(12) STANDARD PATENT (11) Application No. AU 2015324050 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Low latency ink rendering pipeline

(61) International Patent Classification(s)

GOG6F 3/0488 (2013.01) GOG6F 9/54 (2006.01)
GOG6F 9/44 (2006.01) GO6K 9/22 (2006.01)
(21) Application No: 2015324050 (22) Date of Filing: 2015.09.29

(87) WIPONo: WO16/053916

(30) Priority Data

(31) Number (32) Date (33) Country
14/500,997 2014.09.29 us
(43) Publication Date: 2016.04.07

(44) Accepted Journal Date: 2020.06.25

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Tu, Xiao;Menon, Krishnan;Xiong, Fei;Hong, Sung;Duhon, David Walker

(74) Agent/ Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WO 2005045574 A2

wo 2016/053916 A1 |[IN I N0F V0 OO0 O O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2016/053916 Al

7 April 2016 (07.04.2016) WIPOIPCT
(51) International Patent Classification: Group Docketing (Bldg. 8/1000), One Microsoft Way,
GOG6F 3/0488 (2013.01) GOG6F 9/54 (2006.01) Redmond, Washington 98052-6399 (US). DUHON, David
GO6F 9/44 (2006.01) GO6K 9/22 (2006.01) Walker; Microsoft Technology Licensing, LLC, Attn: Pat-
. .. ent Group Docketing (Bldg. 8/1000), One Microsoft Way,
(21) International Application Number: - R
PCT/US2015/052755 Redmond, Washington 98052-6399 (US).
. .) (74) Agents: MINHAS, Sandip et al.; Microsotft Corporation,
(22) International Filing Date.29 S ber 2015 (29.09.2015 Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
eptember 2015 (29.09.2015) crosoft Way, Redmond, Washington 98052-6399 (US).
(25) Filing Language: English (81) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
L. AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(71) Applicant: MICROSOFT TECHNOLOGY LICENS- HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg. KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
8/1000), One Microsoft Way, Redmond, Washington MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
98052-6399 (US).
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(72) Imventors: TU, Xiao; Microsoft Technology Licensing, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
LLC, Attn: Patent Group Docketing (Bldg. 8/1000), One
(84) Designated States (uniess otherwise indicated, for every

Microsoft Way, Redmond, Washington 98052-6399 (US).
MENON, Krishnan; Microsoft Technology Licensing,
LLC, Attn: Patent Group Docketing (Bldg. 8/1000), One
Microsoft Way, Redmond, Washington 98052-6399 (US).
XIONG, Fei; Microsoft Technology Licensing, LLC, Attn:
Patent Group Docketing (Bldg. 8/1000), One Microsoft
Way, Redmond, Washington 98052-6399 (US). HONG,
Sung; Microsoft Technology Licensing, LLC, Attn: Patent

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: LOW LATENCY INK RENDERING PIPELINE

s -~

o 1
InkPresenter !
}

StokesAdded
Event Handler

N

DIRECTINK STROKES

INK

h
HANDWRITING

160

DIRECTX GRAPHICS
INFRASTRUCTURE

SERIALIZATION RECOGNIZER
FIG—. 1 . WINRT APIS ADDED (1SF) APIS
1§2 136 APPIUITHREAD 138 154
130J COREDISPATCHER 124
POINTER INPUT AY
| INDEPENDENT INPUT MANAGER h., |NKMODELER

OPTIONAL INDEPENDENT INPUT
PLUG-IN (STROKEBUILDER FOR
INSTANCE)

COMPOSITOR
INPUT HITTESTING

{OXGly

RENDERED

WET-INK THREAD

GRAPHICS DRIVERS

™ 5

DIRECTINK

INPUT DRIVERS |104
INPUT HARDWARE [~102

150

FRIMITIVE AND COMMIT

DCOMP (FOR INK COMPOSITOR

(DWMCORE

DISPLAY

o

NOTIFICATIONS)

J

%/_/
LOW LEVEL INPUT
STACK (<=16MS)

COMPOSITOR
HOST PROCESS
(<1MS)

APPLICATION.EXE (-15MS
WITH WET INK PREDICTION)

\ﬂ_j %/_J
COMPOSITOR HOST LOW LEVEL OUTPUT

PROCESS (~24 MS) ~ STACK (~24 MS)

(57) Abstract: Systems and methods are provided for improving the latency for display of ink during user creation of ink content
with a stylus, mouse, finger (or other touch input), or other drawing device for tracing a desired location for ink content in a display
area. In order to reduce or minimize the time for display of ink content created by a user using a stylus/mouse/touch input/other
device, a separate ink rendering process thread can be used that operates within the operating system and in parallel to other applica-
tion threads. When it is desired to create ink content within an application, user interactions corresponding to creation of ink content
can be handled by the separate ink rendering process thread. This can avoid potential delays in displaying ink content due to an ap -
plication handling other events in a process tlow.

WO 2016/053916 A1 |IIWAT 00T 0O A0 O

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, __
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

2015324050 26 May 2020

wn

10

15

20

25

30

LOW LATENCY INK RENDERING PIPELINE

BACKGROUND
[0001] A tablet computing device (or a similar type of embedded device) often
contains a touchscreen that allows a user to enter data into the device. Data entry by the
user may be done using a finger, a mouse, a stylus (or pen), or such. Input from the pen (or
finger) to the device is called "ink."
[0002] Ink is digitized to allow it to be processed and manipulated by the
computing device and displayed. This typically is performed by sending out the digitized
ink to the operating system on the device, having the processor process the ink, and then
sending the processed ink to a graphics card. The graphics card then renders the ink
(which is the effect of the user's action) on a monitor or display.
[0003] One deficiency of current ink rendering techniques is the latency
introduced. Pens and fingers tend to be fast and virtually instantaneous while the rendering
of the ink tends to lag. In fact, the entire ink rendering process can introduce a latency that
can be on the order of anywhere between 70 to 200 milliseconds or even greater. This
latency in ink rendering can make for a slow and awkward user experience.
[0004] In particular, this latency is an undesirable effect in that is breaks the
perceptive barrier of manipulating an object directly. Of course these are mostly perceived
in situations where there is a co-located experience. In other words, when the input and the
output are co-located with each other (such as writing with a stylus on a tablet computing
device or a touchscreen), the latency effect is greatest.
[0004a] It is desired to address or ameliorate one or more disadvantages or
limitations associated with the prior art, or to at least provide a useful alternative.

