

US007915484B2

(12) United States Patent

da Costa e Silva et al.

(54) PROTEIN KINASE STRESS-RELATED PROTEINS AND METHODS OF USE IN PLANTS

- (75) Inventors: Oswaldo da Costa e Silva, Neustadt
 (DE); Nocha Van Thielen, Cary, NC
 (US); Ruoying Chen, Duluth, GA (US);
 Hans J. Bohnert, Champaign, IL (US);
 Rodrigo Sarria-Millan, West Lafayette, IN (US)
- (73) Assignee: BASF Plant Science GmbH (DE)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 12/873,345
- (22) Filed: Sep. 1, 2010

(65) **Prior Publication Data**

US 2010/0325759 A1 Dec. 23, 2010

Related U.S. Application Data

(60) Division of application No. 09/828,313, filed on Apr. 6, 2001, now Pat. No. 6,867,351, and a continuation of application No. 12/545,903, filed on Aug. 24, 2009, now Pat. No. 7,858,847, and a continuation of application No. 12/401,635, filed on Mar. 11, 2009, and a continuation of application No. 11/961,634, filed on Dec. 20, 2007, now Pat. No. 7,521,598, and a continuation of application No. 11/564,902, filed on Nov. 30, 2006, now Pat. No. 7,504,559, and a continuation of application No. 10/768,863, filed on Jan. 30, 2004, now Pat. No. 7,179,962.

(10) Patent No.: US 7,915,484 B2

(45) **Date of Patent:** Mar. 29, 2011

(60) Provisional application No. 60/196,001, filed on Apr. 7, 2000.

(51)	Int. Cl.	
	C12N 15/82	(2006.01)
	C12N 15/29	(2006.01)
	A01H 5/00	(2006.01)
	A01H 5/10	(2006.01)

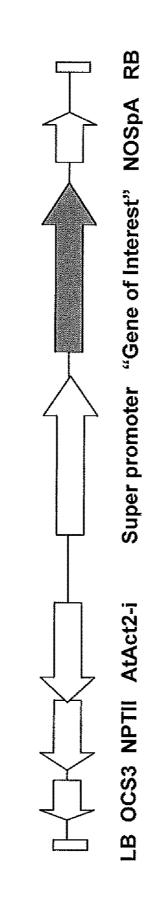
- (52) U.S. Cl. 800/289; 435/419; 536/23.6; 800/298; 800/320; 800/320.1; 800/320.2; 800/320.3; 800/312; 800/314; 800/306; 800/322; 800/313; 800/317; 800/317.1; 800/317.2; 800/317.3; 800/317.4
- (58) **Field of Classification Search** None See application file for complete search history.

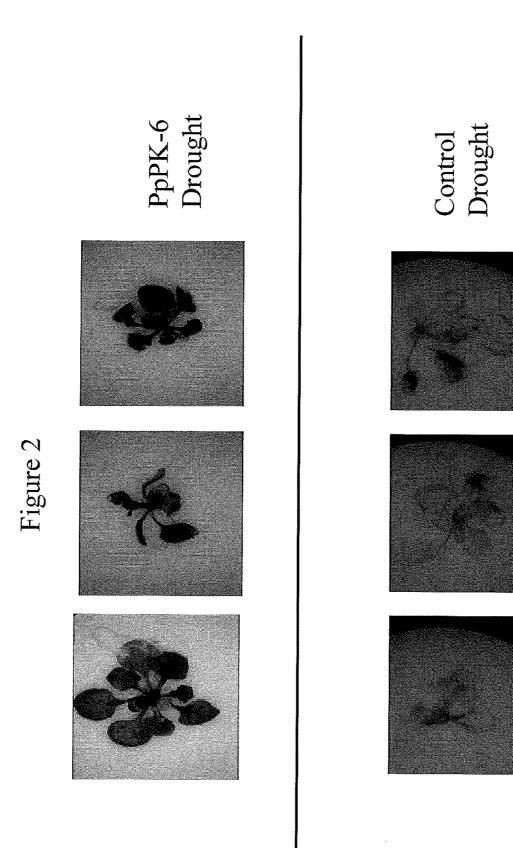
(56) **References Cited**

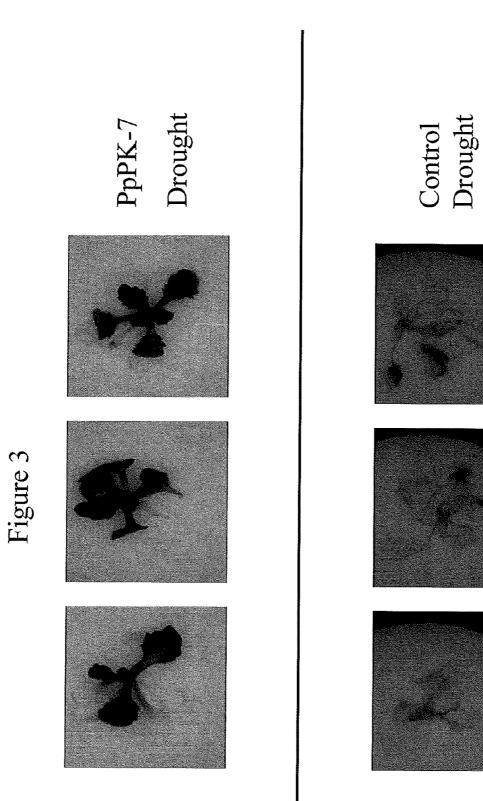
U.S. PATENT DOCUMENTS

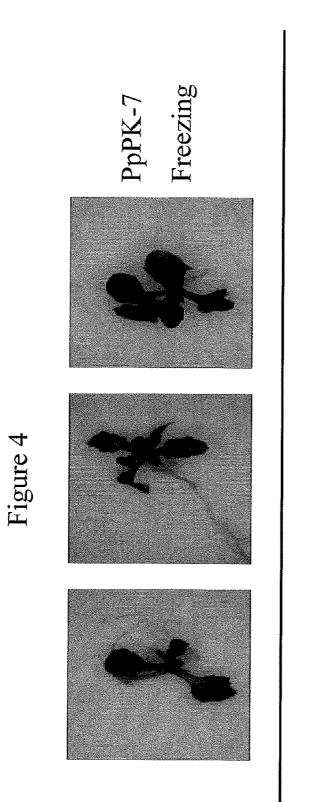
7,084,323 B1* 8/2006 Sheen 800/289

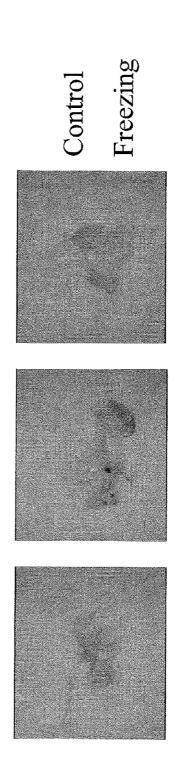
* cited by examiner

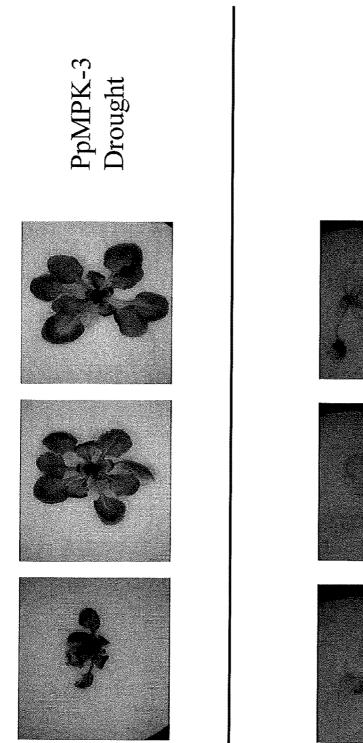

Primary Examiner — Cynthia Collins

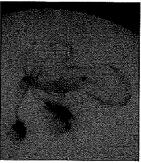

(74) Attorney, Agent, or Firm — Patricia A. McDaniels

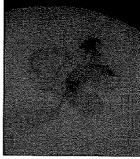

(57) ABSTRACT

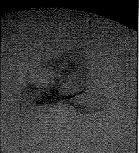

A transgenic plant transformed by a Protein Kinase Stress-Related Protein (PKSRP) coding nucleic acid, wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. Also provided are agricultural products, including seeds, produced by the transgenic plants. Also provided are isolated PKSRPs, and isolated nucleic acid coding PKSRPs, and vectors and host cells containing the latter.

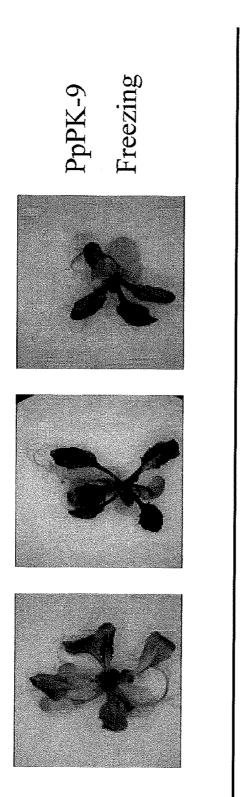

22 Claims, 18 Drawing Sheets

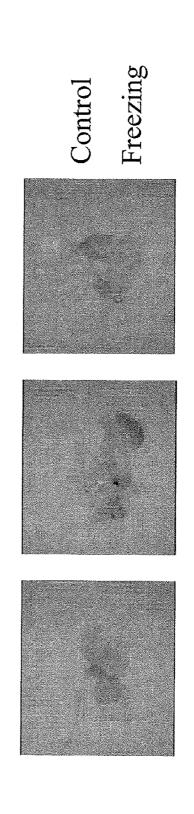


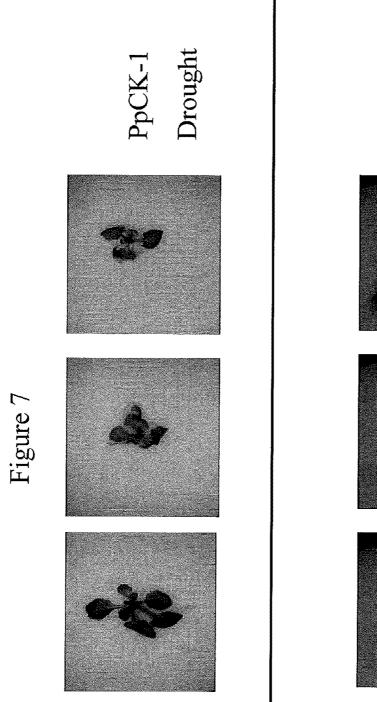


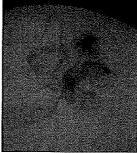


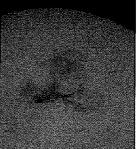


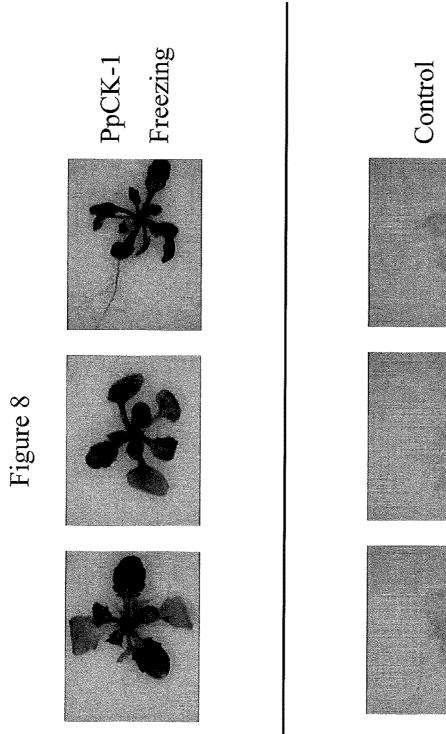




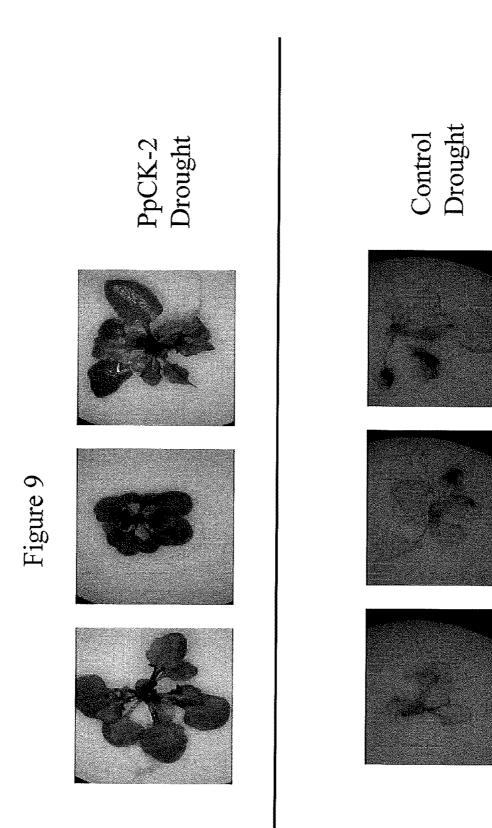


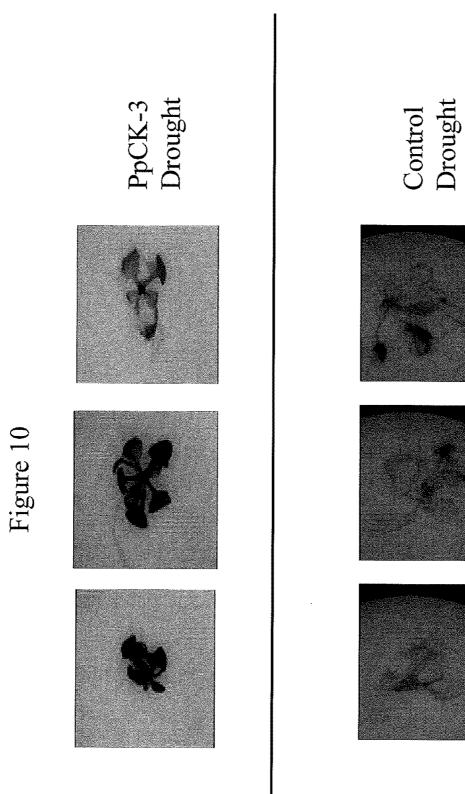




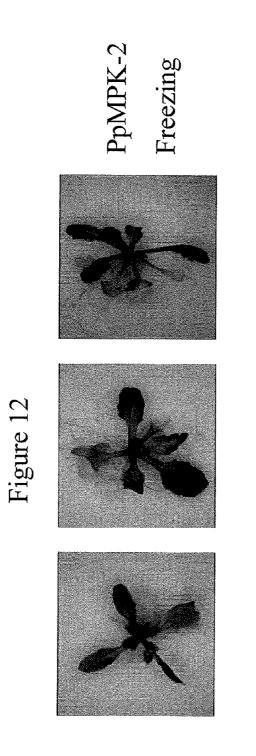


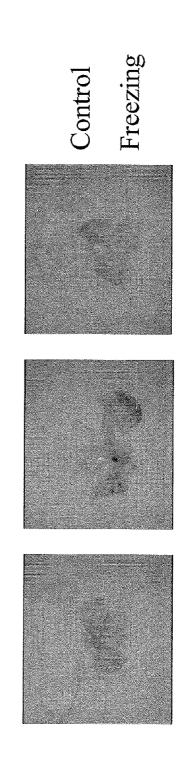


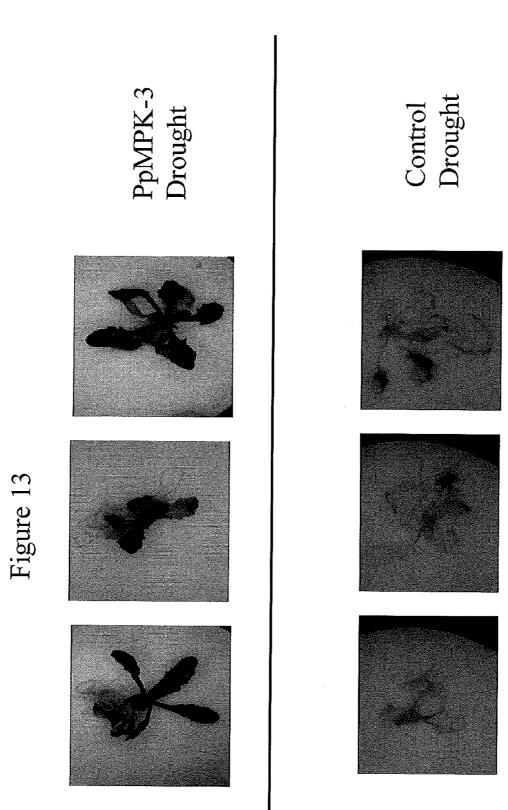


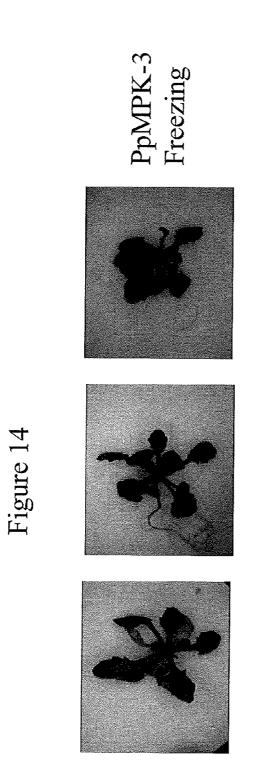


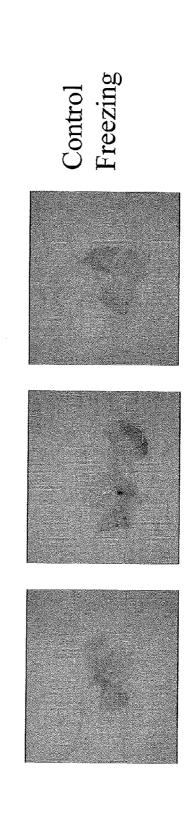


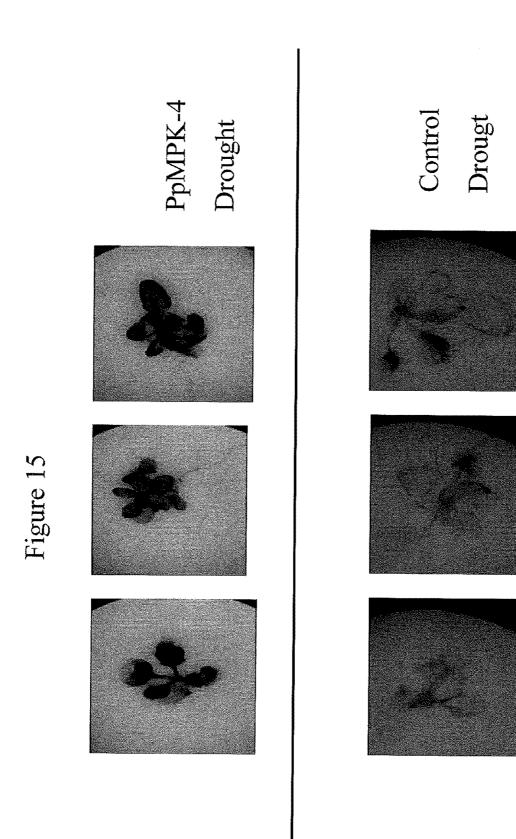


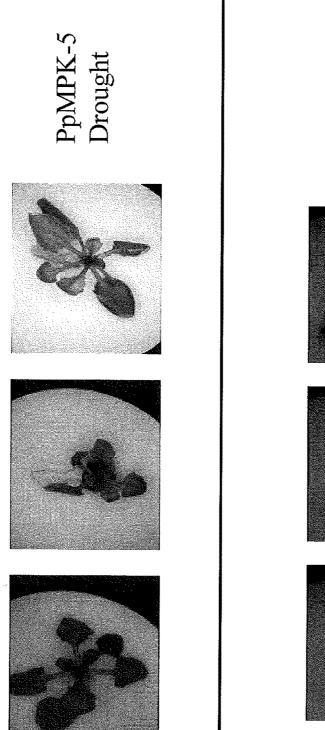


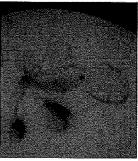


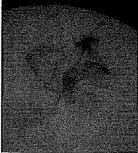


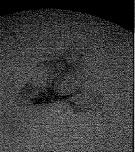


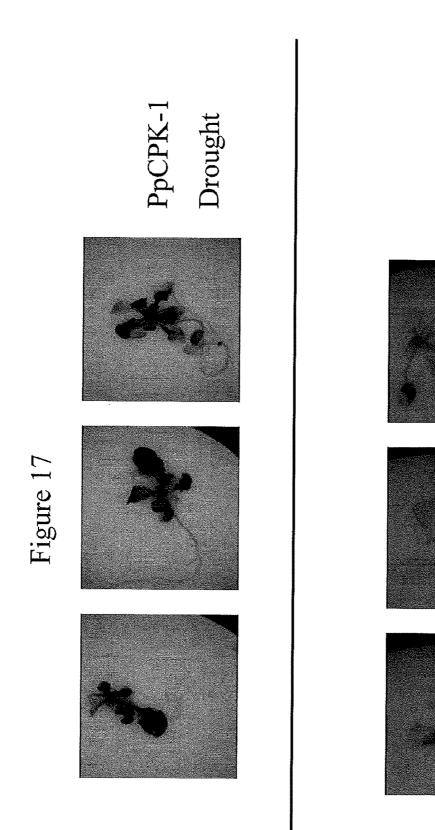


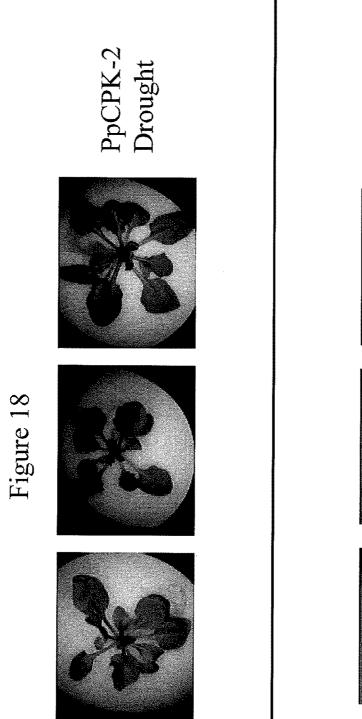


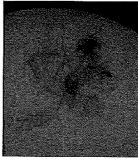


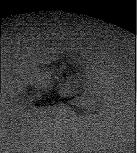





Control Drought




Control Drought



5

PROTEIN KINASE STRESS-RELATED PROTEINS AND METHODS OF USE IN PLANTS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 09/828,313, filed Apr. 6, 2001 and now U.S. Pat. No. 6,867,351, and is with U.S. patent application Ser. No. 10 12/545,903, filed Aug. 24, 2009, and is with U.S. patent application Ser. No. 12/401,635, filed Mar. 11, 2009, which is with U.S. patent application Ser. No. 11/807,408, filed May 29, 2007, and now U.S. Pat. No. 7, 521, 597, which is with U.S. patent application Ser. No. 11/961,634, filed Dec. 20, 2007, 15 and now U.S. Pat. No. 7,521,598, which is a continuation of U.S. patent application Ser. No. 11/564,902, filed Nov. 30, 2006, and now U.S. Pat. No. 7,504,559, which is a continuation of U.S. patent application Ser. No. 10/768,863, filed Jan. 30, 2004 and now U.S. Pat. No. 7,179,962, which is a divi- 20 sional of U.S. patent application Ser. No. 09/828,313, which claims the priority benefit of U.S. Provisional Application Ser. No. 60/196,001 filed Apr. 7, 2000. The contents of each of the above-identified applications are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to nucleic acid sequences 30 encoding proteins that are associated with abiotic stress responses and abiotic stress tolerance in plants. In particular, this invention relates to nucleic acid sequences encoding proteins that confer drought, cold, and/or salt tolerance to plants.

2. Background Art

Abiotic environmental stresses, such as drought stress, salinity stress, heat stress, and cold stress, are major limiting factors of plant growth and productivity. Crop losses and crop yield losses of major crops such as rice, maize (corn) and wheat caused by these stresses represent a significant eco- 40 nomic and political factor and contribute to food shortages in many underdeveloped countries.

Plants are typically exposed during their life cycle to conditions of reduced environmental water content. Most plants have evolved strategies to protect themselves against these 45 conditions of desiccation. However, if the severity and duration of the drought conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Furthermore, most of the crop plants are very susceptible to higher salt concentrations in the soil. Continuous 50 exposure to drought and high salt causes major alterations in the plant metabolism. These great changes in metabolism ultimately lead to cell death and consequently yield losses.

Developing stress-tolerant plants is a strategy that has the potential to solve or mediate at least some of these problems. 55 However, traditional plant breeding strategies to develop new lines of plants that exhibit resistance (tolerance) to these types of stresses are relatively slow and require specific resistant lines for crossing with the desired line. Limited germplasm resources for stress tolerance and incompatibility in crosses 60 between distantly related plant species represent significant problems encountered in conventional breeding. Additionally, the cellular processes leading to drought, cold and salt tolerance in model, drought- and/or salt-tolerant plants are complex in nature and involve multiple mechanisms of celbular adaptation and numerous metabolic pathways. This multi-component nature of stress tolerance has not only made

breeding for tolerance largely unsuccessful, but has also limited the ability to genetically engineer stress tolerance plants using biotechnological methods.

Drought, cold as well as salt stresses have a common theme important for plant growth and that is water availability. Plants are exposed during their entire life cycle to conditions of reduced environmental water content. Most plants have evolved strategies to protect themselves against these conditions of desiccation. However, if the severity and duration of the drought conditions are too great, the effects on plant development, growth and yield of most crop plants are profound. Since high salt content in some soils result in less available water for cell intake, its effect is similar to those observed under drought conditions. Additionally, under freezing temperatures, plant cells loose water as a result of ice formation that starts in the apoplast and withdraws water from the symplast. Commonly, a plant's molecular response mechanisms to each of these stress conditions are common and protein kinases play an essential role in these molecular mechanisms.

Protein kinases represent a super family and the members of this family catalyze the reversible transfer of a phosphate group of ATP to serine, threonine and tyrosine amino acid side chains on target proteins. Protein kinases are primary 25 elements in signaling processes in plants and have been reported to play crucial roles in perception and transduction of signals that allow a cell (and the plant) to respond to environmental stimuli. In particular, receptor protein kinases (RPKs) represent one group of protein kinases that activate a complex array of intracellular signaling pathways in response to the extracellular environment (Van der Gear et al., 1994 Annu. Rev. Cell Biol. 10:251-337). RPKs are single-pass transmembrane proteins that contain an amino-terminal signal sequence, extracellular domains unique to each receptor, and a cytoplasmic kinase domain. Ligand binding induces homo- or hetero-dimerization of RPKs, and the resultant close proximity of the cytoplasmic domains results in kinase activation by transphosphorylation. Although plants have many proteins similar to RPKs, no ligand has been identified for these receptor-like kinases (RLKs). The majority of plant RLKs that have been identified belong to the family of Serine/ Threonine (Ser/Thr) kinases, and most have extracellular Leucine-rich repeats (Becraft, P W. 1998 Trends Plant Sci. 3:384-388).

Another type of protein kinase is the Ca+-dependent protein kinase (CDPK). This type of kinase has a calmodulin-like domain at the COOH terminus which allows response to Ca+ signals directly without calmodulin being present. Currently, CDPKs are the most prevalent Ser/Thr protein kinases found in higher plants. Although their physiological roles remain unclear, they are induced by cold, drought and abscisic acid (ABA) (Knight et al., 1991 Nature 352:524; Schroeder, J I and Thuleau, P., 1991 Plant Cell 3:555; Bush, D. S., 1995 Annu. Rev. Plant Phys. Plant Mol. Biol. 46:95; Urao, T. et al., 1994 Mol. Gen. Genet. 244:331).

Another type of signaling mechanism involves members of the conserved SNF1 Serine/Threonine protein kinase family. These kinases play essential roles in eukaryotic glucose and stress signaling. Plant SNF1-like kinases participate in the control of key metabolic enzymes, including HMGR, nitrate reductase, sucrose synthase, and sucrose phosphate synthase (SPS). Genetic and biochemical data indicate that sugar-dependent regulation of SNF1 kinases involves several other sensory and signaling components in yeast, plants and animals.

Additionally, members of the Mitogen-Activated Protein Kinase (MAPK) family have been implicated in the actions of numerous environmental stresses in animals, yeasts and plants. It has been demonstrated that both MAPK-like kinase activity and mRNA levels of the components of MAPK cascades increase in response to environmental stress and plant hormone signal transduction. MAP kinases are components ⁵ of sequential kinase cascades, which are activated by phosphorylation of threonine and tyrosine residues by intermediate upstream MAP kinase kinases (MAPKKs). The MAPKKs are themselves activated by phosphorylation of serine and threonine residues by upstream kinases (MAPKKs). A ¹⁰ number of MAP Kinase genes have been reported in higher plants.

SUMMARY OF THE INVENTION

This invention fulfills in part the need to identify new, unique protein kinases capable of conferring stress tolerance to plants upon over-expression. The present invention provides a transgenic plant cell transformed by a Protein Kinase Stress-Related Protein (PKSRP) coding nucleic acid, 20 wherein expression of the nucleic acid sequence in the plant cell results in increased tolerance to environmental stress as compared to a wild type variety of the plant cell. Namely, described herein are the protein kinases: 1) Ser/Thr Kinase and other type of kinases (PK-6, PK-7, PK-8 and PK-9); 2) 25 Calcium dependent protein kinases (CDPK-1 and CDPK-2), 3) Casein Kinase homologs (CK-1, CK-2 and CK-3), and 4) MAP-Kinases (MPK-2, MPK-3, MPK-4 and MPK-5), all from *Physcomitrella patens*.

The invention provides in some embodiments that the 30 PKSRP and coding nucleic acid are that found in members of the genus *Physcomitrella*. In another preferred embodiment, the nucleic acid and protein are from a *Physcomitrella patens*. The invention provides that the environmental stress can be salinity, drought, temperature, metal, chemical, pathogenic 35 and oxidative stresses, or combinations thereof. In preferred embodiments, the environmental stress can be drought or cold temperature.

The invention further provides a seed produced by a transgenic plant transformed by a PKSRP coding nucleic acid, 40 wherein the plant is true breeding for increased tolerance to environmental stress as compared to a wild type variety of the plant. The invention further provides a seed produced by a transgenic plant expressing a PKSRP, wherein the plant is true breeding for increased tolerance to environmental stress 45 as compared to a wild type variety of the plant.

The invention further provides an agricultural product produced by any of the below-described transgenic plants, plant parts or seeds. The invention further provides an isolated PKSRP as described below. The invention further provides an 50 isolated PKSRP coding nucleic acid, wherein the PKSRP coding nucleic acid codes for a PKSRP as described below.

The invention further provides an isolated recombinant expression vector comprising a PKSRP coding nucleic acid as described below, wherein expression of the vector in a host 55 cell results in increased tolerance to environmental stress as compared to a wild type variety of the host cell. The invention further provides a host cell containing the vector and a plant containing the host cell.

The invention further provides a method of producing a 60 transgenic plant with a PKSRP coding nucleic acid, wherein expression of the nucleic acid in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant comprising: (a) transforming a plant cell with an expression vector comprising a PKSRP coding 65 nucleic acid, and (b) generating from the plant cell a transgenic plant with an increased tolerance to environmental

4

stress as compared to a wild type variety of the plant. In preferred embodiments, the PKSRP and PKSRP coding nucleic acid are as described below.

The present invention further provides a method of identifying a novel PKSRP, comprising (a) raising a specific antibody response to a PKSRP, or fragment thereof, as described below; (b) screening putative PKSRP material with the antibody, wherein specific binding of the antibody to the material indicates the presence of a potentially novel PKSRP; and (c) identifying from the bound material a novel PKSRP in comparison to known PKSRP. Alternatively, hybridization with nucleic acid probes as described below can be used to identify novel PKSRP nucleic acids.

The present invention also provides methods of modifying 15 stress tolerance of a plant comprising, modifying the expression of a PKSRP nucleic acid in the plant, wherein the PKSRP is as described below. The invention provides that this method can be performed such that the stress tolerance is either increased or decreased. Preferably, stress tolerance is 20 increased in a plant via increasing expression of a PKSRP nucleic acid.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a diagram of the plant expression vector pBPSSC022 containing the super promoter driving the expression of SEQ ID NOs: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 ("Desired Gene"). The components are: NPTII kanamycin resistance gene (Bevan M, Nucleic Acids Res. 26: 8711-21, 1984), AtAct2-i promoter (An Y Q et al., Plant J 10: 107-121 1996), OCS3 terminator (During K, Transgenic Res. 3: 138-140, 1994), NOSpA terminator (Jefferson et al., EMBO J 6:3901-7 1987).

FIG. **2** shows the results of a drought stress test with overexpressing PpPK-6 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **3** shows the results of a drought stress test with overexpressing PpPK-7 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **4** shows the results of a freezing stress test with over-expressing PpPK-7 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **5** shows the results of a drought stress test with overexpressing PpPK-9 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **6** shows the results of a freezing stress test with over-expressing PpPK-9 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **7** shows the results of a drought stress test with overexpressing PpCK-1 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **8** shows the results of a freezing stress test with over-expressing PpCK-1 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **9** shows the results of a drought stress test with overexpressing PpCK-2 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **10** shows the results of a drought stress test with over-expressing PpCK-3 transgenic plants and wild-type

Arabidopsis lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **11** shows the results of a drought stress test with over-expressing PpMPK-2 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant ⁵ phenotype. Individual transformant lines are shown.

FIG. **12** shows the results of a freezing stress test with over-expressing PpMPK-2 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **13** shows the results of a drought stress test with over-expressing PpMPK-3 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **14** shows the results of a freezing stress test with ¹⁵ over-expressing PpMPK-3 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **15** shows the results of a drought stress test with over-expressing PpMPK-4 transgenic plants and wild-type ²⁰ *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **16** shows the results of a drought stress test with over-expressing PpMPK-5 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant ²⁵ phenotype. Individual transformant lines are shown.

FIG. **17** shows the results of a drought stress test with over-expressing PpCPK-1 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

FIG. **18** shows the results of a drought stress test with over-expressing PpCPK-2 transgenic plants and wild-type *Arabidopsis* lines. The transgenic lines display a tolerant phenotype. Individual transformant lines are shown.

DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following detailed description of the preferred embodiments of the invention and the Examples 40 included herein. However, before the present compounds, compositions, and methods are disclosed and described, it is to be understood that this invention is not limited to specific nucleic acids, specific polypeptides, specific cell types, specific host cells, specific conditions, or specific methods, etc., 45 as such may, of course, vary, and the numerous modifications and variations therein will be apparent to those skilled in the art. It is also to be understood that the terminology used herein is for the purpose of describing specific embodiments only and is not intended to be limiting. In particular, the designa- 50 tion of the amino acid sequences as protein "Protein Kinase Stress-Related Proteins" (PKSRPs), in no way limits the functionality of those sequences.

The present invention provides a transgenic plant cell transformed by a PKSRP coding nucleic acid, wherein 55 expression of the nucleic acid sequence in the plant cell results in increased tolerance to environmental stress as compared to a wild type variety of the plant cell. The invention further provides transgenic plant pails and transgenic plants containing the plant cells described herein. Also provided is a 60 plant seed produced by a transgenic plant transformed by a PKSRP coding nucleic acid, wherein the seed contains the PKSRP coding nucleic acid, and wherein the plant is true breeding for increased tolerance to environmental stress as compared to a wild type variety of the plant. The invention 65 further provides a seed produced by a transgenic plant expressing a PKSRP, wherein the seed contains the PKSRP,

and wherein the plant is true breeding for increased tolerance to environmental stress as compared to a wild type variety of the plant. The invention also provides an agricultural product produced by any of the below-described transgenic plants, plant parts and plant seeds.

As used herein, the term "variety" refers to a group of plants within a species that share constant characters that separate them from the typical form and from other possible varieties within that species. While possessing at least one 10 distinctive trait, a variety is also characterized by some variation between individuals within the variety, based primarily on the Mendelian segregation of traits among the progeny of succeeding generations. A variety is considered "true breeding" for a particular trait if it is genetically homozygous for 15 that trait to the extent that when the true-breeding variety is self-pollinated, a significant amount of independent segregation of the trait among the progeny is not observed. In the present invention, the trait arises from the transgenic expression of one or more DNA sequences introduced into a plant 20 variety.

The present invention describes for the first time that the Physcomitrella patens PKSRPs, PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2, are useful for increasing a plant's tolerance to environmental stress. Accordingly, the present invention provides isolated PKSRPs selected from the group consisting of PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2, and homologs thereof. In preferred embodiments, the PKSRP is selected from 1) Protein Kinase-6 (PK-6) protein as defined in SEQ ID NO:27; 2) Protein Kinase-7 (PK-7) protein as defined in SEQID NO:28; 3) Protein Kinase-8 (PK-8) protein as defined in SEQ ID NO:29; 4) Protein Kinase-9 (PK-9) protein as defined in SEQ ID NO:30; 5) Casein Kinase homo-35 logue (CK-1) protein as defined in SEQ ID NO:31; 6) Casein Kinase homologue-2 (CK-2) protein as defined in SEQ ID NO:32; 7) Casein Kinase homologue-3 (CK-3) protein as defined in SEQ ID NO:33; 8) MAP Kinase-2 (MPK-2) protein as defined in SEQ ID NO:34; 9) MAP Kinase-3 (MPK-3) protein as defined in SEQ ID NO:35; 10) MAP Kinase-4 (MPK-4) protein as defined in SEQ ID NO:36; 11) MAP Kinase-5 (MPK-5) protein as defined in SEQ ID NO:37, 12) Calcium dependent protein kinase-1 (CPK-1) protein as defined in SEQ ID NO:38; 13) Calcium dependent protein kinase-2 (CPK-2) protein as defined in SEQ ID NO:39; and homologs and orthologs thereof Homologs and orthologs of the amino acid sequences are defined below.

The PKSRPs of the present invention are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described below), the expression vector is introduced into a host cell (as described below) and the PKSRP is expressed in the host cell. The PKSRP can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, a PKSRP polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native PKSRP can be isolated from cells (e.g., *Physcomitrella patens*), for example using an anti-PKSRP antibody, which can be produced by standard techniques utilizing a PKSRP or fragment thereof.

The invention further provides an isolated PKSRP coding nucleic acid. The present invention includes PKSRP coding nucleic acids that encode PKSRPs as described herein. In preferred embodiments, the PKSRP coding nucleic acid is selected from 1) Protein Kinase-6 (PK-6) nucleic acid as defined in SEQ ID NO:14; 2) Protein Kinase-7 (PK-7) nucleic acid as defined in SEQ ID NO:15; 3) Protein Kinase-8 (PK-8) nucleic acid as defined in SEQ ID NO:16; 4) Protein Kinase-9 (PK-9) nucleic acid as defined in SEQ ID NO:17; 5) Casein Kinase homolog (CK-1) nucleic acid as defined in SEQ ID NO:18; 6) Casein Kinase homolog-2 (CK-2) nucleic 5 acid as defined in SEQ ID NO:19; 7) Casein Kinase homolog-3 (CK-3) nucleic acid as defined in SEQ ID NO:20; 8) MAP Kinase-2 (MPK-2) nucleic acid as defined in SEQ ID NO:21; 9) MAP Kinase-3 (MPK-3) nucleic acid as defined in SEQ ID NO:22; 10) MAP Kinase-4 (MPK-4) nucleic acid as 10 defined in SEQ ID NO:23; 11) MAP Kinase-5 (MPK-5) nucleic acid as defined in SEQ ID NO:24; 12) Calcium dependent protein kinase-1 (CPK-1) nucleic acid as defined in SEQ ID NO:25; 13) Calcium dependent protein kinase-2 (CPK-2) nucleic acid as defined in SEQ ID NO:26 and homologs and 15 orthologs thereof Homologs and orthologs of the nucleotide sequences are defined below. In one preferred embodiment, the nucleic acid and protein are isolated from the plant genus Physcomitrella. In another preferred embodiment, the nucleic acid and protein are from a Physcomitrella patens (P. 20 patens) plant.

As used herein, the term "environmental stress" refers to any sub-optimal growing condition and includes, but is not limited to, sub-optimal conditions associated with salinity, drought, temperature, metal, chemical, pathogenic and oxi-25 dative stresses, or combinations thereof In preferred embodiments, the environmental stress can be salinity, drought, or temperature, or combinations thereof, and in particular, can be high salinity, low water content or low temperature. It is also to be understood that as used in the specification and in the claims, "a" or "an" can mean one or more, depending upon the context in which it is used. Thus, for example, reference to "a cell" can mean that at least one cell can be utilized.

As also used herein, the terms "nucleic acid" and "nucleic 35 acid molecule" are intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the 40 gene: at least about 1000 nucleotides of sequence upstream from the 5' end of the coding region and at least about 200 nucleotides of sequence downstream from the 3' end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double- 45 stranded DNA.

An "isolated" nucleic acid molecule is one that is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of some of the sequences which 50 naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated PKSRP nucleic acid molecule can contain less than about 5 kb, 4 kb, 55 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g., a Physcomitrella patens cell). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be free 60 from some of the other cellular material with which it is naturally associated, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a 65 nucleic acid molecule having a nucleotide sequence of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17,

SEQ ID NO:18, SEQ 1D NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a P. patens PKSRP cDNA can be isolated from a P. patens library using all or portion of one of the sequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12 and SEQ ID NO:13. Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12 and SEQ ID NO:13 can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence. For example, mRNA can be isolated from plant cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al., 1979 Biochemistry 18:5294-5299) and cDNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, Fla.). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12 and SEQ ID NO:13. A nucleic acid molecule of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid molecule so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to a PKSRP nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26. These cDNAs comprise sequences encoding the PKSRPs (i.e., the "coding region", indicated in Table 1), as well as 5' untranslated sequences and 3' untranslated sequences. It is to be understood that SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26 comprise both coding regions and 5' and 3' untranslated regions. Alternatively, the nucleic acid molecules of the present invention can comprise only the coding region of any of the sequences in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26 or can contain whole genomic fragments isolated from genomic DNA. A coding region of these sequences is indicated as "ORF position". The present invention also includes PKSRP coding nucleic acids that encode PKSRPs as described herein. Preferred is a PKSRP coding nucleic acid that encodes a PKSRP selected from the group consisting of, PK-6 (SEQ ID NO:27), PK-7 (SEQ ID NO:28), PK-8 (SEQ ID NO:29), PK-9 (SEQ ID NO:30), CK-1 (SEQ ID NO:31), CK-2 (SEQ ID NO:32), CK-3 (SEQ ID NO:33), MPK-2 (SEQ ID NO:34), MPK-3 (SEQ ID NO:35), MPK-4 (SEQ ID NO:36), MPK-5 (SEQ ID NO:37), CPK-1 (SEQ ID NO:38) and CPK-2 (SEQ ID NO:39).

Moreover, the nucleic acid molecule of the invention can 5 comprise only a portion of the coding region of one of the sequences in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, 10 for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a PKSRP. The nucleotide sequences determined from the cloning of the PKSRP genes from *P. patens* allow for the generation of probes and primers designed for use in identi-15 fying and/or cloning PKSRP homologs in other cell types and organisms, as well as PKSRP homologs from other mosses and related species.

Portions of proteins encoded by the PKSRP nucleic acid molecules of the invention are preferably biologically active 20 portions of one of the PKSRPs described herein. As used herein, the term "biologically active portion of" a PKSRP is intended to include a portion, e.g., a domain/motif, of a PKSRP that participates in a stress tolerance response in a plant, has an activity as set forth in Table 1, or participates in 25 the transcription of a protein involved in a stress tolerance response in a plant. To determine whether a PKSRP, or a biologically active portion thereof, can participate in transcription of a protein involved in a stress tolerance response in a plant, or whether repression of a PKSRP results in increased 30 stress tolerance in a plant, a stress analysis of a plant comprising the PKSRP may be performed. Such analysis methods are well known to those skilled in the art, as detailed in Example 7. More specifically, nucleic acid fragments encoding biologically active portions of a PKSRP can be prepared 35 by isolating a portion of one of the sequences in SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, expressing the encoded 40 portion of the PKSRP or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the PKSRP or peptide.

Biologically active portions of a PKSRP are encompassed by the present invention and include peptides comprising 45 amino acid sequences derived from the amino acid sequence of a PKSRP, e.g., an amino acid sequence of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID 50 NO:38 or SEQ ID NO:39, or the amino acid sequence of a protein homologous to a PKSRP, which include fewer amino acids than a full length PKSRP or the full length protein which is homologous to a PKSRP, and exhibit at least one activity of a PKSRP. Typically, biologically active portions 55 (e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of a PKSRP. Moreover, other biologically active portions in which other regions of the protein are deleted, can be prepared 60 by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of a PKSRP include one or more selected domains/motifs or portions thereof having biological activity.

The invention also provides PKSRP chimeric or fusion 65 proteins. As used herein, a PKSRP "chimeric protein" or "fusion protein" comprises a PKSRP polypeptide operatively

linked to a non-PKSRP polypeptide. A PKSRP polypeptide refers to a polypeptide having an amino acid sequence corresponding to a PKSRP, whereas a non-PKSRP polypeptide refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the PKSRP, e.g., a protein that is different from the PKSRP and is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the PKSRP polypeptide and the non-PKSRP polypeptide are fused to each other so that both sequences fulfill the proposed function attributed to the sequence used. The non-PKSRP polypeptide can be fused to the N-terminus or C-terminus of the PKSRP polypeptide. For example, in one embodiment, the fusion protein is a GST-PKSRP fusion protein in which the PKSRP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant PKSRPs. In another embodiment, the fusion protein is a PKSRP containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a PKSRP can be increased through use of a heterologous signal sequence.

Preferably, a PKSRP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, Eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A PKSRP encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the PKSRP.

In addition to fragments and fusion proteins of the PKSRPs described herein, the present invention includes homologs and analogs of naturally occurring PKSRPs and PKSRP encoding nucleic acids in a plant. "Homologs" are defined herein as two nucleic acids or proteins that have similar, or "homologous", nucleotide or amino acid sequences, respectively. Homologs include allelic variants, orthologs, paralogs, agonists and antagonists of PKSRPs as defined hereafter. The term "homolog" further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26 (and portions thereof) due to degeneracy of the genetic code and thus encode the same PKSRP as that encoded by the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26. As used herein a "naturally occurring" PKSRP refers to a PKSRP amino acid sequence that occurs in nature. Preferably, a naturally occurring PKSRP comprises an amino acid sequence selected from the group consisting of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, 5 SEQ ID NO:38 and SEQ ID NO:39.

An agonist of the PKSRP can retain substantially the same, or a subset, of the biological activities of the PKSRP. An antagonist of the PKSRP can inhibit one or more of the activities of the naturally occurring form of the PKSRP. For 10 example, the PKSRP antagonist can competitively bind to a downstream or upstream member of the cell membrane component metabolic cascade that includes the PKSRP, or bind to a PKSRP that mediates transport of compounds across such membranes, thereby preventing translocation from taking 15 place.

Nucleic acid molecules corresponding to natural allelic variants and analogs, orthologs and paralogs of a PKSRP cDNA can be isolated based on their identity to the Physcomitrella patens PKSRP nucleic acids described herein using 20 PKSRP cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. In an alternative embodiment, homologs of the PKSRP can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the 25 PKSRP for PKSRP agonist or antagonist activity. In one embodiment, a variegated library of PKSRP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of PKSRP variants can be produced by, for example, 30 enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential PKSRP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of PKSRP sequences 35 therein. There are a variety of methods that can be used to produce libraries of potential PKSRP homologs from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene is then ligated into 40 an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential PKSRP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S. A., 1983 45 Tetrahedron 39:3; Itakura et al., 1984 Annu. Rev. Biochem. 53:323: Itakura et al., 1984 Science 198:1056; Ike et al., 1983 Nucleic Acid Res. 11:477).

In addition, libraries of fragments of the PKSRP coding regions can be used to generate a variegated population of 50 PKSRP fragments for screening and subsequent selection of homologs of a PKSRP. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a PKSRP coding sequence with a nuclease under conditions wherein nicking occurs only about 55 once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA, which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S I nuclease, and ligating the resulting 60 fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the PKSRP

Several techniques are known in the art for screening gene 65 products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene

12

products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of PKSRP homologs. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify PKSRP homologs (Arkin and Yourvan, 1992 PNAS 89:7811-7815; Delgrave et al., 1993 Protein Engineering 6(3):327-331). In another embodiment, cell based assays can be exploited to analyze a variegated PKSRP library, using methods well known in the art. The present invention further provides a method of identifying a novel PKSRP, comprising (a) raising a specific antibody response to a PKSRP, or a fragment thereof, as described herein; (b) screening putative PKSRP material with the antibody, wherein specific binding of the antibody to the material indicates the presence of a potentially novel PKSRP; and (c) analyzing the bound material in comparison to known PKSRP, to determine its novelty.

To determine the percent homology of two amino acid sequences (e.g., one of the sequences of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39 and a mutant form thereof), the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39) is occupied by the same amino acid residue as the corresponding position in the other sequence (e.g., a mutant form of the sequence selected from the polypeptide of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEO ID NO:33, SEO ID NO:34, SEO ID NO:35, SEO ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The same type of comparison can be made between two nucleic acid sequences.

The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology=numbers of identical positions/ total numbers of positions×100). Preferably, the amino acid sequences included in the present invention are at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence shown in SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. In yet another embodiment, at least about 50-60%, preferably at least about 25

60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence encoded by a nucleic acid sequence shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID 5 NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26. In other embodiments, the preferable length of sequence comparison for proteins is at least 15 amino acid residues, more preferably at least 25 amino acid 10 residues, and most preferably at least 35 amino acid residues.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, or 15 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEO ID NO:20, SEO ID NO:21, SEO ID NO:22, SEO ID 20 NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26, or a portion thereof The preferable length of sequence comparison for nucleic acids is at least 75 nucleotides, more preferably at least 100 nucleotides and most preferably the entire length of the coding region.

It is also preferable that the homologous nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID 30 NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39 such that the protein or portion thereof maintains the same or a similar function as the amino acid sequence to which it is compared. Functions of the 35 PKSRP amino acid sequences of the present invention include the ability to participate in a stress tolerance response in a plant, or more particularly, to participate in the transcription of a protein involved in a stress tolerance response in a Physcomitrella patens plant. Examples of such activities are 40 described in Table 1.

In addition to the above described methods, a determination of the percent homology between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized 45 for the comparison of two sequences is the algorithm of Karlin and Altschul (1990 Proc. Natl. Acad. Sci. USA 90:5873-5877). Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990 J. Mol. Biol. 215:403-410).

BLAST nucleic acid searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleic acid sequences homologous to the PKSRP nucleic acid molecules of the invention. Additionally, BLAST protein searches can be performed with the XBLAST program, 55 score=50, wordlength=3 to obtain amino acid sequences homologous to PKSRPs of the present invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997 Nucleic Acids Res. 25:3389-3402). When utilizing BLAST 60 and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. Another preferred non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller (CABIOS 1989). Such 65 an algorithm is incorporated into the ALIGN program (version 2.0) that is part of the GCG sequence alignment software

package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4 can be used to obtain amino acid sequences homologous to the PKSRPs of the present invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997 Nucleic Acids Res. 25:3389-3402). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. Another preferred non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller (CABIOS 1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) that is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4 can be used.

Finally, homology between nucleic acid sequences can also be determined using hybridization techniques known to those of skill in the art. Accordingly, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, or a portion thereof. More particularly, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, 6.3.1-6.3.6, John Wiley & Sons, N.Y. (1989). A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65° C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26 corresponds to a naturally occurring nucleic acid molecule. As used herein, a "naturally occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a naturally occurring *Physcomitrella patens* PKSRP.

Using the above-described methods, and others known to those of skill in the art, one of ordinary skill in the art can isolate homologs of the PKSRPs comprising amino acid sequences shown in SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39. One subset of these homologs are allelic variants. As used herein, the term "allelic variant" refers to a nucleotide 5 sequence containing polymorphisms that lead to changes in the amino acid sequences of a PKSRP and that exist within a natural population (e.g., a plant species or variety). Such natural allelic variations can typically result in 1-5% variance in a PKSRP nucleic acid. Allelic variants can be identified by 10 sequencing the nucleic acid sequence of interest in a number of different plants, which can be readily carried out by using hybridization probes to identify the same PKSRP genetic locus in those plants. Any and all such nucleic acid variations and resulting amino acid polymorphisms or variations in a 15 PKSRP that are the result of natural allelic variation and that do not alter the functional activity of a PKSRP, are intended to be within the scope of the invention.

