
(12) United States Patent
Hsu

USOO8520016B2

(10) Patent No.: US 8,520,016 B2
(45) Date of Patent: Aug. 27, 2013

(54) INSTRUCTION FOLDING MECHANISM,
METHOD FOR PERFORMING THE SAME
AND PXEL PROCESSING SYSTEM
EMPLOYING THE SAME

(75) Inventor: R-Ming Hsu, Jhudong Township (TW)

(73) Assignee: Taichi Holdings, LLC, Wilmington, DE
(US)

*) Notice: Subject to any disclaimer, the term of this y
patent is extended or adjusted under 35
U.S.C. 154(b) by 196 days.

(21) Appl. No.: 12/400,127

(22) Filed: Mar. 9, 2009

(65) Prior Publication Data

US 2010/O177096 A1 Jul. 15, 2010

Related U.S. Application Data
(63) Continuation of application No. 1 1/333,479, filed on

Jan. 17, 2006, now Pat. No. 7,502,029.

(51) Int. Cl.
G06T I/00 (2006.01)
G6T I5/0 (2011.01)
G06F 5/00 (2006.01)
G06F 9/00 (2006.01)

(52) U.S. Cl.
USPC 345/522; 712/221; 712/241

(58) Field of Classification Search
USPC .. 34.5/522
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,439,828 A 3, 1984 Martin
5,163,139 A 1 1/1992 Haigh et al.

H1291. H 2f1994 Hinton et al.
5,504,932 A * 4, 1996 Vassiliadis et al. T12/208

5,522,078 A 5/1996 MatSuzuki
5,634,118 A 5/1997 Blomgren
5,826,089 A 10, 1998 Ireton
5,878.242 A 3, 1999 Olson et al.
5,881,307 A 3, 1999 Park et al.
5,896.519 A 4, 1999 Worrell
5,925,123 A 7/1999 Tremblay et al.
6,026,485. A * 2/2000 O'Connor et al. T12/226

(Continued)
OTHER PUBLICATIONS

Kim et al., Advanced POC Model-Based Java Instruction Folding
Mechanism, Sep. 5-7, 2000, pp. 332-338, Proceedings of the 26th
EUROMICRO Conference, IEEE.*

(Continued)

Primary Examiner — M. Good Johnson

(57) ABSTRACT

An instruction folding mechanism, a method for performing
the instruction folding mechanism and a pixel processing
system employing the instruction folding mechanism are
described. The pixel processing system comprises an instruc
tion folding mechanism and a pixel shader. The instruction
folding mechanism folds a plurality of first instructions in a
first program to generate a second program having at least one
second instruction which is a combination of the first instruc
tions. The pixel shader connected to the instruction folding
mechanism fetches the second program to decode at least the
second instruction having the combination of the first instruc
tions to execute the second program. The instruction folding
mechanism comprises an instruction scheduler, a folding rule
checker, and an instruction combiner. The instruction sched
uler connected to the folding rule checker is used to scan the
first instructions according to static positions in order to
schedule the first instructions in the first program. The folding
rule checker checks the first instructions according to a fold
ing rule whether the first instructions has data independency.
The instruction combiner connected to the folding rule
checker can combine the first instructions having the data
independency to generate at least the second instruction.

46 Claims, 9 Drawing Sheets

Pixel Shader
58

Registers

3 Read Port
Src. Modifier

- S6

..-

Instr. Modifier

50

/
Instruction
Folding

Mechanism

Decoder
(with new

Instr instructions)
514

Arithmetic
Logic Unit
(ALU) Instruction Memory

S08

US 8,520,016 B2
Page 2

(56) References Cited 2002/0057446 A1 5/2002 Long et al.
2002fOO87955 A1 7/2002 Ronen et al.
2003/0046519 A1 3/2003 Richardson T12/226

U.S. PATENT DOCUMENTS 2004/0268087 A1* 12/2004 Rupley et al. T12/24
6,081.884 A 6, 2000 Miller 2005, 0198473 A1 9, 2005 Ford
6,108,768 A 8/2000 Koppala et al. 2005/0253861 A1* 11/2005 Hutchins et al. 345,561
6,125,439 A 9/2000 Tremblay et al. 2005/0267996 A1* 12/2005 O'Connor et al. ... 710.1
6,128,720 A 10, 2000 Pechanek et al. 2006/0005178 A1* 1/2006 Kilgard et al. .. 717/153
6,148,391 A 11/2000 Petrick 2006/0225061 A1* 10/2006 Ludwig et al. 717/161
6,237,086 B1* 5/2001 Koppala et al. T12/226 2008/00982O6 A1 4/2008 Naoi
6,301,651 B1 * 10/2001 Chang et al. T12/2O2 2008/0252652 A1* 10, 2008 Jiao et al. 345,582
6,349,383 B1 2/2002 Colet al.
6,377,261 B1 4/2002 Fernandez et al. OTHER PUBLICATIONS
6,453,407 B1 9, 2002 Lavi et al.
6,775,765 B1 8, 2004 Lee et al. Tonet al., “Instruction Folding in Java Processor.” IEEE Explore, pp.
6.825,843 B2 11/2004 Allen et al. 138-143, Dec. 1997.
6,832,307 B2 * 12/2004 Richardson T12/213 Ton, et al., “Design of an Optimal Folding Mechanism for Java
6,980,209 B1 12/2005 Donham et al. Processors.” Microprocessors and Microsystems, vol. 26, Issue 8,
7,000,094 B2 * 2/2006 Nevillet al. T12/209 Nov. 2002, pp. 341-352.
7,127.590 B1 10/2006 Lindquist Non-Final Office Action on U.S. Appl. No. 13,437.397, mailed Jun
7.210,127 B1 * 4/2007 Rangachari 77,128 28.2012 .S. Appl. No. --