SUMMARY

[0004b] In an embodiment, there is provided a method for rendering ink content on
a display device, comprising: defining an action context for receiving ink input actions;
receiving, by an application, an input action, the input action having an input context;
detecting the input action as an ink creation action because the input context satisfies
criteria specified by the action context; directing the ink creation action to a wet-ink
rendering thread, the wet-ink rendering thread being different from an application
processing thread for the application that renders an application; rendering, by the wet-ink
rendering thread, the ink creation action content with a latency less than a latency

threshold to generate a wet ink content; outputting the wet ink content for display;

2015324050 26 May 2020

10

15

20

25

30

detecting an additional input action corresponding to an end of ink creation; converting the
wet ink content, after detecting the additional input action corresponding to the end of ink
creation, to an intermediate ink content; transferring the intermediate ink content to the
application rendering thread; and synchronizing the rendering of the intermediate ink
content by the application rendering thread with the removing of the wet ink content
rendered by the wet-ink rendering thread; transferring the ink creation action to an
application processing thread; rendering, by the application processing thread, the ink
creation action to generate a dry ink content; and removing from display the intermediate
ink content rendered by the wet-ink rendering thread and outputting for display the dry ink
content.

[0004c¢] In an embodiment, there is provided one or more computer storage media
containing computer-executable instructions that, when executed, provide a method for
rendering ink content on a display device, comprising: defining an action context for
receiving ink input actions; receiving, by an application, an input action, the input action
having an input context; detecting the input action as an ink creation action because the
input context satisfies criteria specified by the action context; directing the ink creation
action to a wet-ink rendering thread, the wet-ink rendering thread being different from an
application processing thread for the application; rendering, by the wet-ink rendering
thread, the ink creation action; outputting the wet ink content for display; detecting an
additional input action corresponding to an end of ink creation; converting the wet ink
content, after detecting the additional input action corresponding to the end of ink creation,
to an intermediate ink content; transferring the intermediate ink content to the application
rendering thread; and synchronizing the rendering of the intermediate ink content by the
application rendering thread with the removing of the wet ink content rendered by the wet-
ink rendering thread; transferring the ink creation action from the wet-ink rendering thread
to an application processing thread; rendering, by the application processing thread, the
ink creation action to generate dry ink content; and removing the intermediate ink content
rendered by the wet-ink rendering thread and outputting the dry ink content for display.
[0004d] In an embodiment, there is provided one or more computer storage media
containing computer-executable instructions that, when executed, provide a method for
rendering ink content on a display device, comprising: receiving, by an application, an
input action, the input action having an input context; detecting the input action as an ink
creation action because the input context satisfies criteria specified by the action context,

the ink creation action corresponding to an ink content; directing the ink creation action to

2015324050 26 May 2020

wn

10

15

20

25

30

a wet-ink rendering thread, the wet-ink rendering thread being different from an
application processing thread for the application; rendering, by the wet-ink rendering
thread, the ink creation action with a latency less than a latency threshold to generate a wet
ink content; outputting the wet ink content for display; detecting an additional input action
corresponding to an end of ink creation; converting the wet ink content, after detecting the
additional input action corresponding to the end of ink creation, to an intermediate ink
content; transferring the intermediate ink content to the application rendering thread; and
synchronizing the rendering of the intermediate ink content by the application rendering
thread with the removing of the wet ink content rendered by the wet-ink rendering thread;
transferring the ink creation action from the wet-ink rendering thread to an application
processing thread; rendering, by the application processing thread, the ink creation action
to generate a dry ink content; and removing the intermediate ink content rendered by the
wet-ink rendering thread and outputting for display the dry ink content.

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] Some embodiments of the disclosure are herein described, by way of
example only, with reference to the accompanying drawings. With specific reference now
to the drawings in detail, it is stressed that the particulars shown are by way of example
and for purposes of illustrative discussion of embodiments of the disclosure. In this regard,
the description taken with the drawings makes apparent to those skilled in the art how
embodiments of the disclosure may be practiced.
[0006] The embodiments are described in detail below with reference to the
attached drawing figures, wherein:
[0007] FIG. 1 schematically shows a flow diagram for a relationship between
components for rendering wet ink content generated by a user.
[0008] FIG. 2 schematically shows a flow diagram for a relationship between
components for rendering various types of ink content.
[0009] FIG. 3 schematically shows a flow diagram for a relationship between

components for rendering ink content.

[0010] FIGS. 4 — 6 show process flows for rendering of various types of ink
content.
[0011] FIG. 7 shows a process communication flow diagram for transfer of ink

content between process threads.

2015324050 26 May 2020

10

15

20

25

30

DETAILED DESCRIPTION
Overview
[0012] Systems and methods are provided for improving the latency for display of
ink during user creation of ink content with a stylus, mouse, finger (or other touch input),
or other drawing device for tracing a desired location for ink content in a display area. In
order to reduce or minimize the time for display of ink content created by a user using a
stylus/mouse/touch input/other device, a separate ink rendering process thread can be used
that operates within the operating system and in parallel to other application threads.
When it is desired to create ink content within an application, user interactions
corresponding to creation of ink content can be handled by the separate ink rendering
process thread. This can avoid potential delays in displaying ink content due to an
application handling other events in a process flow. Because the separate ink rendering
process thread is in communication with the application, the ink content rendered by the
separate ink rendering process can still be rendered using the context of the application.
This can allow the ink content to be displayed to a user with a substantially similar
appearance to the appearance the ink content can have after transfer of the ink content to
the corresponding application.
[0013] In various aspects, systems and methods are provided for improving the
latency for display of ink during user creation of ink content with a stylus, mouse, finger
(or other touch input), or other drawing device for tracing a desired location for ink
content in a display area. In order to reduce or minimize the time for display of ink content
created by a user using a stylus/mouse/touch input/other device, a separate ink rendering
process thread can be used that operates within the operating system and in parallel to
other application threads. When it is desired to create ink content within an application,
user interactions corresponding to creation of ink content can be handled by the separate
ink rendering process thread. This can avoid potential delays in displaying ink content due
to an application handling other events in a process flow. Because the separate ink
rendering process thread is in communication with the application, the ink content
rendered by the separate ink rendering process can still be rendered using the context of
the application. This can allow the ink content to be displayed to a user with a
substantially similar appearance to the appearance the ink content can have after transfer
of the ink content to the corresponding application.
[0014] In various aspects, the systems and methods described herein can also

allow new ink content created by a user to be displayed continuously during the transition

2015324050 26 May 2020

10

15

20

25

30

of the handling of the ink content between process threads. When the creation of a given
portion of new ink content is considered completed, the rendering of the completed
content can be transferred to the process thread for the corresponding application. Since
the creation of the particular portion of ink content is completed, the latency difficulties
for new ink content are no longer of concern. As a result, further rendering can be
performed by the process thread of the corresponding application with a reduced or
minimized concern for latency in display of the completed content. In order to further
improve the user experience, the transfer of display of the completed content from the ink
rendering thread to the corresponding application process thread can be synchronized.
This can allow the content to be displayed in a substantially continuous manner while
eliminating the time period where both process threads attempt to display the ink content.
Aspects of the disclosure can also prevent a situation where neither process is attempting
to display ink content. In other words in an aspect of the disclosure, one or the other
process can be displaying ink content, but not both simultaneously.

