
(12) STANDARD PATENT (11) Application No. AU 2015324050 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Low latency ink rendering pipeline

(51) International Patent Classification(s)
G06F 3/0488 (2013.01) G06F 9/54 (2006.01)
G06F 9/44 (2006.01) G06K 9/22 (2006.01)

(21) Application No: 2015324050 (22) Date of Filing: 2015.09.29

(87) WIPO No: W016/053916

(30) Priority Data

(31) Number (32) Date (33) Country
14/500,997 2014.09.29 US

(43) Publication Date: 2016.04.07
(44) Accepted Journal Date: 2020.06.25

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Tu, Xiao;Menon, Krishnan;Xiong, Fei;Hong, Sung;Duhon, David Walker

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WO 2005045574 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/053916 A1
7 April 2016 (07.04.2016) W IPO IPO T

(51) International Patent Classification: Group Docketing (Bldg. 8/1000), One Microsoft Way,
G06F 3/0488 (2013.01) G06F 9/54 (2006.01) Redmond, Washington 98052-6399 (US). DUHON, David
G06F 9/44 (2006.01) G06K 9/22 (2006.01) Walker; Microsoft Technology Licensing, LLC, Attn: Pat

(21) International ApplicationNumber: ent Group Docketing (Bldg. 8/1000), One Microsoft Way,

PCT/US215/052755 Redmond, Washington 98052-6399 (US).

(22) InternationalFilingDate: (74) Agents: MINHAS, Sandip et al.; Microsoft Corporation,
(22 Intrntina Fili Date:9.2015 Attn: Patent Group Docketing (Bldg. 8/1000), One Mi
29September2015(29.09.2015) crosoft Way, Redmond, Washington 98052-6399 (US).

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every

(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
14/500,997 29 September 2014 (29.09.2014) US DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

(71) Applicant: MICROSOFT TECHNOLOGY LICENS- HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg. KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,

8/1000), One Microsoft Way, Redmond, Washington MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

98052-6399 (US). PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(72) Inventors: TU, Xiao; Microsoft Technology Licensing, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
LLC, Attn: Patent Group Docketing (Bldg. 8/1000), One
Microsoft Way, Redmond, Washington 98052-6399 (US). (84)DesignatedStates(unlessotherwiseindicated,forevery
MENON, Krishnan; Microsoft Technology Licensing, kind of regional protection available): ARIPO (BW, GH,

LLC, Attn: Patent Group Docketing (Bldg. 8/1000), One GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Microsoft Way, Redmond, Washington 98052-6399 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

XIONG, Fei; Microsoft Technology Licensing, LLC, Attn: TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

Patent Group Docketing (Bldg. 8/1000), One Microsoft DK,EE,ES,FIFR,GB,GR,HR,HU,IE,IS,IT,LT,LU,
Way, Redmond,Washington 98052-6399(US).HONG, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

Sung; Microsoft Technology Licensing, LLC, Attn: Patent

[Continued on nextpage]

(54) Title: LOW LATENCY INK RENDERING PIPELINE

InkPresenter

StokesAdded
Event Handler

D-ETN TOE INK HANDARTIN

FIG . 1. WNRT APS ADDE SERI (LTION RECO NZER

- SF) APIS
132 136 APPUITHREAD 138 134

PNRP 130 COREDISPATCHER 14 160
- POINTER INPUT

DIRECTX GRAPHICS
INDEPENDENTINPUTMANAGER INKMODELER INFRASTRUCTURE

COREINPUT WET-INK (DXGI)

IP ONALINDEPENDENT NPT RENDERED

COMPOSITOR INSTANCE)
INPUTHITTESTING WET-INKTHREAD GRAPHCSDRIVERS

110 120 DIRECTINK 150

PRMITVEADCOMIT COMPOSTOR DISPLAY

NOTIFICATIONS) (DNMC E

NP HARDWARE 102

LOW LEVELINPJT COMPOSITOR APPLICATION.EXE (-15MS COMPOSITOR HOST LOW LEVEL OUTPUT
STACK (16MS) HOST PROCESS WTH WETINKPREDCTION) PROCESS -24M) STACK -24 MS)

(<1MS)

(57) Abstract: Systems and methods are provided for improving the latency for display of ink during user creation of ink content
with a stylus, mouse, finger (or other touch input), or other drawing device for tracing a desired location for ink content in a display
area. In order to reduce or minimize the time for display of ink content created by a user using a stylus/mouse/touch input/other

f4 device, a separate ink rendering process thread can be used that operates within the operating system and in parallel to other applica
tion threads. When it is desired to create ink content within an application, user interactions corresponding to creation of ink content
can be handled by the separate ink rendering process thread. This can avoid potential delays in displaying ink content due to an ap
plication handling other events in a process flow.

W O 2 0 1 6 /0 5 3 9 1 6 A 1l llll|||1ll|||1lllllllIlllll1||
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, - as to the applicant's entitlement to claim the priority of
GW, KM, ML, MR, NE, SN, TD, TG). the earlier application (Rule 4.17(iii))

Declarations under Rule 4.17: Published:
as to applicant's entitlement to apply for and be granted - with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

LOW LATENCY INK RENDERING PIPELINE

BACKGROUND

[0001] A tablet computing device (or a similar type of embedded device) often

5 contains a touchscreen that allows a user to enter data into the device. Data entry by the

user may be done using a finger, a mouse, a stylus (or pen), or such. Input from the pen (or

finger) to the device is called "ink."

[0002] Ink is digitized to allow it to be processed and manipulated by the

computing device and displayed. This typically is performed by sending out the digitized

10 ink to the operating system on the device, having the processor process the ink, and then

sending the processed ink to a graphics card. The graphics card then renders the ink

(which is the effect of the user's action) on a monitor or display.