Moreover, nucleic acid molecules encoding PKSRPs from the same or other species such as PKSRP analogs, orthologs 20 and paralogs, are intended to be within the scope of the present invention. As used herein, the term "analogs" refers to two nucleic acids that have the same or similar function, but that have evolved separately in unrelated organisms. As used herein, the term "orthologs" refers to two nucleic acids from 25 different species, but that have evolved from a common ancestral gene by speciation. Normally, orthologs encode proteins having the same or similar functions. As also used herein, the term "paralogs" refers to two nucleic acids that are related by duplication within a genome. Paralogs usually 30 have different functions, but these functions may be related (Tatusov, R. L. et al. 1997 Science 278(5338):631-637). Analogs, orthologs and paralogs of a naturally occurring PKSRP can differ from the naturally occurring PKSRP by post-translational modifications, by amino acid sequence differences, 35 or by both. Post-translational modifications include in vivo and in vitro chemical derivatization of polypeptides, e.g., acetylation, carboxylation, phosphorylation, or glycosylation, and such modifications may occur during polypeptide synthesis or processing or following treatment with isolated 40 modifying enzymes. In particular, orthologs of the invention will generally exhibit at least 80-85%, more preferably 90%, and most preferably 95%, 96%, 97%, 98% or even 99% identity or homology with all or part of a naturally occurring PKSRP amino acid sequence and will exhibit a function 45 similar to a PKSRP. Orthologs of the present invention are also preferably capable of participating in the stress response in plants. In one embodiment, the PKSRP orthologs maintain the ability to participate in the metabolism of compounds necessary for the construction of cellular membranes in Phy-50 scomitrella patens, or in the transport of molecules across these membranes.

In addition to naturally-occurring variants of a PKSRP sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by 55 mutation into a nucleotide sequence of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26, thereby leading to changes in the amino acid 60 sequence of the encoded PKSRP, without altering the functional ability of the PKSRP. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, 65 SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24,

SEQ ID NO:25 or SEQ ID NO:26. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the PKSRPs without altering the activity of said PKSRP, whereas an "essential" amino acid residue is required for PKSRP activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having PKSRP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering PKSRP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding PKSRPs that contain changes in amino acid residues that are not essential for PKSRP activity. Such PKSRPs differ in amino acid sequence from a sequence contained in SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39, yet retain at least one of the PKSRP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, more preferably at least about 60-70% homologous to one of the sequences of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of the sequences of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEO ID NO:35, SEO ID NO:36, SEO ID NO:37, SEO ID NO:38 and SEQ ID NO:39. The preferred PKSRP homologs of the present invention are preferably capable of participating in the a stress tolerance response in a plant, or more particularly, participating in the transcription of a protein involved in a stress tolerance response in a *Physcomitrella* patens plant, or have one or more activities set forth in Table 1.

An isolated nucleic acid molecule encoding a PKSRP homologous to a protein sequence of SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 or SEQ ID NO:39 can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26 such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the sequences of SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26 by standard techniques, 5 such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino 10 acid residue having a similar side chain.

Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), 15 uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side 20 chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a PKSRP is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all 25 or part of a PKSRP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for a PKSRP activity described herein to identify mutants that retain PKSRP activity. Following mutagenesis of one of the sequences of SEQ ID NO:14, SEQ ID NO:15, SEQ ID 30 NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, the encoded protein can be expressed recombinantly and the activity of the protein can be determined by analyzing the 35 stress tolerance of a plant expressing the protein as described in Example 7.

In addition to the nucleic acid molecules encoding the PKSRPs described above, another aspect of the invention pertains to isolated nucleic acid molecules that are antisense 40 thereto. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can 45 hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire PKSRP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encod- 50 ing a PKSRP. The term "coding region" refers to the region of the nucleotide sequence comprising codons that are translated into amino acid residues (e.g., the entire coding region of,,, comprises nucleotides 1 to...). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncod-55" ing region" of the coding strand of a nucleotide sequence encoding a PKSRP. The term "noncoding region" refers to 5' and 3' sequences that flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions). 60

In a preferred embodiment, an isolated, nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID 65 NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, or a

portion thereof. A nucleic acid molecule that is complementary to one of the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26 is one which is sufficiently complementary to one of the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26 such that it can hybridize to one of the nucleotide sequences shown in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, thereby forming a stable duplex.

Given the coding strand sequences encoding the PKSRPs disclosed herein (e.g., the sequences set forth in SEQ ID NO:14, SEO ID NO:15, SEO ID NO:16, SEO ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of PKSRP mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of PKSRP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of PKSRP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length.

An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl)uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a PKSRP to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. 5 The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified 10 such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the 15 vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic (including plant) promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An a-anomeric nucleic acid molecule forms specific doublestranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other 25 (Gaultier et al., 1987 Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-omethylribonucleotide (Inoue et al., 1987 Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al., 1987 FEBS Lett. 215:327-330). 30

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes 35 (e.g., hammerhead ribozymes described in Haselhoff and Gerlach, 1988 Nature 334:585-591) can be used to catalytically cleave PKSRP mRNA transcripts to thereby inhibit translation of PKSRP mRNA. A ribozyme having specificity for a PKSRP-encoding nucleic acid can be designed based 40 upon the nucleotide sequence of a PKSRP cDNA, as disclosed herein (i.e., SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26) or 45 on the basis of a heterologous sequence to be isolated according to methods taught in this invention. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a PKSRP- 50 encoding mRNA. See, e.g., Cecil et at. U.S. Pat. No. 4,987, 071 and Cecil et al. U.S. Pat. No. 5,116,742. Alternatively, PKSRP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J. W., 1993 Science 55 261:1411-1418.

Alternatively, PKSRP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a PKSRP nucleotide sequence (e.g., a PKSRP promoter and/or enhancer) to form triple helical structures 60 that prevent transcription of a PKSRP gene in target cells. See generally, Helene, C., 1991 Anticancer Drug Des. 6(6):569-84; Helene, C. et al., 1992 Ann. N.Y. Acad. Sci. 660:27-36; and. Maher, L. J., 1992 Bioassays 14(12):807-15. 109801 In addition to the PKSRP nucleic acids and proteins described 65 above, the present invention encompasses these nucleic acids and proteins attached to a moiety. These moieties include, but 20

are not limited to, detection moieties, hybridization moieties, purification moieties, delivery moieties, reaction moieties, binding moieties, and the like. A typical group of nucleic acids having moieties attached are probes and primers. The probes and primers typically comprise a substantially isolated oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in SEO ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, an anti-sense sequence of one of the sequences set forth in SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 and SEQ ID NO:26, or naturally occurring mutants thereof. Prim-20 ers based on a nucleotide sequence of SEO ID NO:14, SEO ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25 or SEQ ID NO:26 can be used in PCR reactions to clone PKSRP homologs. Probes based on the PKSRP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a genomic marker test kit for identifying cells which express a PKSRP, such as by measuring a level of a PKSRP-encoding nucleic acid, in a sample of cells, e.g., detecting PKSRP mRNA levels or determining whether a genomic PKSRP gene has been mutated or deleted.

In particular, a useful method to ascertain the level of transcription of the gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al., 1988 Current Protocols in Molecular Biology, Wiley: N.Y.). This information at least partially demonstrates the degree of transcription of the transformed gene. Total cellular RNA can be prepared from cells, tissues or organs by several methods, all well-known in the art, such as that described in Bormann, E. R. et al., 1992 Mol. Microbiol. 6:317-326. To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed. These techniques are well known to one of ordinary skill in the art. (See, for example, Ausubel et al., 1988 Current Protocols in Molecular Biology, Wiley: N.Y.).

The invention further provides an isolated recombinant expression vector comprising a PKSRP nucleic acid as described above, wherein expression of the vector in a host cell results in increased tolerance to environmental stress as compared to a wild type variety of the host cell. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors 5 of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, 10 such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for 15 expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expres- 20 sion vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into 25 the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Aca- 30 demic Press, San Diego, Calif. (1990) or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnology, eds. Glick and Thompson, Chapter 7, 89-108, CRC Press: Boca Raton, Fla., including the references therein. Regulatory sequences include those that direct constitutive 35 expression of a nucleotide sequence in many types of host cells and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as 40 the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., 45 PKSRPs, mutant forms of PKSRPs, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of PKSRPs in prokaryotic or eukaryotic cells. For example, PKSRP genes can be expressed in bacterial cells such as C. glutamicum, insect cells (using 50 baculovirus expression vectors), yeast and other fungal cells (see Romanos, M. A. et al., 1992 Foreign gene expression in yeast: a review, Yeast 8:423-488; van den Handel, C. A. M. J. J. et al., 1991 Heterologous gene expression in filamentous fungi, in: More Gene Manipulations in Fungi, J. W. Bennet & 55 L. L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C. A. M. J. J. & Punt, P. J., 1991 Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J. F. et al., eds., p. 1-28, Cambridge University Press: Cambridge), 60 algae (Falciatore et al., 1999 Marine Biotechnology 1(3):239-251), ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Pseudocohnilembus, Euplotes, Engelmaniella, and Stylonychia, especially of the 65 genus Stylonychia lemnae with vectors following a transformation method as described in WO 98/01572 and multicel-

lular plant cells (see Schmidt, R. and Willmitzer, L., 1988 High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants, Plant Cell Rep. 583-586); Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Fla., chapter 6/7, S.71-119 (1993); F. F. White, B. Jenes et al, Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. Kung and R. Wu, 128-43, Academic Press: 1993; Pottykus, 1991 Annu. Rev. Plant Physiol. Plant Molec. Biol. 42:205-225 and references cited therein) or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press: San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of a recombinant protein; 2) to increase the solubility of a recombinant protein; and 3) to aid in the purification of a recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D. B. and Johnson, K. S., 1988 Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the PKSRP is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant PKSRP unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann et al., 1988 Gene 69:301-315) and pET 11d (Studier et al., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, Calif. (1990) 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, Calif. (1990) 119-128). Another strategy is to alter the sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as *C. glutamicum* (Wada et al., 1992 Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the inven-5 tion can be carried out by standard DNA synthesis techniques.

In another embodiment, the PKSRP expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari, et al., 1987 Embo J. 6:229-234), pMFa (Kurjan and Herskowitz, 1982 10 Cell 30:933-943), pJRY88 (Schultz et al., 1987 Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, Calif.). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C. A. M. J. 15 J. & Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J. F. Peberdy, et al., eds., p. 1-28, Cambridge University Press: Cambridge.

Alternatively, the PKSRPs of the invention can be 20 expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., 1983 Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers, 1989 Virology 170:31-39). 25

In yet another embodiment, a PKSRP nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B., 1987 Nature 329:840) and pMT2PC (Kaufman et al., 1987 EMBO J. 6:187-195). When 30 used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic 35 and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989. 4∩

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known 45 in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al., 1987 Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton, 1988 Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and 50 Baltimore, 1989 EMBO J. 8:729-733) and immunoglobulins (Banerji et al., 1983 Cell 33:729-740; Queen and Baltimore, 1983 Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989 PNAS 86:5473-5477), pancreas-specific promoters (Edlund et al., 55 1985 Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example, the murine hox promoters (Kessel and Gruss, 1990 60 Science 249:374-379) and the fetoprotein promoter (Campes and Tilghman, 1989 Genes Dev. 3:537-546).

In another embodiment, the PKSRPs of the invention may be expressed in unicellular plant cells (such as algae) (see Faleiatore et al., 1999 Marine Biotechnology 1(3):239-251 65 and references therein) and plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of

plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R., 1992 New plant binary vectors with selectable markers located proximal to the left border, Plant Mol. Biol, 20: 1195-1197; and Bevan, M. W., 1984 Binary *Agrobacterium* vectors for plant transformation, Nucl. Acid. Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds.: Kung and R. Wu, Academic Press, 1993, S. 15-38.

A plant expression cassette preferably contains regulatory sequences capable of driving gene expression in plant cells and operably linked so that each sequence can fulfill its function, for example, termination of transcription by polyadenylation signals. Preferred polyadenylation signals are those originating from *Agrobacterium tumefaciens* t-DNA such as the gene 3 known as octopine synthase of the Ti-plasmid pTiACH5 (Gielen et al., 1984 EMBO J. 3:835) or functional equivalents thereof but also all other terminators functionally active in plants are suitable,

As plant gene expression is very often not limited on transcriptional levels, a plant expression cassette preferably contains other operably linked sequences like translational enhancers such as the overdrive-sequence containing the 5'-untranslated leader sequence from tobacco mosaic virus enhancing the protein per RNA ratio (Gallie et al., 1987 Nucl. Acids Research 15:8693-8711).

Plant gene expression has to be operably linked to an appropriate promoter conferring gene expression in a timely, cell or tissue specific manner. Preferred are promoters driving constitutive expression (Benfey et al., 1989 EMBO J. 8:2195-2202) like those derived from plant viruses like the 35S CAMV (Franck et al., 1980 Cell 21:285-294), the 19S CaMV (see also U.S. Pat. No. 5,352,605 and PCT Application No, WO 8402913) or plant promoters like those from Rubisco small subunit described in U.S. Pat. No. 4,962,028.

Other preferred sequences for use in plant gene expression cassettes are targeting-sequences necessary to direct the gene product in its appropriate cell compartment (for review see Kermode, 1996 Crit. Rev, Plant Sci. 15(4):285-423 and references cited therein) such as the vacuole, the nucleus, all types of plastids like amyloplasts, chloroplasts, chromoplasts, the extracellular space, mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.

Plant gene expression can also be facilitated via an inducible promoter (for review see Gatz, 1997 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:89-108). Chemically inducible promoters are especially suitable if gene expression is wanted to occur in a time specific manner. Examples of such promoters are a salicylic acid inducible promoter (PCT Application No. WO 95/19443), a tetracycline inducible promoter (Gatz et al., 1992 Plant J. 2:397-404) and an ethanol inducible promoter (PCT Application No. WO 93/21334).

Also, suitable promoters responding to biotic or abiotic stress conditions are those such as the pathogen inducible PRP1-gene promoter (Ward et al., 1993 Plant. Mol. Biol. 22:361-366), the heat inducible hsp80-promoter from tomato (U.S. Pat. No. 5,187,267), cold inducible alpha-amylase promoter from potato (PCT Application No. WO 96/12814) or the wound-inducible pinII-promoter (European Patent No. 375091). For other examples of drought, cold, and salt-inducible promoters, such as the RD29A promoter, see Yamaguchi-Shinozalei et al. (1993 Mol. Gen. Genet, 236:331-340).

Especially preferred are those promoters that confer gene expression in specific tissues and organs, such as guard cells and the root hair cells. Suitable promoters include the napingene promoter from rapeseed (U.S. Pat. No. 5,608,152), the USP-promoter from Vicia faba (Baeumlein et al., 1991 Mol Gen Genet. 225(3):459-67), the oleosin-promoter from Arabidopsis (PCT Application No. WO 98/45461), the phaseolin-promoter from Phaseolus vulgaris (U.S. Pat. No. 5,504, 200), the Bce4-promoter from Brassica (PCT Application 5 No. WO 91/13980) or the legumin B4 promoter (LeB4; Baeumlein et al., 1992 Plant Journal, 2(2)233-9) as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice, etc. Suitable promoters to note are the lpt2 or lpt1-gene promoter from barley (PCT 10 Application No. WO 95/15389 and PCT Application No. WO 95/23230) or those described in PCT Application No. WO 99/16890 (promoters from the barley hordein-gene, rice glutelin gene, rice oryzin gene, rice prolamin gene, wheat gliadin gene, wheat glutelin gene, maize zein gene, oat glutelin gene, 15 Sorghum kasirin-gene and rye secalin gene).

Also especially suited are promoters that confer plastidspecific gene expression since plastids are the compartment where lipid biosynthesis occurs. Suitable promoters are the viral RNA-polymerase promoter described in PCT Applica- 20 tion No. WO 95/16783 and PCT Application No, WO 97/06250 and the clpP-promoter from Arabidopsis described in PCT Application No. WO 99/46394.

The invention further provides a recombinant expression vector comprising a PKSRP DNA molecule of the invention 25 cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to a PKSRP mRNA. Regulatory sequences opera- 30 tively linked to a nucleic acid molecule cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types. For instance, viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue 35 specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus wherein antisense nucleic acids are produced under the control of a high efficiency regulatory region. The activity of the regula- 40 tory region can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews-Trends in Genetics, Vol. 1(1) 1986 and Mol et al., 45 1990 FEBS Letters 268:427-430.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that 50 such terms refer not only to the particular subject cell but they also apply to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, 55 but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, a PKSRP can be expressed in bacterial cells such as C. glutamicum, insect cells, fungal cells or mammalian cells 60 (such as Chinese hamster ovary cells (CHO) or COS cells), algae, ciliates, plant cells, fungi or other microorganisms like C. glutamicum. Other suitable host cells are known to those skilled in the art.

Vector DNA can be introduced into prokaryotic or eukary- 65 otic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation",

"transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAF-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer and electroporation. Suitable methods for transforming or transfecting host cells including plant cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) and other laboratory manuals such as Methods in Molecular Biology, 1995, Vol, 44, Agrobacterium protocols, ed: Gartland and Davey, Humana Press, Totowa, N.J. As biotic and abiotic stress tolerance is a general trait wished to be inherited into a wide variety of plants like maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, rapeseed and canola, manihot, pepper, sunflower and tagetes, solanaceous plants like potato, tobacco, eggplant, and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut), perennial grasses and forage crops, these crop plants are also preferred target plants for a genetic engineering as one further embodiment of the present invention,

In particular, the invention provides a method of producing a transgenic plant with a PKSRP coding nucleic acid, wherein expression of the nucleic acid(s) in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant comprising: (a) transforming a plant cell with an expression vector comprising a PKSRP nucleic acid, and (b) generating from the plant cell a transgenic plant with a increased tolerance to environmental stress as compared to a wild type variety of the plant. The invention also provides a method of increasing expression of a gene of interest within a host cell as compared to a wild type variety of the host cell, wherein the gene of interest is transcribed in response to a PKSRP, comprising: (a) transforming the host cell with an expression vector comprising a PKSRP coding nucleic acid, and (b) expressing the PKSRP within the host cell, thereby increasing the expression of the gene transcribed in response to the PKSRP, as compared to a wild type variety of the host cell.

For such plant transformation, binary vectors such as pBinAR can be used (Höfgen and Willmitzer, 1990 Plant Science 66:221-230). Construction of the binary vectors can be performed by ligation of the cDNA in sense or antisense orientation into the T-DNA. 5-prime to the cDNA a plant promoter activates transcription of the cDNA. A polyadenylation sequence is located 3-prime to the cDNA. Tissue-specific expression can be achieved by using a tissue specific promoter. For example, seed-specific expression can be achieved by cloning the napin or LeB4 or USP promoter 5-prime to the cDNA. Also, any other seed specific promoter element can be used. For constitutive expression within the whole plant, the CaMV 35S promoter can be used. The expressed protein can be targeted to a cellular compartment using a signal peptide, for example for plastids, mitochondria or endoplasmic reticulum (Kermode, 1996 Crit. Rev. Plant Sci. 4(15):285-423). The signal peptide is cloned 5-prime in frame to the cDNA to archive subcellular localization of the fusion protein. Additionally, promoters that are responsive to abiotic stresses can be used with, such as the Arabidopsis promoter RD29A, the nucleic acid sequences disclosed herein. One skilled in the art will recognize that the promoter used should be operatively linked to the nucleic acid such that the promoter causes transcription of the nucleic acid which results in the synthesis of an mRNA which encodes a polypeptide. Alternatively, the

RNA can be an antisense RNA for use in affecting subsequent expression of the same or another gene or genes.

Alternate methods of transfection include the direct transfer of DNA into developing flowers via electroporation or Agrobacterium mediated gene transfer. Agrobacterium medi- 5 ated plant transformation can be performed using for example the GV3101(pMP90) (Koncz and Schell, 1986 Mol. Gen. Genet. 204:383-396) or LBA4404 (Clontech) Agrobacterium tumefaciens strain. Transformation can be performed by standard transformation and regeneration techniques (Deblaere et 10 al., 1994 Nucl. Acids. Res. 13:4777-4788; Gelvin, Stanton B. and Schilperoort, Robert A, Plant Molecular Biology Manual, 2nd Ed.—Dordrecht: Kluwer Academic Publ., 1995.—in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R.; Thompson, John E., 15 Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1991 - 360 S., ISBN 0-8493-5164-2). For example, rapeseed can be transformed via cotyledon or hypocotyl transformation (Moloney et al., 1989 Plant cell Report 8:238-242; De Block et al., 1989 Plant Physiol. 20 91:694-701). Use of antibiotica for Agrobacterium and plant selection depends on the binary vector and the Agrobacterium strain used for transformation. Rapeseed selection is normally performed using kanamycin as selectable plant marker. Agrobacterium mediated gene transfer to flax can be per- 25 formed using, for example, a technique described by Mlynarova et al., 1994 Plant Cell Report 13:282-285. Additionally, transformation of soybean can be performed using for example a technique described in European Patent No. 0424 047, U.S. Pat. No. 5,322,783, European Patent No. 0397 687, 30 U.S. Pat. Nos. 5,376,543 or 5,169,770. Transformation of maize can be achieved by particle bombardment, polyethylene glycol mediated DNA uptake or via the silicon carbide fiber technique. (See, for example, Freeling and Walbot "The maize handbook" Springer Verlag: New York (1993) ISBN 35 3-540-97826-7). A specific example of maize transformation is found in U.S. Pat. No. 5,990,387 and a specific example of wheat transformation can be found in PCT Application No. WO 93/07256.

For stable transfection of mammalian cells, it is known 40 that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced 45 into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate or in plants that confer resistance towards a herbicide such as glyphosate or glufosinate. Nucleic acid molecules encoding a 50 selectable marker can be introduced into a host cell on the same vector as that encoding a PKSRP or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid molecule can be identified by, for example, drug selection (e.g., cells that have incorporated the 55 selectable marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of a PKSRP gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally dis-60 rupt, the PKSRP gene. Preferably, the PKSRP gene is a *Physcomitrella patens* PKSRP gene, but it can be a homolog from a related plant or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous 65 PKSRP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a knock-out vector).

Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous PKSRP gene is mutated or otherwise altered but still encodes a functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous PKSRP). To create a point mutation via homologous recombination, DNA-RNA hybrids can be used in a technique known as chimeraplasty (Cole-Strauss et al., 1999 Nucleic Acids Research 27(5):1323-1330 and Kmiec, 1999 Gene therapy American Scientist. 87(3):240-247). Homologous recombination procedures in *Physcomitrella patens* are also well known in the art and are contemplated for use herein.

Whereas in the homologous recombination vector, the altered portion of the PKSRP gene is flanked at its 5' and 3' ends by an additional nucleic acid molecule of the PKSRP gene to allow for homologous recombination to occur between the exogenous PKSRP gene carried by the vector and an endogenous PKSRP gene, in a microorganism or plant. The additional flanking PKSRP nucleic acid molecule is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several hundreds of base pairs up to kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas, K. R., and Capecchi, M. R., 1987 Cell 51:503 for a description of homologous recombination vectors or Strepp et al., 1998 PNAS, 95 (8):4368-4373 for cDNA based recombination in Physcomitrella patens). The vector is introduced into a microorganism or plant cell (e.g., via polyethylene glycol mediated DNA), and cells in which the introduced PKSRP gene has homologously recombined with the endogenous PKSRP gene are selected using art-known techniques.

In another embodiment, recombinant microorganisms can be produced that contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of a PKSRP gene on a vector placing it under control of the lac operon permits expression of the PKSRP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a PKSRP. Accordingly, the invention further provides methods for producing PKSRPs using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a PKSRP has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered PKSRP) in a suitable medium until PKSRP is produced. In another embodiment, the method further comprises isolating PKSRPs from the medium or the host cell.

Another aspect of the invention pertains to isolated PKSRPs, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is free of some of the cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of PKSRP in which the protein is separated from some of the cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of a PKSRP having less than about 30% (by dry weight) of non-PKSRP material (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-PKSRP material, still more preferably less than about 10% of non-PKSRP material, and most preferably less than about 5% non-PKSRP material.

When the PKSRP or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the 5 protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of PKSRP in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language 10 "substantially free of chemical precursors or other chemicals" includes preparations of a PKSRP having less than about 30% (by dry weight) of chemical precursors or non-PKSRP chemicals, more preferably less than about 20% chemical precursors or non-PKSRP chemicals, still more 15 preferably less than about 10% chemical precursors or non-PKSRP chemicals, and most preferably less than about 5% chemical precursors or non-PKSRP chemicals. In preferred embodiments, isolated proteins, or biologically active portions thereof, lack contaminating proteins from the same 20 organism from which the PKSRP is derived. Typically, such proteins are produced by recombinant expression of, for example, a Physcomitrella patens PKSRP in plants other than Physcomitrella patens or microorganisms such as C. glutamicum, ciliates, algae or fungi. 25

The nucleic acid molecules, proteins, protein homologs, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *Physcomitrella patens* and related organisms; mapping of genomes of organisms related to *Physcomi-* 30 *trella patens*; identification and localization of *Physcomitrella patens*; equences of interest; evolutionary studies; determination of PKSRP regions required for function; modulation of a PKSRP activity; modulation of the metabolism of one or more cell functions; modulation of the transmembrane transport of one or more compounds; and modulation of stress resistance.

The moss *Physcomitrella patens* represents one member of the mosses. It is related to other mosses such as *Ceratodon purpureus* which is capable of growth in the absence of light. 40 Mosses like *Ceratodon* and *Physcomitrella* share a high degree of homology on the DNA sequence and polypeptide level allowing the use of heterologous screening of DNA molecules with probes evolving from other mosses or organisms, thus enabling the derivation of a consensus sequence 45 suitable for heterologous screening or functional annotation and prediction of gene functions in third species. The ability to identify such functions can therefore have significant relevance, e.g., prediction of substrate specificity of enzymes. Further, these nucleic acid molecules may serve as reference 50 points for the mapping of moss genomes, or of genomes of related organisms.

The PKSRP nucleic acid molecules of the invention have a variety of uses. Most importantly, the nucleic acid and amino acid sequences of the present invention can be used to transform plants, thereby inducing tolerance to stresses such as drought, high salinity and cold. The present invention therefore provides a transgenic plant transformed by a PKSRP nucleic acid (coding or antisense), wherein expression of the nucleic acid sequence in the plant results in increased tolerance to environmental stress as compared to a wild type variety of the plant. The transgenic plant can be a monocot or a dicot. The invention further provides that the transgenic plant can be selected from maize, wheat, lye, oat, triticale, rice, barley, soybean, peanut, cotton, rapeseed, canola, mani-65 hot, pepper, sunflower, tagetes, solanaceous plants, potato, tobacco, eggplant, tomato, *Vicia* species, pea, alfalfa, coffee,

cacao, tea, *Salix* species, oil palm, coconut, perennial grass and forage crops, for example.

In particular, the present invention describes using the expression of PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2 of Phvscomitrella patens to engineer drought-tolerant, salt-tolerant and/or cold-tolerant plants. This strategy has herein been demonstrated for Arabidopsis thaliana, Rapeseed/Canola, soybeans, corn and wheat but its application is not restricted to these plants. Accordingly, the invention provides a transgenic plant containing a PKSRP selected from PK-6 (SEQ ID NO:27), PK-7 (SEQ ID NO:28), PK-8 (SEQ ID NO:29), PK-9 (SEQ ID NO:30), CK-1 (SEQ ID NO:31), CK-2 (SEQ ID NO:32), CK-3 (SEQ ID NO:33), MPK-2 (SEQ ID NO:34), MPK-3 (SEQ ID NO:35), MPK-4 (SEQ ID NO:36), MPK-5 (SEQ ID NO:37), CPK-1 (SEQ ID NO:38) and CPK-2 (SEQ ID NO:39), wherein the environmental stress is drought, increased salt or decreased or increased temperature. In preferred embodiments, the environmental stress is drought or decreased temperature.

The present invention also provides methods of modifying stress tolerance of a plant comprising, modifying the expression of a PKSRP in the plant. The invention provides that this method can be performed such that the stress tolerance is either increased or decreased. In particular, the present invention provides methods of producing a transgenic plant having an increased tolerance to environmental stress as compared to a wild type variety of the plant comprising increasing expression of a PKSRP in a plant.

The methods of increasing expression of PKSRPs can be used wherein the plant is either transgenic or not transgenic. In cases when the plant is transgenic, the plant can be transformed with a vector containing any of the above described PKSRP coding nucleic acids, or the plant can be transformed with a promoter that directs expression of native PKSRP in the plant, for example. The invention provides that such a promoter can be tissue specific. Furthermore, such a promoter can be developmentally regulated. Alternatively, non-transgenic plants can have native PKSRP expression modified by inducing a native promoter.

The expression of PK-6 (SEQ ID NO:14), PK-7 (SEQ ID NO:15), PK-8 (SEQ ID NO:16), PK-9 (SEQ ID NO:17), CK-1 (SEQ ID NO:18), CK-2 (SEQ ID NO:19), CK-3 (SEQ ID NO:20), MPK-2 (SEQ ID NO:21), MPK-3 (SEQ ID NO:22), MPK-4 (SEQ ID NO:23), MPK-5 (SEQ ID NO:24), CPK-1 (SEQ ID NO:25) and CPK-2 (SEQ ID NO:26) in target plants can be accomplished by, but is not limited to, one of the following examples: (a) constitutive promoter, (b) stress-inducible promoter, (c) chemical-induced promoter, and (d) engineered promoter over-expression with for example zinc-finger derived transcription factors (Greisman and Pabo, 1997 Science 275:657). The later case involves identification of the PK-6 (SEQ ID NO:27), PK-7 (SEQ ID NO:28), PK-8 (SEQ ID NO:29), PK-9 (SEQ ID NO:30), CK-1 (SEQ ID NO:31), CK-2 (SEQ ID NO:32), CK-3 (SEQ ID NO:33), MPK-2 (SEQ ID NO:34), MPK-3 (SEQ ID NO:35), MPK-4 (SEQ ID NO:36), MPK-5 (SEQ ID NO:37), CPK-1 (SEQ ID NO:38) or CPK-2 (SEQ ID NO:39) homologs in the target plant as well as from its promoter. Zinc-finger-containing recombinant transcription factors are engineered to specifically interact with the PK-6 (SEQ ID NO:27), PK-7 (SEQ ID NO:28), PK-8 (SEQ ID NO:29), PK-9 (SEQ ID NO:30), CK-1 (SEQ ID NO:31), CK-2 (SEQ ID NO:32), CK-3 (SEQ ID NO:33), MPK-2 (SEQ ID NO:34), MPK-3 (SEQ ID NO:35), MPK-4 (SEQ ID NO:36), MPK-5 (SEQ ID NO:37), CPK-1 (SEQ ID NO:38) or CPK-2 (SEQ ID NO:39) homolog and transcription of the corresponding gene is activated.

In addition to introducing the PKSRP nucleic acid sequences into transgenic plants, these sequences can also be 5 used to identify an organism as being *Physcomitrella patens* or a close relative thereof. Also, they may be used to identify the presence of *Physcomitrella patens* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *Physcomi-* 10 *trella patens* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *Physcomitrella patens* gene which is unique to this organism, one can ascertain whether this organism is present. 15

Further, the nucleic acid and protein molecules of the invention may serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also in functional studies of Physcomitrella patens proteins. For example, to identify the region of the 20 genome to which a particular Physcomitrella patens DNAbinding protein binds, the Physcomitrella patens genome could be digested, and the fragments incubated with the DNA-binding protein. Those fragments that bind the protein may be additionally probed with the nucleic acid molecules 25 of the invention, preferably with readily detectable labels. Binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of Physcomitrella patens, and, when performed multiple times with different enzymes, facilitates a rapid determina- 30 tion of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related mosses,

The PKSRP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic and transport processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the 40 sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, 45 which may aid in determining those regions of the protein that are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function. 50

Manipulation of the PKSRP nucleic acid molecules of the invention may result in the production of PKSRPs having functional differences from the wild-type PKSRPs. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be 55 decreased in efficiency or activity.

There are a number of mechanisms by which the alteration of a PKSRP of the invention may directly affect stress response and/or stress tolerance. In the case of plants expressing PKSRPs, increased transport can lead to improved salt ⁶⁰ and/or solute partitioning within the plant tissue and organs. By either increasing the number or the activity of transporter molecules which export ionic molecules from the cell, it may be possible to affect the salt tolerance of the cell.

The effect of the genetic modification in plants, *C. glutaini*- 65 *cum*, fungi, algae, or ciliates on stress tolerance can be assessed by growing the modified microorganism or plant

under less than suitable conditions and then analyzing the growth characteristics and/or metabolism of the plant. Such analysis techniques are well known to one skilled in the art, and include dry weight, wet weight, protein synthesis, carbohydrate synthesis, lipid synthesis, evapotranspiration rates, general plant and/or crop yield, flowering, reproduction, seed setting, root growth, respiration rates, photosynthesis rates, etc. (Applications of HPLC in Biochemistry in Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al., 1993 Biotechnology, vol. 3, Chapter III: Product recovery and purification, page 469-714, VCH: Weinheim; Belter, P.A. et al., 1988 Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J. F. and Cabral, J. M. S., 1992 Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Hemy, J. D., 1988 Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F. J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

For example, yeast expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into *Saccharomyces cerevisiae* using standard protocols. The resulting transgenic cells can then be assayed for fail or alteration of their tolerance to drought, salt, and temperature stress. Similarly, plant expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into an appropriate plant cell such as *Arabidopsis*, soy, rape, maize, wheat, *Medicago truncatula*, etc., using standard protocols. The resulting transgenic cells and/or plants derived there from can then be assayed for fail or alteration of their tolerance to drought, salt, and temperature stress.

The engineering of one or more PKSRP genes of the inven-35 tion may also result in PKSRPs having altered activities which indirectly impact the stress response and/or stress tolerance of algae, plants, ciliates or fungi or other microorganisms like C. glutamicum. For example, the normal biochemical processes of metabolism result in the production of a variety of products (e.g., hydrogen peroxide and other reactive oxygen species) which may actively interfere with these same metabolic processes (for example, peroxynitrite is known to nitrate tyrosine side chains, thereby inactivating some enzymes having tyrosine in the active site (Groves, J. T., 1999 Curr. Opin. Chem. Biol. 3(2):226-235). While these products are typically excreted, cells can be genetically altered to transport more products than is typical for a wildtype cell. By optimizing the activity of one or more PKSRPs of the invention which are involved in the export of specific molecules, such as salt molecules, it may be possible to improve the stress tolerance of the cell.

Additionally, the sequences disclosed herein, or fragments thereof, can be used to generate knockout mutations in the genomes of various organisms, such as bacteria, mammalian cells, yeast cells, and plant cells (Girke, T., 1998 The Plant Journal 15:39-48). The resultant knockout cells can then be evaluated for their ability or capacity to tolerate various stress conditions, their response to various stress conditions, and the effect on the phenotype and/or genotype of the mutation. For other methods of gene inactivation see U.S. Pat. No. 6,004, 804 "Non-Chimeric Mutational Vectors" and Puttaraju et al., 1999 Spliceosome-mediated RNA trans-splicing as a tool for gene therapy Nature Biotechnology 17:246-252.

The aforementioned mutagenesis strategies for PKSRPs resulting in increased stress resistance are not meant to be limiting; variations on these strategies will be readily apparent to one skilled in the art. Using such strategies, and incor-5

55

porating the mechanisms disclosed herein, the nucleic acid and protein molecules of the invention may be utilized to generate algae, ciliates, plants, fungi or other microorganisms like C. glutamicum expressing mutated PKSRP nucleic acid and protein molecules such that the stress tolerance is improved.

The present invention also provides antibodies that specifically bind to a PKSRP, or a portion thereof, as encoded by a nucleic acid described herein. Antibodies can be made by many well-known methods (See, e.g. Harlow and Lane, "Antibodies; A Laboratory Manual" Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., (1988)). Briefly, purified antigen can be injected into an animal in an amount and in intervals sufficient to elicit an immune response. Antibodies can either be purified directly, or spleen cells can be obtained from the animal. The cells can then fused with an immortal cell line and screened for antibody secretion. The antibodies can be used to screen nucleic acid clone libraries for cells secreting the antigen. Those positive clones can then 20 be sequenced. (See, for example, Kelly et al., 1992 Bio/ Technology 10:163-167; Bebbington et al., 1992 Bio/Technology 10:169-175).

The phrases "selectively binds" and "specifically binds" with the polypeptide refer to a binding reaction that is deter- ²⁵ minative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bound to a particular protein do not bind in a significant amount to other proteins present in the sample. Selective binding of an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies that selectively bind with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies selectively immunoreactive with a protein. See Harlow and Lane "Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York, (1988), for a description of immunoassay formats and condi- $_{40}$ tions that could be used to determine selective binding.

In some instances, it is desirable to prepare monoclonal antibodies from various hosts. A description of techniques for preparing such monoclonal antibodies may be found in Stites et al., editors, "Basic and Clinical Immunology," (Lange 45 Medical Publications, Los Altos, Calif., Fourth Edition) and references cited therein, and in Harlow and Lane ("Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York, 1988).

Throughout this application, various publications are ref- 50 erenced. The disclosures of all of these publications and those references cited within those publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

It should also be understood that the foregoing relates to preferred embodiments of the present invention and that numerous changes may be made therein without departing from the scope of the invention. The invention is further illustrated by the following examples, which are not to be 60 construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof; which, after reading the description herein, may suggest themselves to those skilled in 65 the art without departing from the spirit of the present invention and/or the scope of the appended claims.

34 EXAMPLES

Example 1

Growth of Physcomitrella Patens Cultures

For this study, plants of the species Physcomitrella patens (Hedw.) B.S.G. from the collection of the genetic studies section of the University of Hamburg were used. They originate from the strain 16/14 collected by H.L.K. Whitehouse in Gransden Wood, Huntingdonshire (England), which was subcultured from a spore by Engel (1968, Am. J. Bot. 55, 438-446). Proliferation of the plants was carried out by means of spores and by means of regeneration of the gametophytes. The protonema developed from the haploid spore as a chloroplast-rich chloronema and chloroplast-low caulonema, on which buds formed after approximately 12 days. These grew to give gametophores bearing antheridia and archegonia. After fertilization, the diploid sporophyte with a short seta and the spore capsule resulted, in which the meiospores matured.

Culturing was carried out in a climatic chamber at an air temperature of 25° C. and light intensity of 55 micromol s^{-1} m^{-2} (white light; Philips TL 65W/25 fluorescent tube) and a light/dark change of 16/8 hours. The moss was either modified in liquid culture using Knop medium according to Reski and Abel (1985, Planta 165:354-358) or cultured on Knop solid medium using 1% oxoid agar (Unipath, Basingstoke, England). The protonemas used for RNA and DNA isolation were cultured in aerated liquid cultures. The protonemas were comminuted every 9 days and transferred to fresh culture medium.

Example 2

35 Total DNA Isolation from Plants

The details for the isolation of total DNA relate to the working up of one gram fresh weight of plant material. The materials used include the following buffers: CTAB buffer: 2% (w/v) N-cethyl-N,N,N-trimethylammonium bromide (CTAB); 100 mM Tris HCl pH 8.0; 1.4 M NaCl; 20 mM EDTA; N-Laurylsarcosine buffer: 10% (w/v) N-laurylsarcosine; 100 mM Tris HCl pH 8.0; 20 mM EDTA.

The plant material was triturated under liquid nitrogen in a mortar to give a fine powder and transferred to 2 ml Eppendorf vessels. The frozen plant material was then covered with a layer of 1 ml of decomposition buffer (1 ml CTAB buffer, 100 μ l of N-laurylsarcosine buffer, 20 μ l of β -mercaptoethanol and 10 µl of proteinase K solution, 10 mg/ml) and incubated at 60° C. for one hour with continuous shaking. The homogenate obtained was distributed into two Eppendorf vessels (2 ml) and extracted twice by shaking with the same volume of chloroform/isoamyl alcohol (24:1). For phase separation, centrifugation was carried out at 8000×g and room temperature for 15 minutes in each case. The DNA was then precipitated at -70° C. for 30 minutes using ice-cold isopropanol. The precipitated DNA was sedimented at 4° C. and 10,000 g for 30 minutes and resuspended in 180 µl of TE buffer (Sambrook et al., 1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6). For further purification, the DNA was treated with NaCl (1.2 M final concentration) and precipitated again at -70° C. for 30 minutes using twice the volume of absolute ethanol. After a washing step with 70% ethanol, the DNA was dried and subsequently taken up in 50 µl of H₂O+RNAse (50 mg/ml final concentration). The DNA was dissolved overnight at 4° C. and the RNAse digestion was subsequently carried out at 37° C. for 1 hour, Storage of the DNA took place at 4° C.

Example 3

Isolation of Total RNA and poly-(A)+ RNA and cDNA Library Construction from *Physcomitrella Patens*

For the investigation of transcripts, both total RNA and ⁵ poly-(A)⁺ RNA were isolated. The total RNA was obtained from wild-type 9 day old protonemata following the GTC-method (Reski et al. 1994, Mol. Gen. Genet., 244:352-359). The Poly(A)+ RNA was isolated using Dyna Beads^{*R*} (Dynal, Oslo, Norway) following the instructions of the manufacturer ers protocol. After determination of the concentration of the RNA or of the poly(A)+ RNA, the RNA was precipitated by addition of $\frac{1}{10}$ volumes of 3 M sodium acetate pH 4.6 and 2 volumes of ethanol and stored at -70° C.

For cDNA library construction, first strand synthesis was achieved using Murine Leukemia Virus reverse transcriptase (Roche, Mannheim, Germany) and oligo-d(T)-primers, second strand synthesis by incubation with DNA polymerase I, Klenow enzyme and RNAseH digestion at 12° C. (2 hours), 20 16° C. (1 hour) and 22° C. (1 hour). The reaction was stopped by incubation at 65° C. (10 minutes) and subsequently transferred to ice. Double stranded DNA molecules were blunted by T4-DNA-polymerase (Roche, Mannheim) at 37° C. (30 minutes). Nucleotides were removed by phenol/chloroform ²⁵ extraction and Sephadex G50 spin columns. EcoRI adapters (Pharmacia, Freiburg, Germany) were ligated to the cDNA ends by T4-DNA-ligase (Roche, 12° C., overnight) and phosphmlated by incubation with polynucleotide kinase (Roche, 37° C., 30 minutes). This mixture was subjected to separation on a low melting agarose gel. DNA molecules larger than 300 base pairs were eluted from the gel, phenol extracted, concentrated on Elutip-D-columns (Schleicher and Schuell, Dassel, Germany) and were ligated to vector arms and packed 35 into lambda ZAPII phages or lambda ZAP-Express phages using the Gigapack Gold Kit (Stratagene, Amsterdam, Netherlands) using material and following the instructions of the manufacturer.

Example 4

Sequencing and Function Annotation of *Physcomitrella Pat*ens ESTs

cDNA libraries as described in Example 3 were used for 45 DNA sequencing according to standard methods, and in particular, by the chain termination method using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt, Germany). Random Sequencing was carried out subsequent to preparative plas- 50 mid recovery from cDNA libraries via in vivo mass excision, retransformation, and subsequent plating of DH10B on agar plates (material and protocol details from Stratagene, Amsterdam, Netherlands. Plasmid DNA was prepared from overnight grown E. coli cultures grown in Luria-Broth medium 55 containing ampicillin (see Sambrook et al. 1989 Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) on a Qiagene DNA preparation robot (Qiagen, Hilden) according to the manufacturer's protocols. Sequencing primers with the following nucleotide sequences were used:

5 ' - CAGGAAACAGCTATGACC-3 '	SEQ ID NO: 40
5 ' - CTAAAGGGAACAAAAGCTG - 3 '	SEQ ID NO: 41
5 ' - TGTAAAACGACGGCCAGT - 3 '	SEQ ID NO: 42

36

Sequences were processed and annotated using the software package EST-MAX commercially provided by Bio-Max (Munich, Germany). The program incorporates practically all bioinformatics methods important for functional and structural characterization of protein sequences. For reference the website at pedant.nzips.biochem.mpg.de. The most important algorithms incorporated in EST-MAX are: FASTA: Very sensitive sequence database searches with estimates of statistical significance; Pearson W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183:63-98; BLAST: Very sensitive sequence database searches with estimates of statistical significance. Altschul S. F., Gish W., Miller W., Myers E. W., and Lipman D. J. Basic local alignment search tool. Journal of Molecular Biology 215:403-10; PREDATOR: High-accuracy secondary structure prediction from single and multiple sequences. Frishman, D. and Argos, P. (1997) 75% accuracy in protein secondary structure prediction. Proteins, 27:329-335; CLUSTALW: Multiple sequence alignment. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680; TMAP: Transmembrane region prediction from multiply aligned sequences. Persson, B. and Argos, P. (1994) Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J. Mol. Biol. 237:182-192; ALOM2: Transmembrane region prediction from single sequences. Klein, P., Kanehisa, M., and DeLisi, C. Prediction of protein function from sequence properties: A discriminate analysis of a database, Biochim, Biophys. Acta 787:221-226 (1984). Version 2 by Dr. K. Nakai; PROSE-ARCH: Detection of PROSITE protein sequence patterns. Kolakowski L. F. Jr., Leunissen J. A. M., Smith J. E. (1992) 40 ProSearch: fast searching of protein sequences with regular expression patterns related to protein structure and function. Biotechniques 13, 919-921; BLIMPS: Similarity searches against a database of ungapped blocks, J. C. Wallace and Henikoff S., (1992); PATMAT: A searching and extraction program for sequence, pattern and block queries and databases, CABIOS 8:249-254. Written by Bill Alford.

Example 5

Identification of *Physcomitrella Patens* ORFS Corresponding to PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-4, MPK-5, CPK-1 and CPK-2

The *Physcomitrella patens* partial eDNAs (ESTs) shown in Table 1 below were identified in the *Physcomitrella patens* EST sequencing program using the program EST-MAX through BLAST analysis. The Sequence Identification Numbers corresponding to these ESTs are as follows: PK-6 (SEQ ID NO:1), PK-7 (SEQ ID NO:2), PK-8 (SEQ ID NO:3), PK-9 (SEQ ID NO:4), CK-1 (SEQ ID NO:5), CK-2 (SEQ ID NO:6), CK-3 (SEQ ID NO:7), MPK-2 (SEQ ID NO:8),
MPK-3 (SEQ ID NO:9), MPK-4 (SEQ ID NO:10), MPK-5 (SEQ ID NO:11), CPK-1 (SEQ ID NO:12) and CPK-2 (SEQ ID NO:13).

Name	Functional categories	Function	Sequence code	ORF position
PpPK-6	Protein Kinase	serine/threonine protein kinase like protein	c_pp004044242r	1-474
PpPK-7	Protein Kinase	cdc2-like protein kinase cdc2MsF	s_pp001031042f	1-267
PpPK-8	Protein Kinase	protein kinase homolog F13C5.120	c_pp004044100r	1-581
PpPK-9	Protein Kinase	protein kinase; similar to human PKX1	c_pp004071077r	709-137
PpCK-1	Protein Kinase	receptor protein kinase	c_pp001062017r	1160-1
PpCK-2	Protein Kinase	kasein kinase	c_pp004038371r	1909-1421
PpCK-3	Protein Kinase	casein kinase II catalytic subunit	c_pp004076164r	2-877
РрМРК-2	Protein Kinase	mitogen-activated protein kinase 6	c_pp004041329r	952-293
PpMPK-3	Protein Kinase	big MAP kinase 1c	c_pp004061263r	221-550
PpMPK-4	Protein Kinase	protein kinase MEK1 (EC 2.7.1)	c_pp001064077r	1153-596
PpMPK-5	Protein Kinase	protein kinase MEK1	c_pp004064129r	114-233
PpCPK-1	Protein Kinase	protein kinase	c_pp004014376r	1084-173
PpCPK-2	Protein Kinase	calcium-dependent protein kinase	c_pp004038141r	422-1213
РрРК-6	Protein Kinase	cdc2-like protein kinase cdc2MsF	s_pp001031042f	1-267

TABLE 2

Degree of Amino Acid Identity and Similarity of PpPK-6 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

			Swiss-Prot #		
	O81106	Q9LUL4	Q9ZQZ2	Q9MAS2	Q9LK66
Protein name	LEUCINE- RICH REPEAT TRANS- MEMBRANE PROTEIN URMAGE 2	SERINE/ THREONINE PROTEIN KINASE- LIKE PROTEIN	PUTATIVE LRR RECEPTOR- LINKED PROTEIN KINASE	PUTATIVE LRR RECEPTOR PROTEIN KINASE	PROTEIN KINASE- LIKE PROTEIN
Species	KINASE 2 Zea mays (Maize)	Arabidopsis thaliana (Mouse-ear cress)	A. thaliana	A. thaliana	A. thaliana
Identity %	42%	42%	38%	37%	37%
Similarity %	54%	52%	50%	49%	48%

TABLE 3

Degr	ee of Amino Acid Identity and Similarity of PpPK-7 and Other	
Home	logous Proteins GCG Gap program was used: gap penalty: 10;	
	gap extension penalty: 0.1; score matrix: blosum62)	

	Swiss-Prot #					
	P25859	O49120	Q38774	P93321	Q9ZVI4	
Protein name	CELL	CYCLIN-	CELL	CDC2	PUTATIVE	
	DIVISION	DEPENDENT	DIVISION	KINASE	SERINE/	
	CONTROL	KINASE 1	CONTROL	HOMOLOG	THREONINE	
	PROTEIN 2		PROTEIN 2	CDC2MSD	PROTEIN	
	HOMOLOG		HOMOLOG		KINASE	
	В		С			
Species	A. thaliana	Dunaliella tertiolecta	Antirrhinum majus (Garden snapdragon)	<i>Medicago</i> sativa (Alfalfa)	A. thaliana	
Identity %	70%	68%	70%	69%	69%	
Similarity %	79%	76%	81%	79%	77%	

TABLE 4

Degree of Amino Acid Identity and Similarity of PpPK-8 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

			Swiss-Prot #		
	O82754	Q9M085	Q02779	Q05609	Q39886
Protein name	PUTATIVE SERINE/ THREONINE KINASE	PROTEIN KINASE-LIKE PROTEIN	MITOGEN- ACTIVATED PROTEIN KINASE KINASE KINASE 10	SERINE/ THREONINE- PROTEIN KINASE CTR1	PROTEIN KINASE
Species	A. thaliana	A. thaliana	<i>Homo sapiens</i> (Human)	A. thaliana	<i>Glycine max</i> (Soybean)
Identity % Similarity %	25% 42%	26% 40%	27% 38%	27% 40%	26% 40%

TABLE 5

Degree of Amino Acid Identity and Similarity of PpPK-9 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

			Swiss-Prot#		
	Q9SL77	P34099	Q9TXB8	P40376	Q9SXP9
Protein name	PUTATIVE CAMP- DEPENDENT PROTEIN KINASE	CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT	SERINE/ THREO- NINE PROTEIN KINASE	CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT	CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT
Species	A. thaliana	Dictyo- stelium discoideum (Slime mold)	Dictyo- stelium	Schizo- saccharomyces pombe (Fission yeast)	Euglena gracilis
Identity % Similarity %	45% 60%	33% 48%	32% 48%	33% 50%	28% 40%

TABLE 6

Degree of Amino Acid Identity and Similarity of PpCK-1 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

	Swiss-Prot #				
	Q9SZI1	Q9ZUP4	P42158	Q9LW62	Q39050
Protein name	COL-0 CASEIN KINASE I- LIKE PROTEIN	PUTATIVE CASEIN KINASE I	CASEIN KINASE I, DELTA ISOFORM LIKE	CASEIN KINASE	CASEIN KINASE I
Species Identity % Similarity %	<i>A. thaliana.</i> 49% 62%	<i>A. thaliana</i> 48% 61%	<i>A. thaliana</i> 48% 61%	A. thaliana 46% 58%	<i>A. thaliana</i> 40% 52%

TABLE 7

Degree of Amino Acid Identity and Similarity of PpCK-2 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

	Swiss-Prot #					
	Q9SZI1	P42158	Q9ZWB3	Q9ZUP4	Q9LSX4	
Protein name	COL-0 CASEIN KINASE I- LIKE PROTEIN	CASEIN KINASE I	ADK1	PUTATIVE CASEIN KINASE I	CASEIN KINASE I	

TABLE 7-continued

Degree of Amino Acid Identity and Similarity of PpCK-2 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

	Swiss-Prot #					
	Q9SZI1	P42158	Q9ZWB3	Q9ZUP4	Q9LSX4	
Species Identity % Similarity %	<i>A. thaliana.</i> 64% 73%	<i>A. thaliana</i> 59% 66%	<i>A. thaliana</i> 60% 72%	A. thaliana 58% 67%	<i>A. thaliana</i> 57% 69%	

TABLE 8

Degree of Amino Acid Identity and Similarity of PpCK-3 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

			Swiss-Prot #		
	O64816	Q9ZR52	P28523	Q9SN18	Q08466
Protein name	PUTATIVE CASEIN KINASE II CATALYTIC SUBUNIT	CASEIN KINASE II ALPHA SUBUNIT	CASEIN KINASE II, ALPHA CHAIN	CASEIN KINASE II, ALPHA CHAIN 2 (CK II)	CASEIN KINASE II, ALPHA CHAIN 2
Species	A. thaliana	Zea mays (Maize)	Z. mays	À. thaliana	A. thaliana
Identity % Similarity %	87% 93%	89% 94%	89% 93%	88% 93%	88% 93%

TABLE 9

	Degree of Amino Acid Identity and Similarity of PpMPK-2 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)						
			Swiss-Prot#	<i>‡</i>			
	Q9M136	Q40531	Q39024	Q40353	Q07176		
Protein name	MAP KINASE 4	MITOGEN- ACTIVATED PROTEIN KINASE HOMOLOG NTF6	MITOGEN- ACTIVATED PROTEIN KINASE HOMOLOG 4	MITOGEN- ACTIVATED PROTEIN KINASE HOMOLOG MMK2	MITOGEN- ACTIVATED PROTEIN KINASE HOMOLOG MMK1		
Species	A. thaliana	Nicotiana tabacum (Common tobacco)	A. thaliana	M. sativa	M. sativa		
Identity % Similarity %	70% 80%	69% 78%	69% 80%	68% 79%	66% 76%		

TABLE 10

Degree of Amino Acid Identity and Similarity of PpMPK-3 and	
Other Homologous Proteins GCG Gap program was used: gap penalty:	
10; gap extension penalty: 0.1; score matrix: blosum62)	
Swiss-Prot #	

	Q9SUX2	P13983	Q41192	O70495	Q9RLD9
Protein name	EXTENSIN- LIKE PROTEIN	EXTENSIN	NAPRP3	PLENTY- OF- PROLINES- 101	FERULOYL- COA SYNTHETASE
Species	A. thaliana	N. tabacum	Nicotiana alata (Winged tobacco) (Persian tobacco)	Mus musculus (Mouse)	Pseudomonas sp.