[0015] One of the difficulties with rendering ink content created by a user is
displaying the ink content sufficiently quickly so that the user’s actions appear to result in
display of the ink content. It has previously been determined that users can perceive
delays in responding to user actions for creation of ink content that are as small as about
50 milliseconds or less. When a delay in display of ink content being created by a user is
visible, the delay can disrupt the user experience as the content creation may no longer
have the sensation of creating ink using a physical pen on a writing surface. Unfortunately,
attempting to display ink content using the process thread for an application where the ink
content is created can lead to undesirable latency periods. This is due to the fact that a
typical application does not have an ability to prioritize actions related to ink content
within the application process thread relative to other actions performed by the
application.

[0016] As an alternative, the rendering of the ink content can be entirely separated
out from the operating system. This can allow for display of new ink content created by a
user using hardware and/or software features that by-pass the operating system, and
instead directly display the new ink in the display area. After creation of the new ink
content, the new ink content is then passed to the operating system, where any
modifications to the display features can be applied so that the ink content is rendered in

the context provided by a corresponding application. While this type of method can

2015324050 26 May 2020

10

15

20

25

30

reduce latency in display of new ink content, the initial display of the new ink content may
differ from the final rendering of the content.

[0017] In some aspects, a benefit of the systems and methods described herein is
improving the performance of the computer in order to reduce the latency for display of
ink content. Such an improvement can also lead to an improved user experience during
creation of ink content.

[0018] In various aspects, the systems and methods described herein can allow a
user to create ink input using an input device, such as a stylus, a touch interface for
receiving touch input, a mouse, or another device that can control the movement of a
cursor within a display area. A user’s desire to create ink content can be determined or
detected based on a context for a user’s actions. An action context can be defined that
corresponds to actions for creation of ink content. An input context for a user action can
then be detected and compared with the action context to determine whether an input
action is an ink creation action.

[0019] One type of context can be the nature of the input device itself. This can be
referred to as a modal context, which can be detected based on the interaction of a stylus
with a surface; the interaction of a finger or another shape with a surface for touch input;
the movement of a cursor icon (or other cursor identifier) using a mouse; and/or any other
convenient device.

[0020] A second type of context can be a location context. Optionally, the entire
display area of a display, a touch surface, an input pad, or another type of user interface
can be ready for receipt of ink content at any time. In this type of option, a user’s actions
can be detected as ink creation actions based on just the modal context and/or based on
other types of context different from a location context. Alternatively, one or more
regions in a user interface (such as in the display area of a user interface) can be identified
as regions where ink content can be received. In this type of option, a user action is
detected as an ink creation action based on a combination of the modal context and the
location context. The regions for potentially receiving ink content can be pre-defined by
an operating system for a device; pre-defined by an application running on a device; or
created based on definitions for one or more regions by a user.

[0021] A third type of context can be an ink creation context. One option can be to
interpret any user action having a selected modal context and/or location context as an ink
creation action. Alternatively, determining that a user action is an ink creation action can

be dependent on detecting a specific type of user action, such as a single tap/click or

2015324050 26 May 2020

10

15

20

25

30

double tap/click with an input device to initiate creation of ink content. Such specified
actions can correspond to an ink creation context. It is noted that the ink creation context
can vary depending on whether a user has previously initiated ink creation. For example,
additional actions by a user, such as movement of the input device or a cursor, can be
interpreted as ink creation actions after ink creation has been initiated and until an action is
detected that ends the ink creation, such as lifting the device away from the input surface.
[0022] Aspects of the disclosure are not limited to the three contexts describe
above. Other contexts are possible.

[0023] Based on the modal context, the location context, the action context, and/or
any other types of context used for determination of whether a user action is an ink
creation action, the user input actions can be tested against the context to determine
whether the user actions are ink creation actions. If the input actions are ink creation
actions, the input actions can be routed to a separate process thread, such as an ink
rendering thread, for rendering the ink content being created by the user. Actions which
do not satisfy the context conditions can be passed to the application and/or the operating
system for processing in the conventional process thread for handling user input actions.
Although the testing of input actions can cause a brief delay to determine the nature of the
input actions, substantial reduction in latency can be achieved (such as tens of
milliseconds) based on using a separate process thread for rendering ink content as it is
created by the user. This type of testing can sometime be referred to as “hit testing.” In
one aspect of the disclosure, hit testing does not occur. Instead, ink is generated based on
the contact and displayed without hit testing (and without the resulting delay). If the input
turns out not to satisfy an inking context, then the ink process is canceled and the
displayed wet ink removed.

[0024] One potential concern with handling ink content in a separate ink rendering
process thread from an underlying application is that the new ink content must eventually
be transferred to (or synchronized with) the underlying application. In various aspects,
systems and methods are provided that allow this transfer to occur while reducing or
minimizing changes in the displayed ink content (including temporary loss of display)
and/or reducing or minimizing dual display of content by both process threads. This can
provide benefits both in performance of a device and in the resulting user experience.
Definitions

[0025] In the discussion below, examples of the systems and methods according to

the disclosure may be exemplified using an operating environment based on a Microsoft™

6A

2015324050 26 May 2020

wn

10

15

20

25

operating environment. Additionally, certain terms are used for ease of reference in
describing the various aspects. The following explicit definitions are provided to aid in
understanding of the various aspects.

[0026] Wet Ink: Ink that is rendered while an ink stroke is in progress, that is,
while the contact (pen, for example) has not yet been lifted off the surface. In various
aspects, wet ink can be converted to or replaced with semi-dry ink or dry ink. The
conversion process may continue for a period of time after the pen has been lifted off the
surface. The rendered ink remains wet ink until replaced with either semi-dry ink or dry

ink. In various aspects, wet ink is rendered on the separate ink rendering thread.

[0027] Dry Ink: Ink that is rendered or re-rendered after an ink stroke is completed
or ink that is rendered from ink data loaded from a source (persisted ink content) other
than input.

[0028] Semi-dry Ink: Ink in an intermediate layer pending synchronization to the

dry ink layer. In various aspects, semi-dry ink can be rendered on the separate ink
rendering process thread.

[0029] Wet/Dry Synchronization: A mechanism to allow dry ink to be rendered
and made visible on the dry ink thread and wet ink to be cleared on the ink thread in a
manner that can ensure that a) wet ink is not still visible when corresponding dry ink
becomes visible; b) wet ink does not disappear before corresponding dry ink becomes
visible; and c) the ink thread is never blocked from processing input and rendering further
wet ink.