[0003] One deficiency of current ink rendering techniques is the latency

introduced. Pens and fingers tend to be fast and virtually instantaneous while the rendering

15 of the ink tends to lag. In fact, the entire ink rendering process can introduce a latency that

can be on the order of anywhere between 70 to 200 milliseconds or even greater. This

latency in ink rendering can make for a slow and awkward user experience.

[0004] In particular, this latency is an undesirable effect in that is breaks the

perceptive barrier of manipulating an object directly. Of course these are mostly perceived

20 in situations where there is a co-located experience. In other words, when the input and the

output are co-located with each other (such as writing with a stylus on a tablet computing

device or a touchscreen), the latency effect is greatest.

[0004a] It is desired to address or ameliorate one or more disadvantages or

limitations associated with the prior art, or to at least provide a useful alternative.

25 SUMMARY

[0004b] In an embodiment, there is provided a method for rendering ink content on

a display device, comprising: defining an action context for receiving ink input actions;

receiving, by an application, an input action, the input action having an input context;

detecting the input action as an ink creation action because the input context satisfies

30 criteria specified by the action context; directing the ink creation action to a wet-ink

rendering thread, the wet-ink rendering thread being different from an application

processing thread for the application that renders an application; rendering, by the wet-ink

rendering thread, the ink creation action content with a latency less than a latency

threshold to generate a wet ink content; outputting the wet ink content for display;

1

detecting an additional input action corresponding to an end of ink creation; converting the

wet ink content, after detecting the additional input action corresponding to the end of ink

creation, to an intermediate ink content; transferring the intermediate ink content to the

application rendering thread; and synchronizing the rendering of the intermediate ink

5 content by the application rendering thread with the removing of the wet ink content

rendered by the wet-ink rendering thread; transferring the ink creation action to an

application processing thread; rendering, by the application processing thread, the ink

creation action to generate a dry ink content; and removing from display the intermediate

ink content rendered by the wet-ink rendering thread and outputting for display the dry ink

10 content.

[0004c] In an embodiment, there is provided one or more computer storage media

containing computer-executable instructions that, when executed, provide a method for

rendering ink content on a display device, comprising: defining an action context for

receiving ink input actions; receiving, by an application, an input action, the input action

15 having an input context; detecting the input action as an ink creation action because the

input context satisfies criteria specified by the action context; directing the ink creation

action to a wet-ink rendering thread, the wet-ink rendering thread being different from an

application processing thread for the application; rendering, by the wet-ink rendering

thread, the ink creation action; outputting the wet ink content for display; detecting an

20 additional input action corresponding to an end of ink creation; converting the wet ink

content, after detecting the additional input action corresponding to the end of ink creation,

to an intermediate ink content; transferring the intermediate ink content to the application

rendering thread; and synchronizing the rendering of the intermediate ink content by the

application rendering thread with the removing of the wet ink content rendered by the wet

25 ink rendering thread; transferring the ink creation action from the wet-ink rendering thread

to an application processing thread; rendering, by the application processing thread, the

ink creation action to generate dry ink content; and removing the intermediate ink content

rendered by the wet-ink rendering thread and outputting the dry ink content for display.

[0004d] In an embodiment, there is provided one or more computer storage media

30 containing computer-executable instructions that, when executed, provide a method for

rendering ink content on a display device, comprising: receiving, by an application, an

input action, the input action having an input context; detecting the input action as an ink

creation action because the input context satisfies criteria specified by the action context,

the ink creation action corresponding to an ink content; directing the ink creation action to

2

a wet-ink rendering thread, the wet-ink rendering thread being different from an

application processing thread for the application; rendering, by the wet-ink rendering

thread, the ink creation action with a latency less than a latency threshold to generate a wet

ink content; outputting the wet ink content for display; detecting an additional input action

5 corresponding to an end of ink creation; converting the wet ink content, after detecting the

additional input action corresponding to the end of ink creation, to an intermediate ink

content; transferring the intermediate ink content to the application rendering thread; and

synchronizing the rendering of the intermediate ink content by the application rendering

thread with the removing of the wet ink content rendered by the wet-ink rendering thread;

10 transferring the ink creation action from the wet-ink rendering thread to an application

processing thread; rendering, by the application processing thread, the ink creation action

to generate a dry ink content; and removing the intermediate ink content rendered by the

wet-ink rendering thread and outputting for display the dry ink content.

BRIEF DESCRIPTION OF THE DRAWINGS

15 [00051 Some embodiments of the disclosure are herein described, by way of

example only, with reference to the accompanying drawings. With specific reference now

to the drawings in detail, it is stressed that the particulars shown are by way of example

and for purposes of illustrative discussion of embodiments of the disclosure. In this regard,

the description taken with the drawings makes apparent to those skilled in the art how

20 embodiments of the disclosure may be practiced.

[0006] The embodiments are described in detail below with reference to the

attached drawing figures, wherein:

[00071 FIG. 1 schematically shows a flow diagram for a relationship between

components for rendering wet ink content generated by a user.

25 [0008] FIG. 2 schematically shows a flow diagram for a relationship between

components for rendering various types of ink content.

[0009] FIG. 3 schematically shows a flow diagram for a relationship between

components for rendering ink content.

[0010] FIGS. 4 - 6 show process flows for rendering of various types of ink

30 content.

[0011] FIG. 7 shows a process communication flow diagram for transfer of ink

content between process threads.

3

DETAILED DESCRIPTION

Overview

[0012] Systems and methods are provided for improving the latency for display of

ink during user creation of ink content with a stylus, mouse, finger (or other touch input),

5 or other drawing device for tracing a desired location for ink content in a display area. In

order to reduce or minimize the time for display of ink content created by a user using a

stylus/mouse/touch input/other device, a separate ink rendering process thread can be used

that operates within the operating system and in parallel to other application threads.