TABLE 10-continued

(Degree of Amino Acid Identity and Similarity of PpMPK-3 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)						
	Swiss-Prot #						
	Q9SUX2	P13983	Q41192	O70495	Q9RLD9		
Identity %	12%	15%	22%	18%	11%		
Similarity %	21%	22%	30%	26%	20%		

TABLE 11

Degree of Amino Acid Identity and Similarity of PpMPK-4 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62) Swiss-Prot # O49975 O48616 Q9M6Q9 O80395 Q9S7U9 Protein name PROTEIN MAP KINASE MAP KINASE MAP KINASE MAP2K BETA PROTEIN KINASE KINASE KINASE KINASE 2 ZMMEK1 Z. mays Lycopersicon N. tabacum A. thaliana A. thaliana Species esculentum (Tomato) 53% 50% 54% 50% Identity % 59%

TABLE 12

Degree of Amino Acid Identity and Similarity of PpMPK-5 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

	Swiss-Prot #					
	O49975	O48616	Q9M6Q9	O80395	Q9S7U9	
Protein name	PROTEIN KINASE ZMMEK1	MAP KINASE KINASE	MAP KINASE KINASE	MAP KINASE KINASE 2	MAP2K BETA PROTEIN	
Species Identity % Similarity %	Z. mays 59% 72%	L. esculentum 54% 66%	N. tabacum 53% 66%	<i>A. thaliana</i> 50% 62%	<i>A. thaliana</i> 50% 62%	

TABLE 13

Degree of Amino Acid Identity and Similarity of PpCPK-1 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

	Swiss-Prot #					
	Q9SCS2	O04290	P53681	P93520	Q41792	
Protein name	CDPK- RELATED PROTEIN KINASE	CDPK- RELATED PROTEIN KINASE	CDPK- RELATED PROTEIN KINASE	CALCIUM/CAL MODULIN- DEPENDENT PROTEIN KINASE HOMOLOG	CDPK- RELATED PROTEIN KINASE	

TABLE 13-continued

Degree of Amino Acid Identity and Similarity of PpCPK-1 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62

	Swiss-Prot #						
	Q9SCS2	O04290	P53681	P93520	Q41792		
Species	A. thaliana	A. thaliana	Daucus carota (Carrot)	Z. mays	Z. mays		
Identity % Similarity %	64% 76%	64% 76%	63% 75%	63% 73%	63% 74%		

TABLE 14

Degree of Amino Acid Identity and Similarity of PpCPK-2 and Other Homologous Proteins GCG Gap program was used: gap penalty: 10; gap extension penalty: 0.1; score matrix: blosum62)

	Swiss-Prot #					
	Q9S7Z4	Q42479	Q41790	O81390	Q9ZPM0	
Protein name Species	DEPENDENT PROTEIN KINASE Marchantia	CALCIUM- DEPENDENT PROTEIN KINASE A. thaliana	CALCIUM- DEPENDENT PROTEIN KINASE Z. mays	CALCIUM- DEPENDENT PROTEIN KINASE N. tabacum	CA2+- DEPENDENT PROTEIN KINASE Mesembryan-	
Identity % Similarity %	polymorpha (Liverwort) 66% 75%	62% 73%	59% 70%	59% 68%	<i>themum</i> <i>crystallinum</i> (Common ice plant) 59% 70%	

Example 6

Cloning of the Full-Length Physcomitrella Patens cDNA Encoding for PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2

To isolate the clones encoding PK-6 (SEQ ID NO:14), 40 PK-7 (SEQ ID NO:15), PK-8 (SEQ ID NO:16), PK-9 (SEQ ID NO:17), CK-1 (SEQ ID NO:18), CK-2 (SEQ ID NO:19), CK-3 (SEQ ID NO:20), MPK-2 (SEQ ID NO:21), MPK-3 (SEQ ID NO:22), MPK-4 (SEQ ID NO:23), MPK-5 (SEQ ID NO:24), CPK-1 (SEQ ID NO:25) and CPK-2 (SEQ ID 45 NO:26) from Physcomitrella patens, cDNA libraries were created with SMART RACE cDNA Amplification kit (Clontech Laboratories) following manufacturer's instructions. Total RNA isolated as described in Example 3 was used as the template. The cultures were treated prior to RNA isolation as 50 follows: Salt Stress: 2, 6, 12, 24, 48 hours with 1-M NaClsupplemented medium; Cold Stress: 4° C. for the same time points as for salt; Drought Stress: cultures were incubated on dry filter paper for the same time points as for salt. 5' RACE Protocol

The EST sequences PK-6 (SEQ ID NO:1), PK-7 (SEQ ID NO:2), PK-8 (SEQ ID NO:3), PK-9 (SEQ ID NO:4), CK-1 (SEQ ID NO:5), CK-2 (SEQ ID NO:6), CK-3 (SEQ ID NO:7), MPK-2 (SEQ ID NO:8), MPK-3 (SEQ ID NO:9), MPK-4 (SEQ ID NO:10), MPK-5 (SEQ ID NO:11), CPK-1 60 (SEQ ID NO:12) and CPK-2 (SEQ ID NO:13) identified from the database search as described in Example 4 were used to design oligos for RACE (see Table 15). The extended sequences for these genes were obtained by performing Rapid Amplification of cDNA Ends polymerase chain reac- 65 tion (RACE PCR) using the Advantage 2 PCR kit (Clontech Laboratories) and the SMART RACE cDNA amplification

35 kit (Clontech Laboratories) using a Biometra T3 Thermocycler following the manufacturer's instructions. The sequences obtained from the RACE reactions corresponded to full-length coding regions of CC-2 and CC-3 and were used to design oligos for full-length cloning of the respective genes (see below full-length amplification).

Full-Length Amplification

55

Full-length clones corresponding PK-6 (SEQ ID NO:14), PK-7 (SEQ ID NO:15), PK-8 (SEQ ID NO:16), PK-9 (SEQ ID NO:17), CK-1 (SEQ ID NO:18), CK-2 (SEQ ID NO:19), CK-3 (SEQ ID NO:20), MPK-2 (SEQ ID NO:21), MPK-3 (SEQ ID NO:22), MPK-4 (SEQ ID NO:23), MPK-5 (SEQ ID NO:24), CPK-1 (SEQ ID NO:25) and CPK-2 (SEQ ID NO:26) were obtained by performing polymerase chain reaction (PCR) with gene-specific primers (see Table 15) and the original EST as the template. The conditions for the reaction were standard conditions with PWO DNA polymerase (Roche). PCR was performed according to standard conditions and to manufacturer's protocols (Sambrook et al., 1989 Molecular Cloning, A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y., Biometra T3 Thermocycler). The parameters for the reaction were: five minutes at 94° C. followed by five cycles of one minute at 94° C., one minute at 50° C. and 1.5 minutes at 72° C. This was followed by twenty five cycles of one minute at 94° C., one minute at 65° C. and 1.5 minutes at 72° C.

The amplified fragments were extracted from agarose gel with a QIAquick Gel Extraction Kit (Qiagen) and ligated into the TOPO pCR 2.1 vector (Invitrogen) following manufacturer's instructions. Recombinant vectors were transformed into Top10 cells (Invitrogen) using standard conditions (Sambrook et al. 1989. Molecular Cloning, A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.). Transformed cells were selected for on LB agar containing 100 μ g/ml carbenicillin, 0.8 mg X-gal (5-bmmo-4-chloro-3-indolyl- β -D-galactoside) and 0.8 mg IPTG (isopropylthio- β -D-galactoside) grown overnight at 37° C. White colonies were selected and used to inoculate 3 ml of liquid LB containing 100 μ g/ml ampicillin and grown 5 overnight at 37° C. Plasmid DNA was extracted using the

QIAprep Spin Miniprep Kit (Qiagen) following manufacturer's instructions. Analyses of subsequent clones and restriction mapping was performed according to standard molecular biology techniques (Sambrook et al., 1989 Molecular Cloning, A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.).

TABLE 15

Gene	Final product Sites	Isolation Method	Primers Race	Primers RT-PCR
PpPK-6	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	(SEQ ID NO: 43)	RC858: (SEQ ID NO: 46) ATCCCGGGTGAGTA TCACTTACGGTGGC GA RC859: (SEQ ID NO: 47) GCGTTAACTCGACC AAGGTCACTATTCC AAGCA
₽₽₽К-7	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	RC250: (SEQ ID NO: 48) CGGTGCCCACCTCG TTCCTGTGGTT	RC590: (SEQ ID NO: 49) ATCCCGGGAGTGGA GGA GGA RC591: (SEQ ID NO: 50) GCGTTAACCTTCGTC TTGGACAGGTAGAG GTTAC
Рр₽К-8	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	(SEQ ID NO: 51) GACTCAGCCCCGTA ATCCTTCAACA	RC1016: (SEQ ID NO: 52) ATCCCGGGCAACGA GAAGCATTCGAGAT GGC RC1021: (SEQ ID NO: 53) GCGTTAACGAGCAT CACGATACTCGGTG ATTTC
РрРК-9	XmaI/SacI	5' RACE and RT-PCR for Full-length clone	RC263: (SEQ ID NO: 54) CGACGGCTAATACC ACGTTGGCGACCA	RC831: (SEQ ID NO: 55) ATCCCGGGCTGTGA TGTCGGTGTGGTGCT CTGC RC832: (SEQ ID NO: 56) GCGAGCTCGCACCA CTGAATGATGGAGA CTCAGG
PpCK-1	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	NVT: (SEQ ID NO: 57) CGACCGCAGCCCAT GAGGAAGTTAT	RC614: (SEQ ID NO: 58) ATCCCGGGCTCACG TAGTGCACTGAACT CTGTC RC615: (SEQ ID NO: 59) GCGTTAACATGCCC ATCTTCTCATACTCA GACC

TABLE 15-continued

	Scheme	and primers	used for cloning of fu	uu-length clones
Gene	Final product Sites	Isolation Method	Primers Race	Primers RT-PCR
PpCK-2	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	NVT: (SEQ ID NO: 60) CTCGCCTACCAAGC CCCATTAGAAA	RC1012: (SEQ ID NO: 61) ATCCCGGGTTGTCG AGGACGGAGAGAGA AGAG RC1015: (SEQ ID NO: 62) GCGTTAACCTTAGG AATCGTATGGCAGA GAGCT
PpCK-3	HpaI/SacI	5' RACE and RT-PCR for Full-length clone	(SEQ ID NO: 63)	RC640: (SEQ ID NO: 64) GCGTTAACGGGAGG AAGGTCGGGGGAAG AGACG RC641: (SEQ ID NO: 65) GCGAGCTCAGCGCT TCGCACAACTGAGA AACCT
•рМ₽К-2	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	(SEQ ID NO: 66)	RC664: (SEQ ID NO: 67) ATCCCGGGCGAGCC ATGGCGCCACTTGCT T RC665: (SEQ ID NO: 68) GCGTTAACGCCGAG CAACAATGTCTGCT GGATG
₽pMPK-3	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	RC268: (SEQ ID NO: 69) CCCGGTAAGCCATC GGAGTGTGGAA	RC662: (SEQ ID NO: 70) ATCCCGGGCTTGTAT TGGCTCGGATAATTT RC663: (SEQ ID NO: 71) GCGTTAACGGCAAT ATCTGCACAGCCGTT CACT
'рМ₽К-4	XmaI/SacI	5' RACE and RT-PCR for Full-length clone	(SEQ ID NO: 72)	RC1001: (SEQ ID NO: 73) ATCCCGGGCGGTCG AGTCGTATTAGGTG TTGTTTC RC1005: (SEQ ID NO: 74) GAGCTCCGGTAGGT CCGACCTCTTCAATT G
₽рМ₽К-5	XmaI/SacI	5' RACE and RT-PCR for Full-length clone	(SEQ ID NO: 75)	RC572: (SEQ ID NO: 76) ATCCCGGGAGAGGC TGATCTGGATGCTACA GT RC573: (SEQ ID NO: 77) ATGAGCTCTGGCGG ATTGGCGAGGTAGT TCGAC

Gene	Final product Sites	Isolation Method	Primers Race	Primers RT-PCR
pCPK-1	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	RC526: (SEQ ID NO: 78) CGGCGCAACGTAGT ATGCGCTTCCA RC723N: (SEQ ID NO: 79) CGCGGTGAACAAC ACCTTGCAGGTGAC RC767: (SEQ ID NO: 80) GCTCGGGTCAGCCC TCAACACCGCA NVT: (SEQ ID NO: 81) GTTAAAGCTTGTGC AGCAGTCATGC	RC817: (SEQ ID NO: 82) ATCCCGGGTGTAGG CGGGCGAGGTTCGA TGC RC818: (SEQ ID NO: 83) GCGTTAACGACAAC CGGAGTAGAACGGC AGTCCA
pCPK-2	XmaI/HpaI	5' RACE and RT-PCR for Full-length clone	NVT: (SEQ ID NO: 84) AGAAGCGAGGAAT GGGCAGGGACGA	RC703: (SEQ ID NO: 85) ATCCCGGGCGAACT GCGATCTGAGATTC CAAC RC704: (SEQ ID NO: 86) GCGTTAACGAGATC CAACCGAAGCCATC CTACGA

Example 7

Engineering Stress-Tolerant *Arabidopsis* Plants by Over-Expressing the Genes PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, 35 CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2 Binary Vector Construction: Kanamycin

The plasmid construct pACGH101 was digested with PstI (Roche) and FseI (NEB) according to manufacturers' instructions. The fragment was purified by agarose gel and extracted 40 via the Qiaex II DNA Extraction kit (Qiagen). This resulted in a vector fragment with the *Arabidopsis* Actin2 promoter with internal intron and the OCS3 terminator. Primers for PCR amplification of the NPTII gene were designed as follows:

5'NPT-Pst:				
	(SEQ	ID	NO:	87)
GCG-CTG-CAG-ATT-TCA-TTT-GGA-GAG-GAC-	ACG			

3'NPT-Fse:

(SEQ ID NO: 88) CGC-GGC-CGG-CCT-CAG-AAG-AAC-TCG-TCA-AGA-AGG-CG.

The 0.9 kilobase NPTII gene was amplified via PCR from pCambia 2301 plasmid DNA [94° C. 60 sec, $\{94° C. 60 \text{ sec}, 61° C. (-0.1° C. per cycle) 60 sec, 72° C. 2 min} \times 25$ cycles, 55 72° C. 10 min on Biometra T-Gradient machine], and purified via the Qiaquick PCR Extraction kit (Qiagen) as per manufacturer's instructions. The PCR DNA was then subcloned into the pCR-BluntII TOPO vector (Invitrogen) pursuant to the manufacturer's instructions (NPT-Topo construct). These 60 ligations were transformed into Top 10 cells (Invitrogen) and grown on LB plates with 50 ug/ml kanamycin sulfate overnight at 37° C. Colonies were then used to inoculate 2 ml LB media with 50 ug/ml kanamycin sulfate and grown overnight at 37° C. Plasmid DNA was recovered using the Qiaprep Spin 65 Miniprep kit (Qiagen) and sequenced in both the 5' and 3' directions using standard conditions. Subsequent analysis of

the sequence data using VectorNTI software revealed no PCR errors present in the NPTII gene sequence.

The NPT-Topo construct was then digested with PstI (Roche) and FseI (NEB) according to manufacturers' instructions. The 0.9 kilobase fragment was purified on agarose gel and extracted by Qiaex II DNA Extraction kit (Qiagen), The Pst/Fse insert fragment from NPT-Topo and the Pst/Fse vector fragment from pACGH101 were then ligated together
using T4 DNA Ligase (Roche) following manufacturer's instructions. The ligation was then transformed into Top10 cells (Invitrogen) under standard conditions, creating pBPSsc019 construct. Colonies were selected on LB plates with 50 ug/ml kanamycin sulfate and grown overnight at 37° C. Plasmid DNA was recovered using the Qiaprep Spin Miniprep kit (Qiagen) following the manufacturer's instructions.

The pBPSSC019 construct was digested with KpnI and 50 BsaI (Roche) according to manufacturer's instructions. The fragment was purified via agarose gel and then extracted via the Qiaex II DNA Extraction kit (Qiagen) as per its instructions, resulting in a 3 kilobase Act-NPT cassette, which included the *Arabidopsis* Acting promoter with internal 55 intron, the NPTII gene and the OCS3 terminator.

The pBPSJH001 vector was digested with SpeI and ApaI (Roche) and blunt-end filled with Klenow enzyme and 0.1 mM dNTPs (Roche) according to manufacture's instructions. This produced a 10.1 kilobase vector fragment minus the Gentamycin cassette, which was recircularized by self-ligating with T4 DNA Ligase (Roche), and transformed into Top10 cells (Invitrogen) via standard conditions. Transformed cells were selected for on LB agar containing 50 μ g/ml kanmycin sulfate and grown overnight at 37° C. Colonies were then used to inoculate 2 ml of liquid LB containing 50 μ g/ml kanamycin sulfate and grown overnight at 37° C. Plasmid DNA was extracted using the QIAprep Spin Mini-

5

5

6

65

prep Kit (Qiagen) following manufacture's instructions. The recircularized plasmid was then digested with KpnI (Roche) and extracted from agarose gel via the Qiaex II DNA Extraction kit (Qiagen) as per manufacturer's instructions.

The Act-NPT Kpn-cut insert and the Kpn-cut pBPSJH001 recircularized vector were then ligated together using T4 DNA Ligase (Roche) and transformed into Top10 cells (Invitrogen) as per manufacturers' instructions. The resulting construct, pBPSsc022, now contained the Super Promoter, the GUS gene, the NOS terminator, and the Act-NPT cassette. Transformed cells were selected for on LB agar containing 50 µg/ml kanmycin sulfate and grown overnight at 37° C. Colonies were then used to inoculate 2 ml of liquid LB containing 50 $\mu g/ml$ kanamycin sulfate and grown overnight at 37° C. $_{15}$ Plasmid DNA was extracted using the QIAprep Spin Miniprep Kit (Qiagen) following manufacturer's instructions. After confirmation of ligation success via restriction digests, pBPSsc022 plasmid DNA was further propigated and recovered using the Plasmid Midiprep Kit (Qiagen) following the 20 manufacturer's instructions.

Subeloning of PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2 into the Binary Vector

The fragments containing the different *Physcomitrella pat-*25 ens protein kinases were subcloned from the recombinant PCR2.1 TOPO vectors by double digestion with restriction enzymes (see Table 16) according to manufacturer's instructions. The subsequence fragment was excised from agarose gel with a QIAquick Gel Extraction Kit (QIAgen) according to manufacture's instructions and ligated into the binary vectors pGMSG, cleaved with Xmal and Ecl136II and dephosphorylated prior to ligation. The resulting recombinant pGMSG contained the corresponding transcription factor in the sense orientation under the constitutive super promoter. 35

TABLE	16
-------	----

	·	s used for plant transform	nation
Gene	Enzymes used to generate gene fragment	Enzymes used to restrict pBPSJH001	Binary Vector Construct
PpPK-6	XmaI/HpaI	XmaI/SacI	pBPSJyw022
PpPK-7	XmaI/HpaI	XmaI/Ecl136	pBPSJyw012
PpPK-8	XmaI/HpaI	XmaI/Ecl136	pBPSJYW030
PpPK-9	XmaI/SacI	XmaI/SacI	PBPSERG010
PpCK-1	XmaI/HpaI	XmaI/Ecl136	pBPSSY012
PpCK-2	XmaI/HpaI	XmaI/Ecl136	pBPSJyw034
PpCK-3	HpaI/SacI	SmaI/SacI	pBPSSY011
PpMPK-2	XmaI/HpaI	XmaI/Ecl136	pBPSSY016
PpMPK-3	XmaI/HpaI	XmaI/Ecl136	pBPSJyw014
PpMPK-4	XmaI/SacI	XmaI/SacI	pBPSJyw025
PpMPK-5	XmaI/SacI	XmaI/SacI	PBPSERG009
PpCPK-1	XmaI/HpaI	XmaI/Ecl136	PBPSERG019
PpCPK-2	XmaI/HpaI	XmaI/Ecl136	pBPSJyw008

Agrobacterium Transformation

The recombinant vectors were transformed into *Agrobacterium tumefaciens* C58C1 and PMP90 according to standard conditions (Hoefgen and Willmitzer, 1990). Plant Transformation

Arabidopsis thaliana ecotype C24 were grown and trans-

formed according to standard conditions (Bechtold 1993, Acad. Sci. Paris. 316:1194-1199; Bent et al. 1994, Science 265:1856-1860).

Screening of Transformed Plants

T1 seeds were sterilized according to standard protocols (Xiong et al. 1999, Plant Molecular Biology Reporter 17:

54

159-170). Seeds were plated on 1/2 Murashige and Skoog media (MS) (Sigma-Aldrich) pH 5.7 with KOH, 0.6% agar and supplemented with 1% sucrose, 0.5 g/L 2-[N-Morpholino]ethansulfonic acid (MES) (Sigma-Aldrich), 50 ug/ml kanamycin (Sigma-Aldrich), 500 ug/ml earbenicillan (Sigma-Aldrich) and 2 µg/ml benomyl (Sigma-Aldrich). Seeds on plates were vernalized for four days at 4° C. The seeds were germinated in a climatic chamber at an air temperature of 22° C. and light intensity of 40 micromol s⁻¹ m⁻² (white light; Philips TL 65W/25 fluorescent tube) and 16 hours light and 8 hours dark day length cycle. Transformed seedlings were selected after 14 days and transferred to 1/2 MS media pH 5.7 with KOH 0.6% agar plates supplemented with 0.6% agar, 1% sucrose, 0.5 g/L MES (Sigma-Aldrich), and 2 µg/ml benomyl (Sigma-Aldrich) and allowed to recover for five-seven days.

Drought Tolerance Screening

T1 seedlings were transferred to dry, sterile filter paper in a petri dish and allowed to desiccate for two hours at 80% RH (relative humidity) in a Percieval Growth Cabinet MLR-350H, micromole s⁻¹ m⁻² (white light; Philips TL 65W/25 fluorescent tube). The RH was then decreased to 60% and the seedlings were desiccated further for eight hours. Seedlings were then removed and placed on $\frac{1}{2}$ MS 0.6% agar plates supplemented with 2 µg/ml benomyl (Sigma-Aldrich) and 0.5 g/L MES (Sigma-Aldrich) and scored after five days.

Under drought stress conditions, PpPK-6 over-expressing Arabidopsis thaliana plants showed a 95% (20 survivors from 21 stressed plants) survival rate to the stress screening; PpPK-8, 40% (2 survivors from 5 stressed plants), PpPK-9, 78% (38 survivors from 49 stressed plants), PpCK-1, 50% (5 survivors from 10 stressed plants), PpCK-2, 52% (16 survivors from 31 stressed plants), PpCK-3, 60% (3 survivors from 5 stressed plants), PpMPK-2, 100% (52 survivors from 52 stressed plants), PpMPK-3, 98% (44 survivors from 45 stressed plants), PpMPK-4, 92% (11 survivors from 12 stressed plants), PpMPK-5, 100% (9 survivors from 9 stressed plants), PpCPK-1, 60% (12 survivors from 20 stressed plants), PpCPK-2, 89% (17 survivors from 19 stressed plants), 40 whereas the untransformed control only showed an 11% survival rate (1 survivor from 9 stressed plants). It is noteworthy that the analyses of these transgenic lines were performed with T1 plants, and therefore, the results will be better when a homozygous, strong expresser is found.

TABLE 17

	Summary of	the drought stress test	s
-		Drought Stress Test	
Gene Name	Number of survivors	Total number of plants	Percentage of survivors
PpPK-6	20	21	95%
PpPK-8	2	5	40%
PpPK-9	38	49	78%
PpCK-1	5	10	50%
PpCK-2	16	31	52%
PpCK-3	3	5	60%
PpMPK-2	52	52	100%
PpMPK-3	44	45	98%
PpMPK-4	11	12	92%
PpMPK-5	9	9	100%

Freezing Tolerance Screening

Seedlings were moved to petri dishes containing $\frac{1}{2}$ MS 0.6% agar supplemented with 2% sucrose and 2 µg/ml benomyl. After four days, the seedlings were incubated at 4° C. for 1 hour and then covered with shaved ice. The seedlings

55

were then placed in an Environmental Specialist ES2000 Environmental Chamber and incubated for 3.5 hours beginning at -1.0° C. decreasing 1° C./ hour. The seedlings were then incubated at -5.0° C. for 24 hours and then allowed to thaw at 5° C. for 12 hours. The water was poured off and the $^{-5}$ seedlings were scored after 5 days.

Under freezing stress conditions, PpPK-7 over-expressing *Arabidopsis thaliana* plants showed a 73% (8 survivors from 11 stressed plants) survival rate to the stress screening; PpPK-9, 100% (45 survivors from 45 stressed plants), PpCK-1, 100% (14 survivors from 14 stressed plants), PpMPK-2, 68% (36 survivors from 53 stressed plants), PpMPK-3, 92% (24 survivors from 11 stressed plants), PpCPK-2, 64% (7 survivors from 11 stressed plants), whereas the untransformed control only showed a 2% survival rate (1 survivor from 48 stressed plants). It is noteworthy that the analyses of these transgenic lines were performed with T1 plants, and therefore, the results will be better when a homozygous, strong expresser is found.

TABLE 18

	Summary of	the freezing stress test Freezing Stress Test	8	
Gene Name	Number of survivors	Total number of plants	Percentage of survivors	
PpPK-7	8	11	73%	
PpPK-9	45	45	100%	
PpCK-1	14	14	100%	
PpMPK-2	36	53	68%	
PpMPK-3	24	26	92%	
PpCPK-2	7	11	64%	
Control	1	48	2%	

Salt Tolerance Screening

Seedlings were transferred to filter paper soaked in $\frac{1}{2}$ MS and placed on $\frac{1}{2}$ MS 0.6% agar supplemented with 2 µg/ml benomyl the night before the salt tolerance screening. For the salt tolerance screening, the filter paper with the seedlings ⁴⁰ was moved to stacks of sterile filter paper, soaked in 50 mM NaCl, in a petri dish. After two hours, the filter paper with the seedlings was moved to stacks of sterile filter paper, soaked with 200 mM NaCl, in a petri dish. After two hours, the filter paper with the seedlings was moved to stacks of sterile filter ⁴⁵ paper, soaked in 600 mM NaCl, in a petri dish. After 10 hours, the seedlings were moved to petri dishes containing ¹/₂ MS 0.6% agar supplemented with 2 µg/ml benomyl. The seedlings were scored after 5 days.

The transgenic plants are screened for their improved salt 50 tolerance demonstrating that transgene expression confers salt tolerance.

Example 8

Detection of the PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2 Transgenes in the Transgenic *Arabidopsis* Lines

One leaf from a wild type and a transgenic *Arabidopsis* plant was homogenized in 250 μ l Hexadecyltrimethyl ammonium bromide (CTAB) buffer (2% CTAB, 1.4 M NaCl, 8 mM EDTA and 20 mM Tris pH 8.0) and 1 μ l β -mercaptoethanol. The samples were incubated at 60-65° C. for 30 minutes and 250 μ l of Chloroform was then added to each sample. The samples were vortexed for 3 minutes and centrifuged for 5 65 minutes at 18,000×g. The supernatant was taken from each sample and 150 μ l isopropanol was added. The samples were

incubated at room temperature for 15 minutes, and centrifuged for 10 minutes at 18,000×g. Each pellet was washed with 70% ethanol, dried, and resuspended in 20 μ l TE. 4 μ l of above suspension was used in a 20 μ l PCR reaction using Taq DNA polymerase (Roche Molecular Biochemicals) according to the manufacturer's instructions.

Binary vector plasmid with each gene cloned in was used as positive control, and the wild-type C24 genomic DNA was used as negative control in the PCR reactions. 10 μ l PCR reaction was analyzed on 0.8% agarose-ethidium bromide gel.

PpPk-6: The primers used in the reactions are:

15	GCTGACACGCCAAGCCTCGCTAGTC	(SEQ	ID	NO:	89)
1.0	de l'onterne de childe e l'éde find l'e	(DLQ		110.	-

GCGTTAACTCGACCAAGGTCACTATTCCAAGCA (SEQ ID NO: 90)

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed ²⁰ by 10 minutes at 72° C. A 2.8 kb fragment was produced from the positive control and the transgenic plants.

PpPk-7: The primers used in the reactions are:

,	GCTGACACGCCAAGCCTCGCTAGTC	(SEQ	ID	NO:	89)	
	GCGTTAACCTTCGTCTTGGACAGGTAGA	(SEQ		NO :	91)	

The primers were used in the first round of reactions with the following program: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 1.1 kb fragment was generated from the positive control and the T1 transgenic plants.

PpPK-8: The primers used in the reactions were:

GCTGACACGCCAAGCCTCGCTAGTC (SEQ ID NO: 89)

GCGTTAACGAGCATCACGATACTCGGTGATTTC (SEQ ID NO: 92)

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 1.6 kb fragment was produced from the positive control and the transgenic plants.

PpPK-9: The primers used in the reactions are:

	(SEQ	ID	NO:	89)
GCTGACACGCCAAGCCTCGCTAGTC				

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 1.4 kb fragment was produced from the positive control and the transgenic plants.

PpCK-1: The primers used in the reactions are:

(SEQ ID NO: 89)

GCTGACACGCCAAGCCTCGCTAGTC

The PCR program was as following: 30 cycles of 1 minute 65 at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 1.7 kb fragment was produced from the positive control and the transgenic plants.

15

25

PpCK-2: The primers used in the reactions are:

(SEO ID NO: 89) GCTGACACGCCAAGCCTCGCTAGTC

(SEQ ID NO: 95)

GCGTTAACCTTAGGAATCGTATGGCAGAGAGCT

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 1.9 kb fragment was produced from the positive control and the transgenic plants.

PpCK-3: The primers used in the reactions are:

GCTGACACGCCAAGCCTCGCTAGTC (SEO ID NO: 89)

GCGAGCTCAGCGCTTCGCACAACTGAGAAACCT (SEO ID NO: 96)

The PCR program was as following: 30 cycles of 1 minute ²⁰ at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 1.2 kb fragment was produced from the positive control and the transgenic plants.

PpMPK-2: The primers used in the reactions are:

GCTGACACGCCAAGCCTCGCTAGTC	(SEQ	ID	NO:	89)
GCGTTAACGGCAATATCTGCACAGCCGTTCACT	(SEQ	ID	NO :	97)

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed

by 10 minutes at 72° C. A 1.7 kb fragment was produced from the positive control and the transgenic plants.

PpMPK-3: The primers used in the reactions are:

GCTGACACGCCAAGCCTCGCTAGTC	(SEQ	ID	NO:	89)	
GCGTTAACGGCAATATCTGCACAGCCGTTCACT	(SEQ	ID	NO :	98)	

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 2.2 kb fragment was produced from the positive control and the transgenic plants.

PpMPK-4: The primers used in the reactions are:

GCTGACACGCCAAGCCTCGCTAGTC	(SEQ	ID	NO:	89)
GAGCTCCGGTAGGTCCGACCTCTTCAATTG	(SEQ	ID	NO :	99)

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 1.7 kb fragment was produced from 55 the positive control and the transgenic plants.

PpMPK-5: The primers used in the reactions are:

GCTGACACGCCAAGCCTCGCTAGTC (SEQ ID NO: 89)

ATGAGCTCTGGCGGATTGGCGAGGTAGTTCGAC (SEQ ID NO: 100)

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed 65 by 10 minutes at 72° C. A 1.4 kb fragment was produced from the positive control and the transgenic plants.

PpCPK-1: The primers used in the reactions are:

	(SEQ ID NO: 89)
GCTGACACGCCAAGCCTCGCTAGTC	
	(SEO ID NO: 101)
GCGTTAACGACAACCGGAGTAGAACGG	. ~ ,

The PCR program was as following: 30 cycles of 1 minute 10 at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C. A 2.3 kb fragment was produced from the positive control and the transgenic plants.

PpCPK-2: The primers used in the reactions are:

GCTGACACGCCAAGCCTCGCTAGTC	(SEÇ) II) NO	: 89)
GCGTTAACGAGATCCAACCGAAGCCAT	(SEQ CCTAC		NO :	102)

The PCR program was as following: 30 cycles of 1 minute at 94° C., 1 minute at 62° C. and 4 minutes at 72° C., followed by 10 minutes at 72° C.A 2.2 kb fragment was produced from the positive control and the transgenic plants.

The transgenes were successfully amplified from the T1 transgenic lines, but not from the wild type C24. This result indicates that the T1 transgenic plants contain at least one copy of the transgenes. There was no indication of existence of either identical or very similar genes in the untransformed 30 Arabidopsis thaliana control which could be amplified by this method.

Example 9

35 Detection of the PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2 Transgene mRNA in Transgenic Arabidapsis Lines

Transgene expression was detected using RT-PCR. Total RNA was isolated from stress-treated plants using a procedure adapted from (Verwoerd et al., 1989 NAR 17:2362). 40 Leaf samples (50-100 mg) were collected and ground to a fine powder in liquid nitrogen. Ground tissue was resuspended in 500 μl of a 80° C., 1:1 mixture, of phenol to extraction buffer (100 mM LiCl, 100 mM Tris p18, 10 mM EDTA, 1% SDS), followed by brief vortexing to mix. After the addition of 250 ⁴⁵ µl of chloroform, each sample was vortexed briefly. Samples were then centrifuged for 5 minutes at $12,000 \times g$. The upper aqueous phase was removed to a fresh eppendorf tube. RNA was precipitated by adding 1/10th volume 3M sodium acetate and 2 volumes 95% ethanol. Samples were mixed by inversion and placed on ice for 30 minutes. RNA was pelleted by 50 centrifugation at 12,000×g for 10 minutes. The supernatant was removed and pellets briefly air-dried. RNA sample pellets were resuspended in 10 µl DEPC treated water. To remove contaminating DNA from the samples, each was treated with RNase-free DNase (Roche) according to the manufacturer's recommendations. cDNA was synthesized from total RNA using the 1st Strand cDNA synthesis kit (Boehringer Mannheim) following manufacturer's recommendations.

PCR amplification of a gene-specific fragment from the synthesized cDNA was performed using Tag DNA poly-60 merase (Roche) and gene-specific primers (see Table 15 for primers) in the following reaction: 1× PCR buffer, 1.5 mM MgCl₂, 0.2 µM each primer, 0.2 µM dNTPs, 1 unit polymerase, 5 µl cDNA from synthesis reaction. Amplification was performed under the following conditions: Denaturation, 95° C., 1 minute; annealing, 62° C., 30 seconds; extension, 72° C., 1 minute, 35 cycles; extension, 72° C., 5 minutes; hold, 4° C., forever. PCR products were run on a 1% agarose gel, stained with ethidium bromide, and visualized under UV light using the Quantity-One gel documentation system (Bio-Rad).

Expression of the transgenes was detected in the T1 transgenic line. This result indicated that the transgenes are ⁵ expressed in the transgenic lines and strongly suggested that their gene product improved plant stress tolerance in the transgenic line. On the other hand, no expression of identical or very similar endogenous genes could be detected by this method. These results are in agreement with the data from Example 7. This greatly supports our statement that the observed stress tolerance is due to the introduced transgene.

		15
PpPK-6	(SEQ ID NO: 103)	
CCCAGTAATAGCAGGGTTGGAGGAA	(520 15 10. 100)	
	(SEQ ID NO: 104)	
GGCTGCCTGAAGATCCGCTACAGAG	:	20
РрРК-7	(SEQ ID NO: 105)	
CGTCAGGCTACTTTGCGTGGAGCAC		
CGGTGCTGGCTAACACCAGGCCAGA	(SEQ ID NO: 106)	25
PpPK-8	(SEQ ID NO: 107)	
ATCCCGGGCAACGAGAAGCATTCGAGA	ATGGC	
GCGTTAACGAGCATCACGATACTCGG	······	30
	IGATTIC	
PpPK-9	(SEQ ID NO: 109)	
CGTGGCATCTCTCCCGATGTTCTTA		35
GGCCAACTGAAGGCGTGTCATGATC	(SEQ ID NO: 110)	55
PpCK-1	(SEQ ID NO: 111)	
CTCGAGGGCTCGTTCACCGTGACCT		40
CGGAGGTAACAGTAGTCAGGCTGCTC	(SEQ ID NO: 112)	
PpCK-2	(SEQ ID NO: 113)	45
CCGCGACCCTTCCACGCATCAGCAT		+J
CCTCCAGGAAGCCTGCGCCGAGAAG	(SEQ ID NO: 114)	
PpCK-3		
-	(SEQ ID NO: 115)	50
GGACATTGTCCGTGATCAGCAATCGA		
CAGCCTCTGGAACAACCAGACGCTG	(SEQ ID NO: 116)	
РрМРК-2	(SEQ ID NO: 117)	55
GTCACCGCGAGGTACAAGCCACCAC		
	(SEQ ID NO: 118)	
GCAGCTCTGGAGCTCTGTACCACCT		60
РрМРК-3	(SEQ ID NO: 119)	
ACGGCCACGTCGAGAATCTGAGCAA		
	(SEQ ID NO: 120)	
CGAAGTGCTCGCAAGCAATGCCGAA		65

PpMPK-4	-continued				
-		(SEQ			121)
ATCCCGGGCG	GTCGAGTCGTATTAGGT	GTTGI	TTC		
GAGCTCCGGT	AGGTCCGACCTCTTCAA	(SEQ TTG	ID	NO:	122)
PpMPK-5					
GGGCAACTGT	CAATAGCAGACCTGGA	(SEQ	ID	NO :	123)
		(SEQ	ID	NO :	124)
GCAAGTCCCA	ACGAACGTGTCTCGCT				
PpCPK-1					
GCGAAGATGA	CGACTGCTATTGCGA	(SEQ	ID	NO :	125)
		(SEO	TD	NO:	126)
CGTGATGACT	CCAATGCTCCATACG	(<u>z</u>			,
PpCPK-2					
GCCAGCATCG	AGGTCAGTATCCGGTGT	(SEQ	ID	NO :	127)
		(CEC	TD	NO	100
GTCTGTGGCC	TTCAGAGGCGCATCCTC	(SEQ	ΤD	110:	178)

Amplification was performed under the following conditions: Denaturation, 95° C., 1 minute; annealing, 62° C., 30 seconds; extension, 72° C., 1 minute, 35 cycles; extension, 72° C., 5 minutes; hold, 4° C., forever. PCR products were run on a 1% agarose gel, stained with ethidium bromide, and visualized under UV light using the Quantity-One gel documentation system (Bio-Rad).

Expression of the transgenes was detected in the T1 transgenic line. These results indicated that the transgenes are expressed in the transgenic lines and strongly suggested that their gene product improved plant stress tolerance in the transgenic lines. In agreement with the previous statement, no expression of identical or very similar endogenous genes could be detected by this method. These results are in agreement with the data from Example 7.

Example 10

Engineering Stress-Tolerant Soybean Plants by Over-Expressing the PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2 Gene The constructs pBPSJyw022, pBPSJyw012, pBPSJYW030, PBPSERG010, pBPSSY012, pBPSJyw034, pBPSSY011, pBPSSY016, pBPSJyw014, pBPSJyw034, pBPSERG009, PBPSERG019 and pBPSJyw008 are used to transform soybean as described below.

Seeds of soybean are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) Clorox supplemented with 0.05% (v/v) Tween for 20 minutes with continuous shaking. Then, the seeds are rinsed 4 times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 6 to 39 hours. The seed coats are peeled off, and cotyledons are detached from the embryo axis. The embryo axis is examined to make sure that the meristematic region is not damaged. The excised embryo axes are collected in a half-open sterile Petri dish and air-dried to a moisture content less than 20% (fresh weight) in a sealed Petri dish until further use.

Agrobacterium tumefaciens culture is prepared from a single colony in LB solid medium plus appropriate antibiotics (e.g, 100 mg/l streptomycin, 50 mg/l kanamycin) followed by growth of the single colony in liquid LB medium to an optical

density at 600 nm of 0.8. Then, the bacteria culture is pelleted at 7000 rpm for 7 minutes at room temperature, and resuspended in MS (Murashige and Skoog, 1962) medium supplemented with 100 µM acetosyringone. Bacteria cultures are incubated in this pre-induction medium for 2 hours at room 5 temperature before use. The axis of sovbean zvgotic seed embryos at approximately 15% moisture content are imbibed for 2 hours at room temperature with the pre-induced Agrobacterium suspension culture. The embryos are removed from the imbibition culture and are transferred to Petri dishes containing solid MS medium supplemented with 2% sucrose and incubated for 2 days, in the dark at room temperature. Alternatively, the embryos are placed on top of moistened (liquid MS medium) sterile filter paper in a Petri dish and incubated under the same conditions described above. After this period, the embryos are transferred to either solid or liquid MS medium supplemented with 500 mg/L carbenicillin or 300 mg/L cefotaxime to kill the agrobacteria. The liquid medium is used to moisten the sterile filter paper. The 20 embryos are incubated during 4 weeks at 25° C., under 150 µmol m⁻²sec⁻¹ and 12 hours photoperiod. Once the seedlings produce roots, they are transferred to sterile metromix soil. The medium of the in vitro plants is washed off before transferring the plants to soil. The plants are kept under a plastic 25 cover for 1 week to favor the acclimatization process. Then the plants are transferred to a growth room where they are incubated at 25° C., under 150 µmol m⁻²sec⁻¹ light intensity and 12 hours photoperiod for about 80 clays,

The transgenic plants are then screened for their improved 30 drought, salt and/or cold tolerance according to the screening method described in Example 7 to demonstrate that transgene expression confers stress tolerance.

Example 11

Engineering Stress-Tolerant Rapeseed/Canola Plants by Over-Expressing the PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2 Genes

pBPSJyw012. pBPSJyw022, The constructs pBPSJYW030, PBPSERG010, pBPSSY012, pBPSJyw034, pBPSSY011, pBPSSY016, pBPSJyw014, pBPSJyw025, PBPSERG009, PBPSERG019 and pBPSJyw008 are used to transform rapeseed/canola as described below.

The method of plant transformation described herein is also applicable to Brassica and other crops. Seeds of canola are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) Clorox supplemented with 0.05% (v/v) Tween for 20 min- 50 Identification of Homologous and Heterologous Genes utes, at room temperature with continuous shaking. Then, the seeds are rinsed 4 times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 18 hours. Then the seed coats are removed and the seeds are air dried overnight in a half-open sterile Petri dish. 55 During this period, the seeds lose approx. 85% of its water content. The seeds are then stored at room temperature in a sealed Petri dish until further use. DNA constructs and embryo imbibition are as described in Example 10. Samples of the primary transgenic plants (T0) are analyzed by PCR to 60 confirm the presence of T-DNA. These results are confirmed by Southern hybridization in which DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a 65 digoxigenin-labelled probe by PCR, and used as recommended by the manufacturer.

The transgenic plants are then screened for their improved stress tolerance according to the screening method described in Example 7 to demonstrate that transgene expression confers drought tolerance.

Example 12

Engineering Stress-Tcorn Plants by Over-Expressing the PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2Genes

The constructs pBPSJyw022, pBPSJyw012, pBPSJYW030, PBPSERG010, pBPSSY012, pBPSJyw034, pBPSSY011, pBPSSY016, pBPSJyw014, pBPSJyw025, PBPSERG009, PBPSERG019 and pBPSJyw008 are used to transform corn as described below.

Transformation of maize (Zea Mays L.) is performed with the method described by Ishida et al. 1996. Nature Biotch 14745-50. Immature embryos are co-cultivated with Agrobacterium tumefaciens that carry "super binary" vectors, and transgenic plants are recovered through organogenesis. This procedure provides a transformation efficiency of between 2.5% and 20%. The transgenic plants are then screened for their improved drought, salt and/or cold tolerance according to the screening method described in Example 7 to demonstrate that transgene expression confers stress tolerance.

Example 13

Engineering Stress-Tolerant Wheat Plants by Over-Expressing the PK-6, PK-7, PK-8, PK-9, CK-1, CK-2, CK-3, MPK-2, MPK-3, MPK-4, MPK-5, CPK-1 and CPK-2

constructs pBPSJyw022, pBPSJyw012, The pBPSJYW030, PBPSERG010, pBPSSY012, pBPSJyw034, pBPSSY011, pBPSSY016, pBPSJyw014, pBPSJyw025, 35 PBPSERG009, PBPSERG019 and pBPSJyw008 are used to transform wheat as described below.

Transformation of wheat is performed with the method described by Ishida et at. 1996 Nature Biotch. 14745-50. Immature embryos are co-cultivated with Agrobacterium tumefaciens that carry "super binary" vectors, and transgenic plants are recovered through organogenesis. This procedure provides a transformation efficiency between 2.5% and 20%. The transgenic plants are then screened for their improved stress tolerance according to the screening method described in Example 7 to demonstrate that transgene expression confers drought tolerance.

Example 14

Gene sequences can be used to identify homologous or heterologous genes from cDNA or genomic libraries. Homologous genes (e. g. full-length cDNA clones) can be isolated via nucleic acid hybridization using for example cDNA libraries. Depending on the abundance of the gene of interest, 100,000 tip to 1,000,000 recombinant bacteriophages are plated and transferred to nylon membranes. After denaturation with alkali, DNA is immobilized on the membrane by e.g. UV cross linking. Hybridization is carried out at high stringency conditions. In aqueous solution hybridization and washing is performed at an ionic strength of 1 M NaCl and a temperature of 68° C. Hybridization probes are generated by e. g. radioactive (32P) nick transcription labeling (High Prime, Roche, Mannheim, Germany). Signals are detected by autoradiography.

Partially homologous or heterologous genes that are related but not identical can be identified in a manner analogous to the above-described procedure using low stringency hybridization and washing conditions. For aqueous hybridization, the ionic strength is normally kept at 1 M NaCl while the temperature is progressively lowered from 68 to 42° C.

Isolation of gene sequences with homologies (or sequence ⁵ identity/similarity) only in a distinct domain of (for example 10-20 amino acids) can be carried out by using synthetic radio labeled oligonucleotide probes. Radio labeled oligonucleotides are prepared by phosphorylation of the 5-prime end of two complementary oligonucleotides with T4 polynucleotide ¹⁰ kinase. The complementary oligonucleotides are annealed and ligated to form concatemers. The double stranded concatemers are than radiolabeled by, for example, nick transcription. Hybridization is normally performed at low stringency conditions using high oligonucleotide concentrations. ¹⁵ Oligonucleotide Hybridization Solution:

6×SSC

0.01 M sodium phosphate

1 mM EDTA (pH 8)

0.5% SDS

100 µg/ml denatured salmon sperm DNA 0.1% nonfat dried milk

During hybridization, temperature is lowered stepwise to 5-10° C. below the estimated oligonucleotide Tm or down to room temperature followed by washing steps and autoradiog-²⁵ raphy. Washing is performed with low stringency such as 3 washing steps using 4×SSC. Further details are described by Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F. M. et al. (1994) "Current Protocols in Molecular Biology", ³⁰ John Wiley & Sons.

Example 15

Identification of Homologous Genes by Screening Expres- ³⁵ sion Libraries with Antibodies

cDNA clones can be used to produce recombinant protein for example in *E. coli* (e.g. Qiagen QIAexpress pQE system). Recombinant proteins are then normally affinity purified via Ni—NTA affinity chromatography (Qiagen). Recombinant ⁴⁰ proteins are then used to produce specific antibodies for example by using standard techniques for rabbit immunization. Antibodies are affinity purified using a Ni—NTA column saturated with the recombinant antigen as described by Gu et al., 1994 BioTechniques 17:257-262. The antibody can ⁴⁵ than be used to screen expression cDNA libraries to identify homologous or heterologous genes via an immunological screening (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F. M. et al. (1994) "Current Protocols in Molecu- ⁵⁰ lar Biology", John Wiley & Sons).

Example 16

In Vivo Mutagenesis

In vivo mutagenesis of microorganisms can be performed by passage of plasmid (or other vector) DNA through *E. coli* or other microorganisms (e.g. *Bacillus* spp. or yeasts such as *Saccharomyces cerevisiae*) which are impaired in their capabilities to maintain the integrity of their genetic information. ⁶⁰ Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W. D. (1996) DNA repair mechanisms, in: *Escherichia coli* and *Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those skilled in ⁶⁵ the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) *Strategies* 7: 32-34.

Transfer of mutated DNA molecules into plants is preferably done after selection and testing in microorganisms. Transgenic plants are generated according to various examples within the exemplification of this document.

Example 17

In Vitro Analysis of the Function of *Physcomitrella* Genes in Transgenic Organisms

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: 20 Dixon, M., and Webb, E. C., (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N. C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P. D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H. U., Bergmeyer, J., Graß1, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, Enzymes. VCH: Weinheim, p. 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) *EMBO J.* 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as β -galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R. B. Pores, Channels and Transporters, in Biomembranes, Molecular Structure and Function, pp. 85-137, 199-234 and 270-322, Springer: Heidelberg (1989).