[0030] Host: The underlying application or framework within which a portion of

new ink content is created by a user.

[0031] Host Thread: The process thread for the underlying application or user
interface.
[0032] Ink Rendering Thread: A background thread (preferably created within the

operating system) on which input of selected types is received and processed to render wet

6B

10

15

20

25

30

WO 2016/053916 PCT/US2015/052755

ink. Note that this thread is shared by all instances for rendering of wet ink within a
process.

[0033] Dry Ink Thread: The thread on which ink data is delivered to the rendering
component or thread. In one aspect, the host thread is the rendering thread, but other
options are possible including a dedicated ink rendering thread.

[0034] Input Re-Direction: A mechanism to register with the input stack to have
input matching specified characteristics (such as input for creation of wet ink)
automatically routed to a specified thread instead of, by default, the UI thread. In various
aspects, the specified characteristics can correspond to a modality of input, such as use of
a stylus, finger (or other touch input), or other input device suitable for creation of wet ink.
In various aspects, the specified characteristics can further specify the use of such an input
device within a portion of a user interface that has been defined for receiving wet ink
input.

[0035] InkManager: A Windows Runtime class. It provides properties and
methods to manage the input, manipulation, and processing (including handwriting
recognition) of one or more ink objects.

[0036] D2D: Direct2D. A hardware-accelerated, immediate-mode, 2-D graphics
API that provides high performance and high-quality rendering for 2-D geometry,
bitmaps, and text. It is designed to support interop with other rendering technology such as
Direct3D.

[0037] D3D: Direct3D. A low-level API for drawing primitives with the rendering
pipeline or performing parallel operations with the compute shader. It hides different GPU
implementations behind a coherent abstraction and is designed to drive graphics-specific
processors.

[0038] DComp: DirectComposition. A Windows component that enables high-
performance bitmap composition with transforms, effects, and animations. It can combine
bitmaps from a variety of sources and leverage the Desktop Window Manager (DWM) for
rendering to the screen.

[0039] DXGI: Microsoft DirectX Graphics Infrastructure. It manages low-level
tasks that can be independent of the Direct3D graphics runtime. It also provides a common
framework for several versions of Direct3D.

Process Flow for Handling Ink Content

[0040] FIG. 1 shows an example of a process flow for rendering of wet ink content

using a separate ink rendering process thread. In the process flow shown in FIG. 1, a user

10

15

20

25

30

WO 2016/053916 PCT/US2015/052755

can use a hardware component, such as a mouse, stylus, pen, or a touch interface (for
receiving touch input) to provide input actions for creating wet ink content. The input
hardware 102 can pass this input to hardware drivers 104 and eventually to an input tester
110. The input tester can evaluate the context for the input actions, including the nature of
the hardware and/or the location within a display associated with the input actions, to
determine whether the input actions correspond to actions for creating wet ink content.
[0041] If the user actions correspond to creating wet ink content, the input actions
are diverted to wet ink process thread 120. As shown in FIG. 1, wet ink process thread
120 handles only a limited number of actions, which can reduce or minimize the potential
for delays in handling a wet ink rendering action. This is in contrast to the multiple types
of actions handled by the general user interface and/or application process thread 130. For
example, just in relation to handling of ink content, the user interface and/or application
process thread 130 can: provide application program interfaces 132 for general display of
ink content; provide application program interfaces 134 for additional processing of ink
content, such as handwriting recognition; receive input 136 for when ink strokes have
been added, so that the resulting ink content can be displayed; and handle display of
previously created dry ink content 138, such as serialized ink content.

[0042] After receiving wet ink input, the wet ink process thread 120 can render
124 the wet ink content and pass the rendered content back to the graphics processing
clements of the operating system, such as compositor 150. Eventually the rendered wet
ink is passed to the hardware graphics display elements 160 for display to a user.

[0043] A system using a process flow as shown in FIG. 1 can provide a variety of
advantages. For example, this type of process flow can provide low latency wet ink
rendering that is independent of application/UI thread, i.e. input flows directly to a high
priority background thread (Wet-Ink Thread shown in FIG. 1) and will never be blocked
by Ul/app thread activities. Optionally but preferably, the system can use wet Bezier
algorithms that work well for default pen types, as well as prediction to reduce latency by
15 ms or more relative to a conventional system. Such a system can also be compatible
with pressure modeling for altering ink characteristics. Additionally, based in part on the
wet ink process thread being within the operating system, the wet ink process thread can
render a pen cursor that matches the ink drawing attributes (color, shape, size, type etc.).
[0044] FIG. 2 shows another process flow that includes process threads for display
of both wet ink (i.c., ink during the process of creation by a user) and dry ink (i.e., ink

content previously entered by the user and/or obtained from a data source). In the process

10

15

20

25

30

WO 2016/053916 PCT/US2015/052755

flow in FIG. 1, ink content created by a user can be rendered by the wet-ink process thread
after creation of the ink content is complete. The dry-ink content rendering in FIG. 1
corresponds to rendering of previously defined dry-ink content, such as content retrieved
from a source file. In FIG. 2, additional flows are shown to allow for transfer of ink
content created by a user from the wet-ink process thread to the user interface / application
/ other thread for rendering of dry-ink content.

[0045] In FIG. 2, wet-ink thread 120 can communicate with user interface thread
130 (and optional separate dry-ink rendering thread 233) via components that
communicate with both threads. These components can include an InkSync component
242 that synchronizes transfer of wet ink from the wet-ink thread 120 to user interface
thread 130. The components can also include commit manager 246 that provides
verification to components that a transfer has been completed. For example, commit
manager 246 can inform user interface thread 130 when a conversion from wet ink to
intermediate ink (or semi-wet ink) has been completed by wet ink thread 120. Similarly,
commit manager 246 can inform wet ink thread 120 when the user interface thread 130
has started rendering of a transferred dry ink content, so that wet ink thread 120 can stop
rendering of the corresponding intermediate ink content.

Component Relationships

[0046] FIG. 3 shows relationships between various components that can be used
for rendering of user created ink content (wet ink) as well as transfer of wet ink from a
separate ink rendering thread to a process thread associated with an application. In FIG. 3,
a host application 310 or other framework (including potentially an operating system) can
communicate via one or more application programming interfaces 320 with an overall
“Directlnk Core” module 330. The application programming interfaces 320 shown in
FIG. 3 include input interfaces and ink handling interfaces. When input is received by the
host 310 that is detected as wet ink input (or another type of input to be handled by the wet
ink process thread), the input is passed into module 330.