When it is desired to create ink content within an application, user interactions

10 corresponding to creation of ink content can be handled by the separate ink rendering

process thread. This can avoid potential delays in displaying ink content due to an

application handling other events in a process flow. Because the separate ink rendering

process thread is in communication with the application, the ink content rendered by the

separate ink rendering process can still be rendered using the context of the application.

15 This can allow the ink content to be displayed to a user with a substantially similar

appearance to the appearance the ink content can have after transfer of the ink content to

the corresponding application.

[0013] In various aspects, systems and methods are provided for improving the

latency for display of ink during user creation of ink content with a stylus, mouse, finger

20 (or other touch input), or other drawing device for tracing a desired location for ink

content in a display area. In order to reduce or minimize the time for display of ink content

created by a user using a stylus/mouse/touch input/other device, a separate ink rendering

process thread can be used that operates within the operating system and in parallel to

other application threads. When it is desired to create ink content within an application,

25 user interactions corresponding to creation of ink content can be handled by the separate

ink rendering process thread. This can avoid potential delays in displaying ink content due

to an application handling other events in a process flow. Because the separate ink

rendering process thread is in communication with the application, the ink content

rendered by the separate ink rendering process can still be rendered using the context of

30 the application. This can allow the ink content to be displayed to a user with a

substantially similar appearance to the appearance the ink content can have after transfer

of the ink content to the corresponding application.

[0014] In various aspects, the systems and methods described herein can also

allow new ink content created by a user to be displayed continuously during the transition

4

of the handling of the ink content between process threads. When the creation of a given

portion of new ink content is considered completed, the rendering of the completed

content can be transferred to the process thread for the corresponding application. Since

the creation of the particular portion of ink content is completed, the latency difficulties

5 for new ink content are no longer of concern. As a result, further rendering can be

performed by the process thread of the corresponding application with a reduced or

minimized concern for latency in display of the completed content. In order to further

improve the user experience, the transfer of display of the completed content from the ink

rendering thread to the corresponding application process thread can be synchronized.

10 This can allow the content to be displayed in a substantially continuous manner while

eliminating the time period where both process threads attempt to display the ink content.

Aspects of the disclosure can also prevent a situation where neither process is attempting

to display ink content. In other words in an aspect of the disclosure, one or the other

process can be displaying ink content, but not both simultaneously.

15 [00151 One of the difficulties with rendering ink content created by a user is

displaying the ink content sufficiently quickly so that the user's actions appear to result in

display of the ink content. It has previously been determined that users can perceive

delays in responding to user actions for creation of ink content that are as small as about

50 milliseconds or less. When a delay in display of ink content being created by a user is

20 visible, the delay can disrupt the user experience as the content creation may no longer

have the sensation of creating ink using a physical pen on a writing surface. Unfortunately,

attempting to display ink content using the process thread for an application where the ink

content is created can lead to undesirable latency periods. This is due to the fact that a

typical application does not have an ability to prioritize actions related to ink content

25 within the application process thread relative to other actions performed by the

application.

[0016] As an alternative, the rendering of the ink content can be entirely separated

out from the operating system. This can allow for display of new ink content created by a

user using hardware and/or software features that by-pass the operating system, and

30 instead directly display the new ink in the display area. After creation of the new ink

content, the new ink content is then passed to the operating system, where any

modifications to the display features can be applied so that the ink content is rendered in

the context provided by a corresponding application. While this type of method can

5

reduce latency in display of new ink content, the initial display of the new ink content may

differ from the final rendering of the content.

[00171 In some aspects, a benefit of the systems and methods described herein is

improving the performance of the computer in order to reduce the latency for display of

5 ink content. Such an improvement can also lead to an improved user experience during

creation of ink content.

[0018] In various aspects, the systems and methods described herein can allow a

user to create ink input using an input device, such as a stylus, a touch interface for

receiving touch input, a mouse, or another device that can control the movement of a

10 cursor within a display area. A user's desire to create ink content can be determined or

detected based on a context for a user's actions. An action context can be defined that

corresponds to actions for creation of ink content. An input context for a user action can

then be detected and compared with the action context to determine whether an input

action is an ink creation action.

15 [00191 One type of context can be the nature of the input device itself. This can be

referred to as a modal context, which can be detected based on the interaction of a stylus

with a surface; the interaction of a finger or another shape with a surface for touch input;

the movement of a cursor icon (or other cursor identifier) using a mouse; and/or any other

convenient device.

20 [0020] A second type of context can be a location context. Optionally, the entire

display area of a display, a touch surface, an input pad, or another type of user interface

can be ready for receipt of ink content at any time. In this type of option, a user's actions

can be detected as ink creation actions based on just the modal context and/or based on

other types of context different from a location context. Alternatively, one or more

25 regions in a user interface (such as in the display area of a user interface) can be identified

as regions where ink content can be received. In this type of option, a user action is

detected as an ink creation action based on a combination of the modal context and the

location context. The regions for potentially receiving ink content can be pre-defined by

an operating system for a device; pre-defined by an application running on a device; or

30 created based on definitions for one or more regions by a user.

[0021] A third type of context can be an ink creation context. One option can be to

interpret any user action having a selected modal context and/or location context as an ink

creation action. Alternatively, determining that a user action is an ink creation action can

be dependent on detecting a specific type of user action, such as a single tap/click or

6

double tap/click with an input device to initiate creation of ink content. Such specified

actions can correspond to an ink creation context. It is noted that the ink creation context

can vary depending on whether a user has previously initiated ink creation. For example,

additional actions by a user, such as movement of the input device or a cursor, can be

5 interpreted as ink creation actions after ink creation has been initiated and until an action is

detected that ends the ink creation, such as lifting the device away from the input surface.