Example 18

Purification of the Desired Product from Transformed Organisms

Recovery of the desired product from plant material (i.e., *Physcomitrella patents* or *Arabidopsis thaliana*), fungi, algae, ciliates, *C. glutamicum* cells, or other bacterial cells transformed with the nucleic acid sequences described herein, or the supernatant of the above-described cultures can be performed by various methods well known in the art. If the desired product is not secreted from the cells, can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonification. Organs of plants can be separated mechanically from other tissue or organs. Following homogenization cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography 5 resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One skilled in the art would be well-versed in the selection of 10 appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized. 15

There is a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for 66

example, in Bailey, J. E. & Ollis, D. F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986). Additionally, the identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al., 1994 Appl. Environ. Microbial. 60:133-140; Malakhova et al., 1996 Biotekhnologiya 11:27-32; and Schmidt et al., 1998 Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

APPENDIX

Nucleotide sequence of the partial PK-6 from Physcomitrella	i patens	:		_
GCACGAGCTCAATCCTCATGTTTCGGACTGTGGACTAGCTGCCCTTGCACCATCTGG TTCTGAACGCCAGGTGTCGGCACAAATGTTGGGCTCTTTCGGTTACAGTGCCCCTGA GTACGCCATGTCTGGAACCTATACCGTGAAGAGTGACGTCTACAGCTCGGGTGTTGT AATGCTGGAGCTACTCACTGGGCGCAAGCCTTTAGACAGCTCCAAGACCACGGTCCG AGCAATCTTTGGTACGATGGGCCACACCTCAATGCACGACATCGACGACGCCTTGCAC GAATGGTGGATCCGTCGTTGAAGGGCATCTACCCTGCTAAATCACTCTCTCGGTTTG CTGATATAGTCGCCCTTTGCGTCCAGCCGGAGCCCGAGTTCCGACCACGACGTCG AAGTGGTGCAGGCACTGTAAGGCCAATGCACGAGCCTCGACCACGCGAG TCGGAGTCCGGCTGTTAGGGAATTGAGCCGAACGAGCCATCTGAGCAAACGCAGA TCGGAGTCCGCTGTTGGGAATTGAGTCGAACGAGCCATCTGAGCAAACGCAGA GTACTGAAGCGCCCACTAGCTAATCGTGCATCTTGGCCACTCGGTTTCTGAGGA GACACAAACCTGGGTATATTTTTGGTGGTTAAGCAACCATTGCCCATTTGAG CTTCCGCTGGNGAAGGTCTGTATGTTGAGAAACGATGCAAAGCGTTCGCGTGGTNTG CTTGAACTTCAAA	(SEQ 1)	ои (:	1
Nucleotide sequence of the partial PK-7 from Physcomitrells	a patens	1		
GCACGAGCTCAATCCTCATGTTTCGGACTGTGGACTAGCTGCCCTTGCACCATCTGG TTCTGAACGCCAGGTGTCGGCACAAATGTTGGGCTCTTTCGGTTACAGCTGCGGTGTTGT AATGCTGGAGCTACTCAGGGCGCAAGCCTTTAGACAGCTCCAGGCCGCGGGGCGAGCCGGGCAAGGCCACGACCCG AGCAATCTTTGGTACGATGGGCCACACCTCAATGCACGACATCGACGCCGCGGGAGCCGGAGCCGGAGCCCGAGGTCCGGCGAGCCGGAGCCCGAGTCTCCGGACGCGGAGCCGAGTCTGCAGGAGCCGAGCTGGAGGCACTGGAGGCACCTGGAGCGGGGGGCACTGGAGGCGAGCTGGAGCCGAGGCGGAGCCGGAGCTGGAGCAGGGGGAGCTGGAGGCGAGCTGGAGCCACGGGGGCAACGGAG AGGAGTCCGCGGTGTGGAAGGCGAGCGAGCCGGAGCTGGAGCCCGAGTTCGG AGGAGTCCGCGCTGTGGGAATGAGCGAGCGGCGAGCTGGGAGCCTGGGAGCCGAGGCGAGCTCGGGGGGGG	(SEQ II		:	2
Nucleotide sequence of the partial PK-8 from <i>Physcomitrella</i>	a patens	1		_
GCACCAGACTATGACAAGCGCACGCCCTTGCACATCGCCGCGTCCCTGGATTGTGTC CCTGTTGCTAAAGTCCTGCTTGCGGAAGGAGCAGGATTGAATGCAAAAGACAGGTG GGGGAAATCTCCCGAGAGGCGGAGGCGGAGGGCACGGTGAGGACAGGTGAGGCACGTTGA GAGTCTGATTCAGGTTGCCCCTCCGTTGCCTTCTAACCGCGACTGGGAGATCGCTCC GTCGGGAGATTGAACTTGATACCAGCGGAGCTCATCGGCAAAGGCTCCTTTGGAGAGA TTCGGAAGGCGCTTTGGCCGCCACACCCGTCGCTGGAAGACAATCGGACAGT TTCGGAAGGCGCTTGGGCGGCACACCCGTCGCGTGGAAGACAATCGAGACTTCTC TGTCCAACGACAGAATGGTCATCAAGGACTTCCAGCAGGAGGTGCAATTGGCTCGTA AAGGTTCGGCCCCCAAACATCTGGCAAGGCTCCTCCGGGGCTGTTACCCGTCAAAGACCT CTCATGTTAGTCACCGAGGTTCCTGGCAGGGGCGGATTGCATCAGTGCTGAGAGA CACCCTAAATTTGGCTCCTGACCGCATCGTGAAGTATGCCCTCNACATAGCTCGCG CATGTCTTACTTCACCATCGGAAGCACCCG	(SEQ I)	о ио	:	3
Nucleotide sequence of the partial PK-9 from Physcomitrells	a patens	\$		
TCCAGCCCATTTGGTTGGCCACACACAGCTGTTCATGAGTCACCCGCTTCAGGNTGA ACTGAAGAAACGTAACTCCGTACGGCTATTTTACCAAATTTTCAAGCTCGTTGTCCC GCCATGATCCAAATGGAAGCTCAGTTTGCAACATGAAGTACATTGAACAACACACCTACC GCCCACCAGTCAGAAGCCAGGCCATGACCTTGTCCTTGAATGATCTCGGGTGCTAAG	(SEQ II) NO	:	4

AAATCAGCCATGCCACAGACTGTGAAAGTGCGCTCATCCGACATTTGCTTTGCAAAC CGAAAATCAACCAGCTGAAGTCGTCCTTTCCGATCTATCATAAGAACATCGGGAGA GATGCCACGATATACAACGCCATCCTTGTGCAGAAGTTCGACGGCTAATACCACGTT GGCGACCAGAAAACGAGCTGAGTTCTCGTCTAAAGGGGCACCGAAGTAGAAGTTCTA GAGGCCCAGCTAACACCACAATTAAGAACGAGTGCCACATTGTCACTGTCAATAGGG GTGGCCAAGAGATGCGGCACGAATGGGGAAGGCCTCAGTTGCTACTGTCAATAGGG GTGGCCAAGAGATGGGCCCCGACCGGACGCCCAGTTGCTTGAAAAGAGTTCT CTCCAATAGGACTTGGCCTCCGCACCGAGCCCCACCCGACCACACGGCACCT TTCATGCTTATGACGTCATCTGATTCTTGCAGAGCACCACACCGACATCACAGCAA TCGGTTGAATAGACCTGGTGCCGATTCCT

Nucleotide sequence of the partial CK-1 from Physcomitrella patens

(SEQ ID NO: 5)

TATGCCCATCTTCTCATACTCAGACCAGATCCTCTATTTCAATTACAGAAGAAGATT GCTTGTGCAACGTATTGAAATCATCACCGTCATGGGCTTTCCGAGTAAAAATTCTTG TAATGGATAAAGTCATTTCTAGTCTGATCCATACAAGCTACCGACACAATGCTAGAA GCCTTGATTTACACACTACACACTAGAGAGTCTACAACTCTTTTCCTACACTCTGCTT AGTTGCCTCATCCTCAACTCCATAAACCCCCCATTCACAATCATGTAAGACTTGAGAG AGGGAAACAGTAAGCAACCTTGTGCTATTTTAGTACCAGAGCAGAGGATGAACCAC TAGTCCTCCCAACGTAAGCCCTAATTCGCCGCAACAACCTCACGACGGAACTCCGAC TTGGTCAAGGGTGGACAATATGATACATTCGAAGGTCGATTTTGCAAATGGGACGA AGCAGCGGAATTCTGGCTGCGCACTGATTGCAGAGAGCCATTCTGGGGGGAGTTGAG CACGGAACAAGCTTCGGAGGTACAGTAGTCAGGCTGCTCGTAAAAAACCTANACTTC GCGGCGTGGTGCAAAAAGTCGGCAAATTGACTGGGATACCCATCACAAAGCTCCTC CCACAGTGGGGGTCATCTTGATTTTGTTGTGCATGTACTCGTGTTGCTTCTGGTCAGT GAGGGCGTTGCCCGCCCTTCCCTTGCCATGGCAAATTGCCTCTTAGAAAGTACATAA GAATGTAACCCAAGTGATTCTATGTCATCTCTTCTACTGTGCTCGATTCCTCTGTGCT GATTCCTACTAGCGTACCGTGCCGTCCCTGTGAAGCTCTTCCTATCTCGGTAAGGGA TATGCCTTCGTGTTGCCGGGTCCATGTACTCCTTTGCCAAGCCAAAATCTATAATGA ACACTTGGTTTCCTTGCCGACCGCAGCCCATGAGGAAGTTATCCGGCTTCAGGTCAC GGTGAACGAGCCCTCGAGAATGCACGTATTCCACCCGGTCAATCATTTGGTAACCGA GCATAATCACGGTCTTCAACGAAAACCTTAGCCCACACACCTTAAAGAGGTGCAAC AGGTTCGGCCCCAATAGGTCTAGCACCATCACATTGTAGTCTTCTGCTGCTTTTCCGA ACCATCTCATGTTGGGCACTCCCTTCCCACCCCGCAATATGTTGTACAAGCGCGACT CGTGCATTAACTCTCGTGC

Nucleotide sequence of the partial CK-2 from Physcomitrella patens

(SEQ ID NO: 6)

TTTTTTTTTCCAATAGATTTGCATTACATAACTCCAAGTTATGATATGTACAGGTTA GCAACAAGCTAATGGCTGCAAGCAGTGAACATACTACCAAGGGAGAGATTCTCACT CCCTAGACTTCATCCTCGTACGTTACTTGGCAAGGATTATGGTTTAGTGATAAAAAG CTTCACAAGCCGGCAAGCATGCTGGTTGCTTCTGCTGCAATCTAATGATTATTTCCTT ${\tt AGGAATCGTATGGCAGAGAGCTACCACACAAAGCACTGACAATGGTTTGATGGTAA}$ CAAGATAGAGATCCATTCATTCCTAAGTATGAGAGACCTGTAGTCTTAGCACCATTG TAGGACAGAACCACCGTTTTCCCCTCAATCAGGCTGTTGCCAAATGTAGAGCAACTC TCATCAACATAACAAGAGGGTTTGATAGAAGACAGAGCCCGGCTATATAACCACAA GCCCTGCGCCTACCTTATAACGGCTTGGATCCACCTCAACAGAAAGTGATTCAACTC ${\tt CCTTGATACCGGCTTTCGTAAATCCTCAAGTTGGCAGATGGCGGTTGTGGATGGCGG}$ CTAGATATCCGCTTTGGGTCCGAAGTAACTGGAGAGCTCCTCTGCATCCCTGCTGAC GACCGTAAGCTGGTGGGACCAAGCTTACTGCTCCCTGTTCGAGAGGAATCTACGACT TCTGCTGATGCCCCTGAGGGCCTGCTGCTAGATAGGACAGCTCGCCTGGAGGAAGA ACCCCCCCGAGTTGCATACGAAGATGTATGCATGCGCTCTGGTTCTGACACAACAGC AAGAGCAGAATCCTTAGCAGATTCATCAAGTCCAGGACTTTTGTGCTTAGATGAGTC CAAAGCATTTGCGACCCCGGAGCCATTTGCTCCTCCAGGAAGCCTGCGCCGAGAAG GATCCATTGGTTCGGTGGGCCGCTGCAGGTCTCGGCTTCCTGTAGCCCCAGTTCCAA GTGCACCACTGGTTTGCCCTGCAGAAGCACCCAGTCGAGTTGAACTGCCACCGGAA ATTTGTGACTGCTGGTACTTCAGAATTGTCCAGTCAAAAACGTAGTCAAATTGAAAA ${\tt CCTGTAAAAACTATTTCCAGTTTAGGCAAACAGAAGTGGCACTGTAATAAACTGAAAA$ TCATCAAACATTCACAAACTATCTGTTCGTTGATAGAGCATAGTAAAGTCTGCGCTT AGGATCAAGTCTTGATACATTACAATGCCCAAGCAAGAGTGAAACCTACAAAAGTT ACAGTTTTCATACCCTCACGAATAAAGAGGTCACGGAAGATTCTTTTCAAATATGCA TAGTCGGGTTTGTCATCAAAACGCAAGGACCGGCAGTAGTGGAAGTACGCTCGTGC GAATTCTGAAGGATAATTTTTACAAAGGACCTCAATGGGCGTGGACATTTGTTTTCT ${\tt CACTGATCTTCTGGTACTTCTGGTTCTTGGTTCCCGCTTTCAGTCCTTGCCCATGGAA}$ GACTGCCTCTCAGGAAGTACATGAGCACATATCCAAGAGATTCCAAATCATCTCGTC TGCTTTGCTCAATACCAAGATGAGTGTTGATGCTTGCATACCGAGCAGTCCCTGTCA GATTTTTGTTCTCCCTGTAGGGAATATGCTGATGCGTGGAAGGGTCGCGGGTACTTCTT GGCAAGACCAAAATCAATAATGTAGACCTGGTTTGCTCGCCTACCAAGCCCCATTAG AAAATTATCAGGCTTGATGTCTCTATGAAGAAAGCTTTTCGCATGCACATACTCCAC TCTGTTGATCAGCTGGTCAGCAAGCATGAGAACAGTCTTTAAAGAGAACTTCCGGCT GCAGAAGTTGAAAAGGTCTTCGAGACTTGGCCCCAACAGATCCAGAACCAAGACAT TGTAGTCTCCTTCTATCCCGAACCATCCTCGTGC

Nucleotide sequence of the partial CK-3 from Physcomitrella	pater	15	
GGTGGGGGCGCTCCCCAATATTTTATCCCCGGGGCTGCAGGGAATCCGGCGACCAGT ITTTGAAGGTGTCAACGCCGTGAATAGTGAGCGTTGCGTT	(SEQ]	ID NO	: 7)
ucleotide sequence of the partial MPK-2 from Physcomitrell	a pate	ens	
CACGAGGAACTAACGAATTGTCATTCTATAATCCAATAGTGTAATCACACGGGGG GGAATAAGTTGCAAAACCATACAACGCCGGGATAGCGTTGTAAGCCACCTAAAGAAT 'GAGAGTAGGCCTTACAACTGCAACGCCGGGATAGCGGTACTAGCCACCATATCATC GGACCTAAGCTGCAATCCAGAGCCTCCCTCCAAATGAGATCCGGAGCCAGGCCACTCCT 'GAGATAGAGGGGCTCCTCGAAGCCAAACTCGAAGGGAGATACCGAGGCCAGGCCACT GTTGATGTCATGAAGTGAAG	(SEQ :		: 8)
ucleotide sequence of the partial MPK-3 from Physcomitrell	a pate	ens	
GGCACCAGCCTCGCTGGAGACCGACCATCGAAGCACCTTAAGCTCGTTTTCATTCG CATTGCTTGCGAGCACTTCGACTTCCTAGAATTCAATAGACCTAATGGAATCGCC CTCCCTAATCTTTCCGGAGAGGCCTTAATGGCACTGCCGAAGAATGACGAGAAT ACTCAGATACTAAAAAGTGCCGCAAGGTCCGAATTAGGAATGTATGT	(SEQ :	ID NO	: 9)
ucleotide sequence of the partial MPK-4 from Physcomitrell	a pate	ens	
CCACGAGGTTGGTGTAGTATTTTTGATAGTGCTGTGCAATTCACAGTTTTGCTACTCC GTAGGTCCGACCTCTTCAATTGTCAGTTTAAAAACTCTAAAAACATTTGAGAAAAG GTTGAAAAATCTCCCGTGAGGAAATTCCTTGTCGCAAGACGTGAAAAAAAA	(SEQ II	D NO:	10)

APPENDIX-COncinued				
Nucleotide sequence of the partial MPK-5 from Physcomitrel	la pa	tens		
TCCCCGGGCTGAGGAATTCGGCACGAGCGGTTGATCCTCACCCTTGGGAAGGACCCT GGAATTGAGTAGCGTGCGGAAGCTGCATCGATCCGGAAGAGACGATGAGAGGA GTGAGAAGGGGAGGTCTTCGCGTCGCG	(SEQ	ID N	Ю:	11)
Nucleotide sequence of the partial CPK-1 from Physcomitrel	la pa	tens		
GCACCAGCCGAGTCGGGCATTTTTCGTGCGGTGTTGAGGGCTGACCCGAGCTTTGAA GAAGCCCCTTGGCCTTCCATCTCCCCGAAGCCAAGGATTTCGTGAAGCGTCTCTG AATAAGGATATGCGGAAACGCATGACTGCTGCACACAGCTTTAACTCATCCATGGAAT CGAAGTAACAACGTGAAGATACCTCTGGATATCTTAGTGTACAGACTTGTGAGGAAT TATCTTCGTGCATCATCCATGAGAAAGGCTGCTTTGAAGGCCCTGTCAAAGACTTTA ACCGAAGACGAGACTTTTTATCTACGTACTCAATTTATGCTGCTAGAAACATTTA ACCGAAGACGAGACTTTTTGAGAAATTCTAGACAGGCACTGCTGAAAAAATTCAACAGAG GCCATGAAAGAGTCACGGGTTTTTGAGAATTCTGGAATCGATGGATG	(SEQ	ID N	IO :	12)
3				
GCACGAGCTCCTGCATCTCCCCCTCCTTCTCCTCCTCATCATTCTGGAGCCCAGCGAA CTGCGATCTGAGATTCCAACTTGGAAGGCCCTCGCGTAAGCACCGGAGCTGGTTTT TACGCTTTTGCGCCTCGCGATATTTGTACATTGTTTCCTCTGGTTTATTCGATTCCC CTCTGAAAATGTGAACGGGCTGCAAGCTTGGTTTTGGAGCAACGTTGGAGCATTGAA GGGTTGCGCCCGTGCCCCATCCTCGCTCTGGCCTATGTCATGACGAGC TGAAGGAGAGGATTTGAGGTTTTGCAAGGAATCCTCCGCGAGGAGATTCT GTGAGTGAATAACTTGGATCAGCGACATGGGGAACACTAGTTCGAGGGGATCGAG GAAGTCCACTCGGCAGGGAATCAGGGAGCGGGGTCCAAGACACCCGAGAGAAGA ATGATGCGTCAATCCAAGCAGAGCAG	c	ID X	ΙΟ :	13)
GTGAANAT Nucleotide sequence of the full-length PK-6 from <i>Physcomit</i>	rella	n pat	ens	ı
ATCCCGGGTGAGTATCACTTACGGTGGGCGAGGGATGGCCTTTGGGGTAGGAGCTGGT ATATGCGGAAGGTATCACTTACGGTGGCGAGGAGTCTTGGGCGTGGGCGAGAGGGGT GAGTGCCGGAAAGGTATTTTCCGACGAAGAGTCAATGTGGGCGTGGACAAACGTTT GAAGAGATGGGTGTGGATATGAAGGCTCCGGCTAAGCAGTCGCTGGGAGCAGAG GCTCCTGTGCTCTGTAGTGATCCTCTCGGTGGTGAGCTCTGTGTATGGCCAAGTTCAC ACAGATCCAGTGGATACTACAGGCTTAATTTCCATGTGGTATGACTTAAAACAGAGT CAATCTCTCACGGGGGGGACTCAAAATGCTTCTAACCCTTGTGGGAGCAGGGGTGTG CCGCTTGTATGTGATGCCTTCTGTCGCGGAAATCAAAATGGAGGCGGGTTG	(SEQ	ID N		

ATGCTAGTAACAACAACATCGAAGGAAATATTCCTCAACAGTTTCCTACGTCTCTTA CTCAAATGATATTGAACAACAATAAATTGACCGGAGGTCTCCCACAGTTTGATCAAT TGGGCGCCTTGACAGTCGTAAACTTGAGCAACAACAATCTGACCGGCAACATGAAC CCCAACTATTTCAATGTGATCGTGAATGTGGAAACCTTCGATGTTTCCTATAACCAA CTTGAAGGCACTCTTCCCGACTCCATTCTAAACCTGGCCAAGCTTCGTTTCTTGAATT TGCAGAACAATAAATTTAATGGTAAACTTCCCGACGATTTCTCTCGGCTGAAGAATT TGCAGACTTTCAACATTGAGAACGATCAGTTCACGGGTAATTATCCATCAGGTTTAC ${\tt CCAGTAATAGCAGGGTTGGAGGAAATCGTCTTACATTTCCCCCACCTCCAGCCCCCG}$ GCACACCTGCTCCCAGGACTCCTTCTCCTTCAGGAACATCGAATGGATCATCGTCGC ATCTCCCTCTAGGGGCGATCATTGGAATAGCCGCTGGTGGTGCTGTGCTGCTGCTTTTATT ACTAGCACTCGGCATCTGTTTGTGTTGTCGTAAGCGGTCCAAGAAAGCATTGGGCGA TCCAGAGGCCACGACCAGCAGCCGAAGACCGTGGTTCACACCTCCCCTCTCCGCAA AGAGCCAGAGTGATCCCAGCAAGAGCATAGACAAAACGACGAAAACGCAACATCTTT GGCAGCAGTAAGAGTGAGAAGAAAAGTTCAAAGCACAGAGTATTTGAGCCAGCTCC TCTTGACAAAGGAGCAGCCGACGAACCAGTGGTGAAGGCGICTCCGCCCGTCAAGG TACTGAAGGCTCCTCCTTCATTTAAGGGTATCAGCGGCCTGGGTGCTGGACATTCGA AAGCAACAATTGGCAAGGTGAACAAGAGCAATATTGCAGCCACCCCATTCTCTGTA GCGGATCTTCAGGCAGCCACAAACAGCTTCTCCCAGGATAATCTGATTGGAGAAGG GAGCATGGGTCGCGTGTATCGTGCCGAGTTTCCCAACGGCCAGGTCTTGGCCGTGAA GAAGATCGACAGCGCGCGCGCGATGGTGCAGAATGAGGATGACTTCTTGAGTGTAG TAGACAGTTTGGCTCGCCTGCAGCATGCTAATACGGCTGAGCTTGTGGGTTACTGTA TTGAACATGACCAACGGCTGTTGGTGTGCGAGTACGTGAGTCGTGGAACCCTGAAC GAATTGCTCCATTTCTCGGGTGAAAACACCAAGGCCCTGTCCTGGAATGTCCGCATT AAGATTGCTTTGGGATCCGCGCGTGCTCTGGAGTACTTGCACGAAGTCTGTGCACCT CCCGTGGTTCACCACAACTTCAAATCTGCCAATATTCTGCTAGACGATGAGCTCAAT CCTCATGTTTCGGACTGTGGACTAGCTGCCCTTGCACCATCTGGTTCTGAACGCCAG GTGTCGGCACAAATGTTGGGCTCTTTCGGTTACAGTGCCCCTGAGTACGCCATGTCT GGAACCTATACCGTGAAGAGTGACGTCTACAGCTTCGGTGTTGTAATGCTGGAGCTA CTCACTGGGCGCAAGTCTTTAGACAGCTCAAGACCACGATCCGAGCAATCTTTGGTA CGATGGGCCACACCTCAATTGCACGACATCGACGCCCTTGCACGAATGGTGGATCCG TCGTTGAAGGGCATCTACCCTGCTAAATCACTCTCTCGGTTTGCTGATATAGTCGCCC ${\tt TTTGCGTCCAGCCGGAGCCCGAGTTCCGACCCCCGATGTCTGAAGTGGTGCAGGCAC}$ TTGTAAGGCTGATGCAGCGTGCGAGTCTGAGCAAACGCAGATCGGAGTCCGCTGTT GGAATTGAGTCGAACGAGCCATCTGAGACTTCACTTTGAGAGTACTGAAGCGCCCA CTAGCCTAATCGTGCATCTTTGGCCATCTCGTTTCTGAGTGGAACACAAGCTGGGTA ${\tt TATTCTTTGGTGGTTAAGCAACATTTTGTCACAATTTGAACTTCAGCTGGAGAAGGG$ TCTGTAGTGTTGAAGAAAACGAATGCAAAGCGTTTCGGCGTGGATGTGCTTTGAGAA CTTACAAAACTCATCAAGACTTTGAAGATCTTTGTATTGCATCGAATCCTTTCAATCA GTCTCGGGTAGGATCAGTTCCTCTGTATCGGATACCCTTTTCATCCTAACATGGGACC CTTTTAATCCAGAGGATGGAGTGCTTGGAATAGTGACCTTGGTCGAGTTAACGC

Nucleotide sequence of the full-length PK-7 from Physcomitrella patens

(SEQ ID NO: 15)

ATCCCGGGAGTGGGTGGTTGGACTGTAAGGAGCTAGCGTTTTAGAGCTACAGTGCG TATGGACAACTATGAGAAGCTGGAGAAGGTAGGAGAGGGGGACTTACGGAAAGGTGT ATAAGGCCCGTGATAAACGCTCCGGGCAGCTGGTGGCGCTCAAGAAGACTAGGTTG GAGATGGAGGAAGAAGGCGTCCCTTCCACCGCTTTGCGCGAAGTTTCGTTGCTACAA ATGCTCTCCCACAGCATGTATATCGTCAGGCTACTTTGCGTGGAGCACGTCGAGAAA GGCAGCAAGCCCATGCTCTACTTGGTCTTTGAATATATGGACACTGATCTTAAGAAG TATATTGACTTGCACGGTCGTGGTCCGAGCGGGAAGCCTCTGCCTCCCAAAGTGGTC CAGAGTTTCATGTATCAATTGTGCACAGGGCTTGCCCACTGTCATGGCCACGGAGTA ATGCACAGGGATCTGAAACCCCCAGAATTTGCTCGTCGACAAGCAAACCCGTCGTCTT AAGATTGCCGACCTTGGTCTCGGTCGGGCATTCACAGTGCCAATGAAGAGTTACACA ${\tt CACGAGATTGTTACTCTATGGTACCGAGCTCCTGAAGTTCTTCTTGGAGCGACCCAC}$ TACTCTCTACCTGTGGATATCTGGTCTGTTGGGTGCATCTTCGCTGAACTCGTCCGGA AAATGCCGCTCTTCACTGGAGACTCCGAACTTCAGCAGCTTCTTCACATCTTCAGGTT GCTTGGCACCCCGAATGAGACAATCTGGCCTGGTGTTAGCCAGCACCGTGATTGGCA CGAGTTTCCTCAATGGAGACCACAAGATCTGTCCCTTGCTGTTCCCGGACTCAGCGC GGTTGGCTTAGACCTTCTCGCCAAAATGTTGGTATTCGAGCCCTCAAAGAGAATCTC TGCCAAAGCCGCCTTGAGCCATACTTATTTCGCTGATGTTGATAAGACAGCAACCTA AACACAACAGAACAATTCAAGAGAACCAGGTAACCTCTACCTGTCCAAGACGAAGG TTAACGC

Nucleotide sequence of the full-length PK-8 from Physcomitrella patens

(SEQ ID NO: 16)

ATCCCGGGCAACGAGAAGCATTCGAGATGGCAGATGCGAAGGAGGAACTGGCGCTG GGCACGGAAATGCACTGGGCTGTGAGGAGTAACGACGTGGGGGCTGTTAAGGACCAT TCTGAAGAAAGACAAGCAGCTCGTGAGAGTGCCGCGGGGCTATGACAAGCGCAGCGCG TGCACATCGCCGCGGCCCTGGGATGTGTGCCCTGTGCTAAAGTCCCGCGGGGGA GAGCAGAGTTGAATGCAAAAGACAGGTGGGGGAAATCTCCGAGAGGCGAGGCGA GAGCAGAGTTGAATGCAAAAGACAGGTGGGAGAATTCCGGGGGCTAGTCAC ACGCAGGGCCCCGAGGGGCCACGTTGAGAGTCTGATCAGGTTGCCCCTCCGTTGC CTCTCAACCGCGACTGGGAGATCGCTCCGTCGGAGAGTTGAACTTGATACCAGCAGCA TCCTCGGCAAAGGCGCCTTTGGAGAGTTCGGAAGGCGCTTTGGCCACCCC GTCGCTGTGAAGACAATCGACCTTCTCTCTCGCAACGACAGCATGGCCACACCC TTCCAGCACGAGGTGCAATCGCTCGTAAAGGTTCCGACCCAAACATTGTGCAGTC CTCGGGCGGTGTAACCGTCAAAGACCTCTCATTAGTCACCGAGCTTGGCCAGGCAGCT

GGCGATTTGCATCAGTTGCTGAGGAGCAACCCTAATTTGGCTCCTGACCGCATCGTG AAGTATGCCCTCGACATAGCTCGCGGCATGTCTTACCTTCACAATCGGAGCAAGCCC ATCATCCACCGCGATCTCAAACCCCGAAACATCATAGTGGACGAAGAGCATGAGCT GAAGGTCGGCGACTTCGGACTGAGCAAGCTGATCGACGTAAAGCTTATGCATGATG TGTACAAGATGACGGGGGGGGGGGCTGGGGAGTTACAGATACATGGCGCCTGAGGTCTTC GAACATCAACCCTACGACAAATCCGTCGACGTGTTTTCCTTTGGAATGATATTATAT GAGATGTTTGAAGGCGTCGCTCCGTTTGAGGACAAGGATGCATACGACGCTGCCAC ACTAGTTGCTAGAGACGATAAGCGGCCAGAGATGAGAGCCCAAACGTATCCCCCAC AAATGAAGGCATTGATCGAGGATTGCTGGTCACCGTATACCCCGAAGCGACCACCTT TCGTCGAAATCGTCAAAAAACTCGAGGTAATGTATGAGGATTGCTTATTGAGATTGC CCAAAGACCGTCGTCATCTCCGCGACATCTTGCATCTTCGACGCAATCCTGCAGACT ${\tt CGTGATTGATCGGGCCAACCTTCGAGCTGATCAATCTAAGTAGTCAATGCCTTACTG}$ TGTCAAATTCAGCCTCCGCCGACAGATTGGCTATGGTTCAAGTGATTGGATTCTCTG CTTCTCCAGAGCCAGAAACGACCCCCGTGCAATTTCTTCTCCCGACGACCACATTGCG ACATGAAGCACCAGACTTTGGATGTAGAAGGCATGGTCTACATGCTTTGCTGTGAGC CTTGCACGTCTCGCAGGTTGATCTCTTTAACCAGCTTCTAGCCTTTCGCAATGGCTGC ATCACTTAAGAAATCACCGAGTATCGTGATGCTCGTTAACGC

Nucleotide sequence of the full-length PK-9 from Physcomitrella patens

(SEQ ID NO: 17)

ATCCCGGGCTGTGATGTCGGTGTGGTGCTCTGCAAGAAATCAGATGACGTCATAAGC ATGAAAAGGTACCAGAGACGTAAAGTTCAGAGACTCGOTCGGGAGGGCCAAGTCCT ATTGGAGAGAACTCTTTTCAAGCAACTGAGGCCTTCCCCATTCGTGCCGCATCTCT GGCCACCCCTATTGACAGTGACAATGTGGCACTCGTTCTTAATTGTGTGTTAGCTGG GCCTCTAGAACTTCTACTTCGGTCACCTTTAGACGAGAACTCAGCTCGTTTTCTGGTC GCCAACGTGGTATTAGCCGTCGAACTTCTGCACAAGGATGGCGTTGTATATCGTGGC ATCTCTCCCGATGTTCTTATGATAGATCGGAAAGGACGACTTCAGCTGGTTGATTTTC GGTTTGCAAAGCAAATGTCGGATGAGCGCACTTTCACAGTCTGTGGCATGGCTGATT TCTTAGCACCCGAGATCATTCAAGGACAAGGTCATGGCCTGGCTTCTGACTGGTGGG CGGTAGGTGTGTTAATGTACTTCATGTTGCAAACTGAGCTTCCATTTGGATCATGGC ${\tt GGGACAACGAGCTTGAAATTTTTGGTAGAATAGCCCGTCGGCAGCTTACGTTTCCTT}$ CAAGTTTCAGCCCTGAAGCGGTTGACCTCATTGACAAGCTGCTGGTGGTGGACCCAA ${\tt CCAAGAGACTGGGCTGTGACAGCCATGGATCGCTTGCCATAAGGGAACATCCTTGG}$ TTCCGAGGTATAAACTGGGACAAGCACCTCGATTGCAGTGTGGAAGTTCCTTCAGAG ATCATGACACGCCTTCAGTTGGCCATAGACTTTCTTCCCGTGGATGATAGTTATCAA GTGTTTGATCTCCAACCCGATGAAGACGATCCACCATGGCTTGATGGCTGGTGATAG ${\tt CTTGATGGCTCGTAGATCCCCCTTCTCCAAGCATCAATGGCACAGTACCGAATGGCT}$ ATAACAGAAGATGCACATTAAGTGCTCCATGAACAGATACCGTAGCGCTTAGGATTT TTCGGTCGTCACAAATGACGGCTCTCTTGTGAGGTTCGAATGTTGTGTCACCCGATG ATCTCTACTGGCACAAACCTCCAGGCTGAATCTTAAGGCCAGCTGTTTTAGGTGAGA CGTTTACCTTGGTTCGAACTCACGCTCGTGTTGTTAAGCGCGAGTCGATGATGTATG AAATGACGGTGITCCTTGAAAGTCTTGAAAGGCAATCAATTCGCTTATGTGTGTCCC TTCCATGTGGTCATTAGGGAAGGGAACCGCTGCACTAGTCAGTAAACGAACATGGC TTCAATTGTATAGCATAGCGGTAGAGGTTTCGTACGAAATGTGGTTGCAGTCGGTGA TTATAGGCGCATTTCTCTGAACATGCACGAGAATCGTGCTCCTGAGTCTCCATCATTC AGTGGTGCGAGCTCGC

Nucleotide sequence of the full-length CK-1 from Physcomitrella patens

(SEQ ID NO: 18)

ATCCCGGGCTCACGTAGTGCACTGAACTCTGTCTGAATTTTAGGGGATGAGAGGTAG ATTTGAAGAATACTGGTGTCTAATTTTCTGTTAATTTTTCACCCTTGAGGTAGCTCAT GGATTTGGGAGGTGATCGCATGAGAGCTCCTCAGAGGCAGTCTCGAGAATATCAAT ATAGATCATTGGACGTCTTCACAGAGCAGCACGAGCAGTTGCAAAAGCAGCAGCAG CAAGATGAGTATCAGAGAACAGAATTGAAGCTCGAGACACTGCCAAAAATGTTAAG CAATGCGACCGTGTCATCTTCCCCTCGAAGCAGTCCGGATGGACGTAGACTACGTAC AGTCGCGAATAAGTATGCTGTGGAAGGTATGGTTGGGAGTGGCGCATTCTGCAAGG TGTATCAGGGCTCCGATTTGACGAACCACGAGGTTGTGGGCATCAAGCTGGAGGAT ACGAGAACTGAGCACGCTCAGTTAATGCACGAGTCGCGCTTGTACAACATATTGCG GGGTGGGAAGGGAGTGCCCAACATGAGATGGTTCGGAAAAGAGCAAGACTACAAT GTGATGGTGCTAGACCTATTGGGGCCGAACCTGTTGCACCTCTTTAAGGTGTGGGG CTAAGGTTTTCGTTGAAGACCGTGATTATGCTCGGTTACCAAATGATTGACCGGGTG GAATACGTGCATTCTCGAGGGCTCGTTCACCGTGACCTGAAGCCGGATAACTTCCTC ATGGGCTGCGGTCGGCAAGGAAACCAAGTGTTCATTATAGATTTTGGCTTGGCAAAG GAGTACATGGACCCGGCAACACGAAGGCATATCCCTTACCGAGATAGGAAGAGCTT CACAGGGACGGCACGGTACGCTAGTAGGAATCAGCACAGAGGAATCGAGCACAGT AGAAGAGATGACATAGAATCACTTGGTTACATTCTTATGTACTTTCTAAGAGGCAAT TTGCCATGGCAAGGGAAGGGCGGGCAACGCCTCACTGACCAGAAGCAACACGAGTA CATGCACAACAAAATCAAGATGAACACCACTGTGGAGGAGCTTTGTGATGGGTATC CCAGTCAATTTGCCGACTTTTTGCACCACGCGCGAAGTCTAGGTTTCTACGAGCAGC GCTCGACCATGTGTACGACTGGACTGTGTATACTCAACTCCCCCAGAATGGCTCTCT GCAATCAGTGCGCAGCCAGAATTCCGCTGCTTCGTCCCATTTGCAAAATCGACCTTC GAATGTATCATATTGTCCACCCTTGACCAAGTCGGAGTTCCGTCGTGAGGTTGTTGC GGCGAATTAGGGCTTACGTTGGGAGGACTAGTGGTTCATCCTCTGCTCTGGTACTAA AATAGCACAAGGTTGCTTACTGTTTCCCTCTCTCAAGTCTTACATGATTGTGAATGGG GGTTTATGGAGTTGAGGATGAGGCAACTAAGCAGAGTGTAGGAAAAGAGTTGTAGA

GATCAGACTAGAAATGACTTTATCCATTACAAGAATTTTTACTCGGAAAGCCCATGA CGGTGATGATTTCAATACGTTGCACAAGCAACTTTCTTCTGTAATTGAAATAGAGGA TCTGGTCTGAGTATGAGAAGATGGGCATGTTAACGC

Nucleotide sequence of the full-length CK-2 from Physcomitrella patens

(SEQ ID NO: 19)

TTGTTTAGGGGAGGCATGCGGGAGCAGGATTGGTGTTAAGTTCGTAAGGAGAAGGG AGTACATGCAAGTGCGTGCTTGTCGGATATCGGACAGCTGGATTTGTAAATAAGCGG AGAGGAGGGTCGGTAATCAGGGGCGTACATCGATGGAGCCGCGTGTGGGAAACAAG AATGTTCAGACCAATGAGGAGGTCGGAATAAAGCTGGAAAGCATCAAGACGAAGCA TCCACAATTGCTGTACGAGTCCAAGCTCTACCGGATACTACAAGGAGGAACTGGGA TTCCCAATATCAGATGGTTCGGGATAGAAGGAGACTACAATGTCTTGGTTCTGGATC TGTTGGGGCCAAGTCTCGAAGACCTTTTCAACTTCTGCAGCCGGAAGTTCTCTTTAA AGACTGTTCTCATGCTTGCTGACCAGCTGATCAACAGAGTGGAGTATGTGCATGCGA AAAGCTTTCTTCATAGAGACATCAAGCCTGATAATTTTCTAATGGGGGCTTGGTAGGC GAGCAAACCAGGTCTACATTATTGATTTTGGTCTTGCCAAGAAGTACCGCGACCCTT CCACGCATCAGCATATTCCCTACAGGGAGAACAAAAATCTGACAGGGACTGCTCGG TATGCAAGCATCAACACTCATCTTGGTATTGAGCAAAGCAGACGAGATGATTTGGAA TCTCTTGGATATGTGCTCATGTACTTCCTGAGAGGCAGTCTTCCATGGCAAGGACTG AAAGCGGGAACCAAGAAGCAGAAGTACGAGAAGATCAGTGAGAAAAAAATGTCCA CGCCCATTGAGGTCCTTTGTAAAAATTATCCTTCAGAATTCGCCTCGTACTTCCACTA CTGCCGGTCCTTGCGTTTTGATGACAAACCCGACTATGCATATTTGAAAAGAATCTT CCGTGACCTCTTTATTCGTGAGGGTTTTCAATTTGACTACGTTTTTGACTGGACAATT CTGAAGTACCAGCAGTCACAAATTTCCCGGTGGCAGTTCAACTCGACTGGGTGCTTCT GCAGGGCAAACCAGTGGTGCACTTGGAACTGGGGCTACAGGAAGCCGAGACCTGCA GCGGCCCACCGAACCAATGGATCCTTCTCGGCGCGCAGGCTTCCTGGAGGAGCAAATG GCTCCGGGGTCGCAAATGCTTTGGACTCATCTAAGCACAAAAGTCCTGGACTTGATG GGCCCTCAGGGGCATCAGCAGAAGTCGTAGATTCCTCTCGAACAGGGAGCAGTAAG CTTGGTCCCACCAGCTTACGGTCGTCAGCAGGGATGCAGAGGAGCTCTCCAGTTACT TCGGACCCAAAGCGGATATCTAGCCGCCATCCACAACCGCCATCTGCCAACTTGAGG ATTTACGAAGCCGCTATCAAGGGAGTTGAATCACTTTCTGTTGAGGTGGATCAAAGC CGTTATAAGTAGGCCCAGGCTTGTGGGTTATATAGCCGGGCTCTGTCTTCTATCAAAC ${\tt CCTCTTGTTATGTAGATGAGAGTTGCTCTACATTTGGCAACAGCCTGATTGAGGGGA$ AAACGGTGGTTCTGTCCTACAATGGTGCTAAGACTACAGGTCTCTCATACTTAGGAA TGAATGGATCTCTATCTTGTTACCATCAAACCATTGTCAGTGCTTTGTGTGGTAGCTC TCTGCCATACGATTCCTAAGGTTAACGC

Nucleotide sequence of the full-length CK-3 from Physcomitrella patens

(SEQ ID NO: 20)

GCGTTAACGGGAGGAAGGTCGGGGGGAAGAGACGCTTGAGGCTGCTGAAAGGGGGATT CACTCAGCGTCCCCACCCATTCGTCAATCTGGCGCAGAAGATCGGAAAATCGGTCCG ACGGCCAGGTGTTATGTCCAAGGCCCGGGTTTACACAGATGTGAATGTCCAACGTCC GAAAGATTATTGGGACTACGAGGCCCTCACCGTCCAATGGGGGGGACCAAGACGATT ACGAGGTAGTGCGTAAGGTGGGGGGGGGGGGGAAATACAGTGAGGTTTTTGAAGGTGTC AACGCCGTGAATAGTGAGCGTTGCGTTATGAAGATTTTGAAGCCAGTAAAGAAAAA AAAGATCAAAAGAGAGATCAAGATTCTGCAAAAACCTTTGTGGAGGGCCCAACATTG TGAAGCTTCTGGACATTGTCCGTGATCAGCAATCGAAGACACCCAGCCTAATTTTTG AGTATGTGAACAATACTGATTTCAAAGTGCTCTACCCCACTCTTACAGACTTTGATA TCCGATACTACATTCATGAGCTGCTCAAGGCTTTGGACTATTGCCATTCTCAAGGGA TTATGCACAGGGATGTGAAGCCACACAACGTGATGATTGACCATGAGCAGCGGAAG CTTAGGCTTATTGACTGGGGACTTGCCGAATTCTATCATCCTGGCAAAGAGTATAAT GTGCGTGTTGCCTCTAGGTACTTCAAGGGTCCTGAGCTGCTGGTTGATCTTCAAGATT ATGATTACTCTCCGACATGTGGAGCTTGGGGGTGCATGTTTGCCGGCATGATATTTC GGAAGGAGCCATTCTTTTATGGGCATGACAATTATGATCAACTTGTGAAGATTGCTA AGGTGTTGGGAACTGATGAATTGAATTCCTATCTAAACAAATACCGCCTAGAGCTGG ACCCCCATTTGGAAGCACTGGTTGGCAGGCATAGCAGGAAACCTTGGTCAAAGTTC ATCAATGCTGATAATCAGCGTCTGGTTGTTCCAGAGGCTGTGGATTTTTTGGATAAG TATTTTTATCCCGTGAAGGTGTCGGAGGTTAGCAACCGTCGCAGTGCTTGATATGAA TTGATATATCTCATATGGGCTTTCTTGTGATTACGTCCCACCCGGCTACCAGGTTTCT CAGTTGTGCGAAGCGCTGAGCTCGC

Nucleotide sequence of full-length MPK-2 from Physcomitrella patens

(SEQ ID NO: 21)

TGGGCGCGGAGCTTATGGAATCGTCTGTTCACTCTTTGATACCGTTACGGGTGAGGA GGTGGCGGTCAAAAAGATTGGAAACGCCTTCGACAACAGGATCGATGCGAAGCGAA CACTGCGTGAAATAAAACTCCTCCGGCATATGGATCATGAAAACGTCGTTGCCATTA CAGACATCATTCGTCCCCCAACTAGGGAGAATTTCAACGACGTGTACATTGTATACG AGTTGATGGATACGGACCTACACCAGATCATTCGTTCAAATCAAGCTCTCACAGAAG ACCACTGTCAGTATTTTCTGTATCAAATCTTGCGGGGGCTTGAAGTACATCCATTCGGC GAACGTCTTGCACCGGGACTTGAAGCCCACCAACCTTCTCGTCAATGCCAATTGCGA TGAGTATGTTGTAACGAGGTGGTACAGAGCTCCAGAGCTGCTCCTGAATTGTTCAGC ATACACTGCAGCTATTGACATTTGGTCTGTGGGGTGCATCTTCATGGAGTTGCTTAA CCGATCTGCGTTGTTCCCTGGGAGAGACTATGTGCATCAGCTCCGCCTAATTACAGA ACTCATCGGAACTCCTGAAGATAGGGATCTTGGGTTTTTGAGAAGCGACAATGCTAG GCGGTATATCAAGCACCTGCCTCGACAGTCGCCTATTCCCTTAACCCAGAAGTTCAG AGGCATTAATCGTTCTGCTCTTGATCTTGTTGAAAAGATGCTGGTCTTTGATCCAGCG AAAAGAATCACAGTGGAAGCTGCCTTGGCGCACCCTTATTTAGCTTCACTTCATGAC ATCAACGATGAGCCTGCCTCGGTATCTCCCTTCGAGTTTGACTTCGAGGAGCCCCCCT GGTCCTGATGATATGGTGCAGTAACTTCACACTTCATCTCAAGTTGTAAGGCCTACT CTCAATTCTTTAGGTGGCTACAACGCTATCCCGGCGTTGTATGGTTTTGCAACTTATT CCCCCCCGTGTGATTACACTATTGGATTATAGAATGACAATTCGTTAGTTCTTTTCCC TGGCGCTATATCTTTGTCTGCACATTTCATCCAGCAGACATTGTTGCTCGGCGTTAAC GC

Nucleotide sequence of full-length MPK-3 from Physcomitrella patens

(SEQ ID NO: 22)

ATCCCGGGCTTGTATTGGCTCGGATAATTTATGTTGACAATTGATTTGTGAGGCTTCG TATTGAGTCAGCGAGCAGGCTGAGAGTTCGGCAGCGAAGTTACACTCGACCTGGCT GAAATTTGGAATTGAAGCGCGTGAAGCTTCATCTGTGATTTTGGAGGTTGTTTGACT GATGAGAAGAGGTCTCTGAGCTGAGAATGTTTGCAATTTAGGGGCACCACCGGTTTG TTGGAGTCCCTTGCCACTTATTACAATTGTTGGTTTACAAGCTCGACGAGTTTCAATC GAACGTAGAGTTTTAGTCGGGTCGAGGATCTATGTATCCGCTCAGCGGAGAAGAGA GCCTGATGTTGCCGAAGCGATCGTGTGGGATTTGACTAGAAAGAGGTGGACCGCAT CAGAACTATTTATTCCTTGTGAGGGAAGGATCGAGGTTCCAATGGGTCTCACTCCGT TTTCTTGTGTCACGGTTCAAGGTTATGTCCGGGTGGTCTACCCCGACGGCCACGTCG AGAATCTGAGCAAATCTTGTAGCGTGCACGATCTTCTTCTGGGTAATCCAGACTACT ATGTCTGCGGTAGCACCCCTTACACAATCACCAATCGTATGGCAGCGGAAGAGGTG ${\tt CTCGAGTATGGGGTGACCTACTTCGTTTGCGCAACGCCAAATGCCCAACCTTTCTTA}$ GAACGTCAGCCGAAGGTAGTACATCGAGGATCCAAGATTTTGCCACGATTTTCCAAA ${\tt CATGGGGTCCATGTGCGGGGGGGTTGCGAAGCCCGACGCATGGGAGCCAACAGTCACG}$ GAAGGTTTTTGATTATCATTCAGTAACGATGCAGCAGCTTGAATCCATACGAAACGA GGGCCCAGAGCCTCACCTCGCTGGAGACCGACCATCGAAGCACCTTAAGCTCGTTTT ${\tt CATTCGGCATTGCTTGCGAGCACTTCGACTTCCTAGAATTTCAATAGACCTAATGGA$ ATCGCCACTCCCTAATCTTTCCGGAGAGGCCTTATCGCCGACGGCAACTGCCAAAGA ${\tt CGAGATTACTCAGATGATACTAAAAAGTGCCGCAAGGTCCGAATTAGGAATGTATG}$ TTTCGAAGAGACAGGAATTCTATCTTCGAAGAGCGCGTAGGCGGCGTAAGTTTGCGT GGAAGCCGGTTTTGCAGAGCATCTCCGAGATGAAGCCTGTCATGGAATTCCACACTC CGATGGCTTACCGGGATAGTGGGTCTCCGCCGAAGAACGCCTCTACCCCATCCTTAC ${\tt CTGGCCCGAAGAACATTTCACCGCCACGACAAGTGAGTGTCCCCGCAAAGGAGCAGT}$ ${\tt CCTCCGCCGAAGAACGTCTCACCACCTCCCCAGCCCGCATTTGTAGCGCGGACTGCG}$ TCGAAGTATTCTGCTGCATCTCAGCAAGTTCAACGAAATCGAGGCAACGCGAAATCT ACTGCATTCGTTGGATAAATTTCTCCCAACATTTTTGCTCTTCATCCTCAAGCAGCTCC TCAATGGCCAGTAATATGTTACGACATTGTGCACAACTCCAATTACGTAGCGTTATT CTGTAACCCACGTTCATCGAGGTATCAAGGAATGGCGCAGTAAGCACTGCTACTTTG TGCTTTGGTATCCCGTTGTGACGAGATGTCATGTCGCACCGTGCCTATCAGTGGGAT TTTCTTGAGCGCAGATCTTGCTTCCGCAGTTTGTTTCATAACGTTTTGGTTCGTAGGG GGCCTAGACGGTACTATCAAGCAATGAGAAGTGTGCTGGTGTGGATTTGACAGCAA TCTTTTGGAGGATTGTCTTTCCTATGTAGAACATAGCGAGGACACTTGCGCCTGGTG GGCACATCCCATAGAACATAGTGCTTCACTTCTGGGTTGTTCACCACTAGGATCATA TGACCTTCTCATCTATTTTCGGGCTTTGTTTCGAGCTCATGTACCATCGACTAGCGTC ACTTTGACTGCGGTGATAATCGTTTGTCAATTTAGTGGAGCTTTGTAGATGATAGAT GCCATTTGTACAGTAGCTTGGATGCTGTTTACAAGATAGCGGCAGCTAGAAGCCTTA AACCTTTAGCTACCATGTATTATTTAAACCTATATGAAGTGAACGGCTGTGCAGATA TTGCCGTTAACGC

Nucleotide sequence of full-length MPK-4 from Physcomitrella patens

(SEQ ID NO: 23)

CGACATTATTAAGCAACAAAAGCAGATACCTGAGCCGTATTTGGCCGTCATTGCTAG TCAAGTTCTGAAGGGATTGGAATACCTACACCAAGTCAGGCACATCATACATCGTGA TATAAAGCCCTCCAACCTCCTCATCAATCACAAGGGTGAGGTCAAAATATCTGATTT ${\tt TTGCACATATATGTCGCCAGAACGCCTTCAGGGGCGTTCGTATGCATACGACAGTGA$ CCTATGGAGTTTAGGATTGACTCTTTTGGAGTGTGCGTTGGGTACCTTCCCATACAA ACCAGCTGGAATGGAAGAGGOTTGGCAAAATTTCTTCATCCTCATGGAATGTATAGT TAATCAACCCCCGCAGCCGCATCCCCTGACAAATTCTCCCCCGAATTTTGTTCTTT ATTGAATCCTGCATCCGGAAATGTCCCAGTGAACGACCATCAACTACTGATTTACTT AAACATCCGTTCCTGCAAAAGTACAACGAGGAAGAGTACCATTTGAGCAAGATTTT GTAACTTAAAGTTAGCCTCGCATGGCGTGCAGAGACTGTCACTACCACAAGCCTGAT CCACCACTGAACTTCAAGGGACTTTACCAAAAGCATGGTCGAACTACCTCGCCAATC CGCCACTTTCTCAATGCCTTTTCCTTATATAGTCATATGTGGTCAAGTTGAGAACGAT ATCAAATCAGATTGACGGAAAAAAACATCTTCAACGCCGTTTCCCAACCTTATAGAAA GTGGAGTTTTCTCAATGAGCCCCATTTGTCGCTGAGAACGTGCAGCTCATGAAACAA TCCATAAGTGTGTTAATCGGGGGTCTTATATTATCATCACCATGCTAGCTTTTTATGTT ACCTGCACTTTTTCTTTCCTTATTGCACAGCATCGAACACTTCTTCGATACCCAAAAC AATATTTCCATCTTCTTTTTTTTTTTCACGTCTTGCGACAAGGAATTTCCTCACGG AGATTTTTCAACACTTTTCTCAAATGTTTTTAGAGTTTTTTAAACTGACAATTGAAGAG GTCGGACCTACCGGACTCGC

Nucleotide sequence of full-length MPK-5 from Physcomitrella patens

(SEQ ID NO: 24)