ck 75-6 R. 1938, Einst E. Non-Final Office Action on U.S. Appl. No. 13437.397, mailed Dec.
7.584,342 B1* 9/2009 Nordquist et al. ... 71222 2012.
7,600,221 B1 * 10/2009 Rangachari. 717/128 Kim, A., “An Advanced Instruction Folding Mechanism for a Stack
7,633,505 B1* 12/2009 Kelleher ... 345,504 less Java Processor Computer Design, 2000, IEEE Proceedings
7,643,032 B2* 1/2010 Wetzel et al. .. 345,582 2000 International Conference on, Sep. 17, 2000, pp. 565-566.
7,681,187 B2 * 3/2010 Ludwig et al. . 717, 151 Final Office Action on U.S. Appl. No. 13/437.397, mailed Apr. 22.
7,809,928 B1 * 10/2010 Allen et al. T12/208 2013.
7,836,282 B2 11/2010 Ban et al.
7,844,804 B2 11/2010 Rychlik * cited by examiner

US 8,520,016 B2 Sheet 1 of 9 Aug. 27, 2013 U.S. Patent

(LIV Jo!Jo!) I "OIH

US 8,520,016 B2 U.S. Patent

US 8,520,016 B2 Sheet 4 of 9 Aug. 27, 2013 U.S. Patent

B90;
NJ
~

B JOJ(qºãº I) JOJ SQTVSQTV
/*

/

US 8,520,016 B2 U.S. Patent

US 8,520,016 B2 Sheet 7 Of 9 Aug. 27, 2013 U.S. Patent

L 'OIH

U.S. Patent Aug. 27, 2013 Sheet 8 of 9 US 8,520,016 B2

Folding a plurality of first instructions in a first program -- S800
by an instruction folding mechanism to generate a u-1

second program having at least one second instruction
which is a combination of the first instructions

O S802

Fetching the second instructions stored according to a u1
program counter;

Decoding a control signal from the second instructions S804
having the combination of the first instructions by a

decoder

Performing an operation of a plurality of register S806
components of the second instructions according to the

control signal by an ALU

w - S808
Selecting the register components to transform operand-1
formats of the second instructions by a register port

FIG. 8

U.S. Patent Aug. 27, 2013 Sheet 9 Of 9 US 8,520,016 B2

Building a dependence graph (DG) to determine u- S910
whether the result of the former instruction is employed

by the later one :

Scanning the first instructions according to static -1 S900
positions to schedule or rearrange the first instructions -

in the first program by instruction scheduler

-1 Y- S902
-1 N u1

S.

-1 Checking the first instructions by N.
<-- a folding rule checker according to a folding)

Nrule or DG whether the first instructions-1-
N are data independent -1

YES S p- NO
Nu-1

- S904b.

When the two adjacent first - S904a When the two adjacent first
instructions have data dependency, instructions have data u1
one instruction is written into the independency, one instruction and second program and the other is the other are combined to generate

A. A. checked with a next first
he second instruction to be written a instruction according to the folding into the second program rule

-.- s
- ---

--- ----1
---- ---

s Is the last first instruction checked ? ud
s --- --- - NO

YES

The second program is ready ur

FIG. 9

US 8,520,016 B2
1.

INSTRUCTION FOLDING MECHANISM,
METHOD FOR PERFORMING THE SAME

AND PXEL PROCESSING SYSTEM
EMPLOYING THE SAME

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 1 1/333,479, entitled “Instruction Folding
Mechanism, Method For Performing The Same And Pixel
Processing System Employing The Same filed Jan. 17, 2006
(now U.S. Pat. No. 7,502,029).

FIELD OF THE INVENTION

The present invention relates to a folding mechanism, a
method for performing the folding mechanism and a pixel
processing system employing the same, and more particu
larly to an instruction folding mechanism, a method for per
forming the instruction folding mechanism and a pixel pro
cessing system employing the instruction folding mechanism
applied to a graphic processor unit (GPU).

BACKGROUND OF THE INVENTION

FIG. 1 is a block diagram of a pipeline configuration of a
conventional graphic processor unit. The conventional
graphic processor unit 100 mainly includes a triangle setup
unit 102, a pixel processing unit 104 and a depth processing
unit 106. The pixel processing unit 104 has apixelshader 108,
a texture unit 110 and a color interpolator 112 both connected
to the pixel shader 108.
A surface of three-dimensional (3D) object is divided into

a plurality of triangles two-dimensionally arranged in terms
of their neighboring relationship and having an arbitrary size.
Each of the triangles has three vertices which are forwarded to
the triangle setup unit 102. The triangle setup unit 102 outputs
the parameters of the pixels, such as the positions of the pixels
in triangles and texture coordinates of the vertices of the
corresponding triangles, to the pixel processing unit 104. In
the pixel processing unit 104, based on the positions of the
pixels and texture coordinates of the vertices, the texture unit
110 interpolates the texture coordinates for all the pixels. The
interpolated texture coordinates of the pixels are inputted and
then processed in the pixel shader 108 (with DirectX terms, or
Fragment Processor in OpenGL terms). Next, the pixel shader
108 executes a texture load instruction to return the processed
texture coordinates to the texture unit 110. Based on the
unprocessed texture coordinates and the processed texture
coordinates, the texture unit 110 samples the texture colors of
the pixels in a texture map and outputs the texture colors to the
pixel shader 108. Meanwhile, based on the positions of the
pixels and texture coordinates of the vertices, the color inter
polator 112 interpolates the vertex colors for all the pixels and
outputs the vertex colors of the pixels to the pixel shader 108.
The pixel shader 108 then processes the texture colors and the
vertex colors of the pixels and outputs color values and depth
values of the pixels to the depth processing unit 106, the final
pixel colors are obtained. The final pixel colors are then
becoming available for drawing the whole frame.