[0047] The DirectlnkCore Implement object 332 is a container object that creates
and coordinates most of the other objects shown in module 330. The Marshaller 342 owns
the ink thread and implements the mechanism for notifications between threads, isolating
the notification mechanism from the other components. The Input Context object 336 is
an input sink object that registers for input redirection and receives input on the ink thread.
The Ink Sync object 346 is a synchronization engine that implements the mechanism for

wet/dry ink synchronization. The Commit Manager 352 is a shared object that performs

10

15

20

25

30

WO 2016/053916 PCT/US2015/052755

DComp Commits and isolates other components from the details of the DComp commit
completion notification. The Render Manager 370 tracks renderer instances to be used for
wet, semi-dry and dry layers and routes render requests to the appropriate renderer
instance. Render Manager 370 can also create default renderer instances as required and
manages custom renderer instances as required. Renderer 372 is a high-level renderer
object. Renderer Implement 374 is a low-level renderer object that, given a
surface/context, ink data and drawing attributes, performs the actual rendering. Ink
Modeler 376 creates smooth Bezier segments from input, optionally with prediction.
[0048] The Ink Tree Data object 340 is a data object that creates and maintains a
DComp visual sub-tree representing the ink sub-tree for a DirectlnkCore instance along
with associated ink data for the wet, semi-dry and dry layers.

[0049] FIG. 4 shows a data flow for handling the arrival of input corresponding to
wet ink and the rendering of the wet ink input. In FIG. 4, input that is identified as being
wet ink is delivered by system input stack 410 to input context component 420. The input
can optionally be passed to any input plug-ins 425. The input is also passed to InkSync
component 430. InkSync 430 can pass information to the InkTreeData component 440
that new wet ink content is being created. InkSync can also instruct the render manager
450 to render the wet ink. Finally, when entry of ink content is completed, InkSync 430
can notify commit manager 460.

[0050] FIG. 5 shows a data flow for rendering of semi-dry or intermediate ink after
the completion of entry of an ink content portion by a user. In FIG. 5, the data flow starts
when Ink Sync component 430 notifies InkTreeData 440 that creation of an ink content
portion has been completed, so the ink content portion can be moved from wet ink status
to intermediate ink status. The render manager 450 can then receive instruction to render
the completed portion of ink content using an intermediate or semi-dry ink renderer
instance, allowing the wet ink renderer instance to be ready for another ink content
creation event. After notifying the commit manager 460, the marshaller 470 can be passed
a notification that ink is available for transfer to the dry-ink render process thread that is
managed by the host or underlying application.

[0051] FIG. 6 shows a process flow for the (synchronized) transfer of ink from the
wet ink process thread to the dry ink process thread. In FIG. 6, InkSync 430 receives an
Ink Available signal from Marshaller 470. InkSync 430 then informs InkTreeData 440 to
copy the ink content from semi-dry to dry status. The stroke information for rendering the

ink as dry ink is passed using Ink Callback 672 to Ink Handler 680. The ink content is

10

2015324050 26 May 2020

wn

10

15

20

25

30

also passed to Render Manager 450 for rendering with a dry ink renderer instance. After
this is completed, InkSync 430 notifies InkTreeData 440 that the semi-dry version of the
ink content can be hidden, so that the wet ink thread no longer handle the ink content.
[0052] FIG. 7 shows a communication flow between the DComp instances for the
wet ink rendering thread (ink) and for the dry ink rendering thread (host). The
communication flow in FIG. 7 shows how the transfer of wet ink to dry ink can be
synchronized to reduce or minimize the time where the dry ink thread and the wet ink
thread both attempt to display ink content while avoiding discontinuities in the display of
the ink content.

[0053] In FIG. 7, the Ink thread 703 initiates the calls by starting a move wet to
semi-wet process 710. The DComp component 701 confirms with the Ink thread with
commit calls 712. An InkAvailable call 714 is then passed to Host thread 706. Host
thread 706 initiates a copy semi-dry to dry call 716 to move the data within the ink tree.
After this copy is complete, a call 718 to hide the semi-dry data is also made. The semi-
dry to dry transition is confirmed with Dcomp host thread 708 with commit calls 722. A
call 724 is then returned to ink thread 703 that the transfer of semi-dry ink to dry ink is
complete. The rendering of the semi-dry ink by the wet ink thread is then cleared 726,
with commit calls 732 to confirm. A call 734 regarding the clearing of the semi-dry ink is
then passed to Host thread 706.

Additional Examples

[0054] Having briefly described an overview of various embodiments of the
disclosure, an exemplary operating environment suitable for performing the disclosure is
now described. Embodiments of the disclosure may be described in the general context of
computer code or machine-useable instructions, including computer-executable
instructions such as program modules, being executed by a computer or other machine,
such as a personal data assistant or other handheld device. Generally, program modules,
including routines, programs, objects, components, data structures, etc., refer to code that
perform particular tasks or implement particular abstract data types. The disclosure may
be practiced in a variety of system configurations, including hand-held devices, consumer
electronics, general-purpose computers, more specialty computing devices, and the like.
The disclosure may also be practiced in distributed computing environments where tasks
are performed by remote-processing devices that are linked through a communications

network.

11

10

15

20

25

30

WO 2016/053916 PCT/US2015/052755

[0055] A suitable computing device may include a bus that directly or indirectly
couples the following devices: memory, one or more processors, one or more presentation
components, input/output (I/0) ports, I/O components, and a power supply. A bus
represents what may be one or more busses (such as an address bus, data bus, or
combination thercof). Although the various components are described as individual
components for the sake of clarity, in reality, delineating various components is not so
clear, and metaphorically, the lines would more accurately be grey and fuzzy. For
example, one may consider a presentation component such as a display device to be an I/O
component. Additionally, many processors have memory. Distinction is not made

2 (13

between such categories as ‘“‘workstation,” “server,” “laptop,” “hand-held device,”
“tablet,” etc., as all are contemplated within the scope of “computing device.”

[0056] Computer storage media includes volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of
information, such as computer-readable instructions, data structures, program modules, or
other data. Computer storage media includes, but is not limited to, Random Access
Memory (RAM), Read Only Memory (ROM), Electronically Erasable Programmable
Read Only Memory (EEPROM), flash memory or other memory technology, CD-ROM,
digital versatile disks (DVDs) or other holographic memory, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium that
can be used to encode desired data and that can be accessed by the computing device 100.
In an embodiment, the computer storage media can be selected from tangible computer
storage media like flash memory. These memory technologies can store data
momentarily, temporarily, or permanently. Computer storage does not include, and
excludes, communication media. Computer storage media is non-transitory and excludes
propagated data signals.