[0022] Aspects of the disclosure are not limited to the three contexts describe

above. Other contexts are possible.

[0023] Based on the modal context, the location context, the action context, and/or

10 any other types of context used for determination of whether a user action is an ink

creation action, the user input actions can be tested against the context to determine

whether the user actions are ink creation actions. If the input actions are ink creation

actions, the input actions can be routed to a separate process thread, such as an ink

rendering thread, for rendering the ink content being created by the user. Actions which

15 do not satisfy the context conditions can be passed to the application and/or the operating

system for processing in the conventional process thread for handling user input actions.

Although the testing of input actions can cause a brief delay to determine the nature of the

input actions, substantial reduction in latency can be achieved (such as tens of

milliseconds) based on using a separate process thread for rendering ink content as it is

20 created by the user. This type of testing can sometime be referred to as "hit testing." In

one aspect of the disclosure, hit testing does not occur. Instead, ink is generated based on

the contact and displayed without hit testing (and without the resulting delay). If the input

turns out not to satisfy an inking context, then the ink process is canceled and the

displayed wet ink removed.

25 [0024] One potential concern with handling ink content in a separate ink rendering

process thread from an underlying application is that the new ink content must eventually

be transferred to (or synchronized with) the underlying application. In various aspects,

systems and methods are provided that allow this transfer to occur while reducing or

minimizing changes in the displayed ink content (including temporary loss of display)

30 and/or reducing or minimizing dual display of content by both process threads. This can

provide benefits both in performance of a device and in the resulting user experience.

Definitions

[0025] In the discussion below, examples of the systems and methods according to

the disclosure may be exemplified using an operating environment based on a MicrosoftTM

6A

operating environment. Additionally, certain terms are used for ease of reference in

describing the various aspects. The following explicit definitions are provided to aid in

understanding of the various aspects.

[0026] Wet Ink: Ink that is rendered while an ink stroke is in progress, that is,

5 while the contact (pen, for example) has not yet been lifted off the surface. In various

aspects, wet ink can be converted to or replaced with semi-dry ink or dry ink. The

conversion process may continue for a period of time after the pen has been lifted off the

surface. The rendered ink remains wet ink until replaced with either semi-dry ink or dry

ink. In various aspects, wet ink is rendered on the separate ink rendering thread.

10 [00271 Dry Ink: Ink that is rendered or re-rendered after an ink stroke is completed

or ink that is rendered from ink data loaded from a source (persisted ink content) other

than input.

[0028] Semi-dry Ink: Ink in an intermediate layer pending synchronization to the

dry ink layer. In various aspects, semi-dry ink can be rendered on the separate ink

15 rendering process thread.

[0029] Wet/Dry Synchronization: A mechanism to allow dry ink to be rendered

and made visible on the dry ink thread and wet ink to be cleared on the ink thread in a

manner that can ensure that a) wet ink is not still visible when corresponding dry ink

becomes visible; b) wet ink does not disappear before corresponding dry ink becomes

20 visible; and c) the ink thread is never blocked from processing input and rendering further

wet ink.

[0030] Host: The underlying application or framework within which a portion of

new ink content is created by a user.

[0031] Host Thread: The process thread for the underlying application or user

25 interface.

[0032] Ink Rendering Thread: A background thread (preferably created within the

operating system) on which input of selected types is received and processed to render wet

6B

WO 2016/053916 PCT/US2015/052755

ink. Note that this thread is shared by all instances for rendering of wet ink within a

process.

[00331 Dry Ink Thread: The thread on which ink data is delivered to the rendering

component or thread. In one aspect, the host thread is the rendering thread, but other

5 options are possible including a dedicated ink rendering thread.

[0034] Input Re-Direction: A mechanism to register with the input stack to have

input matching specified characteristics (such as input for creation of wet ink)

automatically routed to a specified thread instead of, by default, the UI thread. In various

aspects, the specified characteristics can correspond to a modality of input, such as use of

10 a stylus, finger (or other touch input), or other input device suitable for creation of wet ink.

In various aspects, the specified characteristics can further specify the use of such an input

device within a portion of a user interface that has been defined for receiving wet ink

input.

[00351 InkManager: A Windows Runtime class. It provides properties and

15 methods to manage the input, manipulation, and processing (including handwriting

recognition) of one or more ink objects.

[00361 D2D: Direct2D. A hardware-accelerated, immediate-mode, 2-D graphics

API that provides high performance and high-quality rendering for 2-D geometry,

bitmaps, and text. It is designed to support interop with other rendering technology such as

20 Direct3D.

[00371 D3D: Direct3D. A low-level API for drawing primitives with the rendering

pipeline or performing parallel operations with the compute shader. It hides different GPU

implementations behind a coherent abstraction and is designed to drive graphics-specific

processors.

25 [0038] DComp: DirectComposition. A Windows component that enables high

performance bitmap composition with transforms, effects, and animations. It can combine

bitmaps from a variety of sources and leverage the Desktop Window Manager (DWM) for

rendering to the screen.

[0039] DXGI: Microsoft DirectX Graphics Infrastructure. It manages low-level

30 tasks that can be independent of the Direct3D graphics runtime. It also provides a common

framework for several versions of Direct3D.

Process Flow for Handling Ink Content

[0040] FIG. 1 shows an example of a process flow for rendering of wet ink content

using a separate ink rendering process thread. In the process flow shown in FIG. 1, a user

7

WO 2016/053916 PCT/US2015/052755

can use a hardware component, such as a mouse, stylus, pen, or a touch interface (for

receiving touch input) to provide input actions for creating wet ink content. The input

hardware 102 can pass this input to hardware drivers 104 and eventually to an input tester

110. The input tester can evaluate the context for the input actions, including the nature of

5 the hardware and/or the location within a display associated with the input actions, to

determine whether the input actions correspond to actions for creating wet ink content.