FIG. 2 is a block diagram of an example program in a pixel
shader of the conventional graphic processor. The pixel
shader 108 usually includes five kinds of registers: temporary
registers r, for storing temporary data, texture coordinate
registers t, texture numbering registers S. vertex color reg

10

15

25

30

35

40

45

50

55

60

65

2
isters V, and outputting registers c, for transforming the
final pixel colors to the depth processing unit 106.
The process of the pixel shader 108 normally has four

stages: a coordinate calculation stage, a texture processing
stage, a color blending stage and an issue out stage. The
interpolated texture coordinates of the pixels from the texture
unit 110 are stored in the texture coordinates registers t In
the coordinate calculation stage, the arithmetic, for the inter
polated texture coordinates of the pixels from the texture unit
110, is conducted in the texture coordinates registers t, and
the temporary registers r, the arithmetic results, i.e. the pro
cessed texture coordinates, are stored in the temporary regis
ters r. In the texture processing stage, based on the texture
coordinates in the registers t, and r, the pixel shader 108
executes texture load instructions to postulate the texture unit
110 to sample texture colors of the pixels in a texture map.
The texture map is appointed by the texture numbering reg
isters s. The sampled texture colors are transformed to the
temporary registers r. In the color blending stage, the pixel
shader 108 blends the texture colors stored in the temporary
registers r, with the vertex colors from the color interpolator
112 and the blending result is stored in the vertex color
registers V. In the issued stage, the pixel shader 108 outputs
color and depth values of the pixels to the depth processing
unit 106. It should be noted that the coordinate calculation
stage, the texture processing stage and the color blending
stage may be repetitiously processed or be omitted, respec
tively.

Each of the registers is composed of four components, e.g.
(x,y,z,w) or (r, g, b, a) which are so-called four-wide vectors
and data format offloating point. In the coordinate calculation
and texture processing stages, the four components (x,y,z,w)
represent coordinates in a three-dimensional (3D) space or of
different texture formats. In the color blending and issued
stage, the four components (r, g, b, a) represent three primary
colors of red, green and blue, and transparency. The compo
nents of source and target registers are assigned to instruc
tions to read out or write the components. For example, r().w
represents the instructions that can read out or write compo
nent “w” of register “ro”.

Since processing steps of color components 'r', ''g'', and
“b' are considerably different from the transparency compo
nent “a”, there is a need of two independent pipelines to
process these different kinds of components. When represent
ing coordinates, “X”, “y” and “Z” are also considerably dif
ferent from the perspective component “w”. In DirectX stan
dard, two independent pipelines are serially merged and
concurrently issued out by a plus sign '+' preceding the
second instruction of the pair, which is defined as instruction
pairing or co-issue and has a component ratio of 3 to 1, as
shown in FIG. 3A. However, the number of operator decod
ers, pipelines, register write ports and register read ports for
the instructions is increased at least double the amount. More
over, it is necessary to provide additional complicated func
tions, such as component selection, format transformation,
Source modification, and instruction modification in the pixel
shader so that instructions can process operands located in the
Source and target registers. As a result, hardware cost of
performing the functions is increased extremely.

Referring to FIG.3B, a ratio diagram of two color compo
nents to two transparency components for the instructions in
a conventional pixel shader program is illustrated here. In
these two independent instructions, one is used to write color
components “r” and ''g'', and the other is used to write color
components “b” and transparency “a”. Although the probabil
ity of instruction pairing or co-issue is increased, however, it
has a more complicated architecture and a higher cost in the

US 8,520,016 B2
3

hardware of pixel shader. The nVidia Corporation began to
implement such complicated co-issue in their GeForce(f
Series GPU.

Referring to FIG. 4, a conventional pixel shader with a
co-issue mechanism is shown here. The fetcher 400 reads out
two instructions from the instruction queue 402 according to
the program counter (PC). A pair of decoders (404a, 404b)
decodes control signals from the fetched instructions, respec
tively, to control the pipeline operation of the arithmetic logic
units (ALUs) (406a, 406b). The pair of ALU (406a, 406b)
implements four vector components in parallel and consumes
a pair of register ports (408a, 408b). Each of register ports
(408a, 408b) includes three register read ports and a write
port. Furthermore, it is necessary to use a source and an
instruction modifier for each register port to process compo
nent selections and format transformation of Source and tar
get operands in the instruction.

Therefore, the co-issue mechanism requires an additional
check mechanism to determine the timing of co-issue rule.
Furthermore, since Source and target registers of the two
instructions are different in the timing of co-issue rule, the
consumption of register read ports and register write ports are
at least doubled the amount. The number of the source modi
fier and instruction modifier are also at least doubled the
amount.

Consequently, there is a need to develop a pixel processing
system having an instruction folding mechanism for reducing
the hardware cost and increasing performance of graphic
processor unit.