ATCCCGGGAGAGGCTGATCTGATGCTACAGTTTCGTGTGCAGCTAGTCTTTAGAGAT TCGGGCAACGCACTTGTTGAAGATCGGAAACTTTCAAAATCGGTCGAGTCGTATTAG GTGTTGTTTCATTGTAAGGGTTCGGAAGCACGGGGCACGGCGTATATACCGTTCCCC TTGAACGTTGATCTCACCTTTGGAAGACCTGAATTGAGTAGCGTGCGGAAGCTGCAT CGATCCGGAAGAGACGATGAGTAGGAGAGTGAGAAGGGGAGGTCTTCGCGTCGCGG TGCCGAAGCAAGAGACTCCCGTCAGCAAATTTTTGACTGCCAGTGGAACTTTCCAGG ATGATGATATCAAGCTCAACCACCGGGGCTTCGCGTCGTCTCTTCAGAACCTAACC ${\tt TTCCTACGCAGACGCAGTCTAGCTCCCCAGATGGGCAACTGTCAATAGCAGACCTGG}$ AGTTAGTGCGGTTCTTAGGAAAGGGTGCGGGTGGAACCGTGCAGCTTGTCCGGCAC AAATGGACCAATGTCAATTATGCACTGAAGGCGATACAAATGAATATCAACGAAAC AGTGAGGAAGCAGATTGTTCAGGAGCTGAAAATCAACCAAGTGACGCACCAGCAGT GCCCTTATATCGTGGAATGCTTCCACTCCTTCTACCACAACGGCGTCATATCCATGAT CCTAGAGTACATGGACAGGGGCTCGTTGTCCGACATTATTAAGCAACAAAAGCAGA TACCTGAGCCGTATCTGGCCGTCATTGCTAGTCAAGTTCTGAAGGGATTGGAATACC TACACCAAGTCAGGCACATCATACATCGTGATATAAAGCCCTCCAACCTCCTCATCA ATCACAAGGGTGAGGTCAAAATATCTGATTTTGGTGTCAGTGCTGTGTTGGTTCATT ${\tt CCTTGGCCCAGCGAGACACGTTCGTTGGGACTTGCACATATATGTCGCCAGAACGCC}$ TTCAGGGGGCGTTCGTATGCATACGACAGTGACCTATGGAGTTTAGGATTGACTCTTT ${\tt TGGAGTGTGCGTTGGGTACCTTCCCATACAAACCAGCTGGAATGGAAGAGGGTTGG$ CAAAATTTCTTCATCCTCATGGAATGTATAGTTAATCAACCCCCCGCAGCCGCATCC CCTGACAAATTCTCCCCCGAATTTTGTTCTTTTTTGAATCCTGCATCCGGAAATGTC CCAGTGAACGACCATCAACTACTGATTTACTTAAACATCCGTTCCTGCAAAAGTACA ACGAGGAAGAGTACCATTTGAGCAAGATTTTGTAACTTAAAGTTAGCCTCGCATGGC GTGCAGAGACTGTCACTACCACAAGCCTGATCCACCACTGAACTTCAAGGGACTTTA CCAAAAGCATGGTCGAACTACCTCGCCAATCCGCCAGAGCTCA

Nucleotide sequence of full-length CPK-1 from Physcomitrella patens

(SEQ ID NO: 25)

ATCCCGGGTGTAGGCGGGCGAGGTTCGATGCAATGGGGCAGTGTTATGGAAAGTTT GATGATGGAGGCGAAGGGGAGGATTTGTTTGAGCGGCAGAAAGTGCAGGTTTCTAG GACGCCAAAGCATGGATCGTGGAGCAATAGCAACCGAGGGAGCTTCAACAATGGCG GGGGGGCCTCGCCTATGAGAGCCAAGACGTCGTTCGGGAGCAGCCATCCGTCCCCG CGGCATCCCTCAGCTAGTCCGCTCCCTCACTACACGAGCTCCCCAGCGCCTTCGACC CCGCGACGGAACATTTTCAAAAGGCCTTTTCCTCCTCCTCCTCCCGCGAAGCACATT TGAGGCTGTCGATGGTGAGAAGCCCTTGGATAAGCATTTCGGCTATCACAAGAACTT CGCTACTAAGTATGAGCTGGGGGCATGAAGTCGGTCGCGGGCACTTCGGTCACACAT GTTACGCGAAAGTACGGAAGGGCGAGCATAAGGGACAAGCCGTGGCAGTGAAGAT AATCTCGAAAGCGAAGATGACGACTGCTATTGCGATCGAGGACGTGGGACGAGAAG TGAAAATTTTGAAGGCTCTGACGGGACACCAGAATTTGGTTCGATTCTACGATTCCT GCGAGGACCATCTAAATGTGTACATTGTTATGGAATTATGTGAAGGAGGTGAATTAT GTGCGGCAGATTTTGAGCGTTGTTGCGTTTTGTCACCTGCAAGGCGTTGTTCACCGA GATCTTAAGCCTGAGAATTTTCTGTTTACCACGAAGGATGAATATGCTCAGCTTAAG GCCATTGATTTTGGATTGTCAGATTTCATCAAACCCGATGAAAGACTGAACGATATC GTTGGAAGCGCATACTACGTTGCGCCGGAGGTATTGCATAGGTTATATTCAATGGAA GCTGACGTATGGAGCATTGGAGTCATCACGTACATTTTGTTATGTGGTAGTCGACCG TTTTGGGCGCGGACCGAGTCGGGCATTTTTCGTGCGGTGTTGAGGGCTGACCCGAGC TTTGAAGAAGCCCCTTGGCCTTCCATCTCTCCCGAAGCCAAGGATTTCGTGAAGCGT CTCCTGAATAAGGATATGCGGAAACGCATGACTGCTGCACAAGCTTTAACTCATCCA ${\tt TGGATTCGAAGTAACAACGTGAAGATACCTCTGGATATCTTAGTGTACAGACTTGTG$ AGGAATTATCTTCGTGCATCATCCATGAGAAAGGCTGCTTTGAAGGCCCTGTCAAAG ACTTTAACCGAAGACGAGACTTTTTATCTACGTACTCAATTTATGCTGCTAGAACCA AGTAACAACGGTCGTGTTACTTTTGAGAATTTCAGACAGGCACTGCTGAAAAATTCA

CATTTCAAGAAATGGACTTTTCAGAGTTCTGTGCAGCGGCCATTAGTGTTCTCCAG TTAGAAGCCACAGAACGATGGGAGCAGCATCTGCGCAGCTTACGACATATTTGA GAAAGAGGGTAACCGAGTCATTTATCCTGATGGAATGGCAAAGAGAGGGGCCAG CACCAAATGTACCAGCCCAAGTGTTTCTAGATTGGAATTGGAAGTCTGATGGTCGGC TGAGTTTCACTGGGTTCACCAAGCTGCTACATGGAATTTCCAGCCGTGCTATCAAAA ATCTCCAGCAGTGATTCTTGCATCGTACAGTGGCAATGGGAGTTTTTAAGCTCTTTT AGTTTCACTTCGGTCTCAACTGCTCGGCACTCGGACTGGGAGTGTGTAAGCGTAT CTCAAGCATATGCACAACTCGCATTTTGCTGAGGGATTTGTCACCTCACATAGCC GGGCCTCTGGAACTTTCACTTATTTGGATTATTTAGTAGAAGTCCAGATCAAAAAG CGAAAAGGAATGGCTAGATATTGTCACAAGAAGTAACATTAGGCACTATC CTTAAGCACACTTGAGTGCTTTTACACAAGAATTACCAAATTCAGGAGCA CTTAAGCACACTTGAGTGCATATTGTCACAAGAAGTCCAAATTCAGGAGCA CTTAAGCACACATGAGGCTAGTATTTTATGGAATTCTTAGGAATGGCATATGGTCAG GAACTTGGACGGCCAGAGAGTGGAATGTATAGACTGGCATATGGTTAAGT GATCATTGGACTGCCATTCTCCCGTTGTCCTTAAGCTGGCATATGGTTAAGT

Nucleotide sequence of full-length CPK-2 from Physcomitrella patens

(SEQ ID NO: 26)

ATCCCGGGCGAACTGCGATCTGAGATTCCAACTTGGAAGGGCCTCGCGTAAGACCG GATCTCGTTTCTTACGCTTTTGCGCCTCGCGATATTTGTACATTGTTTCCTCTGGTTTT ATTCGATTCCGCCTCTGAAAATGTGAACGGGCTGCAAGCTTGGTTTTGGAGCAACGT TGGAGCATTGAAGGGTTGCGCTCGTCCCTGCCCATTCCTCGCTTCTGCCCTAT GTCATGACGACGTGAAGGAGAGGAGTTTTGAGGGTTTTGTAAGTGATATAATCCTCCCC GAGGAGATTTCTGTGAGTTGATTAACTTGGATCAGCGACATGGGGAACACTAGTTCG AGGGGATCGAGGAAGTCCACTCGGCAGGTGAATCAGGGAGTCGGGTCTCAAGACAC CCGAGAGAAGAATGATAGCGTCAATCCAAAGACGAGACAGGGTGGTAGCGTTGGCG CAAACAACTATGGCGGAAAGCCAAGCAGTGGTGCTCAGGCCGGAGAACGATCCACC TCTGCGCCCGCTGCTCTGCCGAGGCCGAAGCCAGCATCGAGGTCAGTATCCGGTGTT TTGGGTAAGCCGCTGTCAGATATTCGTCAATCTTACATCCTGGGACGGGAGCTTGGC CGAGGGCAGTTCGGAGTGACTTACTTGTGTGTACTGACAAGATGACGAATGAGGCGTA CGCGTGCAAGAGCATCGCCAAACGGAAACTGACCAGTAAGGAGGATATCGAGGATG TTAAGCGGGAGGTTCAGATTATGCATCACCTGTCGGGGACACCCAATATCGTGGTGT ${\tt TAAAGGATGTGTTCGAGGACAAGCATTCCGTGCATCTTGTGATGGAGCTCTGTGCAG$ GTGGCGAGCTCTTCGATCGCATCATTGCCAAGGGGGCATTACAGTGAGCGCGCCGCTG ${\tt CCGATATGTGCAGAGTCATCGTCAATGTGGTGCACAGATGCCACTCATTAGGGGTCT}$ TCCATCGGGATCTCAAGCCAGAGAATTTTCTGTTGGCCAGCAAGGCTGAGGATGCGC ${\tt CTCTGAAGGCCACAGACTTCGGTCTGTCAACTTTCTTTAAGCCAGGAGATGTGTTCC}$ AGGATATTGTTGGAAGTGCGTATTACGTGGCCCCTGAAGTTTTGAAGAGAAGTTATG ${\tt GTCCTGAAGCTGATGTTTGGAGTGCAGGCGTGATTGTGTACATTCTGCTGTGTGGTG}$ ${\tt TACCCCCCTTCTGGGCTGAAACTGAGCAGGGTATCTTTGACGCTGTGCTCAAAGGGC}$ ACATAGACTTCGAGAACGATCCATGGCCGAAAATCTCCAACGGGGGCTAAGGATTTG GTGAGGAAAATGCTAAACCCTAACGTGAAGATACGTCTGACGGCACAGCAGGTGTT GAACCATCCATGGATGAAGGAAGATGGTGATGCTCCAGACGTGCCACTCGACAATG ${\tt CGGTGTTGACCAGACTGAAAAATTTCTCAGCCGCCAACAAGATGAAAAAGCTGGCG}$ CTGAAGGTGATTGCAGAGAGTCTGTCGGAGGAAGAGATCGTGGGGTTGAGGGAGAT GTTCAAATCCATAGATACAGACAACAGCGGCACGGTGACGTTCGAGGAGCTTAAGG AAGGGTTGCTGAAGCAGGGCTCAAAACTTAATGAATCGGACATCAGGAAACTAATG GAAGCTGCAGATGTCGATGGAAACGGCAAGATCGACTTCAACGAGTTCATATCGGC AACAATGCACATGAACAAGACGGAGAAAGAGGATCACCTTTGGGCAGCATTCATGC ATTTCGACACGGACAATAGCGGGTATATCACCATCGACGAGCTTCAGGAAGCAATG GAGAAGAATGGAATGGGAGATCCTGAGACCATCCAAGAGATCATCAGCGAGGTGGA CACAGACAACGACGGAAGAATAGACTACGACGAGTTCGTAGCCATGATGCGCAAGG GCAATCCTGGCGCTGAAAACGGAGGAACGGTGAACAAGCCCAGACACAGGTAGTA GCTCCTGGTTGCCAATTTGACGACGGGTTTGGCAAGGCAACAGTAGTTGTTGTTAGC TTTCAGATTCAGGTTCGGTATTGTTCATGCCCTCCTTTGTCTCGAACAATGGACTCTA GGCCTTTCCAATGGAAAAGCTATTCCAACAGGGTTTGCATAACGTGTAGTAGAATGA AAGCATTGCCTOGGGGGGTGTACAGTGCCTGTGATCTTGTGGAGTTCTCGTAGGATGG CTTCGGTTGGATCTCGTTAACGC

Deduced amino acid sequence of PK-6 from Physcomitrella patens

(SEQ ID NO: 27)

MGVDMKAPAKQSLGVGLLLCSVVILSVVSSVYGQVQTDPVDTTGLISMWYDLKQSQSL TGWTQNASNPCGQQWYGVVCDGSSVTEIKIGSRGLNGNFNPSYFQNAPKURIFDASNN NIEGNIPQQFPTSLTQMILNNNKLTGGLPQFDQLGALTVVNLSNNNLTGNMNPNYFNVIV NVETFDVSYNQLEGTLPDSILNLAKLRFLINLQNNKFNGKLPDDFSRLKNLQTFNIENDQF TGNYPSGLPSNSRVGGNRLTFPPPPAPGTPAPRTPSPSGTSNGSSSHLPLGAIIGIAAGGAV LLLLALGICLCCRKRSKKALGDPEATTSSRFWFTPPLSAKSQ5DPSKSIDKTTKRNIFGS SKSEKKSKHRVFEPAPLDKGAADEPVVKASPPVKVLKAPPSFKGISGLGAGHSKATIGK VNKSNIAATPFSVADLQAATNSFSQDNLIGEGSMGRVYRAEFPNGQVLAVKKIDSSASM VQNEDDFLSVVDSLARLQHANTAELVGYCIEHDQRLLVYEYVSRGTLNELLHFSGENTK ALSWNVRIKIALGSFRALEYLHEVCAPPVVHNFKSANILLDDELNPHVSDCGLAALAPS GSERQVSAQMLGSFGYSAPEYAMSGTYVKSDVYSFGVVMLELLTGRKSLDSSRPSEQ SLVRWATPQLHDIDALARMVDPSLKGIYPAKSLSRFADIVALCVQPEPEFRPPMSEVVQA LVRLMQRASLSKRRSESAVGIESNEPSETSL

Deduced amino acid sequence of PK-7 from Physcomitrella patens

(SEQ ID NO: 28)

MSVSGMDNYEKLEKVGEGTYGKVYKARDKRSGQLVALKKTRLEMEEEGVPSTALREV SLLQMLSHSMYIVRLLCVEHVEKGSKPMLYLVFEYMDTDLKKYIDLHGRGPSGKPLPPK

VVQSFMYQLCTGLAHCHGHGVMHRDLKPQNLLVDKQTRRLKIADLGLGRAFTVPMKS YTHEIVTLWYRAPEVLLGATHYSLPVDIWSVGCIFAELVRKMPLFTGDSELQQLLHIFRLL GTPNETIWPGVSQHRDWHEFPQWRPQDLSLAVPGLSAVGLDLLAKMLVFEPSKRISAKA ALSHTYFADVDKTAT			
Deduced amino acid sequence of PK-8 from Physcomitrella patens			
(SEQ MADAKEELALRTEMHWAVRSNDVGLLRTILKKDKQLVNAADYDKRTPLHIAASLDCVP VAKVLLAEGAELNAKDRWGKSPRGEAESAGYMEMVKLLKDYGAESHAGAPRGHVESL IQVAPPLPSNRDWEIAPSEIELDTSELIGKGAFGEIRKALWRGTPVAVKTIRPSLSNDRMVI KDFQHEVQLLVKVRHPNIVQFLGAVTRQRPLMLVTEFLAGGDLHQLLRSNPNLAPDRIV KYALDIARGMSYLHNRSKPIIHRDLKPRNIIVDEEHELKVGDFGLSKLIDVKLMHDVYKM TGGTGSYRYMAPEVFEHQPYDKSVDVFSFGMILYEMFEGVAPFEDKDAYDAATLVARD DKRPEMRAQTYPPQMKALIEDCWSPYTPKRPPFVEIVKKLEVMYEDCLLRLPKDRRHLR DILHLRRNPADS	ID	NO :	29)
Deduced amino acid sequence of PK-9 from Physcomitrella patens			
(SEQ MKRYQRRKVQRLGREGQVLLERTLFKQLRPSPFVPHLLATPIDSDNVALVLNCVLAGPL ELLLRSPLDENSARFLVANVVLAVELLHKDGVVYRGISPDVLMIDRKGRLQLVDFRFAK QMSDERTFTVCGMADFLAPEIIQGQGHGLASDWWAVGVLMYFMLQTELPFGSWRDNE LEIFGRIARRQLTPPSSFSPEAVDLIDKLLVVDPTKRLGCDSHGSLAIREHPWFRGINWDK HLDCSVEVPSEIMTRLQLAIDFLPVDDSYQVFDLQPDEDDPPWLDGW	ID	NO :	30)
Deduced amino acid sequence of CK-1 from Physcomitrella patens			
(SEQ MDLGGDRMRAPQRQSREYQYRSLDVFTEQHEQLQKQQQDEYQRTELKLETLPKMLS NATVSSSPRSSPDGRRLRTVANKYAVEGMVGSGAFCKVYQGSDLTNHEVUGIKLEDTR TEHAQLMHESRLYNILRGGKGVPNMWFGKEQYNNWLDLDLGPNLLHVGKVCGLRFS LKTVIMLGYQMIDRVEYVHSRGLVHRDLKPDNFLMGCGRQGNQVFIIDFGLAKEYMDP ATRRHIPYRDRKSFTGTARYASRNQHRGIEHSRRDDIESLGYILMYFLRGNLFWQGKGG QRLTDQKQHEYMHNKIKMNTTVEELCDGYPSQFADFLHHARSLGFYEQPDYCYLRSLF RDLFIQKKFQLDHVYDWTVYTQLPQNGSLQSVRSQNSAASSHLQNRPSNVSYCPPLTKS EFRREVVAAN	ID	NO :	31)
Deduced amino acid sequence of CK-2 from Physcomitrella patens			
(SEQ MEPRVGNKYRLGRKIGSGSFGEIYLGTNVQTNEEVGIKLESIKTKHPQLLYESKLYRILQG GTGIPNIRWFGIEGDYNVLVLDLLGPSLEDLFNFCSRKFSLKTVLMLADQLINRVEYVHA KSFLHRDIKPDNFLMGLGRRANQVYIIDFGLAKKYRDFSTHQHIPYRENKNIGTARYAS INTHLGIEQSRRDDLESLGYVLMYFLRGSLPWQGLKAGTKKQKYEKISEKKMSTPIEVLC KNYPSEFASYFHYCRSLRFDDKPDYAYLKRIFRDLFIREGFQFDYVFDWTILKYQQSQISG GSSTRLGASAGQTSGALGTGATGSRDLQRPTEPMDPSRRRLPGGANGSGVANALDSSKH KSPGLDESAKDSALAVVSEPERMHTSSYATRGGSSSRRAVLSSSRPSGASAEVVDSSRTG SSKLLGPTSLRSSAGMQRSSPVTSDPKRISSRHPQPPSANLRIYEAAIKGVESLSVEVDQSR YK	ID	NO :	32)
Deduced ammo acid sequence of CK-3 from Physcomitrella patens			
(SEQ MSKARVYTDVNVQRPKDYWDYEALTVQWGDQDDYEVVRKVGRGKYSEVFEGVNAV NSERCVMKILKPVKKKKIKREIKILQNLCGGPNIVKLLDIVRDQQSKTPSLIFEYVNNTDF KVLYPTLTDFDIRYYIHELLKALDYCHSQGIMHRDVKPHNVMIDHEQRKLRLIDWGLAE FYHPGKEYNVRVASRYFKGPELLVDLQDYDYSLDMWSLGCMFAGMIFRKEPFFYGHDN YDQLVKIAKVLGTDELNSYLNKYRLELDPHLEALVGRHSRKPWSKFINADNQRLVVPEA VDFLDKLLRYDHQDRLTAKEAMAHPYFYPVKVSEVSNRRSA	ID	NO :	33)
Deduced amino acid sequence of MPK-2 from Physcomitrella patens	3		
(SEQ METSSGTPELKVISTPTYGGHYVKYVVAGTDFEVTARYKPPLRPIGRGAYGIVCSLFDTV TGEEVAVKKIGNAFDNRIDAKRTLREIKLLRHMDHENVVAITDIIRPTRENFNDVYIVYE LMDTDLHQIIRSNQALTEDHCQYFLYQILRGLKYIHSANVLHRDLKPTNLLVNANCDLKI ADFGLARTLSETDFMTEYVVTRWYRAPELLLNCSAYTAAIDIWSVGCIFMELLNRSALFP GRDYVHQLRLITELIGTPEDRDLGFLRSDNARRYIKHLPRQSPIPLTQKFRGINRSALDLVE KMLVFDPARRITVEAALAHPYLASLHDINDEPASVSPFEFDFEEPPISEEHIKDLIWREALD CSLGPDDMVQ	ID	NO :	34)
Deduced amino acid sequence of MPK-3 from Physcomitrella patens	3		
(SEQ MGLTPFSCVTVQGYVRVVYPDGHVENLSKSCSVHDLLLGNPDYYVCGSTPYTITNRMA AEEVLEYGVTYFVCATPNAQPFLERQPKVVHRGSKILPRFSKHGVHVRELRSPTHGSQQS RKVFDYHSVTMQQLESIRNEGPEPHLAGDRPSKHLKLVFIRHCLRALRLPRISIDLMESPL	ID	NO:	35)

07
APPENDIX-continued
PNLSGEALSPTATAKDEITQMILKSAABSELGMYVSKRQEFYLRRARRRKFAWKPVLQ SISEMKPVMEFHTPMAYRDSGSPPKNASTPSLPGPKNISPPRQVSVPQRSSPPPKNVSPPP QPAFVARTASKYSAASQQVQRNRGNAKSLYMA
Deduced amino acid sequence of MPK-4 from Physcomitrella patens
(SEQ ID NO: 36 MSRRVRRGGLRVAVPKQETPVSKFLTASGTFQDDDIKLNHTGLRVVSSEPNLPTQTQSSS PDGQLSIADLELVRFLGKGAGGTVQLVRHKWTNVNYALKAIQMNINETVRKQIVQELKI NQVTHQQCPYIVECFHSFYHNGVISMILEYMDRGSLSDIIKQQKQIPEPYLAVIASQVLKG LEYLHQVRHIIHRDIKPSNLLINHKGEVKISDFGVSAVLVHSLAQRDTFVGTCTYMSPERL QGRSYAYDSDLWSLGLTLLECALGTFPYKPAGMEEGWQNFFILMECIVNQPPAAASPDK FSPEFCSFIESCIRKCPSERPSTTDLLKHPFLQKYNEEEYHLSKIL
Deduced amino acid sequence of MPK-5 from Physcomitrella patens
(SEQ ID NO: 37 MSRRVRRGGLRVAVPKQETPVSKFLTASGTFQDDIKLNHTGLRVVSSEPNLPTQTQSSS PDGQLSIADLELVRFLGKGAGGTVQLVRHKWTNVNYALKAIQMNINETVRKQIVQELKI NQVTHQQCPYIVECFHSFYHNGVISMILEYMDRGSLSDIIKQQKQIPEPYLAVIASQVLKG LEYLHQVRHIIHRDIKPSNLLINHKGEVKISDFGVSAVLVHSLAQRDTFVGTCTYMSPERL QGRSYAYDSDLWSLGLTLLECALGTFPYKPAGMEEGWQNFFILMECIVNQPPAAASPDK FSPEFCSFIESCIRKCPSERPSTTDLLKHPFLQKYNEEEYHLSKIL
Deduced amino acid sequence of CPK-1 from Physcomitrella patens
(SEQ ID NO: 38 MGQCYGKFDDGGEGEDLFERQKVQVSRTPKHGSWSNSNRGSFNNGGGASPMRAKTSF GSSHPSPRHPSASPLPHYTSSPAPSTPRRNIFKRPFPPPSPAKHIQSSLVKRHGAKPKEGGAI PEAVDGEKPLDKHFGYHKNFATKYELGHEVGRGHFGHTCYAKVRKGEHKGQAVAVKII SKAKMTTAIAIEDVGREVKILKALTGHQNLVRFYDSCEDHLNVYIVMELCEGGELDRIL SRGGKYSEEDAKVVVRQILSVVAFCHLQGVVHRDLKPENFLFTTKDEYAQLKAIDFGLS DFIKPDERLNDIVGSAYYVAPEVLHRLYSMEADVWSIGVITYILLCGSRPFWARTESGIFR AVLRADPSFEEAPWPSISPEAKDFVKRLLNKDMRKRMTAAQALTHEWIRSNNVKIPLDIL VYRLVRNYLRASSMRKAALKALSKTLTEDETFYLRTQFMLLEPSNNGRVTFENFRQALL KNSTEAMKESRVFEILESMDGLHFKKMDFSEFCAAAISVLQLEATERWEQHARAAYDIF EKEGNRVIYPDELAKEMGLAPNVPAQVFLDWIRQSDGRLSFTGFTKLLHGISSRAIKNLQ Q
Deduced amino acid sequence of CPK-2 from Physcomitrella patens
(SEQ ID NO: 39 MGNTSSRGSRKSTRQVNQGVGSQDTREKNDSVNPKTRQGGSVGANNYGGKPSSGAQA GERSTSAPAALPRPKPASRSVSGVLGKPLSDIRQSYILGRELGRGQFGVTYLCTDKMTNE AYACKSIAKRKLTSKEDIEDVKREVQIMHHLSGTPNIVVLKDVFEDKHSVHLVMELCAG GELFDRIIAKGHYSERAAADMCRVIVNVVHRCHSLGVFHRDLKPENFLLASKAEDAPLK ATDFGLSTFFKPGDVFQINVGSAYYVAPEVLKRSYGPEADVWSAGVIVYILLCGVPPFW AETEQGIFDAVLKGHIDFENDPWPKISNGAKDLVRKMLNPNVKIRLTAQVLNHPWMK EDGDAPDVPLDNAVLTRLKNFSAANKMKKLALKVIAESLSEEEIVGLREMFKSIDTDNSG TVTFEELKEGLLKQGSKLNESDIRKLMEAADVDGNGKIDPNEFISATMHMMKTEKEDHL WAAFMHFDTDNSGYITIDELQEAMEKNGMGDPETIQEIISEVDTDNDGRIDYDEFVAMM RKGNPGAENGGTVNKPRHR

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 128

<210> SEQ ID NO 1 <211> LENGTH: 695 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (636) <223> OTHER INFORMATION: a, t, c, g, other or unknown <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (680) <223> OTHER INFORMATION: a, t, c, g, other or unknown

<400> SEQUENCE: 1

89

-continued

-continued	
tgaacgccag gtgtcggcac aaatgttggg ctctttcggt tacagtgccc ctgagtacgc	120
catgtctgga acctataccg tgaagagtga cgtctacagc ttcggtgttg taatgctgga	180
gctactcact gggcgcaagc ctttagacag ctcaagacca cgatccgagc aatctttggt	240
acgatgggcc acacctcaat tgcacgacat cgacgccctt gcacgaatgg tggatccgtc	300
gttgaagggc atctaccctg ctaaatcact ctctcggttt gctgatatag tcgccctttg	360
cgtccagccg gagcccgagt tccgaccccc gatgtctgaa gtggtgcagg cacttgtaag	420
gctgatgcag cgtgcgagtc tgagcaaacg cagatcggag tccgctgttg ggaattgagt	480
cgaacgagcc atctgagact tcacctttga gagtactgaa gcgcccacta gcctaatcgt	540
gcatctttgg ccatctcgtt tctgagtgga acacaaagct gggtatattc tttggtggtt	600
aagcaaccat ttgtcccaat ttgaacttcc gctggngaag gtctgtatgt tgagaaacga	660
tgcaaagcgt tcgcgtggtn tgcttgaact tcaaa	695
<210> SEQ ID NO 2 <211> LENGTH: 512 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens	
<400> SEQUENCE: 2	
ggcacgagee gaaetteage agettettea catetteagg ttgettggea eecegaatga	60
gacaatotgg ootggtgtta gooagcacog tgattggcao gagtttooto aatggagaco	120
acaagatetg teeettgetg tteeeggaet eagegeggtt ggettagaee ttetegeeaa	180
aatgttggta ttcgagccct caaagagaat ctctgccaaa gccgccttga gccatactta	240
tttcgctgat gttgataaga cagcaaccta aacacaacag aacaattcaa gagaaccagg	300
taacctctac ctgtccaaga cgaaggacat ctaactcttc agtcaaactt ggccaatcat	360
gctgattggg aattgaacca caggaacgag gtgggcaccg tggttcgctg tagcatacaa	420
agtagtetgg aagaettgae ategttaget ggeaatgeag tattttggaa ataeaatttt	480
tcattaaaaa tctcctaaag attcaatatt tg	512
<210> SEQ ID NO 3 <211> LENGTH: 651 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (608) <223> OTHER INFORMATION: a, t, c, g, other or unknown	
<400> SEQUENCE: 3	
gcaccagact atgacaagcg cacgcccttg cacategeeg egteeetgga ttgtgteeet	60
gttgctaaag tcctgcttgc ggaaggagca gagttgaatg caaaagacag gtgggggaaa	120
teteegagag gegaggegga gagtgeagga tacatggaga tggtaaaget gttgaaggat	180
tacggggctg agtcacacgc aggtgccccg aggggccacg ttgagagtct gattcaggtt	240
gcccctccgt tgccttctaa ccgcgactgg gagatcgctc cgtcggagat tgaacttgat	300
accagegage teateggeaa aggeteett ggagagatte ggaaggeget ttggegegge	360
acaccegteg etgtgaagae aateagaeet tetetgteea aegaeagaat ggteateaag	420
gacttecage acgaggtgea attgetegta aaggttegge acceaaacat tgtgeagtte	480
ctcggggctg ttacccgtca aagacctctc atgttagtca ccgagtttct ggcaggggg	540
cgatttgcat cagttgctga ggagcaccct aaatttggct cctgaccgca tcgtgaagta	600

-continued

-continued	
_ tgccctcnac atagctcgcg gcatgtctta cttcaccatc ggagcagccc a	651
<pre><210> SEQ ID NO 4 <211> LENGTH: 710 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (54) <223> OTHER INFORMATION: a, t, c, g, other or unknown</pre>	
<400> SEQUENCE: 4	
tccagcccat ttggttggcc acacacagct gttcatgagt cacccgcttc aggntgaact	60
gaagaaacgt aactcogtac ggotatttta coaaatttto aagotogttg tooogooatg	120
atccaaatgg aagctcagtt tgcaacatga agtacattga acacacctac cgcccaccag	180
tcagaagcca ggccatgacc ttgtccttga atgatctcgg gtgctaagaa atcagccatg	240
ccacagactg tgaaagtgcg ctcatccgac atttgctttg caaaccgaaa atcaaccagc	300
tgaagtcgtc ctttccgatc tatcataaga acatcgggag agatgccacg atatacaacg	360
ccatccttgt gcagaagttc gacggctaat accacgttgg cgaccagaaa acgagctgag	420
ttctcgtcta aaggtgaccg aagtagaagt tctagaggcc cagctaacac acaattaaga	480
acgagtgcca cattgtcact gtcaataggg gtggccaaga gatgcggcac gaatggggaa	540
ggceteagtt gettgaaaag agttetetee aataggaett ggeeeteeeg acegagtete	600
tgaactttac gtctctggta ccttttcatg cttatgacgt catctgattt cttgcagagc	660
accacaccga catcacagca atcggttgaa tagacctggt gccgattcct	710
<pre><210> SEQ ID NO 5 <211> LENGTH: 1271 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (619) <223> OTHER INFORMATION: a, t, c, g, other or unknown <400> SEOUENCE: 5</pre>	
~	60
tatgcccatc ttctcatact cagaccagat cctctatttc aattacagaa gaaagttgct	120
tgtgcaacgt attgaaatca tcaccgtcat gggctttccg agtaaaaatt cttgtaatgg ataaagtcat ttctagtctg atccatacaa gctaccgaca caatgctaga agccttgatt	180
tacacactac acactagaga gtotacaact ottitootac actotgotta gttgootcat	240
cctcaactcc ataaaccccc attcacaatc atgtaagact tgagagaggg aaacagtaag	300
caaccttgtg ctattttagt accagagcag aggatgaacc actagtcctc ccaacgtaag	360
ccctaattcg ccgcaacaac ctcacgacgg aactccgact tggtcaaggg tggacaatat	420
gatacattog aaggtogatt ttgcaaatgg gaogaagcag oggaattotg gotgogoact	480
gattgcagag agccattetg ggggagttga gtatacacag tecagtegta cacatggteg	540
agctggaatt ttttctgaat gaaaagatca cggaacaagc ttcggaggta cagtagtcag	600
gctgctcgta aaaacctana cttcgcggcg tggtgcaaaa agtcggcaaa ttgactggga	660
tacccatcac aaagctcctc ccacagtggg ggtcatcttg attttgttgt gcatgtactc	720
gtgttgcttc tggtcagtga gggcgttgcc cgcccttccc ttgccatggc aaattgcctc	780
ttagaaagta cataagaatg taacccaagt gattctatgt catctcttct actgtgctcg	840