[0057] On the other hand, communication media typically embodies computer-
readable instructions, data structures, program modules or other data in a modulated data
signal such as a carrier wave or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a signal that has one or more of
its characteristics set or changed in such a manner as to encode information in the signal.
By way of example, and not limitation, communication media includes wired media, such
as a wired network or direct-wired connection, and wireless media such as acoustic, RF,

infrared and other wireless media.

12

10

15

20

25

30

WO 2016/053916 PCT/US2015/052755

[0058] Memory can include computer-readable media in the form of volatile
and/or nonvolatile memory. The memory may be removable, non-removable, or a
combination thereof. Exemplary hardware devices include solid-state memory, hard
drives, optical-disc drives, etc. A computing device can include one or more processors
that read data from various entities such as the memory or the I/O components. The
presentation component(s) present data indications to a user or other device. Exemplary
presentation components include a display device, speaker, printing component, vibrating
component, and the like.

[0059] The 1/0 ports can allow the computing device to be logically coupled to
other devices including the I/O components, some of which may be built in. Illustrative
components can include a microphone, joystick, game pad, satellite dish, scanner, printer,
wireless device, etc. The I/O components can include components that receive one or
more input types from a plurality of input types, such as touch input (e.g., touching or
proximity to a display interface, as opposed to indirect movement on a display based on
interaction with a keyboard or mouse), gesture input, haptic input, voice input, proximity
input, interaction with a secondary input device such as the input devices identified above,
or any other convenient type of input.

[0060] A computing device may include a radio. The radio transmits and receives
radio communications. The computing device may be a wireless terminal adapted to
received communications and media over various wireless networks. Computing device
1100 may communicate via wireless protocols, such as code division multiple access
(“CDMA”), global system for mobiles (“GSM”), or time division multiple access
(“TDMA”), as well as others, to communicate with other devices. The radio
communications may be a short-range connection, a long-range connection, or a
combination of both a short-range and a long-range wireless telecommunications
connection. When we refer to “short” and “long” types of connections, we do not mean to
refer to the spatial relation between two devices. Instead, we are generally referring to
short range and long range as different categories, or types, of connections (i.e., a primary
connection and a secondary connection). A short-range connection may include a Wi-Fi®
connection to a device (e.g., mobile hotspot) that provides access to a wireless
communications network, such as a WLAN connection using the 802.11 protocol. A
Bluetooth connection to another computing device is second example of a short-range
connection. A long-range connection may include a connection using one or more of

CDMA, GPRS, GSM, TDMA, and 802.16 protocols.

13

10

15

20

25

30

WO 2016/053916 PCT/US2015/052755

[0061] Embodiments of the present invention have been described in relation to
particular embodiments, which are intended in all respects to be illustrative rather than
restrictive. Alternative embodiments will become apparent to those of ordinary skill in the
art to which the present invention pertains without departing from its scope.

[0062] Embodiment 1. A method for rendering ink content on a display device,
comprising: defining an action context for receiving ink input actions, the action context
including at least a modal context; receiving, by an application, an input action, the input
action having an input context; detecting the received input action as an ink creation
action, the received input action being detected as an ink creation action based on the input
context corresponding to the defined action context, the detected ink creation action
corresponding to an ink content; directing the detected ink creation action to a wet-ink
rendering process thread, the wet-ink rendering thread being different from an application
processing thread for the application; rendering, by the wet-ink rendering thread, the ink
content with a latency less than a latency threshold; and detecting an input action
corresponding to an end of ink creation.

[0063] Embodiment 2. The method of Embodiment 1, further comprising:
transferring the ink content from the wet-ink rendering thread to an application rendering
thread, the application rendering thread being different from the wet-ink rendering thread
and optionally being different from the application processing thread; rendering, by the
application rendering thread, the transferred ink content; and removing the ink content
rendered by the wet-ink rendering thread.

[0064] Embodiment 3. The method of Embodiment 2, wherein transferring the ink
content from the wet-ink rendering thread to the application rendering thread comprises:
converting the ink content, after detecting the input action corresponding to the end of ink
creation, to an intermediate ink content; transferring the intermediate ink content to the
application rendering thread; and synchronizing the rendering of the transferred
intermediate ink content by the application rendering thread with the removing of the ink
content rendered by the wet-ink rendering thread.

[0065] Embodiment 4. The method of any of the above embodiments, wherein the
latency threshold is about 75 milliseconds or less, or about 60 milliseconds or less, or
about 50 milliseconds or less.

[0066] Embodiment 5. The method of any of the above embodiments, wherein the
modal context comprises an input mode of pen input, stylus input, touch input, mouse

input, or a combination thereof.

14

2015324050 26 May 2020

wn

10

15

20

25

30

[0067] Embodiment 6. The method of any of the above embodiments, wherein the
defined action context further comprises a location context.

[0068] Embodiment 7. The method of Embodiment 6, wherein the location
context comprises a region of a display area of a display device, the region comprising less
than a total area of the display area.

[0069] Embodiment 8. The method of Embodiment 6 or 7, wherein the location
context comprises a plurality of regions of a display area of a display device, or wherein
the location context comprises a plurality of regions from a plurality of display areas.
[0070] Embodiment 9. The method of any of the above embodiments, wherein at
least one of the input context and the action context further comprises one or more display
properties for ink rendered by the wet-ink rendering thread.

[0071] Embodiment 10. The method of claim 9, further comprising: detecting a
change in the one or more display properties for ink rendered by the wet-ink rendering
thread during the rendering of the ink content by the wet-ink rendering thread; and
rendering at least a portion of the ink content using the changed one or more display
properties.

[0072] Embodiment 11. The method of Embodiment 10, wherein at least a portion
of ink content rendered prior to detecting the change in the one or more display properties
is rendered with the changed one or more display properties prior to detecting the input
action corresponding to an end of ink creation.

[0073] Embodiment 12. The method of any of the above embodiments, wherein
the action context further comprises an ink creation context.

[0074] From the foregoing, it will be seen that this disclosure is one well adapted
to attain all the ends and objects hereinabove set forth together with other advantages
which are obvious and which are inherent to the structure.

[0075] It will be understood that certain features and subcombinations are of utility
and may be employed without reference to other features and subcombinations. This is
contemplated by and is within the scope of the claims.

[0076] Throughout this specification and claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises" and
"comprising", will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers

or steps.