SUMMARY OF THE INVENTION

The first objective of the present invention is to provide a
folding mechanism applied to a pixel processing system to
fold instructions with data independency into reduced
instructions for generating a new program.
The second objective of the present invention is to provide

a folding mechanism applied to a pixel processing system to
fold instructions having an identical target register and output
data to different components of the target register to save the
hardware cost of pixel processing system.

The third objective of the present invention is to provide a
folding mechanism applied to a pixel processing system to
improve the performance of the pixel processing system.

According to the above objectives, the present invention
sets forth an instruction folding mechanism, a method for
performing the folding mechanism and a pixel processing
system employing the same. The pixel processing system
comprises an instruction folding mechanism and a pixel
shader. The instruction folding mechanism folds a plurality of
first instructions in a first program to generate a second pro
gram having at least one second instruction which is a com
bination of the first instructions. The pixel shader connected
to the instruction folding mechanism fetches the second pro
gram to decode at least the second instruction having the
combination of the first instructions to execute the second
program.

The instruction folding mechanism comprises an instruc
tion scheduler, a folding rule checker, and an instruction
combiner. The instruction scheduler connected to the folding
rule checker is used to scan the first instructions according to
static positions to schedule the first instructions in the first
program. Preferably, the instruction scanner Successively
scans the first instructions. The folding rule checker checks
the first instructions according to a folding rule whether the
first instructions has data independency. The instruction com

10

15

25

30

35

40

45

50

55

60

65

4
biner connected to the folding rule checker can combine the
first instructions having the data independency to generate at
least the second instruction.

In the relationship of data independency between two adja
cent first instructions, the source register of the later first
instruction is different from a target register of the former first
instruction. In other words, both the source register of the
later first instruction and the target register of the former first
instruction have a null set. In addition, the data of the two
adjacent first instructions is outputted into different compo
nents in the target register. In one embodiment, the total
number of the source operands of the first and second instruc
tions is within a predetermined threshold value, e.g. 3, 4, or
more, so that the decoder can decode the combination of the
first instructions.

In operation, a plurality of first instruction in a first pro
gram is folded by an instruction folding mechanism to gen
erate a second program having at least one second instruction
which is a combination of the first instruction. Afterwards, the
second instruction can be fetched according to a program
counter. Control signals are decoded from the second instruc
tion having the combination with the first instruction. Then,
an operation of a plurality of register components of the
second instruction is performed according to the control sig
nal by an ALU. Finally, the register components are selected
to transform operand formats of the second instruction by a
register port.
The present invention folds instructions with data indepen

dency into reduced instructions for generating a new pro
gram. The folding instructions have an identical target regis
ter and output data to different components of the target
register to save the hardware cost of pixel processing system.
Because these rules are the most frequently case that the
fourth component is separately used, the performance of the
expensive co-issue hardware mechanism can be achieve by a
much chipper extended decoder.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a pipeline configuration of a
conventional graphic processor unit.

FIG. 2 is a block diagram of an example program in a pixel
shader of the conventional graphic processor.
FIG.3A is a ratio diagram of three color components to one

transparency component for the instructions in a conventional
pixel shader program.

FIG. 3B is a ratio diagram of two color components to two
transparency components for the instructions in a conven
tional pixel shader program.

FIG. 4 is a conventional pixel shader with a co-issue
mechanism.

FIG. 5 is a block diagram of a pixel processing system
having an instruction folding mechanism according to one
preferred embodiment of the present invention.

FIG. 6 is a block diagram of an example program applied to
the instruction folding mechanism in FIG. 5 according to one
embodiment of the present invention.

FIG. 7 is a detailed block diagram of the instruction folding
mechanism in FIG. 5 according to one embodiment of the
present invention.

FIG. 8 shows a flow chart of performing a pixel processing
system according to the present invention.

FIG. 9 shows a flow chart of performing an instruction
folding mechanism of the pixel processing system in FIG. 8
according to the present invention.

US 8,520,016 B2
5

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is directed to an instruction folding
mechanism, a method for performing the instruction folding
mechanism and a pixel processing system employing the
instruction folding mechanism to fold instructions with data
independency into reduced instructions for generating a new
program. Furthermore, the instruction folding mechanism is
used to fold instructions having an identical target register
and outputs data to different components of the target register
to save the hardware cost of pixel processing system. It should
be noted that the instruction folding mechanism is also Suit
able for vertex shader, geometric shader or a combination of
the two.

FIG. 5 is a block diagram of a pixel processing system
having an instruction folding mechanism according to one
preferred embodiment of the present invention. The pixel
processing system comprises an instruction folding mecha
nism 500 and a pixel shader 502. The instruction folding
mechanism 500 folds a plurality of first instruction in a first
program 504 to generate a second program.506 having at least
one second instruction which is a combination of the first
instruction. The pixel shader connected to the instruction
folding mechanism 500 fetches the second program 506 to
decode at least the second instruction having the combination
of the first instruction to execute the second program 506.