900

atteetetgt getgatteet actagegtae egtgeegtee etgtgaaget etteetatet

93

continued

US	7.91	15.	,484	B2
~~~		~ ~ .	,	

•	_
y	٦.
_	~

### -continued

-continued	
cttttcgcat gcacatactc cactctgttg atcagctggt cagcaagcat gagaacagtc	1800
tttaaagaga actteegget geagaagttg aaaaggtett egagaettgg eeceaacaga	1860
tccagaacca agacattgta gtctccttct atcccgaacc atcctcgtgc	1910
<pre>&lt;210&gt; SEQ ID NO 7 &lt;211&gt; LENGTH: 720 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Physcomitrella patens &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (58) &lt;223&gt; OTHER INFORMATION: a, t, c, g, other or unknown &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (613) &lt;223&gt; OTHER INFORMATION: a, t, c, g, other or unknown</pre>	
<400> SEQUENCE: 7	
cqqtqqqqcq ctccccaata ttttatcccc qqqqctqcaq qqaatccqqc qaccaqtntt	60
tgaaggtgtc aacgccgtga atagtgagcg ttgcgttatg aagattttga agccagtaaa	120
gaaaaaaaag atcaaaagag agatcaagat totgcaaaac otttgtggag ggoccaacat	180
tqtqaaqctt ctqqacattq tccqtqatca qcaatcqaaq acacccaqcc taatttttqa	240
	300
gtatgtgaac aatactgatt tcaaagtgct ctaccccact cttacagact ttgatatccg	360
atactacatt catgagetge teaaggettt ggaetattge catteteaag ggattatgea	420
cagggatgtg aagccacaca acgtgatgat tgaccatgag cagcggaagc ttaggcttat	
tgactgggga cttgccgaat tctatcatcc tggcaaagag tataatgtgc gtgttgcctc	480
taggtactte aagggteetg agetgetggt tgatetteaa gattatgatt aeteteega	
catgtggagc totggggtgc atgtttgoog goatgatatt toggaaggag coattottt	600
atgggcatga canttcatga tcaacttggt gaagatcgct aagggtgttgg gaacttgatg aattgaattc ctatctaaca aataccgcta agtggacccc attggagcac ctggtggggg	660
<210> SEQ ID NO 8 <211> LENGTH: 953 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens	
<400> SEQUENCE: 8	
gcacgaggaa ctaacgaatt gtcattctat aatccaatag tgtaatcaca cgggggggaa	60
taagttgcaa aaccatacaa cgccgggata gcgttgtagc cacctaaaga attgagagta	120
ggeettacaa ettgagatga agtgtgaagt ggtaetgeae catateatea ggaeetaage	180
tgcaatccag ageeteeete caaatgagat eeetgatagg eteeteegag atagaggget	240
cctcgaagcc aaactcgaag ggagataccg agccaggctc atcgttgatg tcatgaagtg	300
aagettaaat aagggtgege caaggeaget teeactgtga ttettttege tggateaaag	360
accagcatct tttcaacaag atcaagagca gaacgattaa tgcctctgaa cttctgggtt	420
aagggaatag gcgactgtcg aggcaggtgc ttgatatacc gcctagcatt gtcgcttctc	480
aaaaacccaa gatccctatc ttcaggagtt ccgatgagtt ctgtaattag gcggagctga	540
tgcacatagt ctctcccagg gaacaacgca gatcggttaa gcaactccat gaagatgcac	600
cccacagacc aaatgtcaat agctgcagtg tatgctgaac aattcaggag cagctctgga	660
getetgtaee acetegttae aacataetea gteatgaaat eegttteaga gagagtgegt	720
gccaagccaa aatctgcgat tttcaaatcg caattggcat tgacgagaag gttggtgggc	780

US	7,91	5.	484	B2
$\sim$		,		

•	-
U	1
- 7	

continued

-continued	
ttcaagtccc ggtgcaagac gttcgccgaa tggatgtact tcaagccccg caagatttga	840
tacagaaaat actgacagtg gtcttctgtg agagcttgat ttgaacgaat gatctggtgt	900
aggteegtat ceateaacte gtatacaatg taeaegtegt tgaaateteg tge	953
<pre>&lt;210&gt; SEQ ID NO 9 &lt;211&gt; LENGTH: 683 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Physcomitrella patens &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (663) &lt;223&gt; OTHER INFORMATION: a, t, c, g, other or unknown &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (670) &lt;223&gt; OTHER INFORMATION: a, t, c, g, other or unknown</pre>	
<400> SEQUENCE: 9	
cggcaccagc ctcgctggag accgaccatc gaagcacctt aagctcgttt tcattcggca	60
ttgcttgcga gcacttcgac ttcctagaat ttcaatagac ctaatggaat cgccactccc	120
taatctttcc ggagaggcct tatcgccgac ggcaactgcc gaagacgaga ttactcagat	180
gatactaaaa agtgccgcaa ggtccgaatt aggaatgtat gtttcgaaga gacaggaatt	240
ctatcttcga agagcgcgga ggcggcgtaa gtttgcgtgg aagccggttt tgcagagcat	300
ctccgagatg aagcctgtca tggaattcca cactccgatg gcttaccggg atagtgggtc	360
tccgccgaag aacgcctcta ccccatcctt acctggcccg aagaacattt caccgccacg	420
acaagtgagt gtcccgcaaa ggagcagtcc tccgccgaag aacgtctcac cacctcccca	480
gcccggcatt ttgtagcgcg gactgcgatc gaagtattct gctgcatctc agcaagttca	540
acgaaatcga gggcaacgcg aaatctcttt tatatggcgt agtttgtgtc tccgactgga	600
ctcctatcta tccccatcga gataactgat tcggtggata atttctccaa attttggcta	660
acncaagaan ctcaagggcg aat	683
<pre>&lt;210&gt; SEQ ID NO 10 &lt;211&gt; LENGTH: 1156 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Physcomitrella patens &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (923) &lt;223&gt; OTHER INFORMATION: a, t, c, g, other or unknown &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified_base &lt;222&gt; LOCATION: (1143) &lt;223&gt; OTHER INFORMATION: a, t, c, g, other or unknown</pre>	
<400> SEQUENCE: 10	
gcacgaggtt ggtgtaagtt attgatagtg ctgtgcaatt cacagttttg ctactccggt	60
aggteegaee tetteaattg teagtttaaa aaetetaaaa aeatttgaga aaagtgttga	120
aaaateteeg tgaggaaatt eettgtegea agaegtgaaa aaaagaagaa agaagatgga	180
aatattgttt tgggtatcga agaagtgttc gatgctgtgc aataaggaaa gaaaaagtgc	240
aggtaacata aaaagctagc atggtgatga taatataaga ccccgattaa cacacttatg	300
gattgtttca tgagctgcac gttctcagcg acaaatgggg ctcattgaga aaactccact	360
ttetataagg ttgggaaaeg agegttttt ttttgaagat gtttttteeg teaatetgat	420
ttgatatcgt tctcaacttg accacatatg actatataag gaaaaggcat tgagaaagtg	480
gcggattggc gaggtagttc gaccatgctt ttggtaaagt cccttgaagt tcagtggtgg	540

99

<210> SEQ ID NO 13

# -continued

100

-continued	
atcaggettg tggtagtgac agtetetgea egecatgega ggetaaettt aagttacaaa	600
atettgetea aatggtaete tteetegttg taettttgea ggaaeggatg tttaagtaaa	660
tcagtagttg atggtcgttc actgggacat ttccggatgc aggattcaat aaaagaacaa	720
aatteggggg agaatttgte aggggatgeg getgeggggg gttgattaae tataeattee	780
atgaggatga agaaattttg ccaaccetet teeatteeag etggtttgta tgggaaggta	840
cccaacgcac actccaaaag agtcaatcct aaactccata ggtcactgtc gtatgcatac	900
gaacgcccct gaaggcgttc tgncgacata tatgtgcaag tcccaacgaa cgtgtctcgc	960
tgggccaagg aatgaaccaa cacagcactg acaccaaaat cagatatttt gacctcaccc	1020
ttgtgattga tgaggaggtt ggagggcttt atatcacgat gtatgatgtg cctgacttgg	1080
tgtaggtatt ccaatccctt cagaacttga ctagcaatga cggccaaata cggctcaggt	1140
atntgettte tggtge	1156
<210> SEQ ID NO 11 <211> LENGTH: 629 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 11	
-	60
tccccgggct gaggaattcg gcacgagcgg ttgatcctca cccttgggaa ggaccctgga attgagtagc gtgcggaagc tgcatcgatc cggaagagac gatgagtagg agagtgagaa	120
ggggaggtet tegegtegeg gtgeegaage aagagaetee egteageaaa tttttgaetg	180
ccagtggaac tttccaggat gatgatatca ageteaacea cacegggett egegtegtet	240
cttcagaacc taaccttcct acgcagacgc agtctagctc cccagatggg caactgtcaa	300
tagcagacet ggagttagtg eggttettag gaaagggtge gggtggaace ggtgeagett	360
ggtccggcac aaatggacca atgtcaatta tgcactgaag gcgatacaaa tgaatatcaa	420
cgaaacagtg aggaagcaga ttgttcagga gctgaaaatc aaccaagtga cgcaccagca	480
gtgcccttat atcgtggaat gcttccactc cttctaccac aacggcgtca tatccatgat	540
cctagagtac atggacaggg gctcgttgtc cgacattatt aagcaacaaa agcagatacc	600
tgagccgtat ttggccgtca ttgctagtc	629
<210> SEQ ID NO 12	
<211> LENGTH: 514 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens	
<213> ORGANISM: Physicomitrella patens	
	60
gcaccagceg agtegggcat ttttegtgeg gtgttgaggg etgaccegag etttgaagaa	120
gccccttggc cttccatctc tcccgaagcc aaggatttcg tgaagcgtct cctgaataag gatatgcgga aacgcatgac tgctgcacaa gctttaactc atccatggat tcgaagtaac	120
aacgtgaaga tacctctgga tatcttagtg tacagacttg tgaggaatta tcttcgtgca	240
tcatccatga gaaaggetge tttgaaggee etgteaaaga etttaacega agaegagaet	300
ttttatctac gtactcaatt tatgctgcta gaaccaagta acaacggtcg tgttactttt	360
gagaatttca gacaggcact gctgaaaaat tcaacagagg ccatgaaaga gtcacgggtt	420
tttgaaatte tggaategat ggatggtett cattteaaga aaatggaett tteagagtte	480
tgtgcagegg ceattagtgt tetecagtta gaag	514
egegeagegy ceatragege terecaytra yaay	214

1	Λ	1

<211> LENGTH: 1387
<212> TYPE: DNA
<213> ORGANISM: Physcomitrella patens

-cont	inued
COILC	LIIUCU

<pre>&lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: modified base</pre>	
<pre>&lt;222&gt; LOCATION: (1385) &lt;223&gt; OTHER INFORMATION: a, t, c, g, other or unknown</pre>	
<400> SEQUENCE: 13	
gcacgagete etgeatetee ceeteettet eeteeteate attetggage eeagegaact	60
gcgatctgag attccaactt ggaagggcct cgcgtaagca ccggagctcg tttcttacgc	2 120
ttttgcgcct cgcgatattt gtacattgtt tcctctggtt ttattcgatt ccgcctctga	a 180
aaatgtgaac gggctgcaag cttggttttg gagcaacgtt ggagcattga agggttgcgc	240
tcgtccctgc ccattcctcg cttctgctct ggcctatgtc atgacgacgt gaaggagag	300
atttgagggt tttgcaagtg atataateet eeeegaggag atttetgtga gttgattaae	360
ttggatcagc gacatgggga acactagttc gaggggatcg aggaagtcca ctcggcaggt	420
gaatcaggga gtcgggtctc aagacacccg agagaagaat gatagcgtca atccaaagac	480
gagacagggt ggtagcgttg gcgcaaacaa ctatggcgga aagcacaagc agtggtgctc	540
aggeeggaga aegateeace tetgegeeeg etgetetgee gaggeegaag eeageatega	a 600
ggtcagtatc cggtgttttg ggtaagccgc tgtcagatat tcgtcaatct tacatcctgg	<b>j</b> 660
gacgggagct tggccgaggg cagttcggag tgacttactt gtgtactgac aagatgacga	a 720
atgaggegta egegtgeaag ageategeea aaeggaaaet gaeeagtaag gaggatateg	<b>j</b> 780
aggatgttaa gegggaggtt cagattatge atcacetgte ggggacaeee aatategtge	j 840
tgttaaagga tgtgttcgag gacaagcatt ccgtgcatct tgtgatggag ctctgtgcag	900
gtggcgaget ettegatege ateattgeea aggggeatta eagtgagege geegetgeeg	960
atatgtgcag agtcatcgtc aatgtggtgc acagatgcca ctcattaggg gtcttccatc	2 1020
gggateteaa gecagagaat tttetgttgg eeageaagge tgaggatgeg eetetgaagg	J 1080
ccacagactt cggtctgtca actttcttta agccaggaga tgtgttccag gatattgttg	j 1140
gaagtgcgta ttacgtggcc cctgaagttt tgaagagaag ttatggtcct gagctgatgt	1200
ttggagtgca ggcgtgattg tgtacattet getgtgtggt gtaceceeet tetgggetga	a 1260
aactgagcag ggtatctttg acgctgtgct caaagggcac atagacttcg agaacgagtc	2 1320
catggccgaa aatctccaac ggggctaagg atttggtgag gaaaatgcta aaccctaac	j 1380
tgaanat	1387
<210> SEQ ID NO 14 <211> LENGTH: 2784 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens	
<400> SEQUENCE: 14	
atcccgggtg agtatcactt acggtggcga gggatggcct ttggggtagg agctggtata	a 60
tgcggagtcc aacagaagct tgtgcaggac tcttgagttg tgcgtgcgag ggctgagtgc	2 120
cggaaaggta ttttccgacg aagagtcaat gtgggcgtgg acaaacgttt gaagagatgg	180
gtgtggatat gaaggeteeg getaageagt egetgggagt eggaetgete etgtgetete	<b>j</b> 240
tagtgateet eteggtggtg agetetgtgt atggeeaagt teagaeagat eeagtggata	a 300
ctacaggett aattteeatg tggtatgaet taaaacagag teaatetete aeggggtgga	a 360
ctcaaaatgc ttctaaccct tgtgggcagc agtggtacgg cgttgtatgt gatggctctt	420

		105					104	
				-contin	nued			
ctgtcacgga	aatcaaaatt	ggaagtcggg	gtttgaatgg	aaattttaat	ccttcgtact	480		
ttcaaaacgc	ttttaaaaag	cttcgaattt	ttgatgctag	taacaacaac	atcgaaggaa	540		
atattcctca	acagtttcct	acgtctctta	ctcaaatgat	attgaacaac	aataaattga	600		
ccggaggtct	cccacagttt	gatcaattgg	gcgccttgac	agtcgtaaac	ttgagcaaca	660		
acaatctgac	cggcaacatg	aaccccaact	atttcaatgt	gatcgtgaat	gtggaaacct	720		
tcgatgtttc	ctataaccaa	cttgaaggca	ctcttcccga	ctccattcta	aacctggcca	780		
agcttcgttt	cttgaatttg	cagaacaata	aatttaatgg	taaacttccc	gacgatttct	840		
ctcggctgaa	gaatttgcag	actttcaaca	ttgagaacga	tcagttcacg	ggtaattatc	900		
catcaggttt	acccagtaat	agcagggttg	gaggaaatcg	tcttacattt	cccccacctc	960		
cagcccccgg	cacacctgct	cccaggactc	cttctccttc	aggaacatcg	aatggatcat	1020		
cgtcgcatct	ccctctaggg	gcgatcattg	gaatageege	tggtggtgct	gtgctgcttt	1080		
tattactagc	actcggcatc	tgtttgtgtt	gtcgtaagcg	gtccaagaaa	gcattgggcg	1140		
atccagaggc	cacgaccagc	agccgaagac	cgtggttcac	acctcccctc	tccgcaaaga	1200		
gccagagtga	tcccagcaag	agcatagaca	aaacgacgaa	acgcaacatc	tttggcagca	1260		
gtaagagtga	gaagaaaagt	tcaaagcaca	gagtatttga	gccagctcct	cttgacaaag	1320		
gagcagccga	cgaaccagtg	gtgaaggcgt	ctccgcccgt	caaggtactg	aaggctcctc	1380		
cttcatttaa	gggtatcagc	ggcctgggtg	ctggacattc	gaaagcaaca	attggcaagg	1440		
tgaacaagag	caatattgca	gccaccccat	tctctgtagc	ggatcttcag	gcagccacaa	1500		
acagettete	ccaggataat	ctgattggag	aagggagcat	gggtcgcgtg	tatcgtgccg	1560		
agtttcccaa	cggccaggtc	ttggccgtga	agaagatcga	cagcagcgcg	tcgatggtgc	1620		
agaatgagga	tgacttcttg	agtgtagtag	acagtttggc	tcgcctgcag	catgctaata	1680		
cggctgagct	tgtgggttac	tgtattgaac	atgaccaacg	gctgttggtg	tacgagtacg	1740		
tgagtcgtgg	aaccctgaac	gaattgctcc	atttctcggg	tgaaaacacc	aaggccctgt	1800		
cctggaatgt	ccgcattaag	attgctttgg	gatccgcgcg	tgctctggag	tacttgcacg	1860		
aagtctgtgc	acctcccgtg	gttcaccaca	acttcaaatc	tgccaatatt	ctgctagacg	1920		
atgagctcaa	tcctcatgtt	tcggactgtg	gactagctgc	ccttgcacca	tctggttctg	1980		
aacgccaggt	gtcggcacaa	atgttgggct	ctttcggtta	cagtgcccct	gagtacgcca	2040		
tgtctggaac	ctataccgtg	aagagtgacg	tctacagctt	cggtgttgta	atgctggagc	2100		
tactcactgg	gcgcaagtct	ttagacagct	caagaccacg	atccgagcaa	tctttggtac	2160		
gatgggccac	acctcaattg	cacgacatcg	acgcccttgc	acgaatggtg	gatccgtcgt	2220		
tgaagggcat	ctaccctgct	aaatcactct	ctcggtttgc	tgatatagtc	gccctttgcg	2280		
tccagccgga	gcccgagttc	cgacccccga	tgtctgaagt	ggtgcaggca	cttgtaaggc	2340		
tgatgcagcg	tgcgagtctg	agcaaacgca	gatcggagtc	cgctgttgga	attgagtcga	2400		
acgagecate	tgagacttca	ctttgagagt	actgaagcgc	ccactagcct	aatcgtgcat	2460		
ctttggccat	ctcgtttctg	agtggaacac	aagctgggta	tattctttgg	tggttaagca	2520		
acattttgtc	acaatttgaa	cttcagctgg	agaagggtct	gtagtgttga	agaaaacgaa	2580		
tgcaaagcgt	ttcggcgtgg	atgtgctttg	agaacttaca	aaactcatca	agactttgaa	2640		
gatctttgta	ttgcatcgaa	tcctttcaat	cagtctcggg	taggatcagt	tcctctgtat	2700		
cggataccct	tttcatccta	acatgggacc	cttttaatcc	agaggatgga	gtgcttggaa	2760		
tagtgacctt	ggtcgagtta	acgc				2784		

-continued

780

<210> SEQ ID NO 15 <211> LENGTH: 1088 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 15 atcccgggag tgggtggttg gactgtaagg agctagcgtt ttagagctac agtgcggttt 60 gctgtgtgag tgagtgagtg agtgagtgcg tgagtgagga tgtctgtttc tggtatggac 120 aactatqaqa aqctqqaqaa qqtaqqaqaq qqqacttacq qaaaqqtqta taaqqcccqt 180 gataaacget eeggeaget ggtggegete aagaagaeta ggttggagat ggaggaagaa 240 ggcgtccctt ccaccgcttt gcgcgaagtt tcgttgctac aaatgctctc ccacagcatg 300 tatatcgtca ggctactttg cgtggagcac gtcgagaaag gcagcaagcc catgctctac 360 420 ttqqtctttq aatatatqqa cactqatctt aaqaaqtata ttqacttqca cqqtcqtqqt ccgagcggga ageetetgee teccaaagtg gtecagagtt teatgtatea attgtgeaca 480 gggcttgccc actgtcatgg ccacggagta atgcacaggg atctgaaacc ccagaatttg 540 ctcgtcgaca agcaaacccg tcgtcttaag attgccgacc ttggtctcgg tcgggcattc 600 acagtgccaa tgaagagtta cacacacgag attgttactc tatggtaccg agctcctgaa 660 gttcttcttg gagcgaccca ctactctcta cctgtggata tctggtctgt tgggtgcatc 720 ttcgctgaac tcgtccggaa aatgccgctc ttcactggag actccgaact tcagcagctt 780 cttcacatct tcaggttgct tggcaccccg aatgagacaa tctggcctgg tgttagccag 840 caccgtgatt ggcacgagtt tcctcaatgg agaccacaag atctgtccct tgctgttccc 900 ggactcagcg cggttggctt agaccttctc gccaaaatgt tggtattcga gccctcaaag 960 agaatetetg ccaaageege ettgageeat aettattteg etgatgttga taagaeagea 1020 acctaaacac aacagaacaa ttcaagagaa ccaggtaacc tctacctgtc caagacgaag 1080 gttaacgc 1088 <210> SEQ ID NO 16 <211> LENGTH: 1627 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 16 atcccgggca acgagaagca ttcgagatgg cagatgcgaa ggaggaactg gcgctgcgca 60 cggaaatgca ctgggctgtg aggagtaacg acgtggggct gttaaggacc attctgaaga 120 aagacaagca getegtgaat getgeggaet atgacaageg caegecettg caeategeeg 180 cgtccctgga ttgtgtccct gttgctaaag tcctgcttgc ggaaggagca gagttgaatg 240 caaaagacag gtggggggaaa teteegagag gegaggegga gagtgeagga tacatggaga 300 tggtaaagct gttgaaggat tacggggctg agtcacacgc aggtgccccg aggggccacg 360 ttgagagtet gattcaggtt geceetegt tgeettetaa eegegaetgg gagategete 420 cgtcggagat tgaacttgat accagcgagc tcatcggcaa aggcgccttt ggagagattc 480 ggaaggcgct ttggcgcggc acacccgtcg ctgtgaagac aatcagacct tctctgtcca 540 acgacagaat ggtcatcaag gacttccagc acgaggtgca attgctcgta aaggttcggc 600 acccaaacat tgtgcagttc ctcggggctg ttacccgtca aagacctctc atgttagtca 660 ccgagtttct ggcagggggc gatttgcatc agttgctgag gagcaaccct aatttggctc 720

ctgaccgcat cgtgaagtat gccctcgaca tagctcgcgg catgtcttac cttcacaatc

107

### -continued

108

ggagcaagcc catcatccac cgcgatctca aaccccgaaa catcatagtg gacgaagagc 840 atgagetgaa ggteggegae tteggaetga geaagetgat egaegtaaag ettatgeatg 900 atgtgtacaa gatgacgggg gggactggga gttacagata catggcgcct gaggtcttcg 960 aacatcaacc ctacgacaaa tccgtcgacg tgttttcctt tggaatgata ttatatgaga 1020 tgtttgaagg cgtcgctccg tttgaggaca aggatgcata cgacgctgcc acactagttg 1080 ctagagacga taagcggcca gagatgagag cccaaacgta tcccccacaa atgaaggcat 1140 tgatcgagga ttgctggtca ccgtataccc cgaagcgacc acctttcgtc gaaatcgtca 1200 aaaaactcqa qqtaatqtat qaqqattqct tattqaqatt qcccaaaqac cqtcqtcatc 1260 1320 tecgegacat ettgeatett egacgeaate etgeagaete gtgattgate gggeeaaeet 1380 tegagetgat caatetaagt agteaatgee ttactgtgte aaatteagee teegeegaca 1440 qattqqctat qqttcaaqtq attqqattct ctqcttctcc aqaqccaqaa acqacccccq tqcaatttet tetecqacqa ccacattqeq acatqaaqca ccaqaetttq qatqtaqaaq 1500 1560 gcatggtcta catgctttgc tgtgagcctt gcacgtctcg caggttgatc tctttaacca 1620 gettetagee tttegeaatg getgeateac ttaagaaate acegagtate gtgatgeteg ttaacqc 1627 <210> SEQ ID NO 17 <211> LENGTH: 1441 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 17 atcccgggct gtgatgtcgg tgtggtgctc tgcaagaaat cagatgacgt cataagcatg 60 120 aaaaggtacc agagacgtaa agttcagaga ctcggtcggg agggccaagt cctattggag agaactettt teaageaact gaggeettee ceattegtge egeatetett ggeeaceet 180 attgacagtg acaatgtggc actcgttctt aattgtgtgt tagctgggcc tctagaactt 240 ctacttcggt cacctttaga cgagaactca gctcgttttc tggtcgccaa cgtggtatta 300 gccgtcgaac ttctgcacaa ggatggcgtt gtatatcgtg gcatctctcc cgatgttctt 360 atgatagatc ggaaaggacg acttcagctg gttgattttc ggtttgcaaa gcaaatgtcg 420 gatgagegea ettteacagt etgtggeatg getgatttet tageaceega gateatteaa 480 ggacaaggtc atggcctggc ttctgactgg tgggcggtag gtgtgttaat gtacttcatg 540 ttqcaaactq aqcttccatt tqqatcatqq cqqqacaacq aqcttqaaat ttttqqtaqa 600 atagecegte ggeagettae gttteettea agttteagee etgaageggt tgaeeteatt 660 720 gacaagetge tggtggtgga cecaaceaag agaetggget gtgacageea tggategett qccataaqqq aacatccttq qttccqaqqt ataaactqqq acaaqcacct cqattqcaqt 780 gtqqaaqttc cttcaqaqat catqacacqc cttcaqttqq ccataqactt tcttcccqtq 840 gatgatagtt atcaagtgtt tgatctccaa cccgatgaag acgatccacc atggcttgat 900 ggctggtgat agettgatgg ctcgtagatc ccccttctcc aagcatcaat ggcacagtac 960 cgaatggcta taacagaaga tgcacattaa gtgctccatg aacagatacc gtagcgctta 1020 ggatttttcg gtcgtcacaa atgacggctc tcttgtgagg ttcgaatgtt gtgtcacccg 1080 atgateteta etggeacaaa eeteeagget gaatettaag geeagetgtt ttaggtgaga 1140 cgtttacctt ggttcgaact cacgctcgtg ttgttaagcg cgagtcgatg atgtatgaaa 1200

1260

tgacggtgtt ccttgaaagt cttgaaaggc aatcaattcg cttatgtgtg tcccttccat

US	7.91	5,484	4 B2
$\sim$	. ,	,	

1	09
---	----

-continued

-continued	
gtggtcatta gggaagggaa ccgctgcact agtcagtaaa cgaacatggc ttcaattgta	a 1320
tagcatagcg gtagaggttt cgtacgaaat gtggttgcag tcggtgatta taggcgcatt	1380
tetetgaaca tgeaegagaa tegtgeteet gagteteeat eatteagtgg tgegageteg	g 1440
c	1441
<210> SEQ ID NO 18 <211> LENGTH: 1736 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens	
<400> SEQUENCE: 18	
atcccgggct cacgtagtgc actgaactct gtctgaattt taggggatga gaggtagatt	60
tgaagaatac tggtgtctaa ttttctgtta atttttcacc cttgaggtag ctcatggatt	120
tgggaggtga tcgcatgaga gctcctcaga ggcagtctcg agaatatcaa tatagatcat	180
tggacgtett cacagageag caegageagt tgeaaaagea geageageaa gatgagtate	240
agagaacaga attgaagctc gagacactgc caaaaatgtt aagcaatgcg accgtgtcat	300
cttcccctcg aagcagtccg gatggacgta gactacgtac agtcgcgaat aagtatgctg	360
tggaaggtat ggttgggagt ggcgcattct gcaaggtgta tcagggctcc gatttgacga	a 420
accacgaggt tgtgggcatc aagctggagg atacgagaac tgagcacgct cagttaatgc	480
acgagtcgcg cttgtacaac atattgcggg gtgggaaggg agtgcccaac atgagatggt	540
toggaaaaga gcaagactac aatgtgatgg tgctagacct attggggoog aacotgttgc	600
acctctttaa ggtgtgtggg ctaaggtttt cgttgaagac cgtgattatg ctcggttacc	660
aaatgattga ccgggtggaa tacgtgcatt ctcgagggct cgttcaccgt gacctgaagc	2 720
cggataactt cctcatgggc tgcggtcggc aaggaaacca agtgttcatt atagattttg	<b>j</b> 780
gettggeaaa ggagtaeatg gaeeeggeaa eaegaaggea tateeettae egagatagga	a 840
agagetteae agggaeggea eggtaegeta gtaggaatea geaeagagga ategageaea	a 900
gtagaagaga tgacatagaa tcacttggtt acattettat gtaettteta agaggeaatt	960
tgccatggca agggaagggc gggcaacgcc tcactgacca gaagcaacac gagtacatgc	2 1020
acaacaaaat caagatgaac accactgtgg aggagctttg tgatgggtat cccagtcaat	1080
ttgeegaett tttgeaecae gegegaagte taggttteta egageageet gaetaetgtt	1140
acctccgaag cttgttccgt gatcttttca ttcagaaaaa attccagctc gaccatgtgt	1200
acgactggac tgtgtatact caactccccc agaatggctc tctgcaatca gtgcgcagcc	1260
agaatteege tgettegtee catttgeaaa ategaeette gaatgtatea tattgteeae	1320
ccttgaccaa gtcggagttc cgtcgtgagg ttgttgcggc gaattagggc ttacgttggg	g 1380
aggactagtg gttcatcctc tgctctggta ctaaaatagc acaaggttgc ttactgtttc	2 1440
cctctctcaa gtcttacatg attgtgaatg ggggtttatg gagttgagga tgaggcaact	: 1500
aagcagagtg taggaaaaga gttgtagact ctctagtgtg tagtgtgtaa atcaaggctt	: 1560
ctagcattgt gtcggtagct tgtatggatc agactagaaa tgactttatc cattacaaga	a 1620
atttttactc ggaaagccca tgacggtgat gatttcaata cgttgcacaa gcaactttct	1680
tetgtaattg aaatagagga tetggtetga gtatgagaag atgggeatgt taaege	1736

<210> SEQ ID NO 19 <211> LENGTH: 1900 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens

<400> SEQUENCE: 19		
atcccgggtt gtcgaggacg gagagagaag agagagagag a	gagagagag aggtgttgtt 60	)
taggggaggc atgcgggagc aggattggtg ttaagttcgt a	aggagaagg gagtacatgc 120	)
aagtgegtge ttgteggata teggaeaget ggatttgtaa a	taagcggag aggagggtcg 180	)
gtaatcaggg gcgtacatcg atggagccgc gtgtgggaaa c	aagtatcgg ctgggacgga 240	)
aaattgggag cggtteettt ggggagatet atettgggae e	aatgttcag accaatgagg 300	)
aggteggaat aaagetggaa ageateaaga egaageatee a	caattgctg tacgagtcca 360	)
agctctaccg gatactacaa ggaggaactg ggattcccaa t	atcagatgg ttcgggatag 420	C
aaggagacta caatgtettg gttetggate tgttggggee a	agtetegaa gaeettttea 480	)
acttetgeag eeggaagtte tetttaaaga etgtteteat g	ottgetgae cagetgatea 540	)
acagagtgga gtatgtgcat gcgaaaagct ttcttcatag a	gacatcaag cctgataatt 600	)
ttctaatggg gcttggtagg cgagcaaacc aggtctacat t	attgatttt ggtcttgcca 660	)
agaagtaccg cgaccettee acgeateage atatteeeta e	agggagaac aaaaatctga 720	)
cagggactgc tcggtatgca agcatcaaca ctcatcttgg t	attgagcaa agcagacgag 780	נ
atgatttgga atctcttgga tatgtgctca tgtacttcct g	agaggcagt cttccatggc 840	)
aaggactgaa agcgggaacc aagaagcaga agtacgagaa g	atcagtgag aaaaaaatgt 900	)
ccacgcccat tgaggtcctt tgtaaaaatt atccttcaga a	ttcgcctcg tacttccact 960	)
actgeeggte ettgegtttt gatgacaaac eegactatge a	tatttgaaa agaatcttcc 1020	)
gtgacctctt tattcgtgag ggttttcaat ttgactacgt t	tttgactgg acaattctga 1080	)
agtaccagca gtcacaaatt tccggtggca gttcaactcg a	actgggtgct tctgcagggc 1140	)
aaaccagtgg tgcacttgga actggggcta caggaagccg a	gacctgcag cggcccaccg 1200	C
aaccaatgga teettetegg egeaggette etggaggage a	aatggctcc ggggtcgcaa 1260	)
atgetttgga eteatetaag eacaaaagte etggaettga t	gaatctgct aaggattctg 1320	)
ctcttgctgt tgtgtcagaa ccagagcgca tgcatacatc t	togtatgca actoggggggg 1380	)
gttetteete caggegaget gteetateta geageaggee e	tcaggggca tcagcagaag 1440	)
tcgtagattc ctctcgaaca gggagcagta agcttggtcc c	accagctta cggtcgtcag 1500	ט
cagggatgca gaggagctct ccagttactt cggacccaaa g	cggatatct agccgccatc 1560	)
cacaaccgcc atctgccaac ttgaggattt acgaagccgc t	atcaaggga gttgaatcac 1620	)
tttctgttga ggtggatcaa agccgttata agtaggccca g	gcttgtggt tatatagccg 1680	ט
ggetetgtet tetateaaae eetettgtta tgtagatgag a	gttgctcta catttggcaa 1740	)
cagcctgatt gaggggaaaa cggtggttct gtcctacaat g	gtgctaaga ctacaggtct 1800	נ
ctcatactta ggaatgaatg gatctctatc ttgttaccat c	aaaccattg tcagtgcttt 1860	C
gtgtggtagc tctctgccat acgattccta aggttaacgc	1900	נ
<210> SEQ ID NO 20 <211> LENGTH: 1217 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 20		
gcgttaacgg gaggaaggtc gggggaagag acgcttgagg c	tgctgaaag gggattcact 60	)

cagcgtcccc acccattcgt caatctggcg cagaagatcg gaaaatcggt ccgacggcca

ggtgttatgt ccaaggcccg ggtttacaca gatgtgaatg tccaacgtcc gaaagattat

113

### -continued

				-contir	<u></u>	
tgggactacg	aggccctcac	cgtccaatgg	ggggaccaag	acgattacga	ggtagtgcgt	240
aaggtggggc	gagggaaata	cagtgaggtt	tttgaaggtg	tcaacgccgt	gaatagtgag	300
cgttgcgtta	tgaagatttt	gaagccagta	aagaaaaaaa	agatcaaaag	agagatcaag	360
attctgcaaa	acctttgtgg	agggcccaac	attgtgaagc	ttctggacat	tgtccgtgat	420
cagcaatcga	agacacccag	cctaattttt	gagtatgtga	acaatactga	tttcaaagtg	480
ctctacccca	ctcttacaga	ctttgatatc	cgatactaca	ttcatgagct	gctcaaggct	540
ttggactatt	gccattctca	agggattatg	cacagggatg	tgaagccaca	caacgtgatg	600
attgaccatg	agcagcggaa	gcttaggctt	attgactggg	gacttgccga	attctatcat	660
cctggcaaag	agtataatgt	gcgtgttgcc	tctaggtact	tcaagggtcc	tgagctgctg	720
gttgatcttc	aagattatga	ttactctctc	gacatgtgga	gcttggggtg	catgtttgcc	780
ggcatgatat	ttcggaagga	gccattcttt	tatgggcatg	acaattatga	tcaacttgtg	840
aagattgcta	aggtgttggg	aactgatgaa	ttgaattcct	atctaaacaa	ataccgccta	900
gagctggacc	cccatttgga	agcactggtt	ggcaggcata	gcaggaaacc	ttggtcaaag	960
ttcatcaatg	ctgataatca	gcgtctggtt	gttccagagg	ctgtggattt	tttggataag	1020
cttctacgct	acgatcatca	agacaggetg	actgcgaagg	aagctatggc	acatccctat	1080
ttttatcccg	tgaaggtgtc	ggaggttagc	aaccgtcgca	gtgcttgata	tgaattgata	1140
tatctcatat	gggctttctt	gtgattacgt	cccacccggc	taccaggttt	ctcagttgtg	1200
cgaagcgctg	agctcgc					1217
<212> TYPE: <213> ORGAN <400> SEQUE	NISM: Physco	omitrella pa	atens			
atcccgggcg	agccatggcg	ccacttgctt	cggcgaatgg	gactgtttga	cttcttcgct	60
tcgcccccgc	ctcgcccttc	accetectet	gttcttgtca	cagectecte		
gtctgttggc					ctccgtctct	120
	tgggtaagtt		ggaggacgtg			120 180
ctcttttgta	tgggtaagtt gtggactgtc	ttgggagtga		gtcatggaag	aagagccccc	
		ttgggagtga ggtaaattgg	acctggagcc	gtcatggaag tgccggctca	aagagccccc tcgcgtttgc	180
ttagattgtg	gtggactgtc	ttgggagtga ggtaaattgg gttgaaattc	acctggagcc cttgaacttg	gtcatggaag tgccggctca ctactggtcg	aagagccccc tcgcgtttgc gaaacgctcg	180 240
ttagattgtg aattgcgact	gtggactgtc ggcggggtgct	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt	acctggagcc cttgaacttg tgctgcggtc	gtcatggaag tgccggctca ctactggtcg gggatcttac	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt	180 240 300
ttagattgtg aattgcgact caataggacc	gtggactgtc ggcgggtgct ttgattgaag	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact	acctggagcc cttgaacttg tgctgcggtc agcagtggaa	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata	180 240 300 360
ttagattgtg aattgcgact caataggacc agtactccga	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tgatttcgaa	180 240 300 360 420
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag cctacggagg	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tgatttcgaa tggaatcgtc	180 240 300 360 420 480
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag cctacggagg ggtacaagcc	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tgatttcgaa tggaatcgtc tggaaacgcc	180 240 300 360 420 480 540
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct ttcgacaaca	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag ggtacaagcc ttgataccgt	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag gaagcgaaca	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg ctgcgtgaaa	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat taaaactcct	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tgatttcgaa tggaatcgtc tggaaacgcc ccggcatatg	180 240 300 360 420 480 540 600
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct ttcgacaaca gatcatgaaa	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag ggtacaagcc ttgataccgt ggatcgatgc	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag gaagcgaaca cattacagac	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg ctgcgtgaaa atcattcgtc	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat taaaactcct ccccaactag	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tggtttcgaa tggaatcgtc tggaaacgcc ccggcatatg ggagaatttc	180 240 300 420 480 540 600 660
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct ttcgacaaca gatcatgaaa aacgacgtgt	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag ggtacaagcc ttgataccgt ggatcgatgc acgtcgttgc	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag gaagcgaaca cattacagac cgagttgatg	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg ctgcgtgaaa atcattcgtc gatacggacc	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat taaaactcct ccccaactag tacaccagat	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tgatttcgaa tggaatcgtc tggaaacgcc ccggcatatg ggagaatttc cattcgttca	180 240 300 420 480 540 600 660 720
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct ttcgacaaca gatcatgaaa aacgacgtgt aatcaagctc	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag ggtacaagcc ttgataccgt ggatcgatgc acgtcgttgc acattgtata	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag gaagcgaaca cattacagac cgagttgatg ccactgtcag	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg ctgcgtgaaa atcattcgtc gatacggacc tatttctgt	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat taaaactcct ccccaactag tacaccagat atcaaatctt	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tggattcgaa tggaacgcc ccggcatatg ggagaatttc cattcgttca gcggggcttg	180 240 300 420 480 540 600 660 720 780
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct ttcgacaaca gatcatgaaa aacgacgtgt aatcaagctc aagtacatcc	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag ggtacaagcc ttgataccgt ggatcgatgc acgtcgttgc acattgtata tcacagaaga	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag gaagcgaaca cattacagac cgagttgatg ccactgtcag cgtcttgcac	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg ctgcgtgaaa atcattcgtc gatacggacc tattttctgt cgggacttga	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat taaaactcct ccccaactag taccacagat atcaaatctt agcccaccaa	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tgatttcgaa tggaatcgtc tggaaacgcc ccggcatatg ggagaatttc cattcgttca gcggggcttg ccttctcgtc	180 240 300 420 480 540 600 660 720 780 840
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct ttcgacaaca gatcatgaaa aacgacgtgt aatcaagctc aagtacatcc aagtacatcc	gtggactgtc ggcgggtgct ttgattgaag cctacggagg ggtacaagcc ttgataccgt ggatcgatgc acgtcgttgc acattgtata tcacagaaga attcggcgaa	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag gaagcgaaca cattacagac cgagttgatg ccactgtcag cgtcttgcac aatcgcagat	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg ctgcgtgaaa atcattcgtc gatacggacc tattttctgt cgggacttga tttggcttgg	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat taaaactcct ccccaactag tacaccagat atcaaatctt agcccaccaa cacgcactct	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tggattcgaa tggaatcgtc tggaaacgcc ccggcatatg ggagaatttc cattcgttca gcggggcttg ccttctcgtc ctctgaaacg	180 240 300 420 480 540 600 660 720 780 840 900
ttagattgtg aattgcgact caataggacc agtactccga gtcaccgcga tgttcactct ttcgacaaca gatcatgaaa aacgacgtgt aatcaagctc aagtacatcc aagtacatt gatttcatga	gtggactgtc ggcgggtgct ttgattgaag tctgaagcag ggtacaagcc ttgatacgt ggatcgatgc acgtcgttgc acattgtata tcacagaaga attcggcgaa gcgatttgaa	ttgggagtga ggtaaattgg gttgaaattc gtctggttgt tatggagact tcattacgtg accacttcgt tacgggtgag gaagcgaaca cattacagac cgagttgatg ccactgtcag cgtcttgcac aatcgcagat tgtaacgagg	acctggagcc cttgaacttg tgctgcggtc agcagtggaa aaatatgttg ccgattgggc gaggtggcgg ctgcgtgaaa atcattcgtc gatacggacc tattttctgt cgggacttga tttggcttgg	gtcatggaag tgccggctca ctactggtcg gggatcttac ctccagaatt tggcgggaac gcggagctta tcaaaaagat taaaactcct ccccaactag tacaccagat atcaaatctt agcccaccaa cacgcactct ctccagagct	aagagccccc tcgcgtttgc gaaacgctcg tcagtctctt gaaagttata tgatttcgaa tggaatcgtc tggaaacgcc ccggcatatg ggagaatttc cattcgttca gcggggcttg ccttctcgtc ctctgaaacg gctcctgaat	180 240 300 420 480 540 600 660 720 780 840 900 960

11	3		110
	-con	tinued	
cttaaccgat ctgcgttgtt ccctg	Jggaga gactatgtgc atcagct	ccg cctaattaca 1140	
gaactcatcg gaactcctga agata	agggat cttgggtttt tgagaag	cga caatgctagg 1200	
cggtatatca agcacctgcc tcgac	agtog octattooot taacooa	gaa gttcagaggc 1260	
attaatcgtt ctgctcttga tcttg	jttgaa aagatgctgg tctttgai	tcc agcgaaaaga 1320	
atcacagtgg aagctgcctt ggcgc	accet tatttagett caettea	tga catcaacgat 1380	
gageetgeet eggtatetee ettee	agttt gacttcgagg agccccd	tat ctcggaggag 1440	
catatcaagg atctcatttg gaggg	agget etggattgea gettaggi	tcc tgatgatatg 1500	
gtgcagtaac ttcacacttc atctc	aagtt gtaaggeeta eteteaa	ttc tttaggtggc 1560	
tacaacgcta teeeggegtt gtate	gtttt gcaacttatt ccccccc	gtg tgattacact 1620	
attggattat agaatgacaa ttcgt	tagtt cttttccctg gcgctat:	atc tttgtctgca 1680	
catttcatcc agcagacatt gttgc	tegge gttaaege	1718	
<210> SEQ ID NO 22 <211> LENGTH: 2177 <212> TYPE: DNA <213> ORGANISM: Physcomitre	lla patens		
<400> SEQUENCE: 22			
atcccgggct tgtattggct cggat	aattt atgttgacaa ttgattte	gtg aggcttcgta 60	
ttgagtcagc gagcaggctg agagt	tegge agegaagtta caetega	cct ggctgaaatt 120	
tggaattgaa gcgcgtgaag cttca	tetgt gattttggag gttgtttg	gac tgatgagaag 180	
aggtetetga getgagaatg tttge	aattt aggggcacca ccggttt	gtt ggagtccctt 240	
gccacttatt acaattgttg gttta	caage tegaegagtt teaatega	aac gtagagtttt 300	
agtcgggtcg aggatctatg tatco	gctca gcggagaaga gagcctga	atg ttgccgaagc 360	
gatcgtgtgg gatttgacta gaaaq	Jaggtg gaccgcatca gaactat	tta ttccttgtga 420	
gggaaggatc gaggttccaa tgggt	ctcac teegttttet tgtgtead	cgg ttcaaggtta 480	
tgtccgggtg gtctaccccg acggo	cacgt cgagaatctg agcaaat	ctt gtagcgtgca 540	
cgatcttctt ctgggtaatc cagac	tacta tgtctgcggt agcaccc	ctt acacaatcac 600	
caatcgtatg gcagcggaag aggto	ctcga gtatggggtg acctact	tcg tttgcgcaac 660	
gccaaatgcc caacctttct tagaa	icgtca gccgaaggta gtacatco	gag gatccaagat 720	
tttgccacga ttttccaaac atggo	gtcca tgtgcgggag ttgcgaag	gee egaegeatgg 780	
gagccaacag tcacggaagg ttttt	gatta tcattcagta acgatgca	agc agcttgaatc 840	
catacgaaac gagggcccag agcct	cacct cgctggagac cgaccat	cga agcaccttaa 900	
gctcgttttc attcggcatt gcttc	gegage acttegaett eetagaat	ttt caatagacct 960	
aatggaatcg ccactcccta atctt	teegg agaggeetta tegeega	cgg caactgccaa 1020	
agacgagatt actcagatga tacta	aaaag tgeegeaagg teegaati	tag gaatgtatgt 1080	
ttcgaagaga caggaattct atctt	cgaag agcgcgtagg cggcgta	agt ttgcgtggaa 1140	
geeggttttg cagageatet eegag	atgaa gootgtoatg gaattoo:	aca ctccgatggc 1200	
ttaccgggat agtgggtctc cgccg	Jaagaa cgcctctacc ccatccti	tac ctggcccgaa 1260	
gaacatttca ccgccacgac aagto	agtgt cccgcaaagg agcagtc	ctc cgccgaagaa 1320	
cgtctcacca cctccccagc ccgca	itttgt agcgcggact gcgtcga	agt attetgetge 1380	
atctcagcaa gttcaacgaa atcga	uggcaa cgcgaaatct ctttata	tgg cgtagtttgt 1440	
gtctcgactg aactcctatc tattc	cccca tcgagataac tgcattc	gtt ggataaattt 1500	

117

#### ntinued

-continued	
	1560
cattgtgcac aactccaatt acgtagcgtt attctgtaac ccacgttcat cgaggtatca	1620
aggaatggcg cagtaagcac tgctactttg tgctttggta tcccgttgtg acgagatgtc	1680
atgtegeace gtgeetatea gtgggatttt ettgagegea gatettgett eegeagtttg	1740
tttcataacg ttttggttcg taggggggcct agacggtact atcaagcaat gagaagtgtg	1800
ctggtgtgga tttgacagca atcttttgga ggattgtctt tcctatgtag aacatagcga	1860
ggacacttgc gcctggtggg cacatcccat agaacatagt gcttcacttc tgggttgttc	1920
accactagga tcatatgacc ttctcatcta ttttcgggct ttgtttcgag ctcatgtacc	1980
atcgactagc gtcactttga ctgcggtgat aatcgtttgt caatttagtg gagctttgta	2040
gatgatagat gccatttgta cagtagcttg gatgctgttt acaagatagc ggcagctaga	2100
agcottaaac otttagotac catgtattat ttaaacotat atgaagtgaa oggotgtgoa	2160
gatattgccg ttaacgc	2177
<210> SEQ ID NO 23 <211> LENGTH: 1731 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens	
<400> SEQUENCE: 23	
atcccgggcg gtcgagtcgt attaggtgtt gtttcattgt aagggttcgg aagcacgggg	60
cacggcgtat ataccgttcc ccttgaacgt tgatctcacc tttggaagac ctgaattgag	120
tagcgtgcgg aagctgcatc gatccggaag agacgatgag taggagagtg agaaggggag	180
gtettegegt egeggtgeeg aageaagaga eteeegteag caaatttttg aetgeeagtg	240
gaactttcca ggatgatgat atcaagctca accacaccgg gcttcgcgtc gtctcttcag	300
aacctaacct teetaegeag aegeagteta geteeeeaga tgggeaaetg teaatageag	360
acctggagtt agtgcggttc ttgggaaagg gtgcgggtgg aaccgtgcag cttgtccggc	420
acaaatggac caatgtcaat tatgcactga aggcgataca aatgaatatc aacgaaacag	480
tgaggaagca gattgttcag gagctgaaaa tcaaccaagt gacgcaccag cagtgccctt	540
atatogtgga atgottocac toottotaco acaaoggogt catatocatg atootagagt	600
acatggacag gggctcgttg tccgacatta ttaagcaaca aaagcagata cctgagccgt	660
atttggccgt cattgctagt caagttctga agggattgga atacctacac caagtcaggc	720
acatcataca togtgatata aagoootooa acotootoat caatcacaag ggtgaggtoa	780
aaatatetga ttttggtgte agtgetgtgt tggtteatte ettggeeeag egagaeaegt	840
tcgttgggac ttgcacatat atgtcgccag aacgccttca ggggcgttcg tatgcatacg	900
acagtgacct atggagttta ggattgactc ttttggagtg tgcgttgggt accttcccat	960
acaaaccagc tggaatggaa gagggttggc aaaatttctt catcctcatg gaatgtatag	1020
ttaatcaacc ccccgcagcc gcatcccctg acaaattctc ccccgaattt tgttctttta	1080
ttgaateetg cateeggaaa tgteecagtg aacgaeeate aactaetgat ttaettaaae	1140
atccgttcct gcaaaagtac aacgaggaag agtaccattt gagcaagatt ttgtaactta	1200
aagttageet egeatggegt geagagaetg teactaceae aageetgate eaceaetgaa	1260
cttcaaggga ctttaccaaa agcatggtcg aactacctcg ccaatccgcc actttctcaa	1320
tgccttttcc ttatatagtc atatgtggtc aagttgagaa cgatatcaaa tcagattgac	1380
ggaaaaaaca tetteaaege egttteeeaa eettatagaa agtggagttt teteaatgag	1440

1	1	Δ
1	1	У

# -continued

120

_

ccccattgi cgctgagsac gtgcagotta tgaacaatc catagtgi ttat oggg 1500 cottatatt tatate catacaese getagetti tatgtaact geattite tteettatt 1500 cottaget tgcgacaga atteotta cggagetti teacaetti teettatti 1500 cttaget ttaaatt tatateaese getagetti teagtaac gegagetti teacaetti teteatai 1500 cttaget tgcgacagag atteotta cggagetti teacaetti teetaati 1500 cttagetti ttaaatta cattgaga ggtoggetti teacaetti teetaati 1500 cttagetti ttaaatta cattgaga ggtogget accgoggetti teggggtti 100 cttagetti ttaaatta cattgaga ggtogget accgoggetti teggggtti 100 cttagetti ttaaatta cattgaga teggagge acggogtat taccgteco teggaggt 100 cttagetti tgggaget gga gegagggg acggogtat taccgteco teggaggt 100 cttagetti tgggagget gga aggaggga teggoggata taccgteco teggagget 100 cttagetti tgggagget gga aggagggg acggoggata taccgteco teggagge 100 cttagetti tgggagget gga aggagggg acggogga aggagga aggagga aggagga 100 cttagetti tgggagget gga aggagggg acggogga aggagga aggagga aggagga 240 ggagagagga ggggagga teggaggg acctgogg oggagga aggagga aggagga 240 ceaccaggg getagga tegtagga tegtagga tegtagga teggagga aggagga aggagga aggagga aggagga aggagg					-contir	nued		 
parageate gasawette tegatacca aacaatat tectatet tettetti 1620 tetteaagtet tgasawetge caattgaag ggteggacet accggaceg o 1731 calle 280 FD 90 24 calle 280 FD 90 25 calle 280 FD 90 25 c	ccccatttgt c	gctgagaac	gtgcagctca	tgaaacaatc	cataagtgtg	ttaatcgggg	1500	
tticangiti tipagaaagg atticeta eggangitit teanaatti titeaaatti titeaaatti 1660 tittagangit titaaacig eaatigaag gegegece aeogganci e 2005 SED ID NO 24 2015 SED ID NO 25 2015 SED ID	tcttatatta t	catcaccat	gctagctttt	tatgttacct	gcactttttc	tttccttatt	1560	
<pre>clicks.com compare the set of the set o</pre>	gcacagcatc g	gaacacttct	tcgataccca	aaacaatatt	tccatcttct	ttettettt	1620	
<pre>210. 50 TO NO 24 2212. EXECUTE 107 2212. TFRE TAX 2212. SCHONTE: 147 2212. TFRE TAX 2212. TFRE TAX 2212. SCHONTE: 24 400. 550UENCE: 24 400. 550UENCE: 24 400. 550UENCE: 24 atcccgggags aggstgatet gatgstacg tteggtgge agetgggtg a tegggggga agetggatet 100 ggscacgece ttgttgaagg teggaacet teatugggt agegtgggg a agetggetg agetggetg ageaggtg 100 tteatigta agggagstg ageagggg agetgget orgggg agetggegg agegtgegga agetggetg ageaggt ageagggg agetggetg ageaggt ageagggg agetggetg ageaggtg ageaggt ageagggg agetggetg ageagggg agetggetg ageaggtgg ageaggt tegggg agetggegg teggggg acetggegg teggggge caatggaac atagtgaac atagtgaac atagtgaac atagtgaac atagtgaac atagtgaag agetggaatet cottaggaagg ggetggeg agetggegg agetggeg agetggegg agetggegg agetggegg agetggegg agetggeg agetggegg agetggeg agetggegg agetggegg agetggeg agetggegg agetggeg agetggegg agetggeg agetgggg agetggeg agetgggg agetggeg agetgggg agetgge tegggggg agetgge atactcateg agetgage titgggegg atactte teggaaagg gggaggat atactategg agetggaat teggaagg ggggggg agetggg agetgggg agetggg agetggg agetgggg agetggg agetgggg aggggggg agetgggg aggtggga agetggagg aggtggga agetggagg agetggggg aggtggga agetggggg aggtgggg aggtggggg aggtgggggggg</pre>	tttcacgtct t	gcgacaagg	aatttcctca	cggagatttt	tcaacacttt	tctcaaatgt	1680	
<pre>211: LENDTH: 1407 221: TUEN DNA 221: OKCANISM: Physeomitrella patems 4400: SEQUENCE: 24 atcccygung aggctgatct gatgctcacg ttcgtgtgt aggtaggttt tagggtgtgt gggcaacgtac tigtigangat toggaacatt tocaaacggi togatgctgt tagggtgtg gacgatgat aggaaggtag aggacgggg acgtgggga aggtggga accggcagat ataccggtagg gggcaatgat aggaagatg gaaggggg acctggggtg aggtgggt taggggggg aggtgggg aggtgggt taggggggg aggtgggg acctggggtg aggtaggt taggggggg aggtgggg aggtaggg aggtaggg aggtaggg aggtaggg aggtgggg aggtgggggggg</pre>	ttttagagtt t	ttaaactga	caattgaaga	ggtcggacct	accggactcg	с	1731	