[0041] If the user actions correspond to creating wet ink content, the input actions

are diverted to wet ink process thread 120. As shown in FIG. 1, wet ink process thread

120 handles only a limited number of actions, which can reduce or minimize the potential

10 for delays in handling a wet ink rendering action. This is in contrast to the multiple types

of actions handled by the general user interface and/or application process thread 130. For

example, just in relation to handling of ink content, the user interface and/or application

process thread 130 can: provide application program interfaces 132 for general display of

ink content; provide application program interfaces 134 for additional processing of ink

15 content, such as handwriting recognition; receive input 136 for when ink strokes have

been added, so that the resulting ink content can be displayed; and handle display of

previously created dry ink content 138, such as serialized ink content.

[0042] After receiving wet ink input, the wet ink process thread 120 can render

124 the wet ink content and pass the rendered content back to the graphics processing

20 elements of the operating system, such as compositor 150. Eventually the rendered wet

ink is passed to the hardware graphics display elements 160 for display to a user.

[0043] A system using a process flow as shown in FIG. 1 can provide a variety of

advantages. For example, this type of process flow can provide low latency wet ink

rendering that is independent of application/UI thread, i.e. input flows directly to a high

25 priority background thread (Wet-Ink Thread shown in FIG. 1) and will never be blocked

by UI/app thread activities. Optionally but preferably, the system can use wet Bezier

algorithms that work well for default pen types, as well as prediction to reduce latency by

15 ms or more relative to a conventional system. Such a system can also be compatible

with pressure modeling for altering ink characteristics. Additionally, based in part on the

30 wet ink process thread being within the operating system, the wet ink process thread can

render a pen cursor that matches the ink drawing attributes (color, shape, size, type etc.).

[0044] FIG. 2 shows another process flow that includes process threads for display

of both wet ink (i.e., ink during the process of creation by a user) and dry ink (i.e., ink

content previously entered by the user and/or obtained from a data source). In the process

8

WO 2016/053916 PCT/US2015/052755

flow in FIG. 1, ink content created by a user can be rendered by the wet-ink process thread

after creation of the ink content is complete. The dry-ink content rendering in FIG. 1

corresponds to rendering of previously defined dry-ink content, such as content retrieved

from a source file. In FIG. 2, additional flows are shown to allow for transfer of ink

5 content created by a user from the wet-ink process thread to the user interface / application

/ other thread for rendering of dry-ink content.

[00451 In FIG. 2, wet-ink thread 120 can communicate with user interface thread

130 (and optional separate dry-ink rendering thread 233) via components that

communicate with both threads. These components can include an InkSync component

10 242 that synchronizes transfer of wet ink from the wet-ink thread 120 to user interface

thread 130. The components can also include commit manager 246 that provides

verification to components that a transfer has been completed. For example, commit

manager 246 can inform user interface thread 130 when a conversion from wet ink to

intermediate ink (or semi-wet ink) has been completed by wet ink thread 120. Similarly,

15 commit manager 246 can inform wet ink thread 120 when the user interface thread 130

has started rendering of a transferred dry ink content, so that wet ink thread 120 can stop

rendering of the corresponding intermediate ink content.

Component Relationships

[00461 FIG. 3 shows relationships between various components that can be used

20 for rendering of user created ink content (wet ink) as well as transfer of wet ink from a

separate ink rendering thread to a process thread associated with an application. In FIG. 3,

a host application 310 or other framework (including potentially an operating system) can

communicate via one or more application programming interfaces 320 with an overall

"DirectInk Core" module 330. The application programming interfaces 320 shown in

25 FIG. 3 include input interfaces and ink handling interfaces. When input is received by the

host 310 that is detected as wet ink input (or another type of input to be handled by the wet

ink process thread), the input is passed into module 330.

[00471 The DirectInkCore Implement object 332 is a container object that creates

and coordinates most of the other objects shown in module 330. The Marshaller 342 owns

30 the ink thread and implements the mechanism for notifications between threads, isolating

the notification mechanism from the other components. The Input Context object 336 is

an input sink object that registers for input redirection and receives input on the ink thread.

The Ink Sync object 346 is a synchronization engine that implements the mechanism for

wet/dry ink synchronization. The Commit Manager 352 is a shared object that performs

9

WO 2016/053916 PCT/US2015/052755

DComp Commits and isolates other components from the details of the DComp commit

completion notification. The Render Manager 370 tracks renderer instances to be used for

wet, semi-dry and dry layers and routes render requests to the appropriate renderer

instance. Render Manager 370 can also create default renderer instances as required and

5 manages custom renderer instances as required. Renderer 372 is a high-level renderer

object. Renderer Implement 374 is a low-level renderer object that, given a

surface/context, ink data and drawing attributes, performs the actual rendering. Ink

Modeler 376 creates smooth Bezier segments from input, optionally with prediction.

[0048] The Ink Tree Data object 340 is a data object that creates and maintains a

10 DComp visual sub-tree representing the ink sub-tree for a DirectInkCore instance along

with associated ink data for the wet, semi-dry and dry layers.

[0049] FIG. 4 shows a data flow for handling the arrival of input corresponding to

wet ink and the rendering of the wet ink input. In FIG. 4, input that is identified as being

wet ink is delivered by system input stack 410 to input context component 420. The input

15 can optionally be passed to any input plug-ins 425. The input is also passed to InkSync

component 430. InkSync 430 can pass information to the InkTreeData component 440

that new wet ink content is being created. InkSync can also instruct the render manager

450 to render the wet ink. Finally, when entry of ink content is completed, InkSync 430

can notify commit manager 460.