15

2015324050 26 May 2020

wn

[0077] The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

I5A

2015324050 26 May 2020

10

15

20

25

30

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for rendering ink content on a display device, comprising:

defining an action context for receiving ink input actions;

receiving, by an application, an input action, the input action having an input
context;

detecting the input action as an ink creation action because the input context
satisfies criteria specified by the action context;

directing the ink creation action to a wet-ink rendering thread, the wet-ink
rendering thread being different from an application processing thread for the application
that renders an application;

rendering, by the wet-ink rendering thread, the ink creation action content with a
latency less than a latency threshold to generate a wet ink content;

outputting the wet ink content for display;

detecting an additional input action corresponding to an end of ink creation;

converting the wet ink content, after detecting the additional input action
corresponding to the end of ink creation, to an intermediate ink content;

transferring the intermediate ink content to the application rendering thread; and

synchronizing the rendering of the intermediate ink content by the application
rendering thread with the removing of the wet ink content rendered by the wet-ink
rendering thread;

transferring the ink creation action to an application processing thread;

rendering, by the application processing thread, the ink creation action to generate
a dry ink content; and

removing from display the intermediate ink content rendered by the wet-ink

rendering thread and outputting for display the dry ink content.

2. The method of claim 1, wherein the modal context comprises an input mode of pen

input, stylus input, touch input, mouse input, or a combination thereof.

3. The method of either claim 1 or 2, wherein the action context further comprises a

location context.

16

2015324050 26 May 2020

10

15

20

25

30

4. The method of claim 3, wherein the location context comprises a region of a
display area of the display device, the region comprising less than a total area of the

display area.

5. The method of either claim 3 or 4, wherein the location context comprises a

plurality of regions of a display area of the display device.

6. The method of any one of claims 3 to 5, wherein the location context comprises a

plurality of regions from a plurality of display areas.

7. The method of any one of claims 1 to 6, wherein at least one of the input context
and the action context further comprises one or more display properties for the wet ink

content rendered by the wet-ink rendering thread.

8. The method of claim 7, further comprising:
detecting that the one or more display properties have been updated to form a
changed one or more display properties for the wet ink content rendered by the wet-ink
rendering thread during the rendering of the ink creation action by the wet-ink rendering
thread; and
rendering at least a portion of the ink creation action using the changed one or
more display properties.
9. The method of claim 8, wherein at least a portion of the wet ink content rendered
prior to detecting that the one or more display properties have been updated is rendered
with the changed one or more display properties prior to detecting the additional input

action corresponding to the end of ink creation.

10. The method of any one of claims 1 to 9, wherein the action context further

comprises an ink creation context.

11. One or more computer storage media containing computer-executable instructions
that, when executed, provide a method for rendering ink content on a display device,
comprising:

defining an action context for receiving ink input actions;

receiving, by an application, an input action, the input action having an input context;

17

2015324050 26 May 2020

10

15

20

25

30

detecting the input action as an ink creation action because the input context satisfies
criteria specified by the action context;

directing the ink creation action to a wet-ink rendering thread, the wet-ink rendering
thread being different from an application processing thread for the application;

rendering, by the wet-ink rendering thread, the ink creation action;

outputting the wet ink content for display;

detecting an additional input action corresponding to an end of ink creation;

converting the wet ink content, after detecting the additional input action
corresponding to the end of ink creation, to an intermediate ink content;

transferring the intermediate ink content to the application rendering thread; and

synchronizing the rendering of the intermediate ink content by the application
rendering thread with the removing of the wet ink content rendered by the wet-ink
rendering thread;

transferring the ink creation action from the wet-ink rendering thread to an application
processing thread;

rendering, by the application processing thread, the ink creation action to generate dry
ink content; and

removing the intermediate ink content rendered by the wet-ink rendering thread and

outputting the dry ink content for display.

12. The one or more computer storage media of claim 11, wherein the modal context
comprises an input mode of pen input, stylus input, touch input, mouse input, or a

combination thereof,

13. The one or more computer storage media of either claim 11 or 12, wherein the
location context comprises a region of a display area of the display device, the region

comprising less than a total area of the display area.

14. The one or more computer storage media of any one of claims 11 to 13, wherein
the location context comprises a plurality of regions of a display area of the display

device.

15. The one or more computer storage media of any one of claims 11 to 14, wherein

the location context comprises a plurality of regions from a plurality of display areas.

18

2015324050 26 May 2020

10

15

20

25

30

16. The one or more computer storage media of any one of claims 11 to 15, wherein at
least one of the input context and the action context further comprises one or more display

properties for the wet ink content rendered by the wet-ink rendering thread.

17. One or more computer storage media containing computer-executable instructions
that, when executed, provide a method for rendering ink content on a display device,
comprising:

receiving, by an application, an input action, the input action having an input context;

detecting the input action as an ink creation action because the input context satisfies
criteria specified by the action context, the ink creation action corresponding to an ink
content;

directing the ink creation action to a wet-ink rendering thread, the wet-ink rendering
thread being different from an application processing thread for the application;

rendering, by the wet-ink rendering thread, the ink creation action with a latency less
than a latency threshold to generate a wet ink content;

outputting the wet ink content for display;

detecting an additional input action corresponding to an end of ink creation;

converting the wet ink content, after detecting the additional input action
corresponding to the end of ink creation, to an intermediate ink content; transferring the
intermediate ink content to the application rendering thread; and

synchronizing the rendering of the intermediate ink content by the application
rendering thread with the removing of the wet ink content rendered by the wet-ink
rendering thread;

transferring the ink creation action from the wet-ink rendering thread to an application
processing thread;

rendering, by the application processing thread, the ink creation action to generate a
dry ink content; and

removing the intermediate ink content rendered by the wet-ink rendering thread and

outputting for display the dry ink content.

18. The one or more computer-storage media of claim 17, wherein at least one of the
input context and the action context further comprises one or more display properties for

ink rendered by the wet-ink rendering thread.

19

2015324050 26 May 2020

wn

19. The one or more computer-storage media of claim 17 or 18, wherein the modal
context comprises an input mode of pen input, stylus input, touch input, mouse input, or a

combination thereof,

20. The one or more computer-storage media of any one of claims 17 to 19, wherein

the wet ink content is rendered with characteristics provided by the application.