<pre>stcccqggqg aggctgatct gatgctacq tttcqtgtg  agtagtttt tagagtttt  120 ggcacqccc ttgtgaaga tcggaactt tcaaatogg tcgatgtqt ttaqgtgttg  120 gatgctacct ttggaagac tgaatgagt agcqggqgg  aggggggg  aggtgctgt  ttaqgtgttt  180 gatgctacct ttggaagac tgaatgagt agcgggggg  aggtggdg  agcggcga  agcagagag  240 gacgtgag aggagggt gatggggg  aggggggg  tcttcgogt  goggtgcga  agcagagag  240 gacgtagag  aggagggg  gaagggggg  tcttcgogt  goggtgcga  agcagagag  240 gacgtagag  aggaggtg  gaaggggag  tcttcgogt  goggtgcga  agcagagag  240 gacgatgag  aggaggtg  gaaggggag  tcttcgogt  goggtgcga  agcagagag  240 cccacaccggg  cttcgogtc  tcttctaga  acctaactt  ctacagcta  gocgatgtag  140 cccacaccggg  gdgcacgt tcatagcag  ccgaggta  tggcggat  aggagaggg  240 ggcgatacaa  atgaatatca  acgaacag  gaggaagga  atgtcaga  ggctgaatat  taggaatggg   ggcaaccaa  agcagaga  tctaggaga  cataggaa  tggtcaga  tggtcagaa  tctacacta  70 ccacaccagg  gdgcaccga  agtgcaga  tctgggga  tggtcaga  tggtcaga  aggtcgtagt   70 ggggatgga  aggcgggag  agtgaagt   agtgagg  aggtggtg   aggtgggt   ggaggtcaa  atactgga   ggtggttg   agtcagag   90 gggttgga   tcggcagg   ggaggcag   catcacaca   gggatagaa   ggtggggt   900 gggttgga   tagcacagag   ggagagca   atactgga   tgggggtgga   gggtgggag   900 gggttgga   tcggcagg   ggagagca   atactgga   tgggggtgga   ggaggtgga   900 ggttcattc   tggcocag   ggagaccgt   cgtgggac   tgggggtgga   ggaggtgga   900 ggttcattc   tggcocag   ggagaccgt   cgtgggac   tgggggtgga   ggaggtgga   900 ggttcattc   tggcocag   ggagacgg   catcacaca   tggagttgg   ggaggtgga   1000 acaccacagg  gggcaagtt   cgtaggacca   tggagatca   ggaggggag   1020 ccccaca   agccagga   agtgtatgg   agtgccca    cacacgga    gaaggagaa    1200 acaccaca    agccagga    ggacagt   tcacacca    cacacgga    tcacacaca    cgaaggaga    1220 ccctacaca    acaccgaa    gagtta    tcacaccac    caaaggag    gaaggagaa    1220 ccctacaca    agccagga    gagttag    ttaccacac    cacacggag    taggaggag    taggagggg    cacaggagag    ttaccacaga     gaaggaga     ttaccacag     gaaggagaa</pre>	<211> LENGTH <212> TYPE:	I: 1407 DNA	omitrella pa	atens				
<pre>prove the try try and y try and t</pre>	<400> SEQUEN	ICE: 24						
<pre>tttcattgta agggttogga agcacgggggta acgggeggtata taccgttocc cttgaacgtt 100 gatctacct ttggaagacc tgaattgagt agegggggag ectocggagg agcaggagga 240 gagcttagt aggagadtg gaagggggag tctccccg ccggtgccga agcaggaga 240 ccccccaga aatttttg ctoccagtg accttacag agatgatgta tcaagtcaa 360 cccacaccggg cttccgcgtc tctttacaga acctaactt cctacgcaga ccggtata 420 gggggtaga accgtgcag ttgtccggca caatggac atggcagta 420 gggggtacaa atgaataca acgaacagt gaggaagag attgtccag gacgtaaat 600 ccaaccagtg acgaccag agtgccctt tatgggga tgttctagg agctgaaat 600 ccaaccagtg acgaccag agtgccctt tatgggga tgttccact ccttctacca 660 ccaacggggt accttcacga tctggggta cctggcagt cgtgggaa tgttccag 120 taagcaaca aagagagta cctgagegt tctggcggt atgccgga ggccgtat 720 taagcaaca aagagagta cctgagcg ta tctggcgt atgccgga ggctgttgt cgaactta 720 taagcaaca aagagagta cctgagcg accatt atgggaa ggggtaca 430 cctccctac ataccaca ggtgaggta acttggcgt atgccgga ggctgtgt tggacattg 720 taagcaaca aaggggta cctgaggc acttgggga catatcat 320 cctcccata aatcacaag gtgaggta acttggga tggggac 430 ggggttgga accctaccac aggtaggg accatt atggggg ggctgtgt tgggcagaat</pre>	atcccgggag a	aggetgatet	gatgctacag	tttcgtgtgc	agctagtctt	tagagattcg	60	
<pre>autocact tiggaagact tgaattgag agetgegga agtgerega agetgerega agetagaag 240 gacqatgag aggaagtga gaaggggag tettegege geggtgerega ageaagaagaa 240 cecegteage aaattettg etgeceagtgg acetteceag getgetgerega ageaagaagae 300 teceegteage aaattettg etgeceagtgg acetteceag getgetgerega ageagagged 420 ceceecagat geggeaatgt caatageaga eetgegagt etgetegag ageeggatta 420 ceceecagat geggeaatgt caatageaga eetgegag atgeteag ageeggata 420 ggeggataea atgeaatae aegaaacagt gaggaageag atgeteag ageetgaaaat 600 ceaecagegget atateeaga tetgeegge eaaatggee aatgeteag ageetgaaaat 600 ceaecageg geteerega eaatgeega atgeteere etgeagag getegatat 720 taageaacaa aageagatae etgageegt etgteegge eatgeteag 780 ggggattgga taeceaega ageegeat etgtegege eatgeteag eatgeteaga 780 ggggattgga taeceaega gggegee eatgeege eatgeteag eageerega 780 ggggattgga taeceaega gggegege eatgeege eatgeteag eageerega 780 ggggattgga taeceaega gggegege eatgetege eatgegga ageeggtte ggeegggag 960 aageeteag ggegetegt atgeeatage eagtgeete tiggegete gegggetega 960 aageeteag ggegetegt atgeeatage eagtgeeet tiggegatata tiggegeaga 960 aageettee tiggeeegg gagategat egtgggaee ggaaggag aggggagga 1140 ceaaattee teggeeegg aagtateg tageaege eaceage eagagaag aggggagga 1200 aagaecata aceeaga gaegtae tegteegg aceeggaaat geeeggaag 1200 aagaecatta acteegt eaceetgaa etcegteeg eaaaggae eagggaega 1200 aagaecata aageagatt tgtaactaa agtageee geaggaed 1200 ceateaeeae ageetgate eaceetgaa etcegteeggaaetge eagaggaeg 1200 aagaecatta gaegagtte gteettega etceggaae tigteegge eagagaeg 1200 aagaecatta gaegagatt tgtaactaa agtageet geaggege eagagaeg 1200 aacteetee eegaatt tgtaactaa agtageee teeggaaat ageagagaag 1260 gtaecattg ageaggattee eaceetgaae teeggegee tigteegge eagagaeg 1200 aacteetee ageetgaee ageetee 1400 ceataeeeee ageetgaeeeeeeeeeeeeeeeeeeeeeee</pre>	ggcaacgcac t	tgttgaaga	tcggaaactt	tcaaaatcgg	tcgagtcgta	ttaggtgttg	120	
<pre>gacgatgagt aggagagtga gaaggggagg tettegeget geggtgeega ageaagaga jacegatagagt aggagagtga gaagggggag tettecegg aacettaceat geggtgeega ageagagaet teecegteege aattettiga etgeecagig acettaceat eetaaceat eetaageaga egoagtetag dao teecegteege teteteega acetaaceat eetaaceat eetaageaga egoagtetag dao tegeggggga acetgigeege teteteega acetaaceat eetaaceat tegeagaaggg dao gegegataeta tegeaaceage etgeecgea eatggeage atgeteegatet taggaaaggg gegegataeaa atgaatatee acgaaaceagt gaggaageag atgeteegat etgeegaaatt foo caaceaggg etaateeraga teetaggeega teggeeggt etgetegge eatgeeggte eatgeerage taageaacaa aageagatae etgageegta teggeeggt etgetegte eegacatat foo caaceaggget ataceatega teetaggeeg ettgeteggee etgetegte eegacatat foo geggattegaa tacetaceae aggeegge etgetegtegt etgedegte aggetegtgt gggettegaa tacetaceae aggeeggae etgeteggeege etgeteggeeg gggettegaa tacetaceae aggeegge etgeteggeege etgeteggeeg gggettegat eateerage gagacaegt egtgeggaet tgeaeatat eggeegga gggetteget eggeeggeg gageaeget egtgeggeeg eggaaggeeg gaatggaag agggetegge itteggeegteg aggeaggeeg eggeeggeeggaageegt eggeggeeggaaggeeggeeggeeggeeggeeggeegge</pre>	tttcattgta a	agggttcgga	agcacgggggc	acggcgtata	taccgttccc	cttgaacgtt	180	
teccegteage aattttiga etgecagtgg aaetttecag gatgatgata teaageteaa 360 cecaeaeeggg ettegegteg tetetteaga acetaaeett eetaggaaeggg 480 tgeeggtgga acegtgeage tigteeggea caaatggaaeg atgsteadt atgecaetgaa 540 ggegatacaa atgaatatea aegaaaeagg gaggaageag atgsteadgg agetgaaaaf 600 ceaeeaggg degeacegg aggeeetta tategtggaa tgeteecae 660 ceaeeaggg degeaceag aggeeetta tategtggaa ggetgate 720 taageaaeaa aageeggaae etggaegga eatgsteegt geeggtet eegaetta 720 taageaaeaa aageeggaae etggeegta tetggeget atgetgeg atgetgeagaae 780 ggggatagaa taceaaea aagteaggee eateatae eggaatgae aagsteegaa 780 gggattegaa taceaaea aagteaggee eateatae eggaatgae aggeetgeaa 370 gggattegaa taceaeaagg ggaageag tetggeegt teggeegtt 900 gggtteatee tiggeeega ggaeaeggt egtgggaet teggeeggt 960 aaegeetteag gggegtegt atgeetaega eagtggeet tgeaeatat tgeeegaa 960 aaegeetteag gggegtegt atgeetaega eagtggaeeta tggaatgaag aggstggee 1080 aaeattete tegeeegae gagaaeegt egtgggaeet tgeaeatat tgeeegaa 960 aaegeetteag gggegtegt atgeataega eagtgaeeta tggaatgaag aggstggee 1080 aaattete teeetagg aatgatagt taateaeee eegeagee gaatggaag aggstggee 1080 aaattete teeetagg aatgatagt taateaeee eegeagee gaatggaag aggstggee 1080 aaattete eegaattt gttetttat tgaateege aegegaeet gaatggaag aggstggea 1080 aageeetaea aegeeggaagt tegtaaeea teegtteeg aaeggaaga gagetggaag 1260 gtaeeatteg ageaagatt tgtaaetaa agtageete geatggeeg eagagaetg 1320 eactaeeaea ageetgatee aceetgaae tteaaggee tttaeeaaa eegaggaaga 1260 gtaeeatteg aegaegatte tgtaaettea agtageete geatggeeg eagagaetg 1320 eactaeeaea ageetgatee aceetgaae tteaaggae tttaeeaaa eegaggaaga 1380 aateeteeg eaateegea gagetee 140 e210 > SEQ ID NO 25 e211 > DENOTH: 253 e212 > TPTE: DNA e213 > DREAMISM: Physeomitrella patens e400 > SEQUENE: 25 ateceggegt taggeggeg aggteggat gegegaagat gegettatgga aagtttgaa ag ttgageegea 120	gatctcacct t	tggaagacc	tgaattgagt	agcgtgcgga	agctgcatcg	atccggaaga	240	
cccaccoggg cttogogtog trottcaga acctagont octagoga ogagtoga 420 ctgoggggga accgtgoga ttgtogga octgagtta gtgoggtto taggaaggg 480 tgggggaacaa atgaatata acgaaacag gaggaagaa atgttogag acctgaaata 600 ccaaccaggg accgaccaga aggocotta tatogtggaa tgottocact octtotacca 660 ccaacaaggegt atacoataga tootagagta catggacag ggotogtigt ocgaatta 720 taagcaacaa aagcagata octgagoogt atgotgag ggotogtigt ocgaatta 720 ggggatagaa tacotacac aagtcaggeq catcataca oggaagag ggotogtigt ocgaatta 720 ggggatagaa tacotacac aagtcaggeq catcataca oggaatag aggotgatg aggotgaga 780 ggggattogaa tacotacac aagtcaggeq catcataca oggaatag ggotogtigt ocgaotta 780 ggggattogaa tacotacac aagtcaggeq catcataca oggagatga ggotogtigt 990 gggttoatto ttggocogg gagacacgt ogttgggac tgoacatat tgoocaga 960 accoctcat aatcacaag ggoggtagt aggatacag tggtagtog ggatggatg gatggacca 9960 accoctcag gggogttogt atgotacag cagtgacota tggagttag gatggacca 9960 accoctcag gggogttogt atgotatag caaccago ggaatggaag agggttgga 1080 aaattotto ttggocoag gagacacgt ogtgagotca tggaatggaag agggttgga 1080 aaattotto atoctagg aatgtatagt taatcacaco cocgcagcog catocotga 1140 caaattoto cocgaatti gttottita tgaatotga atgatoci goatggagi 1200 acgaccatca actactgat tactaaca toogtoci gcatggogi cagagacgi 1320 cactaccaca agoctgace accactgaac ttocaggga titaccaaa geagggaga 1260 gtaccattig agcaagatti tgtaactaa agtagocci gcatggogi cagagacgi 1320 cactaccaca agoctgatca accactgac ttocaggga titaccaaa geatggtoga 1380 actaccocg caatcogoca gagotoa 1407 ************************************	gacgatgagt a	aggagagtga	gaaggggagg	tcttcgcgtc	gcggtgccga	agcaagagac	300	
<pre>ctccccagat gggcacctgt caatagcaga cctgggatta gtgcggttct taggaaaggg 480 tgcgggtgga accgtgcagc ttgtccggca caatggacc aatgccagt atgccagt atgccagt atgccagt aggcgaaaat 600 ccaaccaagtg acgcaccagc agtgccctta tatcgtggaa tgctccact ccttctacca 660 ccaacggcgt atatccatga tcctagagta catggacagg ggctcgttgt ccgacattat 720 taagcaacaa aagcagatac ctgagccgta tctggccgtc attgctagta aagtctgaa 780 gggattggaa tacctacacc aagtcaggca catcatacat cgtgatata agccctcaa 840 cctcctcat aatccacagg gtgaggtcaa aatatctgat tttggtgtca gtgctgtgtt 900 gggttcattc ttggcccage gagcacgtt cgttgggact tgcacatat tgtcgcaga 960 acgccttcag gggcgttcgt atgctacga catggaccag tggaggttag agtggattgg agggttggt aggagcacg cgtgggatt ggaatggaa ggggtggta 1020 tttggaggtg cgttgggta ccttcccata caacaccg ggaatggaa ggggttgga 1020 acgaccatca actactgatt tgttctttat tgaatcctge accggaaat gccagggaag 1260 gtaccatttg agcaagatt tgtaactaa agtagggac ttaacgac gatggctg cagagactg 1320 ccatcacca agcctgatca accactgaac ttcaagggac tttaccaaa gcatggtcga 1380 actaccccg caatcgcca gagctca</pre>	tcccgtcagc a	aatttttga	ctgccagtgg	aactttccag	gatgatgata	tcaagctcaa	360	
tgogggtgga accgtgoage ttgtcoggea eaatggaee aatgeteatt atgeoaetgaa 540 ggegataeaa atgaatatea acgaaacagt gaggaageag attgtteagg agetgaaaat 600 caaceaagtg acgeaceage agtgeeetta tategtggaa tgetteeat eettetaeea 660 caaceggegte atateeatga teetaggae atggteegt eegacattat 720 taageaacaa aageagatae etgageegta etggeegt attgetagte aagteegaa 780 gggattggaa tacetaeee aageeaggea eateataeat egggaatgae aggeegtgtt 900 gggteettee aateeeaagg gtgaggteaa aatateega tetgggaet gaeetgtet 900 gggteettee teggeeeag gagaeaegt egtegggaet tgeeacatat tgeegeeaga 960 aegeetteag gggegttegt atgeetaega eagtgaget tgeeacatat tgeegeeaga 960 aegeetteag gggegttegt atgeetaega eagtgaeet tgegagttag gattgaetet 1020 tttggagtg eegttgggta eetteeeata eaaaceaget ggaatggaag agggttggea 1080 aaaatteette ateeteagg aatgetatag taateeaaeee coegeaage geeeagaag 1260 gtaeeatteg eegaattt gttetttat tgaateetg eacaggaaag gteeggagaag 1260 gtaeeatttg ageaagatt tgtaattaa agttaggeet tgeeaggatag aggaggaag taaeatteete eegaattt gtteatetaa agtaggeet geeaggaatg asgatggeag 1380 aetaeeetege eaateegeaa ttegateaga ettaeeaage fieldeegaaa geeaggagaa 2210 SEQ ID NO 25 <211 LENKOFH: 2253 <212 TYPE: DNA <210 SEQ ID NO 25 <212 TYPE: DNA <213 OKRANISM: Physeomitrella patens <<400 SEQ UENCE: 25 ateceggggt taggeeggeg aggttegat caatggggea gtgttatgga aagtttgatg 60 atggaegega aggggaggag attgttegg geeagaaagt geeggttet aggaegeeaa 120	ccacaccggg c	ttcgcgtcg	tctcttcaga	acctaacctt	cctacgcaga	cgcagtctag	420	
ggggatadaa atgaatatda acgaaacagt gaggaagdag attgttdagg agdtgaaat 600 caaccaagtg acgcaccage agtgcoctta tatogtggaa tgettecoact octtetacca 660 caacggggt atateeatga toetagagta catggacagg ggetegtigt eegacattat 720 taageaacaa aageagata etgageegt attgtgeegte atgetagta aagteetgaa 780 gggattggaa taeetacae aagteaggee cateataet egigatataa ageeetecaa 840 ceteetecteate aateacaagg gtgaggteaa aatatetgat titggigtea gigetgigt 900 gggteteattee tiggeeeagg gagacaegtt egitgggaet tgeacatata tgtegeeaga 960 aegeetteag gggegtegt atgeataega eagtgaeeta tggagttag gattgaetet 1020 titiggagigt gegitgggt octteeeata caaaccaget ggaatggaag agggitggea 1080 aaaatteete ateeteagg aatgeatagt taateaacee eeegageeg cateceetga 1140 ceaaatteete eeegaatti gttettitat tgaateetge ateeggaaat gteeeaggaag 1260 gtaeeatteg ageeagatt tgtaataga tagtaeete geatggeegt eagagaega 1260 gtaeeatteg ageeagatt tgtaaeta agtageete geatggeegt eagagaegt 1320 ceateaceae ageetgatee aceedgaae tteeagggee titaeeaaa geatggeega 1380 aetaeeteege caateeggee gagetea 1407 <210> SEQ ID NO 255 <211> LENGTH: 2253 <212> TTPE: DNA <210> SEQ UD NO 25 <212> TTPE: DNA <210> SEQ UDNO 25 <212> TTPE: DNA <240> SEQUENCE: 25 ateeegggig taggeeggeg aggttegatg caatggggee gtgttatgga aagttegat 60 atggaegeega agggeggg aggttegatg caatggggee gtgttatgga aagttegat 60 atggaegeega agggeggg aggttegatg caatggggee gtgttatgga aagttegat 60 atggaegeega agggeggg aggttegatg caatggggee gtgttatgga aagttegatg 60	ctccccagat g	ggcaactgt	caatagcaga	cctggagtta	gtgcggttct	taggaaaggg	480	
ccaaccaagtg acgeccagc agtgecetta tategtggaa tgettecact ecttetacea 660 caacggegte atateeatga teetagagta eatggaeagg ggetegttg eegaeattat 720 taageaacaa aageagatae etgageegta tetggeegte attgetagte aagteetgaa 780 gggattggaa taeetacaee aagteaggee eateataeat egtgatataa ageeeteeaa 840 eeteeteeteeteeteeteeteeteeteeteeteeteet	tgcgggtgga a	accgtgcagc	ttgtccggca	caaatggacc	aatgtcaatt	atgcactgaa	540	
ccaacggegte atateetaga teetagagta eatggaeagg getegttgt eegacattat 720 taageaeaea aageagatae etggeegta tetggeegte attgetagte aagteetgaa 780 gggattggaa taeetaeaea aagteaggea eateataet egtgatataa ageeeteeaa 840 eeteeteetea aateaeaagg gtgaggteaa aatateetgat titggtgtea gtgetgtgt 900 gggteattee tiggeeeage gagaeaegtt egtigggaet tgeacatata tgtegeeaga 960 aegeetteag gggegttegt atgeataega eagtgaeeta tggagttag gattgaetet 1020 tittggagtg gegttggta eetteeeaa eaaaeeaget ggaatggaag agggtggea 1080 aaaatteette ateeteatgg aatgtatagt taateaaeee eeegegaaat gteeeagga 1080 aegaeeatea eetaetgaat tgtettitat tgaateetge ateeggaaat gteeeaggaa 1200 aegaeeatea eetaetgatt tgtteettitat tgaateetge ateeggaaat gteeeaggaa 1200 aegaeeatea aetaetgatt taettaaaa teegtteetg eaaaagtaea aegaggaaga 1260 gtaeeatteetg ageagatte tgtaaeetaa agttageet tieeeaaaa geatggeega 1380 aeataeeteege eaateegeea gagetea 1407 eeetaeteege eaateegeea gagetea 1407 eeetaeeegeeg eaateegeea gagetea 1407 eeetaeeegeeg taggeeggeeg aggttegatg eaatggggee gtgttatgga aagtttgatg 60 ateecegggtg taggeeggeeg aggttegatg caatggggeea gtgttatgga aagtttgatg 60 ateecegggtg taggeeggeeg aggttegatg caatggggee gtgttatgga aagtttgatg 60 atgegageega aggggaggat ttgtttgaee ggeagaaagt geaggttett aggaegeeaa 120	ggcgatacaa a	atgaatatca	acgaaacagt	gaggaagcag	attgttcagg	agctgaaaat	600	
taagcaacaa aagcagatac ctgagcegta tctggeegte attgetagte aagttetgaa 780 gggattggaa taeetaacae aagteaggea eateataeat egtgatataa ageeeteeaa 840 eeteeteeteeteeteeteeteeteeteeteeteeteet	caaccaagtg a	acgcaccagc	agtgccctta	tatcgtggaa	tgcttccact	ccttctacca	660	
<pre>gggattggaa tacctacacc aagtcaggca catcatacat cgtgatataa agcottocaa 840 cctoctotat aatcacaagg gtgaggtcaa aatatotgat tttggtgtca gtgctgtgtt 900 ggttcattoc ttggoccagc gagacacgtt cgttgggact tgcacatata tgtcgccaga 960 acgoottcag gggogttogt atgoatacga cagtgaccta tggagttag gattgactot 1020 tttggagtgt gcgttgggta cottoccata caaaccagot ggaatggaag agggttggca 1080 aaaattotto atoctcatgg aatgtatagt taatcaacce coogcagcog catocotga 1140 caaaattote coogaattt gttotttat tgaatotge atcoggaaat gtoccagtga 1200 acgaccatca actactgatt tacttaaaca tcogttoctg caaaagtaca acgaggaaga 1260 gtaccattg agcaagattt tgtaactaa agttagoot gcatggogg cagagactgt 1320 cactaccaca agcotgatce accactgaac ttcaagggac tttaccaaaa gcatggtcga 1380 actacctoge caatcogcca gagctea 1407 </pre>	caacggcgtc a	atatccatga	tcctagagta	catggacagg	ggctcgttgt	ccgacattat	720	
cotoctcata aataaaagg gtgaggtaa aatatatgat tttggtgta gtgatggtt 900 ggttaattee ttggeecage gagaaaagtt egttgggaet tgeacaataa tgtegecaga 960 aegeetteag gggegttegt atgeataega cagtgaeeta tggagttag gattgaetet 1020 tttggagtgt gegttgggta eetteecata caaaceaget ggaatggaag agggttggea 1080 aaatteette ateeteatgg aatgtatagt taateaaeee eeegaage eateeggaaat gteecagtga 1200 aegaeeatea aetaetgatt tgttetttat tgaateetge ateeggaaat gteecagtga 1200 aegaeeatea aetaetgatt tgtteataa agttageete geatggegt eagagaetgt 1320 gtaeeatteg ageaagattt tgtaaettaa agttageete geatggegt eagagaetgt 1320 caetaeeeae ageetgatee accaetgaae tteaagggae ttaeeaaaa geatggegga 1380 aetaeeteege eaateeggea aggeteaa 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physeomitrella patens <400> SEQUENCE: 25 ateeegggtg taggegggeg aggttegatg caatggggea gtgttatgga aagtttgatg 60 atggaggega aggggaggat ttgttgage ggeagaaagt geaggtttet aggaegeeaa 120	taagcaacaa a	agcagatac	ctgagccgta	tctggccgtc	attgctagtc	aagttctgaa	780	
ggttcattee ttggeecage gagacaegtt egttgggaet tgeacatata tgtegeecaga 960 aegeetteag gggegttegt atgeataega eagtgaeeta tggagtttag gattgaetet 1020 tttggagtgt gegttgggta eetteecata eaaaceaget ggaatggaag agggtggea 1080 aaaatteete ateeteatgg aatgtatagt taateaaeee eeegageeg eateeetga 1140 eaaatteete eeegaattt gttetttat tgaateetge ateeggaaat gteeeaggaag 1200 aegaeeatea aetaetgatt taettaaaea teegtteetg eaaaagtaea aegaggaaga 1260 gtaeeatteg ageagattt tgtaaettaa agttageete geatggegtg eagagaetgt 1320 eaetaeeeagaeetgaee aeeaetgaae tteaaaggae tttaeeaaaa geatggtega 1380 aetaeeeege gagete ageetgae 1407 <210> SEQ ID NO 25 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physeomitrella patens <400> SEQUENCE: 25 ateeeegggtg taggegggeg aggttegatg eaatggggea gtgttatgga aagtttgatg 60 atggaggega aggggaggat ttgtttgage ggeagaaagt geaggtteet aggaegecaa 120	gggattggaa t	acctacacc	aagtcaggca	catcatacat	cgtgatataa	agccctccaa	840	
acgocttcag gggogttegt atgeataega eagtgaeeta tggagtttag gattgaetet 1020 tttggagtgt gegttgggta eetteeeta eaaaceaget ggaatggaag agggttggea 1080 aaatttette ateeteatgg aatgtatagt taateaacee eeegageeg eateeegaa 1140 caaattetee eegaattt gttetttat tgaateetge ateeggaaat gteeeaggaag 1200 acgaeeette aeetaetgatt taettaaaea teegtteetg eaaaagtaea aegaggaaga 1260 gtaeeatttg ageaagattt tgtaaettaa agttageete geatggegtg eagagaetgt 1320 caetaeeeaa ageetgatee aceaetgaae tteaagggae tttaeeaaaa geatggtega 1380 actaeetege eaateegeea gagetea 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physeomitrella patens <400> SEQUENCE: 25 ateeegggtg taggegggeg aggttegatg eaatggggea gtgttatgga aagtttgatg 60 atggaggega aggggaggat ttgtttgage ggeagaaagt geaggtttet aggaegeeaa 120	cctcctcatc a	atcacaagg	gtgaggtcaa	aatatctgat	tttggtgtca	gtgctgtgtt	900	
tttggagtgt gcgttgggta ccttcccata caaaccagct ggaatggaag agggttggca 1080 aaattetete ateeteatgg aatgtatagt taateaacee eegeageeg eateeeetga 1140 caaattetee eegaattt gttetttat tgaateetge ateeggaaat gteeeagtga 1200 aegaecatea aetaetgatt taettaaaea teegtteetg caaaagtaea aegaggaaga 1260 gtaecatttg ageaagattt tgtaaettaa agttageete geatggegtg eagagaetgt 1320 caetaecaea ageetgatee aecaetgaae tteaagggae tttaecaaaa geatggtega 1380 actaecetege eaateegeea gagetea 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physeomitrella patens <400> SEQUENCE: 25 ateeegggtg taggegggeg aggttegatg caatggggea gtgttatgga aagtttgatg 60 atggaggega aggggaggat ttgtttgage ggeagaaagt geaggtteet aggaegeeaa 120	ggttcattcc t	tggcccagc	gagacacgtt	cgttgggact	tgcacatata	tgtcgccaga	960	
aaatttette ateeteatgg aatgtatagt taateaacee eeeggaageeg eateeeetga 1140 eaaatteetee eeegaattt gteetttat tgaateetge ateeggaaat gteeeaggaag 1200 aeggaeeatea aetaetgatt taettaaaea teegtteetg eaaaagtaea aegaggaaga 1260 gtaeeattg ageaagattt tgtaaettaa agttageete geatggegtg eagagaetgt 1320 caetaeeaea ageetgatee aeeaetgaae tteaagggae tttaeeaaa geatggtega 1380 aetaeetege eaateeggee gagetea 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physeomitrella patens <400> SEQUENCE: 25 ateeegggtg taggegggeg aggttegatg eaatggggea gtgttatgga aagtttgatg 60 atggaggega aggggaggat ttgtttgage ggeagaaagt geaggtttet aggaegeeaa 120	acgccttcag g	ggcgttcgt	atgcatacga	cagtgaccta	tggagtttag	gattgactct	1020	
caaattotoo oocaaattt gttotttat tgaatootgo atooggaaat gtoocagtga 1200 acgaccatca actactgatt taottaaaca toogttootg caaaagtaca acgaggaaga 1260 gtaccatttg agcaagattt tgtaacttaa agttagooto gcatggogtg cagagactgt 1320 cactaccaca agcotgatoo accactgaac ttoaagggac tttaccaaaa gcatggtoga 1380 actacotogo caatcogoca gagotoa 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 25 atcocgggtg taggogggog aggttogatg caatggggoa gtgttatgga aagttgatg 60 atggaggoga aggggaggat ttgtttgago ggcagaaagt gcaggtttot aggacgocaa 120	tttggagtgt g	gcgttgggta	ccttcccata	caaaccagct	ggaatggaag	agggttggca	1080	
acgaccatca actactgatt tacttaaaca tccgttcctg caaaagtaca acgaggaaga 1260 gtaccatttg agcaagattt tgtaacttaa agttagcctc gcatggcgtg cagagactgt 1320 cactaccaca agcetgatce accactgaac ttcaagggac tttaccaaaa gcatggtcga 1380 actacctcge caatecgeca gagetca 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 25 atcccgggtg taggegggeg aggttcgatg caatggggca gtgttatgga aagtttgatg 60 atggaggega aggggaggat ttgtttgage ggcagaaagt gcaggtttet aggaegecaa 120	aaatttcttc a	atcctcatgg	aatgtatagt	taatcaaccc	cccgcagccg	catcccctga	1140	
gtaccatttg agcaagattt tgtaacttaa agttagcctc gcatggcgtg cagagactgt 1320 cactaccaca agcetgatee aceaetgaae tteaagggae tttaccaaaa geatggtega 1380 actaeetge eaateegeea gagetea 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physicomitrella patens <400> SEQUENCE: 25 ateeegggtg taggegggeg aggttegatg eaatggggea gtgttatgga aagtttgatg 60 atggaggega aggggaggat ttgtttgage ggeagaaagt geaggtttet aggaegeeaa 120	caaattctcc c	ccgaatttt	gttcttttat	tgaatcctgc	atccggaaat	gtcccagtga	1200	
cactaccaca agoctgatco accactgaac ttcaagggac tttaccaaaa gcatggtoga 1380 actacctogo caatcogoca gagotca 1407 <210> SEQ ID NO 25 <211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 25 atcocgggtg taggogggog aggttogatg caatggggca gtgttatgga aagtttgatg 60 atggaggoga aggggaggat ttgtttgago ggcagaaagt gcaggtttot aggacgccaa 120	acgaccatca a	actactgatt	tacttaaaca	tccgttcctg	caaaagtaca	acgaggaaga	1260	
actacctcgc caatccgcca gagctca       1407         <210> SEQ ID NO 25          <211> LENGTH: 2253          <212> TYPE: DNA          <213> ORGANISM: Physcomitrella patens          <400> SEQUENCE: 25          atcccgggtg taggcgggcg aggttcgatg caatggggca gtgttatgga aagtttgatg       60         atggaggcga aggggaggat ttgtttgagc ggcagaaagt gcaggtttct aggacgccaa       120	gtaccatttg a	igcaagattt	tgtaacttaa	agttagcctc	gcatggcgtg	cagagactgt	1320	
<pre>&lt;210&gt; SEQ ID NO 25 &lt;211&gt; LENGTH: 2253 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Physcomitrella patens &lt;400&gt; SEQUENCE: 25 atcccgggtg taggcggggcg aggttcgatg caatggggca gtgttatgga aagtttgatg 60 atggaggcga aggggaggat ttgtttgagc ggcagaaagt gcaggtttct aggacgccaa 120</pre>	cactaccaca a	agcctgatcc	accactgaac	ttcaagggac	tttaccaaaa	gcatggtcga	1380	
<211> LENGTH: 2253 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 25 atcccgggtg taggcggggcg aggttcgatg caatgggggca gtgttatgga aagtttgatg 60 atggaggcga aggggaggat ttgtttgagc ggcagaaagt gcaggtttct aggacgccaa 120	actacctcgc c	aatccgcca	gagetea				1407	
atcccgggtg taggcggggcg aggttcgatg caatgggggca gtgttatgga aagtttgatg 60 atggaggcga aggggaggat ttgtttgagc ggcagaaagt gcaggtttct aggacgccaa 120	<211> LENGTH <212> TYPE:	I: 2253 DNA	omitrella pa	atens				
atggaggcga agggggggat ttgtttgagc ggcagaaagt gcaggtttct aggacgccaa 120	<400> SEQUEN	ICE: 25						
	atcccgggtg t	aggcgggcg	aggttcgatg	caatggggca	gtgttatgga	aagtttgatg	60	
agcatggatc gtggagcaat agcaaccgag ggagcttcaa caatggcggg ggggcctcgc 180	atggaggcga a	iggggaggat	ttgtttgagc	ggcagaaagt	gcaggtttct	aggacgccaa	120	
	agcatggatc g	ıtggagcaat	agcaaccgag	ggagcttcaa	caatggcggg	ggggcetege	180	

121

#### continued

				-contir	nued		
ctatgagagc d	caagacgtcg	ttcgggagca	gccatccgtc	cccgcggcat	ccctcagcta	240	
gteegeteee t	tcactacacg	agctccccag	cgccttcgac	cccgcgacgg	aacattttca	300	
aaaggccttt t	tcctcctcct	tctcccgcga	agcacattca	gtccagtctc	gtgaaacggc	360	
atggcgcgaa 🤉	gccgaaagaa	ggaggggcga	tccctgaggc	tgtcgatggt	gagaagccct	420	
tggataagca t	tttcggctat	cacaagaact	tcgctactaa	gtatgagctg	gggcatgaag	480	
tcggtcgcgg 🤉	gcacttcggt	cacacatgtt	acgcgaaagt	acggaagggc	gagcataagg	540	
gacaagccgt g	ggcagtgaag	ataatctcga	aagcgaagat	gacgactgct	attgcgatcg	600	
aggacgtggg a	acgagaagtg	aaaattttga	aggctctgac	gggacaccag	aatttggttc	660	
gattctacga t	ttcctgcgag	gaccatctaa	atgtgtacat	tgttatggaa	ttatgtgaag	720	
gaggtgaatt a	attggatcga	attttgtctc	ggggagggaa	gtactcggag	gaagacgcca	780	
aggttgttgt g	gcggcagatt	ttgagcgttg	ttgcgttttg	tcacctgcaa	ggcgttgttc	840	
accgagatct t	taagcctgag	aattttctgt	ttaccacgaa	ggatgaatat	gctcagctta	900	
aggccattga t	ttttggattg	tcagatttca	tcaaacccga	tgaaagactg	aacgatatcg	960	
ttggaagcgc a	atactacgtt	gcgccggagg	tattgcatag	gttatattca	atggaagctg	1020	
acgtatggag 🤇	cattggagtc	atcacgtaca	ttttgttatg	tggtagtcga	ccgttttggg	1080	
cgcggaccga g	gtcgggcatt	tttcgtgcgg	tgttgagggc	tgacccgagc	tttgaagaag	1140	
ccccttggcc t	ttccatctct	cccgaagcca	aggatttcgt	gaagcgtctc	ctgaataagg	1200	
atatgcggaa a	acgcatgact	gctgcacaag	ctttaactca	tccatggatt	cgaagtaaca	1260	
acgtgaagat a	acctctggat	atcttagtgt	acagacttgt	gaggaattat	cttcgtgcat	1320	
catccatgag a	aaaggctgct	ttgaaggccc	tgtcaaagac	tttaaccgaa	gacgagactt	1380	
tttatctacg t	tactcaattt	atgctgctag	aaccaagtaa	caacggtcgt	gttacttttg	1440	
agaatttcag a	acaggcactg	ctgaaaaatt	caacagaggc	catgaaagag	tcacgggttt	1500	
ttgaaattct 🤉	ggaatcgatg	gatggtcttc	atttcaagaa	aatggacttt	tcagagttct	1560	
gtgcagcggc d	cattagtgtt	ctccagttag	aagccacaga	acgatgggag	cagcatgctc	1620	
gcgcagctta d	cgacatattt	gagaaagagg	gtaaccgagt	catttatcct	gatgaacttg	1680	
cgaaagagat q	gggactagca	ccaaatgtac	cagcccaagt	gtttctagat	tggattagac	1740	
agtctgatgg t	tcggctgagt	ttcactgggt	tcaccaagct	gctacatgga	atttccagcc	1800	
gtgctatcaa a	aaatctccag	cagtgattct	ttgcatcgta	cagttcggaa	tggagttttt	1860	
aagctctttt a	agtttcactt	ccgtcttcaa	ctgctgcttc	gcctcgtctc	tgagctgtga	1920	
tagcgtatct d	caagcatatg	cacaactcgc	atttttgctg	aagtgatttg	tcacctcaca	1980	
ttagtcgggc 🤇	ctctggaact	ttcacttatt	tggattattt	atgtagaagt	ccagatcaaa	2040	
aagcgaaaag q	gaatggctag	atattgtcac	aagaagtaac	atagtcaaat	tcaggagcac	2100	
ttaagcacac a	attgagtgct	ttttattgga	attcttagat	atggaactga	tgtttccaag	2160	
ggaagggtct a	atgaggcaga	gagtggaatg	tatagactgg	catatggtta	agtgatcatt	2220	
ggactgccgt t	tctactccgg	ttgtcgttaa	cgc			2253	

<210> SEQ ID NO 26 <211> LENGTH: 2230 <212> TYPE: DNA <213> ORGANISM: Physcomitrella patens

<400> SEQUENCE: 26

atcccgggcg aactgcgatc tgagattcca acttggaagg gcctcgcgta agaccggatc 60

_

123

### continued

124

				-contir	nued		
tcgtttctta	cgcttttgcg	cctcgcgata	tttgtacatt	gtttcctctg	gttttattcg	120	
attccgcctc	tgaaaatgtg	aacgggctgc	aagcttggtt	ttggagcaac	gttggagcat	180	
tgaagggttg	cgctcgtccc	tgcccattcc	tcgcttctgc	tctggcctat	gtcatgacga	240	
cgtgaaggag	aggatttgag	ggttttgtaa	gtgatataat	cctccccgag	gagatttctg	300	
tgagttgatt	aacttggatc	agcgacatgg	ggaacactag	ttcgagggga	tcgaggaagt	360	
ccactcggca	ggtgaatcag	ggagtcgggt	ctcaagacac	ccgagagaag	aatgatagcg	420	
tcaatccaaa	gacgagacag	ggtggtagcg	ttggcgcaaa	caactatggc	ggaaagccaa	480	
gcagtggtgc	tcaggccgga	gaacgatcca	cctctgcgcc	cgctgctctg	ccgaggccga	540	
agccagcatc	gaggtcagta	tccggtgttt	tgggtaagcc	gctgtcagat	attcgtcaat	600	
cttacatcct	gggacgggag	cttggccgag	ggcagttcgg	agtgacttac	ttgtgtactg	660	
acaagatgac	gaatgaggcg	tacgcgtgca	agagcatcgc	caaacggaaa	ctgaccagta	720	
aggaggatat	cgaggatgtt	aagcgggagg	ttcagattat	gcatcacctg	tcggggacac	780	
ccaatatcgt	ggtgttaaag	gatgtgttcg	aggacaagca	ttccgtgcat	cttgtgatgg	840	
agctctgtgc	aggtggcgag	ctcttcgatc	gcatcattgc	caagggggcat	tacagtgagc	900	
gcgccgctgc	cgatatgtgc	agagtcatcg	tcaatgtggt	gcacagatgc	cactcattag	960	
gggtcttcca	tcgggatctc	aagccagaga	attttctgtt	ggccagcaag	gctgaggatg	1020	
cgcctctgaa	ggccacagac	ttcggtctgt	caactttctt	taagccagga	gatgtgttcc	1080	
aggatattgt	tggaagtgcg	tattacgtgg	cccctgaagt	tttgaagaga	agttatggtc	1140	
ctgaagctga	tgtttggagt	gcaggcgtga	ttgtgtacat	tctgctgtgt	ggtgtacccc	1200	
ccttctgggc	tgaaactgag	cagggtatct	ttgacgctgt	gctcaaaggg	cacatagact	1260	
tcgagaacga	tccatggccg	aaaatctcca	acggggctaa	ggatttggtg	aggaaaatgc	1320	
taaaccctaa	cgtgaagata	cgtctgacgg	cacagcaggt	gttgaaccat	ccatggatga	1380	
aggaagatgg	tgatgctcca	gacgtgccac	tcgacaatgc	ggtgttgacc	agactgaaaa	1440	
atttctcagc	cgccaacaag	atgaaaaagc	tggcgctgaa	ggtgattgca	gagagtctgt	1500	
cggaggaaga	gatcgtgggg	ttgagggaga	tgttcaaatc	catagataca	gacaacagcg	1560	
gcacggtgac	gttcgaggag	cttaaggaag	ggttgctgaa	gcagggctca	aaacttaatg	1620	
aatcggacat	caggaaacta	atggaagctg	cagatgtcga	tggaaacggc	aagatcgact	1680	
tcaacgagtt	catatcggca	acaatgcaca	tgaacaagac	ggagaaagag	gatcaccttt	1740	
gggcagcatt	catgcatttc	gacacggaca	atagcgggta	tatcaccatc	gacgagcttc	1800	
aggaagcaat	ggagaagaat	ggaatgggag	atcctgagac	catccaagag	atcatcagcg	1860	
aggtggacac	agacaacgac	ggaagaatag	actacgacga	gttcgtagcc	atgatgcgca	1920	
agggcaatcc	tggcgctgaa	aacggaggaa	cggtgaacaa	gcccagacac	aggtagtagc	1980	
teetggttge	caatttgacg	acgggtttgg	caaggcaaca	gtagttgttg	ttagctttca	2040	
gattcaggtt	cggtattgtt	catgecetee	tttgtctcga	acaatggact	ctaggccttt	2100	
ccaatggaaa	agctattcca	acagggtttg	cataacgtgt	agtagaatga	aagcattgcc	2160	
tggggggtgt	acagtgcctg	tgatcttgtg	gagttetegt	aggatggctt	cggttggatc	2220	
tcgttaacgc						2230	

<210> SEQ ID NO 27 <211> LENGTH: 749 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens

<400> SEQUENCE: 27 Met Gly Val Asp Met Lys Ala Pro Ala Lys Gln Ser Leu Gly Val Gly Leu Leu Cys Ser Val Val Ile Leu Ser Val Val Ser Ser Val Tyr Gly Gln Val Gln Thr Asp Pro Val Asp Thr Thr Gly Leu Ile Ser Met Trp Tyr Asp Leu Lys Gln Ser Gln Ser Leu Thr Gly Trp Thr Gln Asn Ala Ser Asn Pro Cys Gly Gln Gln Trp Tyr Gly Val Val Cys Asp Gly 65 70 75 80 Ser Ser Val Thr Glu Ile Lys Ile Gly Ser Arg Gly Leu Asn Gly Asn Phe Asn Pro Ser Tyr Phe Gln Asn Ala Phe Lys Lys Leu Arg Ile Phe Asp Ala Ser Asn Asn Asn Ile Glu Gly Asn Ile Pro Gln Gln Phe Pro Thr Ser Leu Thr Gln Met Ile Leu Asn Asn Asn Lys Leu Thr Gly Gly Leu Pro Gln Phe Asp Gln Leu Gly Ala Leu Thr Val Val Asn Leu Ser Asn Asn Asn Leu Thr Gly Asn Met Asn Pro Asn Tyr Phe Asn Val Ile Val Asn Val Glu Thr Phe Asp Val Ser Tyr Asn Gln Leu Glu Gly Thr Leu Pro Asp Ser Ile Leu Asn Leu Ala Lys Leu Arg Phe Leu Asn Leu Gln Asn Asn Lys Phe Asn Gly Lys Leu Pro Asp Asp Phe Ser Arg Leu Lys Asn Leu Gl<br/>n Thr Phe Asn Ile Glu Asn Asp Gl<br/>n Phe Thr Gly Asn Tyr Pro Ser Gly Leu Pro Ser Asn Ser Arg Val Gly Gly Asn Arg Leu Thr Phe Pro Pro Pro Pro Ala Pro Gly Thr Pro Ala Pro Arg Thr Pro Ser Pro Ser Gly Thr Ser Asn Gly Ser Ser Ser His Leu Pro Leu Gly Ala Ile Ile Gly Ile Ala Ala Gly Gly Ala Val Leu Leu Leu Leu Ala Leu Gly Ile Cys Leu Cys Cys Arg Lys Arg Ser Lys Lys Ala Leu Gly Asp Pro Glu Ala Thr Thr Ser Ser Arg Arg Pro Trp Phe Thr Pro Pro Leu Ser Ala Lys Ser Gln Ser Asp Pro Ser Lys Ser Ile Asp Lys Thr Thr Lys Arg Asn Ile Phe Gly Ser Ser Lys Ser Glu Lys Lys Ser Ser Lys His Arg Val Phe Glu Pro Ala Pro Leu Asp Lys Gly Ala Ala Asp Glu Pro Val Val Lys Ala Ser Pro Pro Val Lys Val Leu Lys Ala Pro Pro Ser Phe Lys Gly Ile Ser Gly Leu Gly Ala Gly His Ser Lys 

											-	con	tinu	led		 	 	 	
Ala	Thr	Ile	Gly 420	Lys	Val	Asn	Lys	Ser 425	Asn	Ile	Ala	Ala	Thr 430	Pro	Phe				
Ser	Val	Ala 435	Asp	Leu	Gln	Ala	Ala 440	Thr	Asn	Ser	Phe	Ser 445	Gln	Asp	Asn				
Leu	Ile 450	Gly	Glu	Gly	Ser	Met 455	Gly	Arg	Val	Tyr	Arg 460	Ala	Glu	Phe	Pro				
Asn 465	Gly	Gln	Val	Leu	Ala 470	Val	Lys	Lys	Ile	Asp 475	Ser	Ser	Ala	Ser	Met 480				
Val	Gln	Asn	Glu	Asp 485	Asp	Phe	Leu	Ser	Val 490	Val	Asp	Ser	Leu	Ala 495	Arg				
Leu	Gln	His	Ala 500	Asn	Thr	Ala	Glu	Leu 505	Val	Gly	Tyr	Cya	Ile 510	Glu	His				
Asp	Gln	Arg 515	Leu	Leu	Val	Tyr	Glu 520	Tyr	Val	Ser	Arg	Gly 525	Thr	Leu	Asn				
Glu	Leu 530	Leu	His	Phe	Ser	Gly 535	Glu	Asn	Thr	Lys	Ala 540	Leu	Ser	Trp	Asn				
Val 545	Arg	Ile	ГЛа	Ile	Ala 550	Leu	Gly	Ser	Ala	Arg 555	Ala	Leu	Glu	Tyr	Leu 560				
His	Glu	Val	Суз	Ala 565	Pro	Pro	Val	Val	His 570	His	Asn	Phe	Lys	Ser 575	Ala				
Asn	Ile	Leu	Leu 580	Aap	Asp	Glu	Leu	Asn 585	Pro	His	Val	Ser	Asp 590	Cys	Gly				
Leu	Ala	Ala 595	Leu	Ala	Pro	Ser	Gly 600		Glu	Arg	Gln	Val 605	Ser	Ala	Gln				
Met	Leu 610	Gly	Ser	Phe	Gly	Tyr 615	Ser	Ala	Pro	Glu	Tyr 620	Ala	Met	Ser	Gly				
Thr 625	Tyr	Thr	Val	Lys	Ser 630	Asp	Val	Tyr	Ser	Phe 635	Gly	Val	Val	Met	Leu 640				
	Leu	Leu	Thr	Gly 645	Arg	Lys	Ser	Leu	Asp 650	Ser	Ser	Arg	Pro	Arg 655					
Glu	Gln	Ser	Leu 660		Arg	Trp	Ala	Thr 665		Gln	Leu	His	Asp 670		Asp				
Ala	Leu	Ala 675	Arg	Met	Val	Asp	Pro 680		Leu	Lys	Gly	Ile 685		Pro	Ala				
Lys	Ser 690		Ser	Arg	Phe	Ala 695		Ile	Val	Ala	Leu 700		Val	Gln	Pro				
Glu 705		Glu	Phe	Arg	Pro 710		Met	Ser	Glu	Val 715		Gln	Ala	Leu	Val 720				
	Leu	Met	Gln	Arg 725		Ser	Leu	Ser	Lys 730		Arg	Ser	Glu	Ser 735					
Val	Gly	Ile	Glu 740		Asn	Glu	Pro	Ser 745		Thr	Ser	Leu							
<211 <212	.> LH :> TY	ENGTI ZPE :	D NO H: 30 PRT ISM:	08	1COm.	itre	]a •	)at er	าร										
			NCE:	-			~ 1												
			Ser		Met	Asp	Asn	Tyr	Glu 10	Lys	Leu	Glu	Lys	Val 15	Gly				
	Gly	Thr	Tyr 20	Gly	Lys	Val	Tyr	Lys 25		Arg	Asp	Lys	Arg 30		Gly				
Gln	Leu	Val 35	Ala	Leu	Lys	Lys	Thr 40		Leu	Glu	Met	Glu 45		Glu	Gly				
		ر ر					τU					-J							

130

											-	con	tin	ued	
Val	Pro 50	Ser	Thr	Ala	Leu	Arg 55	Glu	Val	Ser	Leu	Leu 60	Gln	Met	Leu	Ser
His 65	Ser	Met	Tyr	Ile	Val 70	Arg	Leu	Leu	Суз	Val 75	Glu	His	Val	Glu	Lys 80
Gly	Ser	Lys	Pro	Met 85	Leu	Tyr	Leu	Val	Phe 90	Glu	Tyr	Met	Asp	Thr 95	Asp
Leu	Lys	Lys	Tyr 100	Ile	Asp	Leu	His	Gly 105	Arg	Gly	Pro	Ser	Gly 110	Lys	Pro
Leu	Pro	Pro 115	Lys	Val	Val	Gln	Ser 120	Phe	Met	Tyr	Gln	Leu 125	Суз	Thr	Gly
Leu	Ala 130	His	Суз	His	Gly	His 135	Gly	Val	Met	His	Arg 140	Asp	Leu	Гла	Pro
Gln 145	Asn	Leu	Leu	Val	Asp 150		Gln	Thr	Arg	Arg 155	Leu	ГЛа	Ile	Ala	Asp 160
Leu	Gly	Leu	Gly	Arg 165	Ala	Phe	Thr	Val	Pro 170	Met	ГЛа	Ser	Tyr	Thr 175	His
Glu	Ile	Val	Thr 180	Leu	Trp	Tyr	Arg	Ala 185	Pro	Glu	Val	Leu	Leu 190	Gly	Ala
Thr	His	Tyr 195	Ser	Leu	Pro	Val	Asp 200	Ile	Trp	Ser	Val	Gly 205	Сүв	Ile	Phe
Ala	Glu 210	Leu	Val	Arg	Lys	Met 215	Pro	Leu	Phe	Thr	Gly 220	Aap	Ser	Glu	Leu
Gln 225	Gln	Leu	Leu	His	Ile 230	Phe	-	Leu	Leu	Gly 235	Thr	Pro	Asn	Glu	Thr 240
Ile	Trp	Pro	Gly	Val 245	Ser	Gln	His	Arg	Asp 250	Trp	His	Glu	Phe	Pro 255	Gln
Trp	Arg	Pro	Gln 260	Asp	Leu	Ser	Leu	Ala 265	Val	Pro	Gly	Leu	Ser 270	Ala	Val
Gly	Leu	Asp 275	Leu	Leu	Ala	Lys	Met 280	Leu	Val	Phe	Glu	Pro 285	Ser	Lys	Arg
Ile	Ser 290	Ala	Lys	Ala	Ala	Leu 295	Ser	His	Thr	Tyr	Phe 300	Ala	Asp	Val	Asp
Lys 305	Thr	Ala	Thr												
<211 <212 <213	0> SH L> LH 2> TY 3> OF 0> SH	ENGTI IPE : RGANI	H: 42 PRT ISM:	25 Phy:	scom:	itre	lla p	pater	าร						
Met 1	Ala	Asp	Ala	Lys 5	Glu	Glu	Leu	Ala	Leu 10	Arg	Thr	Glu	Met	His 15	Trp
Ala	Val	Arg	Ser 20	Asn	Asp	Val	Gly	Leu 25	Leu	Arg	Thr	Ile	Leu 30	Lys	Lys
Asp	Lys	Gln 35	Leu	Val	Asn	Ala	Ala 40	Asp	Tyr	Asp	ГЛа	Arg 45	Thr	Pro	Leu
His	Ile 50	Ala	Ala	Ser	Leu	Asp 55	Суз	Val	Pro	Val	Ala 60	ГЛа	Val	Leu	Leu
Ala 65	Glu	Gly	Ala	Glu	Leu 70	Asn	Ala	Lys	Asp	Arg 75	Trp	Gly	Lys	Ser	Pro 80
Arg	Gly	Glu	Ala	Glu 85	Ser	Ala	Gly	Tyr	Met 90	Glu	Met	Val	Гла	Leu 95	Leu
Lys	Asp	Tyr	Gly 100	Ala	Glu	Ser	His	Ala 105	Gly	Ala	Pro	Arg	Gly 110	His	Val

												con	tin	ued	
Ser 65	Pro	Leu	Asp	Glu	Asn 70	Ser	Ala	Arg	Phe	Leu 75	Val	Ala	Asn	Val	Val 80
Leu	Ala	Val	Glu	Leu 85	Leu	His	Lys	Asp	Gly 90	Val	Val	Tyr	Arg	Gly 95	Ile
Ser	Pro	Asp	Val 100	Leu	Met	Ile	Asp	Arg 105	Lys	Gly	Arg	Leu	Gln 110	Leu	Val
Asp	Phe	Arg 115	Phe	Ala	Lys	Gln	Met 120	Ser	Asp	Glu	Arg	Thr 125	Phe	Thr	Val
Суз	Gly 130	Met		Asp		Leu 135	Ala	Pro	Glu	Ile	Ile 140	Gln	Gly	Gln	Gly
His 145	Gly	Leu	Ala	Ser	Asp 150	Trp	Trp	Ala	Val	Gly 155	Val	Leu	Met	Tyr	Phe 160
Met	Leu	Gln	Thr	Glu 165	Leu	Pro	Phe	Gly	Ser 170	Trp	Arg	Asp	Asn	Glu 175	Leu
Glu	Ile	Phe	Gly 180	Arg	Ile	Ala	Arg	Arg 185	Gln	Leu	Thr	Phe	Pro 190	Ser	Ser
Phe	Ser	Pro 195	Glu	Ala	Val	Asp	Leu 200	Ile	Asp	Lys	Leu	Leu 205	Val	Val	Asp
Pro	Thr 210	Lys	Arg	Leu	Gly	Cys 215	Asp	Ser	His	Gly	Ser 220	Leu	Ala	Ile	Arg
Glu 225	His	Pro	Trp	Phe	Arg 230	Gly	Ile	Asn	Trp	Asp 235	Lys	His	Leu	Asp	Cys 240
Ser	Val	Glu	Val	Pro 245	Ser	Glu	Ile	Met	Thr 250	Arg	Leu	Gln	Leu	Ala 255	Ile
Aap	Phe	Leu	Pro 260	Val	Asp	Asp	Ser	Tyr 265	Gln	Val	Phe	Aap	Leu 270	Gln	Pro
Asp	Glu	Asp 275	Asp	Pro	Pro	Trp	Leu 280	Asp	Gly	Trp					
<210	)> SF	EQ II	о мо	31											
<211 <212	L> LH 2> TY	ENGTH 7PE :	H: 4 PRT	17	scom	itre	lla ı	oate	าร						
		EQUEI		-											
Met 1	Asp	Leu	Gly	Gly 5	Asp	Arg	Met	Arg	Ala 10	Pro	Gln	Arg	Gln	Ser 15	Arg
Glu	Tyr	Gln	Tyr 20	Arg	Ser	Leu	Asp	Val 25	Phe	Thr	Glu	Gln	His 30	Glu	Gln
Leu	Gln	Lys 35	Gln	Gln	Gln	Gln	Asp 40	Glu	Tyr	Gln	Arg	Thr 45	Glu	Leu	Lys
Leu	Glu 50	Thr	Leu	Pro	Lys	Met 55	Leu	Ser	Asn	Ala	Thr 60	Val	Ser	Ser	Ser
Pro 65	Arg	Ser	Ser	Pro	Asp 70	Gly	Arg	Arg	Leu	Arg 75	Thr	Val	Ala	Asn	Lys 80
Tyr	Ala	Val	Glu	Gly 85	Met	Val	Gly	Ser	Gly 90	Ala	Phe	Суз	Lys	Val 95	Tyr
Gln	Gly	Ser	Asp 100	Leu	Thr	Asn	His	Glu 105	Val	Val	Gly	Ile	Lys 110	Leu	Glu
Asp	Thr	Arg 115	Thr	Glu	His	Ala	Gln 120	Leu	Met	His	Glu	Ser 125	Arg	Leu	Tyr
Asn	Ile 130	Leu	Arg	Gly	Gly	Lys 135	Gly	Val	Pro	Asn	Met 140	Arg	Trp	Phe	Gly
Lys 145		Gln	Asp	Tyr	Asn 150	Val	Met	Val	Leu	Asp 155		Leu	Gly	Pro	Asn 160

Leu Leu His Leu Phe Lys Val Cys Gly Leu Arg Phe Ser Leu Lys

Val Ile Met Leu Gly Tyr Gln Met Ile Asp Arg Val Glu Tyr Val

Thr			
His			
Met			
Leu			
Ara			

Ser	Arg	Gly 195	Leu	Val	His	Arg	Asp 200	Leu	Lys	Pro	Asp	Asn 205	Phe	Leu	Met
Gly	Cys 210	Gly	Arg	Gln	Gly	Asn 215	Gln	Val	Phe	Ile	Ile 220	Asp	Phe	Gly	Leu
Ala 225	Lys	Glu	Tyr	Met	Asp 230	Pro	Ala	Thr	Arg	Arg 235	His	Ile	Pro	Tyr	Arg 240
Asp	Arg	Lys	Ser	Phe 245	Thr	Gly	Thr	Ala	Arg 250	Tyr	Ala	Ser	Arg	Asn 255	Gln
His	Arg	Gly	Ile 260	Glu	His	Ser	Arg	Arg 265	Aab	Aap	Ile	Glu	Ser 270	Leu	Gly
Tyr	Ile	Leu 275	Met	Tyr	Phe	Leu	Arg 280	Gly	Asn	Leu	Pro	Trp 285	Gln	Gly	ГЛа
Gly	Gly 290	Gln	Arg	Leu	Thr	Asp 295	Gln	Lys	Gln	His	Glu 300	Tyr	Met	His	Asn
Lys 305	Ile	Lys	Met	Asn	Thr 310	Thr	Val	Glu	Glu	Leu 315	Сүз	Asp	Gly	Tyr	Pro 320
Ser	Gln	Phe	Ala	Asp 325	Phe	Leu	His	His	Ala 330	Arg	Ser	Leu	Gly	Phe 335	Tyr
Glu	Gln	Pro	Asp 340	Tyr	Суз	Tyr	Leu	Arg 345	Ser	Leu	Phe	Arg	Asp 350	Leu	Phe
Ile	Gln	Lys 355	Lys	Phe	Gln	Leu	Asp 360	His	Val	Tyr	Asp	Trp 365	Thr	Val	Tyr
Thr	Gln 370	Leu	Pro	Gln	Asn	Gly 375	Ser	Leu	Gln	Ser	Val 380	Arg	Ser	Gln	Asn
Ser 385	Ala	Ala	Ser	Ser	His 390	Leu	Gln	Asn	Arg	Pro 395	Ser	Asn	Val	Ser	Tyr 400
Суз	Pro	Pro	Leu	Thr 405	Lys	Ser	Glu	Phe	Arg 410	Arg	Glu	Val	Val	Ala 415	Ala
Asn															
<213	)> SH L> LH	ENGTI	H: 48												
	2> TY 3> OF			Phys	scom:	ltre]	lla p	pater	າຮ						
<400	)> SH	EQUEI	ICE :	32											
Met 1	Glu	Pro	Arg	Val 5	Gly	Asn	Гла	Tyr	Arg 10	Leu	Gly	Arg	Lys	Ile 15	Gly
Ser	Gly	Ser	Phe 20	Gly	Glu	Ile	Tyr	Leu 25	Gly	Thr	Asn	Val	Gln 30	Thr	Asn
Glu	Glu	Val 35	Gly	Ile	Lys	Leu	Glu 40	Ser	Ile	Lys	Thr	Lys 45	His	Pro	Gln

Leu Leu Tyr Glu Ser Lys Leu Tyr Arg Ile Leu Gln Gly Gly Thr Gly Ile Pro Asn Ile Arg Trp Phe Gly Ile Glu Gly Asp Tyr Asn Val Leu65707580 Val Leu Asp Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys

Ser Arg Lys Phe Ser Leu Lys Thr Val Leu Met Leu Ala Asp Gln Leu 100 105 110

Ile Asn Arg Val Glu Tyr Val His Ala Lys Ser Phe Leu His Arg Asp

Ile	Lys 130	Pro	Asp	Asn	Phe	Leu 135	Met	Gly	Leu	Gly	Arg 140	Arg	Ala	Asn	Gln
Val 145	Tyr	Ile	Ile	Asp	Phe 150	Gly	Leu	Ala	Lys	Lys 155	Tyr	Arg	Asp	Pro	Ser 160
Thr	His	Gln	His	Ile 165	Pro	Tyr	Arg	Glu	Asn 170	Lys	Asn	Leu	Thr	Gly 175	Thr
Ala	Arg	Tyr	Ala 180	Ser	Ile	Asn	Thr	His 185	Leu	Gly	Ile	Glu	Gln 190	Ser	Arg
Arg	Asp	Asp 195	Leu	Glu	Ser	Leu	Gly 200	Tyr	Val	Leu	Met	Tyr 205	Phe	Leu	Arg
Gly	Ser 210	Leu	Pro	Trp	Gln	Gly 215	Leu	Lys	Ala	Gly	Thr 220	Lys	Гуз	Gln	Lys
Tyr 225	Glu	Lys	Ile	Ser	Glu 230	Lys	Lys	Met	Ser	Thr 235	Pro	Ile	Glu	Val	Leu 240
Суз	ГЛа	Asn	Tyr	Pro 245	Ser	Glu	Phe	Ala	Ser 250	Tyr	Phe	His	Tyr	Сув 255	Arg
Ser	Leu	Arg	Phe 260	Asp	Asp	ГЛа	Pro	Asp 265	Tyr	Ala	Tyr	Leu	Lys 270	Arg	Ile
Phe	Arg	Asp 275	Leu	Phe	Ile	Arg	Glu 280	Gly	Phe	Gln	Phe	Asp 285	Tyr	Val	Phe
Aab	Trp 290	Thr	Ile	Leu	Гла	Tyr 295	Gln	Gln	Ser	Gln	Ile 300	Ser	Gly	Gly	Ser
Ser 305	Thr	Arg	Leu	Gly	Ala 310	Ser	Ala	Gly	Gln	Thr 315	Ser	Gly	Ala	Leu	Gly 320
Thr	Gly	Ala	Thr	Gly 325	Ser	Arg	Asp	Leu	Gln 330	Arg	Pro	Thr	Glu	Pro 335	Met
Asp	Pro	Ser	Arg 340	Arg	Arg	Leu	Pro	Gly 345	Gly	Ala	Asn	Gly	Ser 350	Gly	Val
Ala	Asn	Ala 355	Leu	Asp	Ser	Ser	Lys 360	His	Гла	Ser	Pro	Gly 365	Leu	Asp	Glu
Ser	Ala 370	ГЛЗ	Asp	Ser	Ala	Leu 375	Ala	Val	Val	Ser	Glu 380	Pro	Glu	Arg	Met
His 385	Thr	Ser	Ser	Tyr	Ala 390	Thr	Arg	Gly	Gly	Ser 395	Ser	Ser	Arg	Arg	Ala 400
Val	Leu	Ser	Ser	Ser 405	Arg	Pro	Ser	Gly	Ala 410	Ser	Ala	Glu	Val	Val 415	Asp
Ser	Ser	Arg	Thr 420	Gly	Ser	Ser	ГЛа	Leu 425	Gly	Pro	Thr	Ser	Leu 430	Arg	Ser
Ser	Ala	Gly 435	Met	Gln	Arg	Ser	Ser 440	Pro	Val	Thr	Ser	Asp 445	Pro	Гуз	Arg
Ile	Ser 450	Ser	Arg	His	Pro	Gln 455	Pro	Pro	Ser	Ala	Asn 460	Leu	Arg	Ile	Tyr
Glu 465	Ala	Ala	Ile	Lys	Gly 470	Val	Glu	Ser	Leu	Ser 475	Val	Glu	Val	Asp	Gln 480
Ser	Arg	Tyr	Lys												
<21 <21	0> SH 1> LH 2> TY 3> OH	ENGTI ZPE :	H: 33 PRT	33	scom:	itre	lla p	pater	າຮ						
< 40	0> SI	EQUEI	NCE :	33											