20 [00501 FIG. 5 shows a data flow for rendering of semi-dry or intermediate ink after

the completion of entry of an ink content portion by a user. In FIG. 5, the data flow starts

when Ink Sync component 430 notifies InkTreeData 440 that creation of an ink content

portion has been completed, so the ink content portion can be moved from wet ink status

to intermediate ink status. The render manager 450 can then receive instruction to render

25 the completed portion of ink content using an intermediate or semi-dry ink renderer

instance, allowing the wet ink renderer instance to be ready for another ink content

creation event. After notifying the commit manager 460, the marshaller 470 can be passed

a notification that ink is available for transfer to the dry-ink render process thread that is

managed by the host or underlying application.

30 [00511 FIG. 6 shows a process flow for the (synchronized) transfer of ink from the

wet ink process thread to the dry ink process thread. In FIG. 6, InkSync 430 receives an

Ink Available signal from Marshaller 470. InkSync 430 then informs InkTreeData 440 to

copy the ink content from semi-dry to dry status. The stroke information for rendering the

ink as dry ink is passed using Ink Callback 672 to Ink Handler 680. The ink content is

10

also passed to Render Manager 450 for rendering with a dry ink renderer instance. After

this is completed, InkSync 430 notifies InkTreeData 440 that the semi-dry version of the

ink content can be hidden, so that the wet ink thread no longer handle the ink content.

[0052] FIG. 7 shows a communication flow between the DComp instances for the

5 wet ink rendering thread (ink) and for the dry ink rendering thread (host). The

communication flow in FIG. 7 shows how the transfer of wet ink to dry ink can be

synchronized to reduce or minimize the time where the dry ink thread and the wet ink

thread both attempt to display ink content while avoiding discontinuities in the display of

the ink content.

10 [0053] In FIG. 7, the Ink thread 703 initiates the calls by starting a move wet to

semi-wet process 710. The DComp component 701 confirms with the Ink thread with

commit calls 712. An InkAvailable call 714 is then passed to Host thread 706. Host

thread 706 initiates a copy semi-dry to dry call 716 to move the data within the ink tree.

After this copy is complete, a call 718 to hide the semi-dry data is also made. The semi

15 dry to dry transition is confirmed with Dcomp host thread 708 with commit calls 722. A

call 724 is then returned to ink thread 703 that the transfer of semi-dry ink to dry ink is

complete. The rendering of the semi-dry ink by the wet ink thread is then cleared 726,

with commit calls 732 to confirm. A call 734 regarding the clearing of the semi-dry ink is

then passed to Host thread 706.

20 Additional Examples

[0054] Having briefly described an overview of various embodiments of the

disclosure, an exemplary operating environment suitable for performing the disclosure is

now described. Embodiments of the disclosure may be described in the general context of

computer code or machine-useable instructions, including computer-executable

25 instructions such as program modules, being executed by a computer or other machine,

such as a personal data assistant or other handheld device. Generally, program modules,

including routines, programs, objects, components, data structures, etc., refer to code that

perform particular tasks or implement particular abstract data types. The disclosure may

be practiced in a variety of system configurations, including hand-held devices, consumer

30 electronics, general-purpose computers, more specialty computing devices, and the like.

The disclosure may also be practiced in distributed computing environments where tasks

are performed by remote-processing devices that are linked through a communications

network.

11

WO 2016/053916 PCT/US2015/052755

[00551 A suitable computing device may include a bus that directly or indirectly

couples the following devices: memory, one or more processors, one or more presentation

components, input/output (I/O) ports, I/O components, and a power supply. A bus

represents what may be one or more busses (such as an address bus, data bus, or

5 combination thereof). Although the various components are described as individual

components for the sake of clarity, in reality, delineating various components is not so

clear, and metaphorically, the lines would more accurately be grey and fuzzy. For

example, one may consider a presentation component such as a display device to be an I/O

component. Additionally, many processors have memory. Distinction is not made

10 between such categories as "workstation," "server," "laptop," "hand-held device,"

"tablet," etc., as all are contemplated within the scope of "computing device."

[0056] Computer storage media includes volatile and nonvolatile, removable and

non-removable media implemented in any method or technology for storage of

information, such as computer-readable instructions, data structures, program modules, or

15 other data. Computer storage media includes, but is not limited to, Random Access

Memory (RAM), Read Only Memory (ROM), Electronically Erasable Programmable

Read Only Memory (EEPROM), flash memory or other memory technology, CD-ROM,

digital versatile disks (DVDs) or other holographic memory, magnetic cassettes, magnetic

tape, magnetic disk storage or other magnetic storage devices, or any other medium that

20 can be used to encode desired data and that can be accessed by the computing device 100.

In an embodiment, the computer storage media can be selected from tangible computer

storage media like flash memory. These memory technologies can store data

momentarily, temporarily, or permanently. Computer storage does not include, and

excludes, communication media. Computer storage media is non-transitory and excludes

25 propagated data signals.

[00571 On the other hand, communication media typically embodies computer

readable instructions, data structures, program modules or other data in a modulated data

signal such as a carrier wave or other transport mechanism and includes any information

delivery media. The term "modulated data signal" means a signal that has one or more of

30 its characteristics set or changed in such a manner as to encode information in the signal.

By way of example, and not limitation, communication media includes wired media, such

as a wired network or direct-wired connection, and wireless media such as acoustic, RF,

infrared and other wireless media.

12

WO 2016/053916 PCT/US2015/052755

[00581 Memory can include computer-readable media in the form of volatile

and/or nonvolatile memory. The memory may be removable, non-removable, or a

combination thereof. Exemplary hardware devices include solid-state memory, hard

drives, optical-disc drives, etc. A computing device can include one or more processors

5 that read data from various entities such as the memory or the I/O components. The

presentation component(s) present data indications to a user or other device. Exemplary

presentation components include a display device, speaker, printing component, vibrating

component, and the like.