FIG. 6 is a block diagram of an example program applied to
the instruction folding mechanism in FIG. 5 according to one
embodiment of the present invention. The data of instruction
“mul” is independent in the first program 504 from that of
instruction “mov”, and the data output of “mul' and “mov' is
stored in an identical register, i.e. “r”, but in different com
ponents. In one embodiment, the total number of source oper
ands of the data is three, i.e. “r0', “t0', and “rO.a', and it can
easily be performed by the instruction folding mechanism to
create a new instruction, e.g. “mul mov”, as in the second
program 506. Therefore, a decoder can easily decode the new
“folded instruction. Since the instruction of the pixel shader
is able to cover the total number of the source operands, an
additional operand capacity of the instruction is not required
to expand in order to save hardware cost of the pixel shader.
However, in the prior art of a co-issue architecture, additional
decoders for operators, operation pipelines, register write
ports and register read ports for the operator are necessary to
be prepared. Furthermore, instructions should be provided
with many processing abilities, e.g. component selections,
format transformations, Source code modifications, and
instruction modifications of Source and target operands.
Therefore, it is important to reduce the number of the oper
ands.

FIG. 7 is a detailed block diagram of the instruction folding
mechanism in FIG. 5 according to one embodiment of the
present invention. The instruction folding mechanism 500
comprises an instruction scheduler 700, a folding rule
checker 702, and an instruction combiner 704. The instruc
tion scheduler 700 connected to the folding rule checker 702
is used to scan the first instruction according to static posi
tions to schedule the first instruction in the first program 504.
Preferably, the instruction scanner 700 successively scans the
first instruction. The folding rule checker 702 checks the first
instruction according to a folding rule whether the first
instruction has data independency. The instruction combiner
704 connected to the folding rule checker 702 can combine
the first instruction having the data independency to generate
at least the second instruction in the second program 506.

10

25

30

35

40

45

50

55

60

65

6
Specifically, in one preferred embodiment of the present
invention, a general formula of folding rule is represented as
following items:

(1)
OPC1 tyt.rigib, Src0, Src.1
OPC2 tyt.a, src2
OPC1 OPC2 tyt.rgba, src0, Src 1, Src2, where

OPC1 and OPC2 are arbitrary operators and OPC1 OPC2
is a new combination operator indicating an operation
instruction which performs OPC1 in components (r. g. b) and
OPC2 in component “a”. The target operands, tyt.rlgb and
tgt.a, of OPC1 and OPC2 are in a same register, i.e. register
“tgt’, but in different components of “tgt. For example,
component “a” is located in OPC1 and OPC2 at the same
time. Additionally, the representation rigib means that com
ponents “r”, “g, and “bare not necessarily present but not
limited to their presence.

Src0, Src 1, and Src2 are source operands and have arbitrary
component(s), where OPC1 is defined as a binary operator
having two operands, including operands Src0 and Src 1, or
defined as a unary operator including operand Src0 only. The
formula oftgt.rgb ?hSrc2 (p represents data independency
in viewing of OPC1 and OPC2, which the operation results of
OPC1 are irrelevant to that of OPC2. In one embodiment,
instruction OPC1 is not required to be adjacent to OPC2 but
only if the data of OPC1 is independent from that of OPC2.
While taking the orders of instruction OPC1 and OPC2 into
consideration, the formula of the folding rule also can be
represented as follows:

(2)
OPC2 tyt.a, src2
OPC1 tyt.rigib, Src0, Src.1
OPC1 OPC2 tyt.rgba, src0, Src 1, Src2, where

While instruction OPC1 is a unary operator and OPC2 is a
binary operator, the formula of folding rule also can be rep
resented as follows:

(3)
OPC1 tyt.rigibl, src0
OPC2 tyt.a, src 1, Src2
OPC1 OPC2 tyt.rgba, src0, Src 1, Src2, where

(4)
OPC2 tyt.a, src 1, Src2
OPC1 tyt.rigibl, src0
OPC1 OPC2 typt.rgba, Src0, Src 1, Src2, where

When OPC2 is defined as a unary operator in the represen
tation, operand includes Src1 only.

In one preferred embodiment of the present invention,
component “a” is operated alone and the result is then moved
by instruction “mov’ while component “a” is a “transpar
ency” or coordinates of fourth dimension in the graphic effect
applications. Component 'a' is operated by instruction “rsq.
to calculate the result of (1/Vx) while component “a” is a
distance oran angle from the light source in the lighting effect
applications. While component “rgb represents colors or
coordinates, instructions “mov”, “mul', 'add, “mad', and
“dp3' are usually used, for example. As a result, in one
embodiment, when OPC1 is instructions “mov”, “mul',
“add”, “mad', or “dp3 and OPC2 is “mov” or “rsq, the
combination of OPC1 OPC2 can be instructions “mov
mov”, “mul mov”, “add mov”, “dp3 mov”, “mov rsq.

”, “add rsq. or “dp3 rsq. In the present invention,
99 99

“mul rSq.
a decoder in the hardware is additionally able to decode these

US 8,520,016 B2
7

instructions of OPC1 OPC2 or other combinations of OPC1
and OPC2 to increase the capability of the pixel shader.

