的绕组共具有 P 个（本实施例中 P = 4）线圈元件组 11 ～ 14，这 P 个线圈元件组沿着定子铁芯的周向均匀分布。每个线圈元件组包括串联的一个大线圈元件和一个小线圈元件。大线圈元件的节距大于小线圈元件的节距。参考图 2，线圈元件组 11 包括大线圈 111 和小线圈 112，大线圈元件的节距（coil pitch）为 5，小线圈元件的节距为 3，两者的节距相差 2，使得大线圈元件 111 的中心与小线圈元件 112 的中心重合，所谓重合，可以理解为这两个线圈元件以同一个齿或者槽为相位。其他线圈元件组 12 ～ 14 的设置与线圈元件组 11 的设置基本类似。

[0034] 再次参考图 2，对于每个线圈元件组，大线圈元件的匝数大于小线圈元件的匝数。优选地，大线圈元件的匝数是小线圈元件的两倍。本实施例中，同一个线圈元件组的大线圈元件与小线圈元件是串联关系。与同一相电路对应的大线圈元件组形成两个并联支路，每个并联支路包括串联的两个线圈元件组。例如，线圈元件组 11 与 12 串联后作为一个并联支路，线圈元件组 13 与 14 串联后作为另一个并联支路。作为一种可选方案，每相电路的 4 个线圈元件组可以串联在一起。作为另一种可选方案，每相电路的 4 个线圈元件组可以连接成 4 个并联支路，每个并联支路包括一个线圈元件组。

[0035] 图 3 是本发明第一实施例的永磁同步电机的绕组的示意图，图 3 中，用线段表示定子铁芯的各个齿 2，这 36 个齿所形成的 36 个槽表示为槽 S1 ～ S36。该永磁同步电机为三相（m = 3）永磁同步电机，每相电路对应 P 个线圈元件组（P = 4），每个线圈元件组包括串联在一起的一个大线圈元件和一个小线圈元件。

[0036] 参考图 3，第一相电路包括大 4 个线圈元件组 11 ～ 14。线圈元件组 11 包括串联在一起的一个大线圈元件 111 和一个小线圈元件 112，其中，大线圈元件 111 跨绕槽 S1 和 S6，节距是 5，小线圈元件 112 跨绕槽 S2 和 S5，节距是 3。槽 S3 和槽 S4 之间的齿作为大线圈元件 111 和小线圈元件 112 的中心，因此，大线圈元件 111 和小线圈元件 112 称为同心绕组。类似地，线圈元件组 12 的大线圈元件 121 和小线圈元件 122 也是同心轴组。本实施例中，线圈元件组 11 和线圈元件组 12 是串联关系，线端 A1 和 X1 是这两个线圈元件组的接线端；线圈元件组 13 和线圈元件组 14 也是串联关系，线端 A2 和 X2 是线圈元件组 13 和 14 的接线端。本实施例中，线端 A1 和 A2 电连接在一起，线端 X1 和 X2 电连接在一起，从而形成了两个并联支路。如上所述，作为一种替换方案，这 4 个线圈元件组可以串联在一起，或者作为 4 个并联支路并联在一起。

[0037] 类似地，第二相电路也包括 4 个线圈元件组，这 4 个线圈元件组形成两个并联支路，每个并联支路包括串联在一起的两个线圈元件。线端 B1 和 Y1 是其中一个并联支路的接线端，线端 B2 和 Y2 是另外一个并联支路的接线端，线端 B1 和 B2 电连接在一起，线端 Y1 和 Y2 电连接在一起。
第三相电路也包括4个线圈元件组，这4个线圈元件组形成两个并联支路，每个并联支路包括串联在起的两个线圈元件。线端C1和Z1是其中一个并联支路的接线端，线端C2和Z2是另外一个并联支路的接线端。线端C1和C2电连接在一起，线端Z1和Z2电连接在一起。

本实施例中，上述三相电路采用星型连接，即第一相电路的线端X1和X2、第二相电路的线端Y1和Y2、第三相电路的线端Z1和Z2连接在一起，作为公共端点。作为一种替换方案，这三相电路可以采用三角形（△）连接。