[00591 The I/O ports can allow the computing device to be logically coupled to

10 other devices including the I/O components, some of which may be built in. Illustrative

components can include a microphone, joystick, game pad, satellite dish, scanner, printer,

wireless device, etc. The I/O components can include components that receive one or

more input types from a plurality of input types, such as touch input (e.g., touching or

proximity to a display interface, as opposed to indirect movement on a display based on

15 interaction with a keyboard or mouse), gesture input, haptic input, voice input, proximity

input, interaction with a secondary input device such as the input devices identified above,

or any other convenient type of input.

[0060] A computing device may include a radio. The radio transmits and receives

radio communications. The computing device may be a wireless terminal adapted to

20 received communications and media over various wireless networks. Computing device

1100 may communicate via wireless protocols, such as code division multiple access

("CDMA"), global system for mobiles ("GSM"), or time division multiple access

("TDMA"), as well as others, to communicate with other devices. The radio

communications may be a short-range connection, a long-range connection, or a

25 combination of both a short-range and a long-range wireless telecommunications

connection. When we refer to "short" and "long" types of connections, we do not mean to

refer to the spatial relation between two devices. Instead, we are generally referring to

short range and long range as different categories, or types, of connections (i.e., a primary

connection and a secondary connection). A short-range connection may include a Wi-Fi@

30 connection to a device (e.g., mobile hotspot) that provides access to a wireless

communications network, such as a WLAN connection using the 802.11 protocol. A

Bluetooth connection to another computing device is second example of a short-range

connection. A long-range connection may include a connection using one or more of

CDMA, GPRS, GSM, TDMA, and 802.16 protocols.

13

WO 2016/053916 PCT/US2015/052755

[00611 Embodiments of the present invention have been described in relation to

particular embodiments, which are intended in all respects to be illustrative rather than

restrictive. Alternative embodiments will become apparent to those of ordinary skill in the

art to which the present invention pertains without departing from its scope.

5 [0062] Embodiment 1. A method for rendering ink content on a display device,

comprising: defining an action context for receiving ink input actions, the action context

including at least a modal context; receiving, by an application, an input action, the input

action having an input context; detecting the received input action as an ink creation

action, the received input action being detected as an ink creation action based on the input

10 context corresponding to the defined action context, the detected ink creation action

corresponding to an ink content; directing the detected ink creation action to a wet-ink

rendering process thread, the wet-ink rendering thread being different from an application

processing thread for the application; rendering, by the wet-ink rendering thread, the ink

content with a latency less than a latency threshold; and detecting an input action

15 corresponding to an end of ink creation.

[0063] Embodiment 2. The method of Embodiment 1, further comprising:

transferring the ink content from the wet-ink rendering thread to an application rendering

thread, the application rendering thread being different from the wet-ink rendering thread

and optionally being different from the application processing thread; rendering, by the

20 application rendering thread, the transferred ink content; and removing the ink content

rendered by the wet-ink rendering thread.

[0064] Embodiment 3. The method of Embodiment 2, wherein transferring the ink

content from the wet-ink rendering thread to the application rendering thread comprises:

converting the ink content, after detecting the input action corresponding to the end of ink

25 creation, to an intermediate ink content; transferring the intermediate ink content to the

application rendering thread; and synchronizing the rendering of the transferred

intermediate ink content by the application rendering thread with the removing of the ink

content rendered by the wet-ink rendering thread.

[00651 Embodiment 4. The method of any of the above embodiments, wherein the

30 latency threshold is about 75 milliseconds or less, or about 60 milliseconds or less, or

about 50 milliseconds or less.

[00661 Embodiment 5. The method of any of the above embodiments, wherein the

modal context comprises an input mode of pen input, stylus input, touch input, mouse

input, or a combination thereof.

14

[00671 Embodiment 6. The method of any of the above embodiments, wherein the

defined action context further comprises a location context.

[00681 Embodiment 7. The method of Embodiment 6, wherein the location

context comprises a region of a display area of a display device, the region comprising less

5 than a total area of the display area.

[00691 Embodiment 8. The method of Embodiment 6 or 7, wherein the location

context comprises a plurality of regions of a display area of a display device, or wherein

the location context comprises a plurality of regions from a plurality of display areas.

[00701 Embodiment 9. The method of any of the above embodiments, wherein at

10 least one of the input context and the action context further comprises one or more display

properties for ink rendered by the wet-ink rendering thread.

[00711 Embodiment 10. The method of claim 9, further comprising: detecting a

change in the one or more display properties for ink rendered by the wet-ink rendering

thread during the rendering of the ink content by the wet-ink rendering thread; and

15 rendering at least a portion of the ink content using the changed one or more display

properties.

[0072] Embodiment 11. The method of Embodiment 10, wherein at least a portion

of ink content rendered prior to detecting the change in the one or more display properties

is rendered with the changed one or more display properties prior to detecting the input

20 action corresponding to an end of ink creation.

[0073] Embodiment 12. The method of any of the above embodiments, wherein

the action context further comprises an ink creation context.

[0074] From the foregoing, it will be seen that this disclosure is one well adapted

to attain all the ends and objects hereinabove set forth together with other advantages

25 which are obvious and which are inherent to the structure.

[00751 It will be understood that certain features and subcombinations are of utility

and may be employed without reference to other features and subcombinations. This is

contemplated by and is within the scope of the claims.

[0076] Throughout this specification and claims which follow, unless the context

30 requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers

or steps.

15

[00771 The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general

5 knowledge in the field of endeavour to which this specification relates.