In another preferred embodiment of the present invention,
the operands of new instructions offolding rule are four, Src0,
Src 1, Src2, Src3, and instruction “mad' can be used. Although,
a register read port and source modifier in the hardware can be
added, its cost-effectiveness is better than that of a co-issue
mechanism. The general formula of folding rule is repre
sented as follows:

(5)
OPC1 tyt.rgb, Src0, Src 1, Src2
OPC2 tyta, src3
OPC1 OPC2 typt.rgba, Src0, Src 1, Src2, src3, where

Taking the order of instructions OPC1 and OPC2 into
consideration, the formula of folding rule also can be repre
sented as follows:

(6)
OPC2 tyta, src3
OPC1 tyt.rgb, Src0, Src 1, Src2
OPC1 OPC2 typt.rgba, Src0, Src 1, Src2, src3, where

When OPC1 is defined as a unary operator, its operand
includes src0 only, and when OPC1 is defined as a binary
operator, its operands include Src0 and Src 1.
When OPC1 is defined as a unary operator and OPC2 is a

triple operator, additional folding rule is described as follows:
(7)
OPC1 tytriglb), src0
OPC2 tyt.a, src1, Src2, Src3
OPC1 OPC2 typt.rgba, src0, src1, Src2, src3, where tgt.

riglb?
(Src.1Usrc2 Usrc3)=(p.
(8)
OPC2 tyt.a, src1, Src2, Src3
OPC1 tytriglb), src0
OPC1 OPC2 typt.rgba, Src0, Src 1, Src2, src3, where

When OPC2 is defined as a unary operator, its operand
includes Src 1 only, and when OPC2 is defined as a binary
operator, its operands include Src1 and Src2.
When OPC1 is defined as a binary operator and OPC2 is a

binary operator also, additional folding rule is described as
follows:

(9)
OPC1 tyt.rgb, Src0, Src.1
OPC2 tyt.a, src2, Src3
OPC1 OPC2 typt.rgba, Src0, Src 1, src2, Src3, where tgt.

riglb? (Src2Usrc3)=(p.
(10)
OPC2 tyt.a, src2, Src3
OPC1 tyt.rgb, Src0, Src.1
OPC1 OPC2 typt.rgba, Src0, Src 1, Src2, src3, where

When OPC1 is defined as a unary operator, its operand
includes src0 only, and when OPC2 is defined as binary
operator, its operands include Src 1 and Src2. As a result, in one
embodiment, when OPC1 is the instruction “mad' and OPC2
is the instructions “mov' or “rsq, the combination of
OPC1 OPC2 can be instructions “mad mov” and
“mad rsq.

In the relationship of data independency between two adja
cent first instructions, the source register of the later first
instruction is different from a target register of the former first
instruction. In other words, both the source register of the
later first instruction and the target register of the former first
instruction have a null set, e.g. “tgt.rg b?nsrc2=p' in the

10

15

25

30

35

40

45

50

55

60

65

8
above-mentioned item (1). The data of the two adjacent first
instructions is outputted into different components in the
target register. In one embodiment, the total number of the
Source operands of the first and second instructions is within
a predetermined threshold value, e.g. 3, 4, or more, so that the
decoder can decode the combination of the first instructions.
When the first instructions comprise at least two adjacent first
instructions having data dependency, one instruction is writ
ten into the second program and the other is checked with a
next first instruction according to the folding rule.

Referring to FIG. 5 again, the pixel shader comprises an
instruction memory 508, a fetcher 510, a decoder 512, an
arithmetic logic unit (ALU) 514, a register port 516, and a
register unit 518. The instruction memory 508 is used to store
the second instructions of the second program 506. The
fetcher 510 connected to the decoder 512 fetches the second
instructions stored in the instruction memory 508 according
to a program counter. The decoder 512 decodes a control
signal from the second instructions having the combination of
the first instructions. The ALU 514 connected to the decoder
512 performs an operation of a plurality of register compo
nents of the second instructions according to the control sig
nal. The register port connected to the ALU 514 is used to
select the register components to transform operand formats
of the second instructions. The register unit 518 connected to
the register port 516 is employed to store data of the register
components of the second instructions.

It should be noted that instruction folding mechanism 500
can be implemented in the forms of software or hardware. If
implemented in Software, the instruction folding mechanism
500 is a software toolkit running in an operating system (OS),
a program loader or a part of a device driver attached to a latter
part of a compiler. Furthermore, if implemented in a hard
ware, the instruction folding mechanism 500 is preferably
connected to an instruction fetch unit or a decode unit, i.e.
before the instruction queue unit and decoder of the pixel
shader in the preferred embodiment, or may be built in a pixel
shader.

FIG. 8 shows a flow chart of performing a pixel processing
system according to the present invention. Starting at step
S800, a plurality of first instructions in a first program is
folded by an instruction folding mechanism to generate a
second program having at least one second instruction which
is a combination of the first instructions.

In step S802, the second instructions are fetched according
to a program counter. A control signal is decoded from the
second instructions having the combination of the first
instructions by a decoder, as shown in step S804. Then, in step
S806, an operation of a plurality of register components of the
second instructions is performed according to the control
signal by an ALU. Finally, the register components are
selected to transform operand formats of the second instruc
tions by a register port in step S808.

FIG. 9 shows a flow chart of performing an instruction
folding mechanism of the pixel processing system in FIG. 8
according to the present invention. During the step S800, the
first instructions are scanned according to static positions to
schedule or rearrange the first instructions in the first program
or to rearrange the first instructions with data independency in
step S900. Then, in step S902, the first instructions are
checked by a folding rule checker according to a folding rule
depending on whether the first instructions are data indepen
dent.

In step S904a, when the folding rule checker checks the
first instructions by way of two adjacent first instructions and
the two adjacent first instructions have data independency,
one instruction and the other are combined to generate the

US 8,520,016 B2

second instruction to be written into the second program. In
step S904b, when the folding rule checker checks the first
instructions by way of two adjacent first instructions and the
two adjacent first instructions have data dependency, one
instruction is written into the second program and the other is
checked with a next first instruction according to the folding
rule. At step S906, the last first instruction is not processed
and step S902 is proceeded again. The second program is then
ready to be executed at step S908.