再参考图3，槽S1～S36中，槽仅仅收容一个大线圈元件的一个元件边，有的槽是收容两个小线圈元件的元件边，且这两个小线圈元件属于不同的相电路。仅仅收容一个大线圈元件的一个元件边的槽包括S1、S3、S4、S6、S7、S9、S10、S12、S13、S15、S1、S18、S19、S21、S22、S24、S25、S27、S28、S30、S31、S33、S34和S36，收容两个小线圈元件的元件边的槽包括S2、S5、S8、S11、S14、S17、S20、S23、S26、S29、S32以及S35。作为一种改进，可以在收容小线圈元件的槽例如槽S2中安装相绝缘，该相绝缘用于隔开位于该槽内的两个小线圈元件的元件边，防止这两个小线圈元件互相短路。优选地，在不同相的线圈元件的重叠或者交叉之处，都设置有相绝缘材料用于隔开不同相的线圈元件。

图4是本实施例的永久同步电机的反电势（back EMF）随着转子转动而变化的示意图。可以看见，反电势的变化曲线近似于一个正弦曲线。业内技术人员应当意识到，反电势的变化曲线越接近正弦曲线，电机的震动噪音将越小，谐波分量（harmonics）将越小。

图5是图4所示反电势的谐波阶次示意图。参考图4和图5，因为反电势曲线接近正弦曲线，因此，各个阶次的谐波分量较小，例如，9次谐波分量、11次谐波分量、23次谐波分量、25次谐波分量都几乎等于0。所以，该电机具有较高的效率，较小的震动噪音以及较低的附加损耗。

图6是该电机的齿槽转矩随着转子转动而变化的示意图。参考图6，在转子转动90度的范围内，齿槽转矩变化了18个周期，因此，转子每转一圈，齿槽转矩将变化72个周期。换言之，齿槽转矩的变化频率较高，所以降低了其变化幅值，从而具有较小的噪音和较高的控制精度。

图7是本发明第二实施例的永磁同步电机的截面示意图。该电机为三相（m = 3）电机，图8是其中一相电路对应的绕组的示意图。参考图7和图8，该电机的转子具有4个磁极（2P = 4），每个磁极对一极磁场形成，电机的定子具有18个（18 = 3 • m • P）线圈槽。每相电路包括两个线圈元件组，每个线圈元件组包括串联的一个大线圈元件和一个小线圈元件。大线圈元件和小线圈元件为同心绕组，大线圈元件的节距是5，小线圈元件的节距是3。本实施例中，每相电路所包含的两个线圈元件组形成一个并联支路。但是，作为一种替换方案，每相电路所包含的两个线圈元件组形成两个并联支路，每个并联支路包括一个线圈元件组。

图9是本发明第三实施例的永磁同步电机的截面示意图。该电机为三相6极27槽的电机，每个磁极对一极磁场形成，该对磁场形成一个开口朝外的V形。该电机的每相电路包括三个线圈元件组，每个线圈元件组包括串联的一个大线圈元件和一个小线圈元件。大线圈元件和小线圈元件为同心绕组，大线圈元件的节距是5，小线圈元件的节距是3。本实施例中，每相电路所包含的三个线圈元件
件组形成一个串联支路。但是，作为一种替换方案，每相电路所包含的三个线圈元件组形成三个并联支路，每个并联支路包括一个线圈元件组。

[0046] 上面结合本发明的优选实施例对本发明进行了描述。上述的实施例中，每个磁极由一对磁铁形成，但是本发明不局限于这种情况。例如，每个磁极可以由一块磁铁，该块磁铁在转子的横截面上形成“-”字，优选地，该磁铁关于转子的某个径向对称。

[0047] 再例如，每个磁极可以由三块磁铁磁铁形成，所述三块磁铁在转子的横截面上形成一个开口朝外的“U”字，优选地，所述U字关于所述转子的某个径向对称；或者，所述三块磁铁在转子的横截面上形成一个三角形，所述三角形关于所述转子的某个径向对称。优选地，从转子铁芯的中心往外出看，该三角形是一个倒三角形，即，三角形的一个顶点靠近转子铁芯的中心，一个边靠近转子铁芯的圆周表面。

[0048] 再例如，每个磁极包括四块磁铁，所述四块磁铁在转子的横截面上形成一个“W”形或者“VW”形。优选地，所述W形形或者“VW”形开口朝外。

[0049] 以上，对于本领域的普通技术人员来说，可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形，而所有这些改变和变形都应属于本发明的权利要求的保护范围。
图 2
图 3
图 4

图 5