15A

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for rendering ink content on a display device, comprising:

defining an action context for receiving ink input actions;

5 receiving, by an application, an input action, the input action having an input

context;

detecting the input action as an ink creation action because the input context

satisfies criteria specified by the action context;

directing the ink creation action to a wet-ink rendering thread, the wet-ink

10 rendering thread being different from an application processing thread for the application

that renders an application;

rendering, by the wet-ink rendering thread, the ink creation action content with a

latency less than a latency threshold to generate a wet ink content;

outputting the wet ink content for display;

15 detecting an additional input action corresponding to an end of ink creation;

converting the wet ink content, after detecting the additional input action

corresponding to the end of ink creation, to an intermediate ink content;

transferring the intermediate ink content to the application rendering thread; and

synchronizing the rendering of the intermediate ink content by the application

20 rendering thread with the removing of the wet ink content rendered by the wet-ink

rendering thread;

transferring the ink creation action to an application processing thread;

rendering, by the application processing thread, the ink creation action to generate

a dry ink content; and

25 removing from display the intermediate ink content rendered by the wet-ink

rendering thread and outputting for display the dry ink content.

2. The method of claim 1, wherein the modal context comprises an input mode of pen

input, stylus input, touch input, mouse input, or a combination thereof.

30

3. The method of either claim 1 or 2, wherein the action context further comprises a

location context.

16

4. The method of claim 3, wherein the location context comprises a region of a

display area of the display device, the region comprising less than a total area of the

display area.

5 5. The method of either claim 3 or 4, wherein the location context comprises a

plurality of regions of a display area of the display device.

6. The method of any one of claims 3 to 5, wherein the location context comprises a

plurality of regions from a plurality of display areas.

10

7. The method of any one of claims 1 to 6, wherein at least one of the input context

and the action context further comprises one or more display properties for the wet ink

content rendered by the wet-ink rendering thread.

15 8. The method of claim 7, further comprising:

detecting that the one or more display properties have been updated to form a

changed one or more display properties for the wet ink content rendered by the wet-ink

rendering thread during the rendering of the ink creation action by the wet-ink rendering

thread; and

20 rendering at least a portion of the ink creation action using the changed one or

more display properties.

9. The method of claim 8, wherein at least a portion of the wet ink content rendered

prior to detecting that the one or more display properties have been updated is rendered

with the changed one or more display properties prior to detecting the additional input

25 action corresponding to the end of ink creation.

10. The method of any one of claims 1 to 9, wherein the action context further

comprises an ink creation context.

30 11. One or more computer storage media containing computer-executable instructions

that, when executed, provide a method for rendering ink content on a display device,

comprising:

defining an action context for receiving ink input actions;

receiving, by an application, an input action, the input action having an input context;

17

detecting the input action as an ink creation action because the input context satisfies

criteria specified by the action context;

directing the ink creation action to a wet-ink rendering thread, the wet-ink rendering

thread being different from an application processing thread for the application;

5 rendering, by the wet-ink rendering thread, the ink creation action;

outputting the wet ink content for display;

detecting an additional input action corresponding to an end of ink creation;

converting the wet ink content, after detecting the additional input action

corresponding to the end of ink creation, to an intermediate ink content;

10 transferring the intermediate ink content to the application rendering thread; and

synchronizing the rendering of the intermediate ink content by the application

rendering thread with the removing of the wet ink content rendered by the wet-ink

rendering thread;

transferring the ink creation action from the wet-ink rendering thread to an application

15 processing thread;

rendering, by the application processing thread, the ink creation action to generate dry

ink content; and

removing the intermediate ink content rendered by the wet-ink rendering thread and

outputting the dry ink content for display.

20

12. The one or more computer storage media of claim 11, wherein the modal context

comprises an input mode of pen input, stylus input, touch input, mouse input, or a

combination thereof.

25 13. The one or more computer storage media of either claim 11 or 12, wherein the

location context comprises a region of a display area of the display device, the region

comprising less than a total area of the display area.

14. The one or more computer storage media of any one of claims 11 to 13, wherein

30 the location context comprises a plurality of regions of a display area of the display

device.

15. The one or more computer storage media of any one of claims 11 to 14, wherein

the location context comprises a plurality of regions from a plurality of display areas.

18

16. The one or more computer storage media of any one of claims 11 to 15, wherein at

least one of the input context and the action context further comprises one or more display

properties for the wet ink content rendered by the wet-ink rendering thread.

5

17. One or more computer storage media containing computer-executable instructions

that, when executed, provide a method for rendering ink content on a display device,

comprising:

receiving, by an application, an input action, the input action having an input context;

10 detecting the input action as an ink creation action because the input context satisfies

criteria specified by the action context, the ink creation action corresponding to an ink

content;

directing the ink creation action to a wet-ink rendering thread, the wet-ink rendering

thread being different from an application processing thread for the application;

15 rendering, by the wet-ink rendering thread, the ink creation action with a latency less

than a latency threshold to generate a wet ink content;

outputting the wet ink content for display;

detecting an additional input action corresponding to an end of ink creation;

converting the wet ink content, after detecting the additional input action

20 corresponding to the end of ink creation, to an intermediate ink content; transferring the

intermediate ink content to the application rendering thread; and

synchronizing the rendering of the intermediate ink content by the application

rendering thread with the removing of the wet ink content rendered by the wet-ink

rendering thread;

25 transferring the ink creation action from the wet-ink rendering thread to an application

processing thread;

rendering, by the application processing thread, the ink creation action to generate a

dry ink content; and

removing the intermediate ink content rendered by the wet-ink rendering thread and

30 outputting for display the dry ink content.

18. The one or more computer-storage media of claim 17, wherein at least one of the

input context and the action context further comprises one or more display properties for

ink rendered by the wet-ink rendering thread.

19

19. The one or more computer-storage media of claim 17 or 18, wherein the modal

context comprises an input mode of pen input, stylus input, touch input, mouse input, or a

combination thereof.

5

20. The one or more computer-storage media of any one of claims 17 to 19, wherein

the wet ink content is rendered with characteristics provided by the application.

20

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