Preferably, during the step S900, the instruction scheduler
builds a dependence graph (DG) to determine whether the
result of the former instruction is employed by the later one to
indicate data dependency relationship between the first
instructions, where each of the instruction is a node, as shown
in step S910. Specifically, in the dependence graph, when the
node is connected by an edge sign, the instruction is depen
dent. On the contrary, if the instruction is independent, then
the folding rule checker can scan the DG.

In the relationship of data independency between two adja
cent first instructions, the source register of the later first
instruction is different from a target register of the former first
instruction. In other words, both the source register of the
later first instruction and the target register of the former first
instruction have a null set. Preferably, the data of the two
adjacent first instructions are outputted into different compo
nents in the target register. The total number of the Source
operands of the first and second instructions is within a pre
determined threshold value to be decoded by the decoder.
The advantages of the present invention include: (a) fold

ing instructions with data independency into reduced instruc
tions for generating a new program; (b) folding instructions
having an identical target register and output data to different
components of the target register to save the hardware cost of
pixel processing system; and (c) providing a folding mecha
nism applied to a pixel processing system to improve the
performance of the pixel processing system.
As is understood by a person skilled in the art, the forego

ing preferred embodiments of the present invention are illus
trative rather than limiting of the present invention. It is
intended that they cover various modifications and similar
arrangements be included within the spirit and scope of the
appended claims, the scope of which should be accorded the
broadest interpretation so as to encompass all Such modifica
tions and similar structures.

What is claimed is:
1. A pixel processing system comprising:
an instruction folding mechanism configured to:

check data independency between first and second
instructions associated with a first program; and

generate a third instruction associated with a second
program, wherein the third instruction is a combina
tion of the first and second instructions, and wherein
the first and second instructions are operable to output
data to different components in a register, and

a pixel shader configured to:
receive the third instruction from the instruction folding

mechanism;
decode the third instruction and execute the second pro
gram and,

wherein the pixel shader includes a configuration to output
the data to the different components in the register
responsive to execution of the second program.

2. The pixel processing system of claim 1, wherein the
instruction folding mechanism comprises an instruction
scheduler configured to scan the first instruction and the sec
ond instruction.

10

15

25

30

35

40

45

50

55

60

65

10
3. The pixel processing system of claim 1, wherein the

instruction folding mechanism further comprises a folding
rule checker configured to check the data independency
between the first instruction and the second instruction.

4. The pixel processing system of claim 3, wherein the
instruction folding mechanism further comprises an instruc
tion combiner configured to combine the first instruction and
the second instruction to generate the third instruction in
response to a determination by the folding rule checker that
the first and second instructions have data independency.

5. The pixel processing system of claim 3, wherein the
folding rule checker is further configured to check the data
independency between the first and second instructions based
on a folding rule.

6. The pixel processing system of claim 3, wherein the
instruction folding mechanism is further configured to con
firm data independency between the first and second instruc
tions in response to a target register of the first instruction
being different from a source register of the second instruc
tion.

7. The pixel processing system of claim 6, wherein a total
number of source operands of the first and second instructions
is below a predetermined threshold value.

8. The pixel processing system of claim 1, wherein, in
response to the first and second instructions having data
dependency, the instruction folding mechanism is further
configured to write the first instruction into the second pro
gram and to check the second instruction against a fourth
instruction for data independency.

9. The pixel processing system of claim 1, wherein the
pixel shader comprises:

a decoder configured to decode a control signal of the third
instruction;

an arithmetic logic unit configured to performan operation
according to the control signal; and

a register port configured to select corresponding register
components to transform operand formats of the third
instruction.

10. The pixel processing system of claim 9, wherein the
pixel shader further comprises:

an instruction memory configured to store the third instruc
tion; and

a fetcher configured to fetch the third instruction from the
instruction memory according to a program counter.

11. The pixel processing system of claim 9, wherein the
pixel shader further comprises a register unit connected to the
register port and configured to store data of the corresponding
register components of the third instruction.

12. The pixel processing system of claim 1, wherein the
instruction folding mechanism includes a configuration to:

determine if a second register for storage of a result of
execution of a first instruction is not to be used for
storage of an operand used for execution of a second
instruction; and

generate the third instruction responsive to a determination
that the second register is not to be used for the storage
of the result and the storage of the operand.

13. A method for processing pixels, the method compris
ing:

checking data independency between first and second
instructions associated with a first program by using an
instruction folding mechanism;

generating a third instruction associated with a second
program by using the instruction folding mechanism,
wherein the third instruction is a combination of the first

US 8,520,016 B2
11

and second instructions; and wherein the first and sec
ond instructions are operable to output data to different
components in a register,

decoding a control signal from the third instruction by
using a pixel shader; and 5

performing an operation with the pixel shader, wherein the
operation is performed according to the control signal,
wherein the operation results in outputting the data to the
different components in the register.

14. The method of claim 13, further comprising storing the 10
third instruction in an instruction memory.

15. The method of claim 14, further comprising fetching
the third instruction from the instruction memory according
to a program counter.

16. The method of claim 13, wherein said performing an 15
operation comprises performing, using an arithmetic logic
unit, an operation on a plurality of register components of the
third instruction according to the control signal.

17. The method of claim 16, further comprising selecting
the plurality of register components by using a register port. 20

18. The method of claim 13, wherein said checking data
independency comprises checking data independency
according to a folding rule.

19. The method of claim 13, further comprising scanning
the first and second instructions according to static positions 25
of data in the first and second instructions.