Met 1	Ser	Lys	Ala	Arg 5	Val	Tyr	Thr	Asp	Val 10	Asn	Val	Gln	Arg	Pro 15	Lys

Asp Tyr Trp Asp Tyr Glu Ala Leu Thr Val Gln Trp Gly Asp Gln Asp Asp Tyr Glu Val Val Arg Lys Val Gly Arg Gly Lys Tyr Ser Glu Val Phe Glu Gly Val Asn Ala Val Asn Ser Glu Arg Cys Val Met Lys Ile 50 55 60 Leu Lys Pro Val Lys Lys Lys Lys Ile Lys Arg Glu Ile Lys Ile Leu 65 70 75 80 Gln Asn Leu Cys Gly Gly Pro Asn Ile Val Lys Leu Leu Asp Ile Val Arg Asp Gln Gln Ser Lys Thr Pro Ser Leu Ile Phe Glu Tyr Val Asn Asn Thr Asp Phe Lys Val Leu Tyr Pro Thr Leu Thr Asp Phe Asp Ile Arg Tyr Tyr Ile His Glu Leu Leu Lys Ala Leu Asp Tyr Cys His Ser Gln Gly Ile Met His Arg Asp Val Lys Pro His Asn Val Met Ile Asp His Glu Gln Arg Lys Leu Arg Leu Ile Asp Trp Gly Leu Ala Glu Phe 165 170 175 Tyr His Pro Gly Lys Glu Tyr Asn Val Arg Val Ala Ser Arg Tyr Phe Lys Gly Pro Glu Leu Leu Val Asp Leu Gln Asp Tyr Asp Tyr Ser Leu Asp Met Trp Ser Leu Gly Cys Met Phe Ala Gly Met Ile Phe Arg Lys Glu Pro Phe Phe Tyr Gly His Asp Asn Tyr Asp Gln Leu Val Lys Ile Ala Lys Val Leu Gly Thr Asp Glu Leu Asn Ser Tyr Leu Asn Lys Tyr Arg Leu Glu Leu Asp Pro His Leu Glu Ala Leu Val Gly Arg His Ser Arg Lys Pro Trp Ser Lys Phe Ile Asn Ala Asp Asn Gln Arg Leu Val Val Pro Glu Ala Val Asp Phe Leu Asp Lys Leu Leu Arg Tyr Asp His Gln Asp Arg Leu Thr Ala Lys Glu Ala Met Ala His Pro Tyr Phe Tyr Pro Val Lys Val Ser Glu Val Ser Asn Arg Arg Ser Ala <210> SEO ID NO 34 <211> LENGTH: 375 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 34 Met Glu Thr Ser Ser Gly Thr Pro Glu Leu Lys Val Ile Ser Thr Pro Thr Tyr Gly Gly His Tyr Val Lys Tyr Val Val Ala Gly Thr Asp Phe20 25 30Glu Val Thr Ala Arg Tyr Lys Pro Pro Leu Arg Pro Ile Gly Arg Gly Ala Tyr Gly Ile Val Cys Ser Leu Phe Asp Thr Val Thr Gly Glu Glu 

Val Ala Val Lys 65	Lys Ile Gly 70	Asn Ala Phe	Asp Asn Arg 75	Ile Asp Ala 80
Lys Arg Thr Leu	Arg Glu Ile 85	Lys Leu Leu 90	Arg His Met	Asp His Glu 95
Asn Val Val Ala 100	Ile Thr Asp	Ile Ile Arg 105	Pro Pro Thr	Arg Glu Asn 110
Phe Asn Asp Val 115	Tyr Ile Val	Tyr Glu Leu 120	Met Asp Thr 125	Asp Leu His
Gln Ile Ile Arg 130	Ser Asn Gln 135		Glu Asp His 140	Cys Gln Tyr
Phe Leu Tyr Gln 145	Ile Leu Arg 150	Gly Leu Lys	Tyr Ile His 155	Ser Ala Asn 160
Val Leu His Arg	Asp Leu Lys 165	Pro Thr Asn 170	Leu Leu Val	Asn Ala Asn 175
Cys Asp Leu Lys 180	Ile Ala Asp	Phe Gly Leu 185	Ala Arg Thr	Leu Ser Glu 190
Thr Asp Phe Met 195	Thr Glu Tyr	Val Val Thr 200	Arg Trp Tyr 205	Arg Ala Pro
Glu Leu Leu 210	Asn Cys Ser 215		Ala Ala Ile 220	Asp Ile Trp
Ser Val Gly Cys 225	Ile Phe Met 230	Glu Leu Leu	Asn Arg Ser 235	Ala Leu Phe 240
Pro Gly Arg Asp	Tyr Val His 245	Gln Leu Arg 250	Leu Ile Thr	Glu Leu Ile 255
Gly Thr Pro Glu 260	Asp Arg Asp	Leu Gly Phe 265	Leu Arg Ser	Asp Asn Ala 270
Arg Arg Tyr Ile 275	Lys His Leu	Pro Arg Gln 280	Ser Pro Ile 285	Pro Leu Thr
Gln Lys Phe Arg 290	Gly Ile Asn 295		Leu Asp Leu 300	Val Glu Lys
Met Leu Val Phe 305	Asp Pro Ala 310	Lys Arg Ile	Thr Val Glu 315	Ala Ala Leu 320
Ala His Pro Tyr	Leu Ala Ser 325	Leu His Asp 330	Ile Asn Asp	Glu Pro Ala 335
Ser Val Ser Pro 340	Phe Glu Phe	Asp Phe Glu 345	Glu Pro Pro	Ile Ser Glu 350
Glu His Ile Lys 355	Asp Leu Ile		Ala Leu Asp 365	-
Gly Pro Asp Asp 370	Met Val Gln 375			
<210> SEQ ID NO				
<211> LENGTH: 3. <212> TYPE: PRT <213> ORGANISM:		lla patens		
<400> SEQUENCE:	35			
Met Gly Leu Thr 1	Pro Phe Ser 5	Cys Val Thr 10	Val Gln Gly	Tyr Val Arg 15
Val Val Tyr Pro 20	Asp Gly His	Val Glu Asn 25	Leu Ser Lys	Ser Cys Ser 30
Val His Asp Leu 35	Leu Leu Gly	Asn Pro Asp 40	Tyr Tyr Val 45	Cys Gly Ser
Thr Pro Tyr Thr 50	Ile Thr Asn 55	Arg Met Ala	Ala Glu Glu 60	Val Leu Glu

Tyr 65															
	Gly	Val	Thr	Tyr	Phe 70	Val	Сүз	Ala	Thr	Pro 75	Asn	Ala	Gln	Pro	Phe 80
Leu	Glu	Arg	Gln	Pro 85	Lys	Val	Val	His	Arg 90	Gly	Ser	Lys	Ile	Leu 95	Pro
Arg	Phe	Ser	Lys 100	His	Gly	Val	His	Val 105	Arg	Glu	Leu	Arg	Ser 110	Pro	Thr
His	Gly	Ser 115	Gln	Gln	Ser	Arg	Lys 120	Val	Phe	Asp	Tyr	His 125	Ser	Val	Thr
Met	Gln 130	Gln	Leu	Glu	Ser	Ile 135	Arg	Asn	Glu	Gly	Pro 140	Glu	Pro	His	Leu
Ala 145	Gly	Asp	Arg	Pro	Ser 150	Lys	His	Leu	Lys	Leu 155	Val	Phe	Ile	Arg	His 160
Суз	Leu	Arg	Ala	Leu 165	Arg	Leu	Pro	Arg	Ile 170	Ser	Ile	Asp	Leu	Met 175	Glu
Ser	Pro	Leu	Pro 180	Asn	Leu	Ser	Gly	Glu 185	Ala	Leu	Ser	Pro	Thr 190	Ala	Thr
Ala	Lys	Asp 195	Glu	Ile	Thr	Gln	Met 200	Ile	Leu	Lys	Ser	Ala 205	Ala	Arg	Ser
Glu	Leu 210	Gly	Met	Tyr	Val	Ser 215	Lys	Arg	Gln	Glu	Phe 220	Tyr	Leu	Arg	Arg
Ala 225	Arg	Arg	Arg	Arg	Lys 230	Phe	Ala	Trp	Lys	Pro 235	Val	Leu	Gln	Ser	Ile 240
Ser	Glu	Met	Lys	Pro 245	Val	Met	Glu	Phe	His 250	Thr	Pro	Met	Ala	Tyr 255	Arg
Asp	Ser	Gly	Ser 260	Pro	Pro	Lys	Asn	Ala 265	Ser	Thr	Pro	Ser	Leu 270	Pro	Gly
Pro	Lys	Asn 275	Ile	Ser	Pro	Pro	Arg 280	Gln	Val	Ser	Val	Pro 285	Gln	Arg	Ser
Ser	Pro 290	Pro	Pro	Lys	Asn	Val 295	Ser	Pro	Pro	Pro	Gln 300	Pro	Ala	Phe	Val
Ala 305	Arg	Thr	Ala	Ser	Lys 310	Tyr	Ser	Ala	Ala	Ser 315	Gln	Gln	Val	Gln	Arg 320
Asn	Arg	Gly	Asn	Ala 325	Lys	Ser	Leu	Tyr	Met 330	Ala					
									550						
<211 <212	L> LE 2> TY	EQ II ENGTH YPE : RGANI	H: 34 PRT	16	scomi	trel	lla p	ater							
<211 <212 <213	L> LE 2> TY 3> OF	ENGTH ZPE :	H: 34 PRT ISM:	l6 Phys	acomi	ltrel	lla <u>r</u>	ater							
<211 <212 <213 <400	L> LE 2> TY 3> OF 0> SE	ENGTH IPE : RGANI	H: 34 PRT ISM: NCE:	l6 Phys 36					າຮ	Arg	Val	Ala	Val	Pro 15	Гла
<211 <212 <213 <400 Met 1	L> LE 2> TY 3> OF 0> SE Ser	ENGTH YPE : RGANI EQUEN	H: 34 PRT ISM: NCE: Arg	Phys 36 Val 5	Arg	Arg	Gly	Gly	ıs Leu 10	-				15	-
<211 <212 <213 <400 Met 1 Gln	L> LE 2> TY 3> OF 3> Ser Glu	ENGTH (PE : RGANI EQUEN Arg	H: 34 PRT ISM: NCE: Arg Pro 20	Phys 36 Val 5 Val	Arg Ser	Arg Lys	Gly Phe	Gly Leu 25	Leu 10 Thr	Ala	Ser	Gly	Thr 30	15 Phe	Gln
<211 <212 <213 <400 Met 1 Gln Asp	L> LE 2> TY 3> OF D> SE Ser Glu Asp	ENGTH (PE: RGANI EQUEN Arg Thr Asp	H: 34 PRT ISM: NCE: Arg Pro 20 Ile	Phys 36 Val 5 Val Lys	Arg Ser Leu	Arg Lys Asn	Gly Phe His 40	Gly Leu 25 Thr	Leu 10 Thr Gly	Ala Leu	Ser Arg	Gly Val 45	Thr 30 Val	15 Phe Ser	Gln Ser
<211 <212 <213 <400 Met 1 Gln Asp Glu Leu	L> LE 2> TY 3> OF 0> SE Ser Glu Asp Pro 50	ENGTH YPE: RGANI EQUEN Arg Thr Asp 35	H: 34 PRT ISM: NCE: Arg Pro 20 Ile Leu	Phys 36 Val 5 Val Lys Pro	Arg Ser Leu Thr	Arg Lys Asn Gln 55	Gly Phe His 40 Thr	Gly Leu 25 Thr Gln	Leu 10 Thr Gly Ser	Ala Leu Ser	Ser Arg Ser 60	Gly Val 45 Pro	Thr 30 Val Asp	15 Phe Ser Gly	Gln Ser Gln
<211 <212 <213 <400 Met 1 Gln Asp Glu Leu 65	L> LE L> TY J> OF Ser Glu Asp Pro 50 Ser	ENGTH YPE: GANJ EQUEN Arg Thr Asp 35 Asn	H: 34 PRT ISM: ISM: NCE: Arg Pro 20 Ile Leu Ala	46 Phys 36 Val 5 Val Lys Pro Asp	Arg Ser Leu Thr Leu 70	Arg Lys Asn Gln 55 Glu	Gly Phe His 40 Thr Leu	Gly Leu 25 Thr Gln Val	Leu 10 Thr Gly Ser Arg	Ala Leu Ser Phe 75	Ser Arg Ser 60 Leu	Gly Val 45 Pro Gly	Thr 30 Val Asp Lys	15 Phe Ser Gly Gly	Gln Ser Gln Ala 80

Ile Val Gin Giu Leu Lys Ile Asn Gin Val Thr His Gin Gin Cys Pro         Tyr Ile Val Giu Cys Phe His Ser Phe Tyr His Asn Gly Val Ile Ser         Met Ile Leu Giu Tyr Met Asp Arg Gly Ser Leu Ser Asp Ile Ile Lys         145         Gin Gin Lys Gin Ile Pro Glu Pro Tyr Leu Ala Val Ile Ala Ser Gin         165         Val Leu Lys Gly Leu Glu Tyr Leu His Gin Val Arg His Ile Ile His         180         Arg Asp Ile Lys Pro Ser Asn Leu Leu Ile Asn His Lys Gly Glu Val         210         Cyr Ile Ser Asp Phe Gly Val Ser Ala Val Leu Val His Ser Leu Gly         225         Gin Gin Glu Arg Ser Tyr Ala Tyr Asp Ser Asp Leu Trp Ser Leu Gly         225         Leu Lys Glu Glu Cys Ala Leu Gly Thr Phe Pro Tyr Lys Pro Ala         260         Met Glu Glu Gly Trp Gin Asn Phe Phe Ile Leu Met Glu Cys Ile         295         Val Asn Gin Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Pro Glu         296         Val Asn Gin Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Pro Glu         295         Val Asn Gin Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Glu Cys Jle         296         Val Asn Gin Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Pro Glu         296         Val Asn Gin Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Glu Arg 330         296         297         298
130135140MetIleLeuGluTyrMetAspArgGlySerLeuSerAspIleIleLysGlnGlnLysGlnIleProGluProTyrLeuAlaValIleAlaSerGlnValLeuLysGlyLeuGluTyrLeuHisGlnValArgHisIleIleHis185IleSerAspProSerAsnLeuHisGlnValArgHisIleIleHis195196SerAspProSerAsnLeuHisGlnValArgHisSerLeuAla210116SerAspProSerAsnLeuValHisSerLeuAla225AspProSerAsnProYalSerAsrSerProGluVal225AspThrProYalAsrTyrAsrSerAsrSerProGluArg226CirThrProProTyrLeuGluThrProTyrLeuGluTyrArg226CirThrProProTyrLyrProAsrProAsrProAsrProAsr290CirGluGluTrrGlaAsrPro <td< td=""></td<>
145       150       155       160         Gln Gln Lys       Gln lie       Pro       Glu Pro       Tyr       Leu Ala       Val       I.e       Ala       Ser       Gln         Val       Leu Lys       Gly Leu Glu       Tyr       Leu His       Gln Val       Arg       Pro       Ser       Arg       Leu Lys       Gly       Cal       Ser       Arg       Arg       Arg       Pro       Ser       Arg       Leu Lys       I.e       Arg       Arg       Arg       Pro       Arg       Arg       Arg       Pro       Arg
165       170       175         Val       Leu       Lys       Gly       Leu       Glu       Tyr       Leu       His       Gln       Val       Arg       His       Ile       His         Arg       Asp       Ile       Lys       Row       For       Ser       Asn       Leu       Leu       Val       Arg       His       Lys       Row       Gly       Val       Ser       Asn       Leu       Lu       Val       Zoo       Ser       Val       Asr       Tro       Po       Po       Ser       Por       Ser       Por       Ser       Po
Arg Asp 11e Lys Pro Ser Asn Leu Leu I1e Asn His Lys Gly Glu Val 195 $11e$ Ser Asp Phe Gly Val Ser Ala Val Leu Val His Ser Leu Ala 210 $210$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$ $215$
195200205LysILe Ser Asp Phe Gly Val Ser Ala Val Leu Val His Ser Leu Ala 210215Val Val Leu Val His Ser Leu Ala 220Gln Arg Asp Thr Phe Val Gly Thr Cys Thr Tyr Met Ser Pro Glu Arg 230230Thr Cys Thr Tyr Met Ser Pro Glu Arg 235Leu Gln Gly Arg Ser Tyr Ala Tyr Asp Ser Asp Leu Trp Ser Leu Gly 245245Ser Asp Ser Asp Leu Trp Ser Leu Gly 255Leu Thr Leu Leu Glu Cys Ala Leu Gly Thr Phe Pro Tyr Lys Pro Ala 
210       215       220         Gln Arg Asp Thr Phe Val Gly Thr Cys Thr Tyr Met Ser Pro Glu Arg 235       236       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       717       710       717       717       717
225230235240Leu Gln Gly Arg Ser Tyr Ala Tyr Asp Ser Asp Leu Trp Ser Leu Gly 245Trp Ala Tyr Asp Ser Asp Leu Trp Ser Leu Gly 250Trp Ser Leu Gly 255Leu Thr Leu Leu Glu Cys Ala Leu Gly Thr Phe Pro Tyr Lys Pro Ala 266265Tr Phe Pro Tyr Lys Pro Ala 270Gly Met Glu Glu Gly Trp Gln Asn Phe Phe Ile Leu Met Glu Cys Ile 275280Pro Asp Lys Phe Ser Pro Glu 300Val Asn Gln Pro Pro Ala Ala Ala Ash Ser Pro Asp Lys Phe Ser Pro Glu 290290Pro Ser Phe Ile Glu Ser Cys Ile Arg Lys Cys Pro Ser Glu Arg 315Pro Ser Thr Thr Asp Leu Leu Lys His Pro Phe Leu Gln Lys Tyr Asn 325330Pro Ser Thr Thr Asp Leu Ser Lys Ile Leu 340<210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physomitrella patensSeqUENCE: 37Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 11015
245250255Leu Thr Leu Leu Glu Cys Ala Leu Gly Thr Phe Pro Tyr Lys Pro Ala 260Gly Met Glu Glu Gly Trp Gln Asn Phe Phe Ile Leu Met Glu Cys Ile 280Gly Met Glu Glu Gly Trp Oln Asn Phe Phe Ile Leu Met Glu Cys Ile 290280Val Asn Gln Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Pro Glu 295295Phe Cys Ser Phe Ile Glu Ser Cys Ile Arg Lys Cys Pro Ser Glu Arg 310315Pro Ser Thr Thr Asp Leu Leu Lys His Pro Phe Leu Gln Lys Tyr Asn 325330Glu Glu Glu Tyr His Leu Ser Lys Ile Leu 340345<210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens<400> SEQUENCE: 37Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1015
260265270Gly Met Glu Glu Gly Irp Gln Asn Phe Phe Ile Leu Met Glu Cys Ile 275270Val Asn Gln Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Pro Glu 290295Phe Cys Ser Phe Ile Glu Ser Cys Ile Arg Lys Cys Pro Ser Glu Arg 310315Pro Ser Thr Thr Asp Leu Leu Lys His Pro Phe Leu Gln Lys Tyr Asn 325Glu Glu Glu Tyr His Leu Ser Lys Ile Leu 340<210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens<400> SEQUENCE: 37Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 10151
275280285Val Asn Gln Pro Pro Ala Ala Ala Ser Pro Asp Lys Phe Ser Pro Glu 290295Ser Pro Asp Lys Phe Ser Pro Glu 300Phe Cys Ser Phe Ile Glu Ser Cys Ile Arg Lys 315Cys Pro Ser Glu Arg 315220Pro Ser Thr Thr Asp Leu Leu Lys His Pro Phe Leu Gln Lys Tyr Asn 325Sa0Tyr Asn 335Glu Glu Glu Tyr His Leu Ser Lys Ile Leu 340Sec ID NO 37 345Sec ID NO 37 345<210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patensSec Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 10
290295300Phe Cys Ser Phe Ile Glu Ser Cys Ile Arg Lys Cys Pro Ser Glu Arg 310315320Pro Ser Thr Thr Asp Leu Leu Lys His Pro Phe Leu Gln Lys Tyr Asn 325330330Glu Glu Glu Tyr His Leu Ser Lys Ile Leu 340345345<210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens400> SEQUENCE: 37Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 11015
305310315320Pro Ser Thr Thr Asp Leu Leu Lys His Pro Phe Leu Gln Lys Tyr Asn 325330335Glu Glu Glu Tyr His Leu Ser Lys Ile Leu 340345<210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens<400> SEQUENCE: 37Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1151015
325 330 335 Glu Glu Glu Tyr His Leu Ser Lys Ile Leu 340 345 <210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 37 Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1 5 10 15
340 345 <210> SEQ ID NO 37 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 37 Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1 5 10 15
<211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 37 Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1 5 10 15
<211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 37 Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1 5 10 15
<212> TYPE: PRT <213> ORGANISM: Physcomitrella patens <400> SEQUENCE: 37 Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1 5 10 15
Met Ser Arg Arg Val Arg Arg Gly Gly Leu Arg Val Ala Val Pro Lys 1 5 10 15
1 5 10 15
Gln Glu Thr Pro Val Ser Lys Phe Leu Thr Ala Ser Gly Thr Phe Gln
20 25 30
Asp Asp Asp Ile Lys Leu Asn His Thr Gly Leu Arg Val Val Ser Ser 35 40 45
Glu Pro Asn Leu Pro Thr Gln Thr Gln Ser Ser Pro Asp Gly Gln 50 55 60
Leu Ser Ile Ala Asp Leu Glu Leu Val Arg Phe Leu Gly Lys Gly Ala 65 70 75 80
Gly Gly Thr Val Gln Leu Val Arg His Lys Trp Thr Asn Val Asn Tyr 85 90 95
Ala Leu Lys Ala Ile Gln Met Asn Ile Asn Glu Thr Val Arg Lys Gln 100 105 110
Ile Val Gln Glu Leu Lys Ile Asn Gln Val Thr His Gln Gln Cys Pro 115 120 125
Tyr Ile Val Glu Cys Phe His Ser Phe Tyr His Asn Gly Val Ile Ser 130 135 140

Met 1 145 Gln C Val I Arg <i>P</i>	Ile	T													
Val I		Leu	Glu	Tyr	Met 150	Asp	Arg	Gly	Ser	Leu 155	Ser	Asp	Ile	Ile	Lys 160
	Gln	Lys	Gln	Ile 165	Pro	Glu	Pro	Tyr	Leu 170	Ala	Val	Ile	Ala	Ser 175	Gln
Arg A	Leu	Lys	Gly 180	Leu	Glu	Tyr	Leu	His 185	Gln	Val	Arg	His	Ile 190	Ile	His
	Asp	Ile 195	Lys	Pro	Ser	Asn	Leu 200	Leu	Ile	Asn	His	Lys 205	Gly	Glu	Val
Lys 1 2	Ile 210	Ser	Asp	Phe	Gly	Val 215	Ser	Ala	Val	Leu	Val 220	His	Ser	Leu	Ala
Gln <i>A</i> 225	Arg	Asp	Thr	Phe	Val 230	Gly	Thr	Cys	Thr	Tyr 235	Met	Ser	Pro	Glu	Arg 240
Leu (	Gln	Gly	Arg	Ser 245	Tyr	Ala	Tyr	Aab	Ser 250	Asp	Leu	Trp	Ser	Leu 255	Gly
Leu 1	Thr	Leu	Leu 260	Glu	Сүз	Ala	Leu	Gly 265	Thr	Phe	Pro	Tyr	Lys 270	Pro	Ala
Gly M	Met	Glu 275	Glu	Gly	Trp	Gln	Asn 280	Phe	Phe	Ile	Leu	Met 285	Glu	Суз	Ile
Val A 2	Asn 290	Gln	Pro	Pro	Ala	Ala 295	Ala	Ser	Pro	Asp	Lуа 300	Phe	Ser	Pro	Glu
Phe ( 305	Суз	Ser	Phe	Ile	Glu 310	Ser	Суз	Ile	Arg	Lys 315	Суз	Pro	Ser	Glu	Arg 320
Pro S	Ser	Thr	Thr	Asp 325	Leu	Leu	Lys	His	Pro 330	Phe	Leu	Gln	Lys	Tyr 335	Asn
Glu (	Glu	Glu	Tyr 340	His	Leu	Ser	Lys	Ile 345	Leu						
- 210-	> SE														
<211; <212;	> TY	NGTH	PRT	97											
<211;	> TY	NGTH	H: 59 PRT	97	scomi	itrel	lla p	pater	าร						
<211; <212;	> TY > OF	NGTH PE : RGANI	H: 59 PRT [SM:	97 Phys	scomi	itrel	lla p	pater	າຮ						
<211; <212; <213;	> TY > OF > SE	INGTH PE: IQUEN	H: 59 PRT ISM: NCE:	97 Phys 38			_			Gly	Gly	Glu	Gly	Glu 15	Asp
<2112 <2122 <2132 <4002 Met C	> TY > OF > SE Gly	ENGTH PE: CGANI CQUEN Gln	H: 59 PRT ISM: JCE: Cys	97 Phys 38 Tyr 5	Gly	Гла	Phe	Asp	Asp 10	-	-		-	15	-
<2112 <2122 <2132 <4002 Met C 1	> TY > OF > SE Gly Phe	ENGTH PE: CGANI CQUEN Gln Glu	H: 59 PRT ISM: NCE: Cys Arg 20	97 Phys 38 Tyr 5 Gln	Gly Lys	Lys Val Arg	Phe Gln	Asp Val 25	Asp 10 Ser	Arg	Thr	Pro	Lуз 30	15 His	Gly
<2112 <2122 <2132 <4002 Met C 1 Leu F Ser T Ser F	> TY > OF > SE Gly Phe Trp	COUEN GANI CQUEN Gln Glu Ser 35	H: 59 PRT ISM: NCE: Cys Arg 20 Asn	97 Phys 38 Tyr 5 Gln Ser	Gly Lys Asn	Lys Val Arg	Phe Gln Gly 40	Asp Val 25 Ser	Asp 10 Ser Phe	Arg Asn	Thr Asn	Pro Gly 45	Lys 30 Gly	15 His Gly	Gly Ala
<2112 <2122 <2132 <4002 Met C 1 Leu F Ser T Ser F	> TY > OF > SE Gly Phe Trp Pro 50	NGTH (PE: CQUEN Gln Glu Ser 35 Met	H: 59 PRT SM: JCE: Cys Arg 20 Asn Arg	Phys 38 Tyr 5 Gln Ser Ala	Gly Lys Asn Lys	Lys Val Arg Thr 55	Phe Gln Gly 40 Ser	Asp Val 25 Ser Phe	Asp 10 Ser Phe Gly	Arg Asn Ser	Thr Asn Ser 60	Pro Gly 45 His	Lys 30 Gly Pro	15 His Gly Ser	Gly Ala Pro
<2112 <2122 <2132 <4002 Met C 1 Leu H Ser T Ser T Ser H 5 2 Arg H	> TY > OF > SE Gly Phe Trp Pro 50 His	NGTH PE: QANJ QUEN Gln Glu Ser 35 Met Pro	H: 55 PRT (SM: ACE: Cys Arg 20 Asn Arg Ser	97 Phys 38 Tyr 5 Gln Ser Ala Ala	Gly Lys Asn Lys Ser 70	Lys Val Arg Thr 55 Pro	Phe Gln Gly 40 Ser Leu	Asp Val 25 Ser Phe Pro	Asp 10 Ser Phe Gly His	Arg Asn Ser Tyr 75	Thr Asn Ser 60 Thr	Pro Gly 45 His Ser	Lys 30 Gly Pro Ser	15 His Gly Ser Pro	Gly Ala Pro Ala 80
<2112 <2122 <2132 <4002 Met C 1 Leu H Ser T Ser T Ser T Ser T 5 Ser T 5 Ser T	> TY > OF SI Gly Phe Trp Pro 50 His Ser	NGTH 2PE: 2QUEN Gln Glu Ser 35 Met Pro Thr	H: 59 PRT ISM: JCE: Cys Arg 20 Asn Arg Ser Pro	Phys Phys 38 Tyr 5 Gln Ser Ala Ala Arg 85	Gly Lys Asn Lys Ser 70 Arg	Lys Val Arg Thr 55 Pro Asn	Phe Gln Gly 40 Ser Leu Ile	Asp Val 25 Ser Phe Pro Phe	Asp 10 Ser Phe Gly His Lys 90	Arg Asn Ser Tyr 75 Arg	Thr Asn Ser 60 Thr Pro	Pro Gly 45 His Ser Phe	Lys 30 Gly Pro Ser Pro	15 His Gly Ser Pro 95	Gly Ala Pro Ala 80 Pro
<2112 <2122 <2132 <4002 Met C 1 Leu F Ser T Ser T Ser T 5 Arg F 65 Pro S	> TY > OF SIY Phe Trp Pro 50 His Ser Pro	NGTH PE: CQUEN Gln Glu Ser 35 Met Pro Thr Ala	H: 59 PRT ISM: VCE: Cys Arg 20 Asn Arg 20 Asn Arg 20 Lys 100	Phys 38 Tyr 5 Gln Ser Ala Ala Ala His	Gly Lys Asn Lys Ser 70 Arg Ile	Lys Val Arg Thr 55 Pro Asn Gln	Phe Gln Gly 40 Ser Leu Ile Ser	Asp Val 25 Ser Phe Pro Phe Ser 105	Asp 10 Ser Phe Gly His Lys 90 Leu	Arg Asn Ser Tyr 75 Arg Val	Thr Asn Ser 60 Thr Pro Lys	Pro Gly 45 His Ser Phe Arg	Lys 30 Gly Pro Ser Pro His 110	15 His Gly Ser Pro 95 Gly	Gly Ala Pro Ala 80 Pro Ala
<pre>&lt;211: &lt;212: &lt;213: &lt;4000 Met C 1 Leu H Ser J Ser H 5 Ser H 65 Pro S Ser H Lys H Pro I</pre>	> TY > OF S SE Gly Phe Trp Pro 50 His Ser Pro Pro	NGTH PE: CQUEN CQUEN Glu Glu Ser 35 Met Pro Thr Ala Lys 115	H: 59 PRT (SM: UCE: Cys Arg 20 Asn Arg Ser Pro Lys 100 Glu	Phys 38 Tyr 5 Gln Ser Ala Ala Arg 85 His Gly	Gly Lys Asn Lys Ser 70 Arg Ile Gly	Lys Val Arg Thr 55 Pro Asn Gln Ala	Phe Gln Gly 40 Ser Leu Ile Ser Ile 120	Asp Val 25 Ser Phe Pro Phe Ser 105 Pro	Asp 10 Ser Phe Gly His Lys 90 Leu Glu	Arg Asn Ser Tyr 75 Arg Val Ala	Thr Asn Ser 60 Thr Pro Lys Val	Pro Gly 45 His Ser Phe Arg Asp 125	Lys 30 Gly Pro Ser Pro His 110 Gly	15 His Gly Ser Pro Pro Gly Glu	Gly Ala Pro Ala 80 Pro Ala Lys
<pre>&lt;211: &lt;212: &lt;213: &lt;4000 Met C 1 Leu H Ser J Ser H 5 Ser H 65 Pro S Ser H Lys H Pro I</pre>	> TY > OF > SE Gly Phe Trp Pro 50 His Ser Pro Pro Leu	NGTH PE: CQUEN Gln Glu Ser 35 Met Pro Thr Ala Lys 115 Asp	H: 59 PRT (SM: (SM: CYS Arg 20 Asn Arg Ser Pro Lys 100 Glu Lys	97 Phys 38 Tyr 5 Gln Ser Ala Ala Ala His Gly His	Gly Lys Asn Lys Ser 70 Arg Ile Gly Phe	Lys Val Arg Thr 55 Pro Asn Gln Ala Gly 135	Phe Gln Gly 40 Ser Leu Ile Ser Ile 120 Tyr	Asp Val 25 Ser Phe Pro Phe Ser 105 Pro His	Asp 10 Ser Phe Gly His Lys 90 Leu Glu Lys	Arg Asn Ser Tyr 75 Arg Val Ala Asn	Thr Asn Ser 60 Thr Pro Lys Val Phe 140	Pro Gly 45 His Ser Phe Arg 125 Ala	Lys 30 Gly Pro Ser Pro His 110 Gly Thr	15 His Gly Ser Pro Pro Gly Glu Lys	Gly Ala Pro Ala 80 Pro Ala Lys Tyr

Ile	Ile	Ser	Lys 180	Ala	Гла	Met	Thr	Thr 185	Ala	Ile	Ala	Ile	Glu 190	Asp	Val
Gly	Arg	Glu 195	Val	Lys	Ile	Leu	Lys 200	Ala	Leu	Thr	Gly	His 205	Gln	Asn	Leu
Val	Arg 210	Phe	Tyr	Asp	Ser	Cys 215	Glu	Asp	His	Leu	Asn 220	Val	Tyr	Ile	Val
Met 225	Glu	Leu	Суз	Glu	Gly 230	Gly	Glu	Leu	Leu	Asp 235	Arg	Ile	Leu	Ser	Arg 240
Gly	Gly	Lys	Tyr	Ser 245	Glu	Glu	Asp	Ala	Lys 250	Val	Val	Val	Arg	Gln 255	Ile
Leu	Ser	Val	Val 260	Ala	Phe	Суз	His	Leu 265	Gln	Gly	Val	Val	His 270	Arg	Asp
Leu	Lys	Pro 275	Glu	Asn	Phe	Leu	Phe 280	Thr	Thr	Lys	Asp	Glu 285	Tyr	Ala	Gln
Leu	Lys 290	Ala	Ile	Asp	Phe	Gly 295	Leu	Ser	Aab	Phe	Ile 300	LÀa	Pro	Asp	Glu
Arg 305	Leu	Asn	Asp	Ile	Val 310	Gly	Ser	Ala	Tyr	Tyr 315	Val	Ala	Pro	Glu	Val 320
Leu	His	Arg	Leu	Tyr 325	Ser	Met	Glu	Ala	Aap 330	Val	Trp	Ser	Ile	Gly 335	Val
Ile	Thr	Tyr	Ile 340	Leu	Leu	Суз	Gly	Ser 345	Arg	Pro	Phe	Trp	Ala 350	Arg	Thr
Glu	Ser	Gly 355	Ile	Phe	Arg	Ala	Val 360	Leu	Arg	Ala	Asp	Pro 365	Ser	Phe	Glu
Glu	Ala 370	Pro	Trp	Pro	Ser	Ile 375	Ser	Pro	Glu	Ala	Lys 380	Asp	Phe	Val	Lys
Arg 385	Leu	Leu	Asn	Lys	Asp 390	Met	Arg	Lys	Arg	Met 395	Thr	Ala	Ala	Gln	Ala 400
Leu	Thr	His	Pro	Trp 405	Ile	Arg	Ser	Asn	Asn 410	Val	Lys	Ile	Pro	Leu 415	Asp
Ile	Leu	Val	Tyr 420	Arg	Leu	Val	Arg	Asn 425	Tyr	Leu	Arg	Ala	Ser 430	Ser	Met
Arg	Lys	Ala 435	Ala	Leu	Lys	Ala	Leu 440	Ser	Lys	Thr	Leu	Thr 445	Glu	Asp	Glu
Thr	Phe 450	Tyr	Leu	Arg	Thr	Gln 455	Phe	Met	Leu	Leu	Glu 460	Pro	Ser	Asn	Asn
Gly 465	Arg	Val	Thr	Phe	Glu 470	Asn	Phe	Arg	Gln	Ala 475	Leu	Leu	Lys	Asn	Ser 480
Thr	Glu	Ala	Met	Lys 485	Glu	Ser	Arg	Val	Phe 490	Glu	Ile	Leu	Glu	Ser 495	Met
Asp	Gly	Leu	His 500	Phe	Lys	Lys	Met	Asp 505	Phe	Ser	Glu	Phe	Cys 510	Ala	Ala
Ala	Ile	Ser 515	Val	Leu	Gln	Leu	Glu 520	Ala	Thr	Glu	Arg	Trp 525	Glu	Gln	His
Ala	Arg 530	Ala	Ala	Tyr	Asp	Ile 535	Phe	Glu	Lys	Glu	Gly 540	Asn	Arg	Val	Ile
Tyr 545	Pro	Aab	Glu	Leu	Ala 550	Lys	Glu	Met	Gly	Leu 555	Ala	Pro	Asn	Val	Pro 560
Ala	Gln	Val	Phe	Leu 565	Asp	Trp	Ile	Arg	Gln 570	Ser	Asp	Gly	Arg	Leu 575	Ser
Phe	Thr	Gly	Phe 580	Thr	Lys	Leu	Leu	His 585	Gly	Ile	Ser	Ser	Arg 590	Ala	Ile

Lys Asn Leu Gln Gln

252
<210> SEQ ID NO 39 <211> LENGTH: 549 <212> TYPE: PRT <213> ORGANISM: Physcomitrella patens
<400> SEQUENCE: 39
Met Gly Asn Thr Ser Ser Arg Gly Ser Arg Lys Ser Thr Arg Gln Val 1 5 10 15
Asn Gln Gly Val Gly Ser Gln Asp Thr Arg Glu Lys Asn Asp Ser Val 20 25 30
Asn Pro Lys Thr Arg Gln Gly Gly Ser Val Gly Ala Asn Asn Tyr Gly 35 40 45
Gly Lys Pro Ser Ser Gly Ala Gln Ala Gly Glu Arg Ser Thr Ser Ala 50 55 60
Pro Ala Ala Leu Pro Arg Pro Lys Pro Ala Ser Arg Ser Val Ser Gly65707580
Val Leu Gly Lys Pro Leu Ser Asp Ile Arg Gln Ser Tyr Ile Leu Gly 85 90 95
Arg Glu Leu Gly Arg Gly Gln Phe Gly Val Thr Tyr Leu Cys Thr Asp 100 105 110
Lys Met Thr Asn Glu Ala Tyr Ala Cys Lys Ser Ile Ala Lys Arg Lys 115 120 125
Leu Thr Ser Lys Glu Asp Ile Glu Asp Val Lys Arg Glu Val Gln Ile 130 135 140
Met His His Leu Ser Gly Thr Pro Asn Ile Val Val Leu Lys Asp Val 145 150 155 160
Phe Glu Asp Lys His Ser Val His Leu Val Met Glu Leu Cys Ala Gly 165 170 175
Gly Glu Leu Phe Asp Arg Ile Ile Ala Lys Gly His Tyr Ser Glu Arg 180 185 190
Ala Ala Asp Met Cys Arg Val Ile Val Asn Val Val His Arg Cys 195 200 205
His Ser Leu Gly Val Phe His Arg Asp Leu Lys Pro Glu Asn Phe Leu 210 215 220
Leu Ala Ser Lys Ala Glu Asp Ala Pro Leu Lys Ala Thr Asp Phe Gly225230235240
Leu Ser Thr Phe Phe Lys Pro Gly Asp Val Phe Gln Asp Ile Val Gly 245 250 255
Ser Ala Tyr Tyr Val Ala Pro Glu Val Leu Lys Arg Ser Tyr Gly Pro 260 265 270
Glu Ala Asp Val Trp Ser Ala Gly Val Ile Val Tyr Ile Leu Leu Cys 275 280 285
Gly Val Pro Pro Phe Trp Ala Glu Thr Glu Gln Gly Ile Phe Asp Ala 290 295 300
Val Leu Lys Gly His Ile Asp Phe Glu Asn Asp Pro Trp Pro Lys Ile 305 310 315 320
Ser Asn Gly Ala Lys Asp Leu Val Arg Lys Met Leu Asn Pro Asn Val 325 330 335
Lys Ile Arg Leu Thr Ala Gln Gln Val Leu Asn His Pro Trp Met Lys 340 345 350
Glu Asp Gly Asp Ala Pro Asp Val Pro Leu Asp Asn Ala Val Leu Thr 355 360 365
Arg Leu Lys Asn Phe Ser Ala Ala Asn Lys Met Lys Lys Leu Ala Leu

370 375 380 Lys Val Ile Ala Glu Ser Leu Ser Glu Glu Glu Ile Val Gly Leu Arg 390 385 395 400 Glu Met Phe Lys Ser Ile Asp Thr Asp Asn Ser Gly Thr Val Thr Phe 405 410 415 Glu Glu Leu Lys Glu Gly Leu Leu Lys Gln Gly Ser Lys Leu Asn Glu 425 430 420 Ser Asp Ile Arg Lys Leu Met Glu Ala Ala Asp Val Asp Gly Asn Gly 435 440 445 Lys Ile Asp Phe Asn Glu Phe Ile Ser Ala Thr Met His Met Asn Lys 450 455 460 Thr Glu Lys Glu Asp His Leu Trp Ala Ala Phe Met His Phe Asp Thr 470 465 475 480 Asp Asn Ser Gly Tyr Ile Thr Ile Asp Glu Leu Gln Glu Ala Met Glu 485 490 495 Lys Asn Gly Met Gly Asp Pro Glu Thr Ile Gln Glu Ile Ile Ser Glu 500 505 510 Val Asp Thr Asp Asn Asp Gly Arg Ile Asp Tyr Asp Glu Phe Val Ala 515 520 525 Met Met Arg Lys Gly Asn Pro Gly Ala Glu Asn Gly Gly Thr Val Asn 530 535 540 Lys Pro Arg His Arg 545 <210> SEQ ID NO 40 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 40 18 caggaaacag ctatgacc <210> SEQ ID NO 41 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 41 19 ctaaagggaa caaaagctg <210> SEQ ID NO 42 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 42 tgtaaaacga cggccagt 18 <210> SEQ ID NO 43 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 43

-continued ccacggtett eggetgetgg tegtg 25 <210> SEQ ID NO 44 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 44 gcagcacagc accaccagcg gctat 25 <210> SEQ ID NO 45 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 45 gcgcccagtg agtagctcca gcatt 25 <210> SEQ ID NO 46 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 46 atcccgggtg agtatcactt acggtggcga 3.0 <210> SEQ ID NO 47 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 47 gcgttaactc gaccaaggtc actattccaa gca 33 <210> SEQ ID NO 48 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 48 cggtgcccac ctcgttcctg tggtt 25 <210> SEQ ID NO 49 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEOUENCE: 49 atcccgggag tgggtggttg gactgtaagg a 31 <210> SEQ ID NO 50 <211> LENGTH: 34

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence

137	150
-continued	
<pre></pre>	
<400> SEQUENCE: 50	
gcgttaacct tcgtcttgga caggtagagg ttac	34
<210> SEQ ID NO 51 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 51	
gactcagccc cgtaatcctt caaca	25
<210> SEQ ID NO 52 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 52	
atcccgggca acgagaagca ttcgagatgg c	31
<pre>&lt;210&gt; SEQ ID NO 53 &lt;211&gt; LENGTH: 33 &lt;212&gt; TYPE: DNA &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of Artificial Sequence: Primer</pre>	
<400> SEQUENCE: 53	
gcgttaacga gcatcacgat actcggtgat ttc	33
<210> SEQ ID NO 54 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 54	
cgacggctaa taccacgttg gcgacca	27
<210> SEQ ID NO 55 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 55	
atcccgggct gtgatgtcgg tgtggtgctc tgc	33
<210> SEQ ID NO 56 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 56	
gcgagetege accaetgaat gatggagaet eagg	34

<210> SEQ ID NO 57 <211> LENGTH: 25 <212> TYPE: DNA 160

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 57 25 cgaccgcagc ccatgaggaa gttat <210> SEQ ID NO 58 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 58 atcccgggct cacgtagtgc actgaactct gtc 33 <210> SEQ ID NO 59 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 59 gcgttaacat gcccatcttc tcatactcag acc 33 <210> SEQ ID NO 60 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 60 ctcgcctacc aagccccatt agaaa 25 <210> SEQ ID NO 61 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 61 32 atcccgggtt gtcgaggacg gagagagaag ag <210> SEQ ID NO 62 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 62 gcgttaacct taggaatcgt atggcagaga gct 33 <210> SEQ ID NO 63 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer

<400> SEQUENCE: 63

getteacaat gttgggeeet eeaca	25
<210> SEQ ID NO 64 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 64	
gcgttaacgg gaggaaggtc gggggaagag acg	33
<210> SEQ ID NO 65 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 65	
gcgageteag egettegeae aactgagaaa eet	33
<210> SEQ ID NO 66 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 66	
acgagaaggt tggtgggctt caagt	25
<210> SEQ ID NO 67 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 67	
	2.0
atcccgggcg agccatggcg ccacttgctt	30
<210> SEQ ID NO 68 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 68	
gcgttaacgc cgagcaacaa tgtctgctgg atg	33
<210> SEQ ID NO 69 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 69	
cccggtaagc catcggagtg tggaa	25
<210> SEQ ID NO 70 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	

. . .

		-continued		
<220> FEATURE: <223> OTHER INFORM	ATION: Description of Art.	ificial Sequence:	Primer	
<400> SEQUENCE: 70				
atcccgggct tgtattg	gct cggataattt		30	
<pre>&lt;210&gt; SEQ ID NO 71 &lt;211&gt; LENGTH: 33 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Ar &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORM</pre>	tificial Sequence ATION: Description of Art.	ificial Sequence:	Primer	
<400> SEQUENCE: 71				
gcgttaacgg caatatc	tgc acagccgttc act		33	
	tificial Sequence ATION: Description of Art.	ificial Sequence:	Primer	
<400> SEQUENCE: 72				
gtgtctcgct gggccaa	gga atgaa		25	
<pre>&lt;210&gt; SEQ ID NO 73 &lt;211&gt; LENGTH: 35 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Ar &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORM</pre>	tificial Sequence ATION: Description of Art.	ificial Sequence:	Primer	
<400> SEQUENCE: 73				
atcccgggcg gtcgagt	cgt attaggtgtt gtttc		35	
<pre>&lt;210&gt; SEQ ID NO 74 &lt;211&gt; LENGTH: 30 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Ar &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORM &lt;400&gt; SEQUENCE: 74</pre>	tificial Sequence ATION: Description of Art.	ificial Sequence:	Primer	
gageteeggt aggteeg	acc tcttcaattg		30	
<pre>&lt;210&gt; SEQ ID NO 75 &lt;211&gt; LENGTH: 26 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Ar &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORM</pre>		ificial Sequence:	Primer	
<400> SEQUENCE: 75				
gacgacgcga agcccgg	tgt ggttga		26	
<pre>&lt;210&gt; SEQ ID NO 76 &lt;211&gt; LENGTH: 31 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Ar &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORM</pre>		ificial Sequence:	Primer	
<400> SEQUENCE: 76				
atcccgggag aggctga	tct gatgctacag t		31	

<210> SEQ ID NO 77 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 77 atgagetetg geggattgge gaggtagtte gae 33 <210> SEQ ID NO 78 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 78 cggcgcaacg tagtatgcgc ttcca 25 <210> SEQ ID NO 79 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 79 cgcggtgaac aacaccttgc aggtgac 27 <210> SEQ ID NO 80 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 80 getegggtea geeeteaaca eegea 25 <210> SEQ ID NO 81 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 81 25 gttaaagctt gtgcagcagt catgc <210> SEQ ID NO 82 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 82 atcccgggtg taggcgggcg aggttcgatg c 31 <210> SEQ ID NO 83 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 83

-continued gcgttaacga caaccggagt agaacggcag tcca 34 <210> SEQ ID NO 84 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 84 agaagcgagg aatgggcagg gacga 25 <210> SEQ ID NO 85 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEOUENCE: 85 atcccgggcg aactgcgatc tgagattcca ac 32 <210> SEQ ID NO 86 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 86 gcgttaacga gatccaaccg aagccatcct acga 34 <210> SEQ ID NO 87 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 87 30 gcgctgcaga tttcatttgg agaggacacg <210> SEQ ID NO 88 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 88 cgcggccggc ctcagaagaa ctcgtcaaga aggcg 35 <210> SEQ ID NO 89 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEOUENCE: 89 25 gctgacacgc caagectege tagte <210> SEQ ID NO 90 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

. . .

170

-continued	
<220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 90	
gcgttaactc gaccaaggtc actattccaa gca	33
<210> SEQ ID NO 91 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 91	
gcgttaacct tcgtcttgga caggtagagg ttac	34
<210> SEQ ID NO 92 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 92	
gcgttaacga gcatcacgat actcggtgat ttc	33
<210> SEQ ID NO 93 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 93	
gcgagetege accaetgaat gatggagaet cagg	34
<210> SEQ ID NO 94 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 94	
gegttaacat geccatette teataeteag ace	33
<pre>&lt;210&gt; SEQ ID NO 95 &lt;211&gt; LENGTH: 33 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of Artificial Sequence: Primer</pre>	
<400> SEQUENCE: 95	
gcgttaacct taggaatcgt atggcagaga gct	33
<210> SEQ ID NO 96 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 96	
gcgageteag egettegeae aaetgagaaa eet	33

<210> SEQ ID NO 97 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 97 gcgttaacgg caatatctgc acagccgttc act 33 <210> SEQ ID NO 98 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 98 gcgttaacgg caatatctgc acagccgttc act 33 <210> SEQ ID NO 99 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 99 gageteeggt aggteegace tetteaattg 30 <210> SEQ ID NO 100 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 100 atgagetetg geggattgge gaggtagtte gae 33 <210> SEQ ID NO 101 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 101 34 gcgttaacga caaccggagt agaacggcag tcca <210> SEQ ID NO 102 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 102 gcgttaacga gatccaaccg aagccatcct acga 34 <210> SEQ ID NO 103 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer

cccagtaata gcagggttgg aggaa	25
<210> SEQ ID NO 104 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 104	
ggctgcctga agatccgcta cagag	25
<210> SEQ ID NO 105 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 105	
cgtcaggcta ctttgcgtgg agcac	25
<210> SEQ ID NO 106 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 106	
cggtgctggc taacaccagg ccaga	25
<210> SEQ ID NO 107 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 107	
atcccgggca acgagaagca ttcgagatgg c	31
<210> SEQ ID NO 108 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 108	
gcgttaacga gcatcacgat actcggtgat ttc	33
<210> SEQ ID NO 109 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 109	
cgtggcatct ctcccgatgt tctta	25
<210> SEQ ID NO 110 <211> LENGTH: 25 <212> TYPE: DNA	

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence

175	170
-continued	
<220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 110	
ggccaactga aggcgtgtca tgatc	25
<210> SEQ ID NO 111 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 111	
ctcgagggct cgttcaccgt gacct	25
<210> SEQ ID NO 112 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 112	
cggaggtaac agtagtcagg ctgctc	26
<210> SEQ ID NO 113 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 113	
ccgcgaccct tccacgcatc agcat	25
<pre>&lt;210&gt; SEQ ID NO 114 &lt;211&gt; LENGTH: 25 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial Sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of Artificial Sequence: Primer &lt;400&gt; SEQUENCE: 114</pre>	
cctccaggaa gcctgcgccg agaag	25
<210> SEQ ID NO 115 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 115	
ggacattgtc cgtgatcagc aatcga	26
<210> SEQ ID NO 116 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer	
<400> SEQUENCE: 116	
cageetetgg aacaaceaga egetg	25

<210> SEQ ID NO 117 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 117 gtcaccgcga ggtacaagcc accac 25 <210> SEQ ID NO 118 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 118 gcagctctgg agctctgtac cacct 25 <210> SEQ ID NO 119 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 119 25 acggccacgt cgagaatctg agcaa <210> SEQ ID NO 120 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 120 cgaagtgctc gcaagcaatg ccgaa 25 <210> SEQ ID NO 121 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 121 atcccgggcg gtcgagtcgt attaggtgtt gtttc 35 <210> SEQ ID NO 122 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 122 30 gageteeggt aggteegace tetteaattg

<210> SEQ ID NO 123 <211> LENGTH: 26

gtctgtggcc ttcagaggcg catcctc

180

-continued <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 123 2.6 gggcaactgt caatagcaga cctgga <210> SEQ ID NO 124 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 124 gcaagtccca acgaacgtgt ctcgct 26 <210> SEQ ID NO 125 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 125 25 gcgaagatga cgactgctat tgcga <210> SEQ ID NO 126 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 126 25 cgtgatgact ccaatgctcc atacg <210> SEQ ID NO 127 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 127 gccagcatcg aggtcagtat ccggtgt 27 <210> SEQ ID NO 128 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Primer <400> SEQUENCE: 128

30

The invention claimed is:

**1**. A transgenic plant cell transformed with an expression vector comprising an isolated polynucleotide selected from the group consisting of:

- a) a polynucleotide having a sequence comprising nucle- 5 otides 1 to 2784 of SEQ ID NO:14; and
- b) a polynucleotide encoding a polypeptide having a sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**2**. The plant cell of claim **1**, wherein the polynucleotide has 10 the sequence comprising nucleotides 1 to 2784 of SEQ ID NO:14.

**3**. The plant cell of claim **1**, wherein the polynucleotide encodes the polypeptide having the sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**4**. A transgenic plant transformed with an expression cassette comprising an isolated polynucleotide selected from the group consisting of:

- a) a polynucleotide having a sequence comprising nucleotides 1 to 2784 of SEQ ID NO14; and
- b) a polynucleotide encoding a polypeptide having a sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**5**. The plant of claim **4**, wherein the polynucleotide has the sequence comprising nucleotides 1 to 2784 of SEQ ID 25 NO:14.

**6**. The plant of claim **4**, wherein the polynucleotide encodes the polypeptide having the sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

- 7. The plant of claim 4, further described as a monocot.
- 8. The plant of claim 5, further described as a dicot.

**9**. The plant of claim **4**, wherein the plant is selected from the group consisting of maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, rapeseed, canola, manihot, pepper, sunflower, tagetes, potato, tobacco, eggplant, tomato, 35 *Vicia* species, pea, alfalfa, coffee, cacao, tea, *Salix* species, oil palm, coconut, perennial grasses, and a forage crop plant.

- 10. The plant of claim 9, which is maize.
- 11. The plant of claim 9, which is soybean.
- **12**. The plant of claim **9**, which is rapeseed or canola.
- 13. The plant of claim 9, which is cotton.

**14**. A seed which is true breeding for a transgene comprising a polynucleotide selected from the group consisting of:

- a) a polynucleotide having a sequence comprising nucleotides 1 to 2784 of SEQ ID NO:14; and
- b) a polynucleotide encoding a polypeptide having a sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**15**. The seed of claim **14**, wherein the polynucleotide has the sequence comprising nucleotides 1 to 2784 of SEQ ID NO:14.

**16**. The seed of claim **14**, wherein the polynucleotide encodes the polypeptide having the sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**17**. An isolated nucleic acid comprising a polynucleotide selected from the group consisting of:

- a) a polynucleotide having a sequence comprising nucleotides 1 to 2784 of SEQ ID NO:14; and
- b) a polynucleotide encoding a polypeptide having a sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**18**. The isolated nucleic acid of claim **17**, wherein the polynucleotide has the sequence comprising nucleotides 1 to 2784 of SEQ ID NO:14.

**19**. The isolated nucleic acid of claim **17**, wherein the polynucleotide encodes the polypeptide having the sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**20**. A method of producing a drought-tolerant transgenic plant, the method comprising the steps of:

- a) transforming a plant cell with an expression vector comprising a polynucleotide selected from the group consisting of:
  - a) a polynucleotide having a sequence comprising nucleotides 1 to 2784 of SEQ ID NO:14; and
  - b) a polynucleotide encoding a polypeptide having a sequence comprising amino acids 1 to 749 of SEQ ID NO:27.

**21**. The method of claim **20**, wherein the polynucleotide has the sequence comprising nucleotides 1 to 2784 of SEQ ID NO:14.

**22**. The method of claim **20**, wherein the polynucleotide encodes the polypeptide having the sequence comprising 40 amino acids 1 to 749 of SEQ ID NO:27.

* * * * *