20

PCT/US2015/052755

WO 2016/053916

1/7

(SWL>)

(SN ¥2~) MOV1S (SN ¥2~) SS3D0Yd (NOILOIAT™d NI LIM HLIM SS300dd 1SOH (SIN9L=>) MOVIS
LNdLNO T3ATTMOT LSOH JOLISOdNOD SINGL-) IXT'NOILYOITddY HOLISOdNOD 1NdNI T3AIT MO
A AL A AL A
4 N\ 4 A4 N\ 4 N 7 N\
A 201~ IuYMQauYH LNdN|
SNOILYOI4ILON
Avdsia m%m_vmw_\,h_,\\,,_mvo €—{ LINWOD ONY JAILININ A
" MNI ¥O4) dNODA POL~ Sy3IAING LNdNI
051~ A A
YNILOTYIA oLl
0 } SASTINIY
SYIAINA SOIHAYYO Qv3aHL ANILIM ONILSALLIH INdNI | _
1 (IONVLSNI HOLISOdWO0D
Y04 ¥3ATINGIN0YLS) NIFON1d +
JE— 1NdNI INIANIIANI TYNOILO
(19xa) WNFLIM - A 1NdNIZH0D
SOIHAVYO X103Ia y
S \ 1NdNI ¥3LNIOd
091 el mm_._oz%_ommooH 0EL
vmr wmr QVIYHL IN/ddY @mr Nmr
Sldv (4s1) . . MV
¥3ZIN9ODY | | NoILYZITYINZS mmwmmw\m w_mm%wu_p\, N. Nrm
ONILIYMANYH NI
X : :
19|pueH Juang)
poppyseolS |
JojussaiPu|

PCT/US2015/052755

WO 2016/053916

2/7

‘¢ DI

MNILO3HIA

avIdHL ANI-13M

1NdNIFH00

) HIANTY MNI-LIM
JONVLSNI J
NETaNER HIT3A0NMNI J0O4 ¥3ATINgIN0ALS) NI-ON1d
SINI NSNS . LNdNI LINIANILIANI TYNOILJO
HITIAOWMINI +
\@m@qz,qs_ LNdNI Fzmozmamozw
(SNOILYDIHILON » —
LINWOD 0cL
aNY AL d3¥VHS SavayHL d3dVHS SAvaYHL MNI
v - - 11 11
SINL MO dNood [GaIEanes H3IANTY B MNI-LIM <> 13M ANV ‘¥3aN3 ‘IN
LINWOD
IYOLS
w_m_\@,_,_w,__w_uw_\,_ mw__mm_%m,_,ﬂuz_%m_\m_ ONASHNI Vv.LVAd 3341 TVNSIA ANY
v 11
RETECETTY MNI “YIOHLYASIAIHOD
LININOD ove- e
dv3IgHL ¥3aN3ay avIyHL IN
J
YIANTY MNI-ANA Y
[| SIdv (4sn J—
¥3ZINDODIY || NOILYZITVIY3S
m wm_._m_oo_\,_zzQ ONILINMANYH SN SaAM0YLS
A A
eez” ogL~

H3T1ANVH LN3IAT d3aavsaxodls
HHIOMINVLS/ddV

1NdNI
d3LNIOd

PCT/US2015/052755

WO 2016/053916

3/7

(¥3¥3aN3Y LNV43Q)
JHOD MNILOTHIA YO (YIYIANTY INOLSND) ddV

& OIA

SdIHSNOILV13d

1LNINOdJWOD ‘FdNOId

<4—dIHSNOILV13d

_ 1NINOJINOD TYNYTLX3 _

YIANTY | (INZWND0A ¥3HLO) ININOJINOD YNILOTHIA |
5Tk | (IN3WNDO0A SIHL) ININOJWOD MNILOTHIA |
\ Y
NERElalol omm/ HIOVNVYIN ﬁm/ TdWI
NI YIANTY NElaNEN
o i Y3d13aH HITANVH
9Le P S1ovETIvO NI ™ SINI IWNOILAO
HITIVHSHYI __ _
02 0T
zpe YIAYIS LUNIM (IHOMINY Y
3YODMNILOTNI [HO ddV) 1SOH
HIOVNYIN 1dII
TINNGS . [ONASHNI [€—— IXJINOO INANI (€] unuSiiony, o
z6e - ore F oce— A zee -
ove
NERRE T
. vivd MOVLS LNdNI
> MOVETIVO >
3341 MNI
- LN INTILSAS
JH0D MNILOTYIA 0ee
Y
HOLISOdINOD MOVLS
INILSAS LNdNI W3LSAS

PCT/US2015/052755

WO 2016/053916

4/7

d3OVNVIN
d3dN3d

osy

A

13IMEIANTS 'S

v Ol

NI-9N71d LNdNI

Gy ~

HIOVNYI .
INNOD [LINNOD YINI "9 ONASHINI
09~ osy
SINIOdaay v
Y

<4— 1NdNI '€ —1LX31INOD LNdNI

— 1NdNI "¢

ozy -’

V1vad 3341 MNI

A

1NdNI "L

ovy

ANOVLS

1NdNI W31SAS

oLy~

PCT/US2015/052755

WO 2016/053916

57

S Ol

09¥% 0S¥
HIAOVYNYIN LININOQD [—— HIADOVYNVYIN ¥3AN3Y -
A
LINWNOD MNI v .
13IMEVYIID € AAJAINISHIANTA ¢
oSy
3137dINOD LININOD MNI 'S > DONASMYNI
(AYQ-INIS OL 1IM)VLVAIAON "L

F1GVTIIVAVINIALILON "9 ﬁ

0¥ oy

YATIVHSHYIN je———— V1va 3341 MNI

PCT/US2015/052755

WO 2016/053916

6/7

dIOVNVYIN
1INNOD

9

I

0S¥
J3OVNVYIN 93AN3d

!

Addd3dN3d 'S

J137dINOD LININOD 1SOH 8 —¥

0cy
ONASMNI

¢l9
STMOMLS '€ —» AOVAETIVO
MNI
- 1V ITIVAVINI “L

AdAINIS3dIH 9

(AYA O1 AYA-INISIVLVAALOD ¢

Y

13 TdINODAHAALILON "6

—»

(072
V1va 3341 MNI

0¥
—» 43 T1VHSHVIN

d3davsaxodls v —» d3TANVH MNI

089

1SOH

1INWNOD 1SOH £

dNOOd

WO 2016/053916 PCT/US2015/052755

77
~701 703 706 ~708
DCOMP INK HOST DCOMP
(INK) THREAD THREAD (HOST)
I I
| | |

MOVE WET
| | Mosem ~710

[

|

|

| | | |
le—— Nk commiT —! :
|

712
™ __INK COMMIT __ 214
= — compLeTe — ™

I

|

|

|

|

|

) |
— INK AVAILABLE —»] |
I I |

T
|

|

|

|

I

| S
I
I |
| HIDESEMI~718
|
|

4 —————————=—

—HosT commiT—al
734 | HOST r722
— COMMIT —
_oorvmk T e T
COMPLETE — | |
| | | |
732 CLEAR SEMI~ 726
! || | |
|&—— INK COMMIT —| | |
| _kcommr | 734 | |
[~ COMPLETE |) | |
| [— SEMI CLEARED —» |
r
| | | showsemi~736 |
| | I | |
: : | HosT commim—s
HOST
| | 742'4 |« — covmmiT — —
| | AVAILABLE ~ ™ 245 |
| |

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