20. The method of claim 19, wherein said scanning com
prises rearranging the first and second instructions having
data independency.

21. The method of claim 13, wherein the first and second 30
instructions have data independency if a target register of the
first instruction is different from a source register of the
second instruction.

22. The method of claim 13, further comprising writing the
first instruction into the second program and checking the 35
second instruction for data independency with a fourth
instruction if the first and second instructions have data
dependency.

23. The method of claim 13, further comprising creating a
dependency graph to indicate data dependency between the 40
first and second instructions.

24. An apparatus comprising:
an instruction scheduler configured to Scan first and second

instructions;
a folding rule checker configured to check data indepen- 45

dency between the first and second instructions; and
an instruction combiner configured to:
combine the first and second instructions to generate a third

instruction in response to a determination by the folding
rule checker that the first and second instructions have 50
data independency, wherein the first and second instruc
tions are operable to output data to different components
in a register, and wherein the third instruction is operable
to output the data to the different components in the
register. 55

25. The apparatus of claim 24, wherein the folding rule
checker is further configured to check the data independency
between the first and second instructions based on a folding
rule.

26. The apparatus of claim 25, wherein the folding rule 60
checker is further configured to verify that the first and second
instructions have data independency in response to a target
register of the first instruction being different from a source
register of the second instruction.

27. The apparatus of claim 26, wherein a total number of 65
Source operands of the first and second instructions is below
a predetermined threshold value.

12
28. The apparatus of claim 24, wherein, in response to the

first and second instructions having data dependency, the
instruction combiner is further configured to write the first
instruction into the second program and the folding rule
checker is further configured to determine if the second
instruction and a fourth instruction have data independency.

29. A method for processing pixels, the method compris
ing:

scanning first and second instructions by using an instruc
tion scheduler;

checking data independency between the first and second
instructions by using a folding rule checker, and

in response to a determination that the first and second
instructions have data independency, combining the first
and second instructions into a third instruction by using
an instruction combiner, wherein the first and second
instructions are operable to output data to different com
ponents in a register, and wherein the third instruction is
operable to output the data to the different components
in the register.

30. The method of claim 29, wherein said checking data
independency comprises checking data independency
according to a folding rule.

31. The method of claim 29, further comprising scanning
the first and second instructions according to static positions
of data in the first and second instructions.

32. The method of claim 31, wherein said scanning com
prises rearranging the first and second instructions having
data independency.

33. The method of claim 29, wherein the first and second
instructions have data independency if a target register of the
first instruction is different from a source register of the
second instruction.

34. The method of claim 29, further comprising, if the first
and second instructions have data dependency, writing the
first instruction into the second program by using the instruc
tion combiner and checking the second instruction for data
independency with a fourth instruction by using the folding
rule checker.

35. A pixel processing system comprising:
an instruction folding mechanism configured to:

determine ifa register for storage of a result of execution
of a first instruction is not to be used for storage of an
operand used for execution of a second instruction;
and

generate a third instruction associated with a second
program, wherein the third instruction is a combina
tion of the first and second instructions, responsive to
a determination that the register is not to be used for
the storage of the result and the storage of the operand;
and

a pixel shader configured to:
receive the third instruction from the instruction folding

mechanism; and
decode the third instruction and execute the second pro

gram.
36. The pixel processing system of claim 35, wherein the

pixel shader comprises:
a decoder for decoding a control signal from the third

instruction having the combination of the first instruc
tion and the second instruction;

an arithmetic logic unit (ALU) connected to the decoder
for performing an operation of a plurality of register
components of the third instruction according to the
control signal; and

US 8,520,016 B2
13

a register port connected to the ALU for selecting the
register components to transform operand formats of the
third instruction.

37. The pixel processing system according to claim 36,
wherein the pixel shader further comprises:

an instruction memory for storing the third instruction of
the second program; and

a fetcher connected to the decoder for fetching the third
instruction stored in the instruction memory according
to a program counter.

38. The pixel processing system according to claim 36,
wherein the pixel shader further comprises a register unit
connected to a port unit for storing data of the register com
ponents of the third instruction.

39. The pixel processing system of claim 35, wherein the
first and second instructions are operable to output data to
different components in an output register.

40. The pixel processing system of claim 39, wherein the
pixel shader includes a configuration to output the data to the
different components in the output register responsive to
execution of the second program.

41. A method comprising:
determining if a register for storage of a result of execution
of a first instruction is not to be used for storage of an
operand used for execution of a second instruction;

generating a third instruction associated with a second
program, wherein the third instruction is a combination
of the first and second instructions, responsive to a deter

5

10

15

25

14
mination that the register is not to be used for the storage
of the result and the storage of the operand; and

decoding the third instruction and executing the second
program.

42. The method of claim 41, further comprising:
decoding a control signal from the third instruction having

the combination of the first instruction and the second
instruction;

performing an operation of a plurality of register compo
nents of the third instruction according to the control
signal; and

selecting the register components to transform operand
formats of the third instruction.

43. The method of claim 41, further comprising:
storing the third instruction of the second program in an

instruction memory; and
fetching the third instruction stored in the instruction
memory according to a program counter.

44. The method of claim 42, further comprising storing
data of the register components of the third instruction in a
register unit.

45. The method of claim 41, wherein the first and second
instructions are operable to output data to different compo
nents in an output register.

46. The method of claim 45, wherein executing the second
program outputs data to the different components in the out
put register.

ck ci: ck ci: i:

