US 20180109599A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2018/0109599 A1

Adam et al. 43) Pub. Date: Apr. 19, 2018
(54) DISTRIBUTED TEST SYSTEM (60) Provisional application No. 61/722,578, filed on Nov.
ARCHITECTURE 5, 2012.
(71) Applicant: AFL, TELECOMMUNICATIONS Publication Classification
LLC, Duncan, SC (US) (51) Int. CL
. HO4L 29/08 (2006.01)
(72) Inventors: Sean Patrick Adam, Wrentham, MA HO4L 1224 (2006.01)
(US), Joseph Fitzgerald, COIICOI'd, NH HO4L 12726 (200601)
(US); Scott Prescott, Belmont, NH (52) US. CL
gj Si%“ﬁ“‘;?ﬁ‘ J "Sh“ Leighton, CPC oo, HO4L 67/10 (2013.01); HO4L 41/12
eerfield, NH (US) (2013.01); HO4L 43/50 (2013.01); HO4L
41/5041 (2013.01); HO4L 41/0856 (2013.01)
(73) Assignee: AFL. TELECOMMUNICATIONS
LLC, Duncan, SC (US) (57 ABSTRACT
The present invention is related to a method of connecting
(21) Appl. No.: 15/842,223 a first device comprising a processor and an application and
a second device comprising a processor and an application,
(22) Tiled: Dec. 14, 2017 a distributed architecture system for facilitating modular
communication between a plurality of applications, a plu-
Related U.S. Application Data rality of devices, and a plurality.of applic.ations and devices,
and a computer readable medium storing a program for
(63) Continuation of application No. 14/440,507, filed on causing a processor to connect a plurality of applications, a
May 4, 2015, now Pat. No. 9,882,963, filed as appli- plurality of devices, and a plurality of applications and
cation No. PCT/US13/68595 on Nov. 5, 2013. devices.
/"% oec T
' Connecivily Application
[Bueatr] 7] [
— Bluetooth WiPhons |
Foundation Boot Loader |~ 7 — " Application
Powsr il T
Managet 5 y Aardid
) g- s PURPRIEN
Exterision APl ... 21 - Application
Service :
Manager > f??wgg
Application Manager 3 Applcation
o et 1P
UIPkgin || gotom 7 {15 Legend
: § Foundatior: Application }
e Licanse Manager | [Package Manager
| 56 | Fourdaion Plugh |
’ -l Logging Bervics | =1 ErorHandlng |
) YWell Behaved Application | | Appiarce Applications % 2 pidation Bervives 5
M View || UtPugn|| || FoundaionAPi ||| | Remote Control | L Hgﬁ@f | Foundation AP
. B ’ auested Compos
- Foundation Extension Dala Siorage J ;&;;ge«;&:f Cormponents
fesenter APl : : 27 System Servicss,
.| | Data Storage Plugh Applications, Plugins
i Foundation APt L1 40 ' m—
18 | Not Finalized

US 2018/0109599 A1

Apr. 19,2018 Sheet 1 of 6

pazie 4 1o T = | .
‘ L 0 1w voypurno
subnid @mmwﬁwﬁ b sbung e | | [PES—— 0 | I
‘BHUAIBE WBIGAS 1z Y)
£ abeiog gEq e BuBssd
swauoduog papsabing) | | Wm = g A
7 w 1%,)
1 LORBpUNGc.) N ﬁmwmwwm 04U0") OUGY oo I LOBpUNDS ubnidin {1 men
A LUBOY) suoneonddy eousddy | 1] uoneoyddy DaABUSY 1M
SOABS UORBRU0 | | [T e e " 4 @m ddy | | voeoyddy peasuEg am,
whnid vopmpunog | B2
safevey sbiene | safisuBy 95U80r] be
uonemidy uonEpUnD i . Hvoped . — A m———
pugbet | g7 .33_33_; A m.mwmmmw wlnid in
— — safeuey uoneyiddy
SO | AR
SONG
uojEsyddy | " - Ve iy UoIsuep
plpHy { g sobeuey
2
po— did0L i
ey £~ 18pE0T 1008 UOREpUNO,
SUOHALIA, oopng 1
uogesyddy | RyaIauu0ny w mmm
Jd A

Patent Application Publication

Patent Application Publication Apr. 19,2018 Sheet 2 of 6 US 2018/0109599 A1

FIG. 2

Well Behaved Application
View U Plugin
Prasenter %
Foundation AP] / |
4 33
N Power Licenses Plugn =~ || ||/
i AP AP AR
‘ Package e 28
AN} Management || Intent AP Segggs AL
AR L
Data Exportf L 3
37Ty Slorage RC AR Inport ~ ag
AP AP -
Error Network x_ .
Handling Config 38
AP AP
) s ,....
40 41

US 2018/0109599 A1

Apr. 19,2018 Sheet 3 of 6

Patent Application Publication

m
OBIEA RO U PalE UM IS
N TSRS
pelilien UR0(IS
Ui g Y B 777 1 A
peijlis], e g
o] g
GaeH, GReg s | 1sanbay useq) g
Ul g
faRES B jsanbay U0Q 048
IR
S— PV R
#e e Busny :
e R 58] 5en0a
owaiseayy | DUPERH WY Bupeey ey MBS 58] 15900
wilted Guipeay 95 upesy 169
- Apeay . HOHEOT SOIABG 18R]
gy e HEIG Ly Bl
fEoneg 158 1sanbay i
- g
VEis
WEApEH SESINES axe inbeuey s mbeuep avEroEOyddy s sabeuep e
wowdmby we) | uswdinbd s8] g B wedink 1881 vogesyddy LDBPURG,

€ 9ld

Patent Application Publication Apr. 19,2018 Sheet 4 of 6 US 2018/0109599 A1

FIG. 4A

56
i - i ./
4 N ooy
f’w i
Device 1 b
53 Under Power Meter Physical

Test Eﬁaimmeﬂi

oL

] B
kY

: -
Light Source Phwsical
Instrument 55

Custom base uni running "Platform” and
containing an OTDR Physical Instrument
and a CWDM Physical Instrument and
running an OLS Virluel Instrument
{controlling Light Souree Physinal
instrument on PCY

Patent Application Publication Apr. 19,2018 Sheet 5 of 6 US 2018/0109599 A1

% %
S.,M'

m,
Primin,

s\"

Fad running "Platform” and

OTOR Virtual Instrument {controliing
OTOR Physical Instrument on Custom
Base Uni

Patent Application Publication Apr. 19,2018 Sheet 6 of 6 US 2018/0109599 A1

FIG. 4C

A Window PC running "Plallorm” and 8
Channel Checker Virlual Inshrument
{ronbrolling CWDM Physical Instrument

on Custom Based Unit) and a Power Meter
Virtual Instrument {controlfing Power

Meter Physical Instrument on PCland a
Fower Meler Physical Instrument and 3
Light Source Physical Instrument

US 2018/0109599 A1l

DISTRIBUTED TEST SYSTEM
ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is based upon and claims the
benefit of priority from U.S. Provisional Application No.
61/722,578, filed Nov. 5, 2012, the disclosure of which is
incorporated herein in its entirely by reference.

BACKGROUND

1. Field

[0002] The invention relates to a method of connecting
applications to applications, hardware to hardware, and
applications to hardware, and a distributed architecture
system for facilitating modular communication between a
plurality of applications, a plurality of devices, and a plu-
rality of applications and devices.

2. Background

[0003] Today’s Test and Measurement systems are mono-
lithic in nature where a given system supports at most a
handful of closely related, tightly integrated stimulus and
measurement capabilities. Systems take on the personality
and characteristics of the specific stimulus and measurement
capability and are limited to supporting this personality and
characteristics. Even systems which are designed on a
modular platform are truly monolithic in nature where only
a given set of closely related, tightly integrated capabilities
can be supported at a given time. To support a different
capability, the modular system must transform to this new
capability completely. Often systems have to be powered
down and re-powered back up so that the monolithic soft-
ware can install the specific drivers for the installed hard-
ware capability.

[0004] Today’s monolithic, non-distributed systems limit
the ability of the user to support different measurement and
stimulus capabilities simultaneously. These solutions also
require a tight coupling, typically through direct hardware
connection. The exposure of the stimulus and measurement
capability through a User Interface is tightly coupled with
the actual stimulus and measurement hardware. The User
Interface is also heavily integrated with the system software.
Even if the User Interface is created as a separate Applica-
tion Layer, it is tightly coupled with the system software, the
system hardware, and the module hardware. The module
driver is also heavily integrated with the system software.
This is clearly shown in those situations where the system
must be fully restarted when the module is changed so the
new personality and the new module driver can be loaded
specifically. With today’s systems, a user cannot test their
entire system unless that system is covered by the handful of
closely related, tightly integrated stimulus and measurement
capabilities.

[0005] As an example, customers often wish to test a
complete communication network path crossing the fiber
optic/copper boundary. They want to measure the transmis-
sion characteristics and signal parameters on the fiber com-
ponent of the network and also measure the transmission
characteristics and signal parameters on the copper compo-
nent of the network. Today, a customer would have to either
have two completely different units—one configured as a

Apr. 19,2018

fiber test platform and one configured as a copper fiber test
platform (assuming a modular platform). It may be very
expensive to have two complete modular systems. Other-
wise, if the customer wants to control costs, the customer
needs to configure their modular system as a fiber tester, test
the fiber component and then reconfigure their modular
system to a copper tester and test the copper component.
This increases test time. This also increases opportunity for
both false failures and false positives.

[0006] Today’s monolithic software architectures are also
specifically designed for a given hardware base. They are
designed to run on a given Operating System (ex. Windows
or Linux) but also on a custom designed set of hardware
made up processor, memory, support peripherals, storage,
and communication. To support movement to a different
hardware base, the software would need to be redesigned
and re-architected as it is tightly integrated with the hard-
ware it runs on. Though a new processor of similar capa-
bility can be designed into their hardware base, a wholesale
change to a different hardware base, or a different Operating
System is not possible due to the closely integrated nature of
their system design.

SUMMARY

[0007] Exemplary implementations of the present inven-
tion address at least the above problems and/or disadvan-
tages and other disadvantages not described above. Also, the
present invention is not required to overcome the disadvan-
tages described above, and an exemplary implementation of
the present invention may not overcome any of the problems
listed above.

[0008] One embodiment of the present invention utilizes a
method of connecting a first device comprising a processor
and a first application and a second device comprising a
processor and a second application including registering at
least one of the first device and the first application with a
configuration manager, at least one of the second device and
the second application requesting the configuration manager
for connection information of a device comprising a pro-
cessor and an application, providing the connection infor-
mation of at least one of the first device and the first
application to at least one of the second device and the
second application, and at least one of the second device and
the second application directly communicate with at least
one of the first device and the first application based upon
the connection information.

[0009] Other features of the embodiment may include the
first device having a plurality of devices which have a
plurality of applications, the configuration manager has an
application manager that maps connectivity between defined
devices and applications, the connection manager defines all
devices and all applications in the system, and the defined
devices and the defined applications communicate directly
with each other when the defined devices and applications
are configured and mapped.

[0010] Other features of the embodiment may include the
second device having a plurality of devices having a plu-
rality of applications, the configuration manager comprises
an application manager that maps connectivity between
defined devices and applications, the connection manager
defines all devices and all applications in the system and the
defined devices and the defined applications communicate
directly with each other when the defined devices and
applications are configured and mapped.

US 2018/0109599 A1l

[0011] Other features of the embodiment may include the
first device having a plurality of devices having a plurality
of applications, the configuration manager defines all
devices and applications in a virtual system spread across
multiple physical machines, an application manager that
maps connectivity between configured devices and applica-
tions regardless of the physical machine they are running on,
and the devices and the applications communicate directly
once configured and mapped.

[0012] Other features of the embodiment may include the
second device having a plurality of devices having a plu-
rality of applications, the configuration manager defines all
devices and all applications in a virtual system spread across
multiple physical machines, an application manager maps
connectivity between configured devices and applications
regardless of the physical machine they are running on; and
the devices and the applications communicate directly once
configured and mapped.

[0013] Another embodiment of the invention may include
a method of connecting a plurality of applications, a plural-
ity of devices, and a plurality of applications and devices,
where the method involves a first device comprising a
processor sending a request to a remote connection configu-
ration in a distributed architecture system, an application
manager in the distributed architecture system receiving the
request by means of the remote connection configuration,
the application manager requesting a service manager to find
a second device corresponding to the request by means of
the remote connection configuration, the service device
communicating with the second device and identifying a
location of the second device, the service manager sending
information on the location of the second device to the
application manager, the application manager receiving and
sending the information on the location of the second device
to the first device through the remote connection configu-
ration, and the first device directly communicating with the
second device based upon the information on the location
provided by the application manager.

[0014] Another embodiment of the invention may include
a distributed architecture system for facilitating modular
communication between a plurality of applications, a plu-
rality of devices, and a plurality of applications and devices,
including an application manager which receives a request
to a remote connection configuration from a first device
among the plurality of devices; a service manager which
searches for a second device corresponding to the request to
the remote connection configuration, communicates with the
second device and identify a location of the second device;
and sends information on the location of the second device
to the application manager, where the application manager
sends the information on the location of the second device
to the first device through the remote connection configu-
ration such that the first device directly communicates with
the second device based upon the location provided by the
application manager.

[0015] Other features of the embodiment may include an
application used by the application manager having a Foun-
dation Application Programming Interface (API), where the
Foundation API has at least one of a power API, a licenses
API, a Plugin API, and ASYNC API, a package management
API, an intent API, a Setting API, a Data Storage API, an
Inter Process Communication API, an Export/Import API, an
Error Handling/Management API, and a Network Configu-
ration APIL.

Apr. 19,2018

[0016] Another embodiment of the invention may include
a computer readable medium storing a program for causing
a processor to connect a plurality of applications, a plurality
of devices, and a plurality of applications and devices,
including at least one of a first device or a first application
sending a request to a remote connection configuration in a
distributed architecture system an application manager in the
distributed architecture system receiving the request to the
remote connection configuration, the application manager
requesting a service manager to find at least one of a second
device or a second application corresponding to the request
to the remote connection configuration, the service device
communicating with at least one of the second device or the
second application and identifying a location of at least one
of the second device or the second application, the service
manager sending information on the location of at least one
of the second device or the second application to the
application manager, the application manager receiving and
sending the information on location of at least one of the
second device or the second application to at least one of the
first device and the first application through the remote
connection configuration, and at least one of the first device
or the first application directly communicating with at least
one of the second device or the second application based
upon the information on the location provided by the appli-
cation manager.

BRIEF DESCRIPTION OF THE DRAWING

[0017] FIG. 1 is a diagram of an exemplary embodiment
of a device management system.

[0018] FIG. 2 is an exemplary embodiment of a founda-
tion API 30 contained within a well-behaved application.
[0019] FIG. 3 is a flowchart of an exemplary embodiment
of'a process in which a Foundation API utilizes a system for
communication.

[0020] FIG. 4A is a diagram of an exemplary embodiment
of a device running Platform connecting with a plurality of
devices.

[0021] FIG. 4B is a diagram of a second exemplary
embodiment of a device running Platform.

[0022] FIG. 4C is a diagram of a third exemplary embodi-
ment of a device running Platform.

DETAILED DESCRIPTION

[0023] The following detailed description is provided to
assist the reader in gaining a comprehensive understanding
of the methods, apparatuses and/or systems described
herein. Various changes, modifications, and equivalents of
the systems, apparatuses and/or methods described herein
will suggest themselves to those of ordinary skill in the art.
Descriptions of well-known functions and structures are
omitted to enhance clarity and conciseness.

[0024] The terms used in the description are intended to
describe embodiments only, and shall by no means be
restrictive. Unless clearly used otherwise, expressions in a
singular from include a meaning of a plural form. In the
present description, an expression such as “comprising” or
“including” is intended to designate a characteristic, a num-
ber, a step, an operation, an element, a part or combinations
thereof, and shall not be construed to preclude any presence
or possibility of one or more other characteristics, numbers,
steps, operations, elements, parts or combinations thereof.

US 2018/0109599 A1l

[0025] The present invention applies to distributed archi-
tecture which separates a test and measurement system into
key components of which all are interchangeable on a
hardware and software level. An exemplary embodiment of
the present invention comprises a hardware-agnostic, appli-
cation-agnostic Test Operating System (referred to as a
Platform), a virtual instrumentation layer which allows for
any given stimulus and measurement capability to be
abstracted to an unlimited number of User Experiences, a
physical instrument layer which allows for any given stimu-
Ius and measurement capability to be wrapped in such a
manner as it can easily connect with any hardware system
running the Platform and offer up services which can be
abstracted to the user as a User Experience through the
Virtual Instrument Layer, and Test Executable Layer which
separates the actual test execution from the system software
allowing for custom and user-defined test programs to be
developed.

[0026] In an exemplary embodiment, the Platform is a
hardware agnostic entity, thus the Platform can run on any
hardware and Operation System base which provides the
minimum services required to run. In an exemplary embodi-
ment, the minimum services may comprise an ARM based
single board computer based on NVIDIA Tegra 2 & 3,
Freescale Vybrid and Intel/Marvell XScale (PXA270,
PXA300, PXA310, PXA320) such as the Toradex Colibri
Computer Module, supporting hardware to provide wired
and wireless connectivity, and a NAND Flash memory.
[0027] Therefore, the Platform can reside on systems built
upon many Operating Systems and hardware comprising a
microprocessor core and sufficient memory to support the
Platform. Exemplary embodiments of Operating Systems
comprise Android, Linux, Windows, etc.

[0028] In an exemplary embodiment, the Platform is an
application agnostic entity, thus the Platform is not tied to
any given stimulus and measurement capability or any given
user experience. As such, an exemplary embodiment of the
Platform is not limited to test and measurement systems and
could reside on any minimally capable hardware system and
support any hardware or software component which can be
wrapped in a Physical Instrument Layer and support a user
experience for a Physical Instrument as embodied in a
Virtual Instrument Layer. In an exemplary embodiment, a
physical instrument layer comprises a radio. In a second
exemplary embodiment, the physical instrument layer com-
prises test equipment. In an exemplary embodiment, a
complete functioning system made up of one or more Virtual
Instruments, one or more Physical Instruments, and a Test
Executable can be established on said hardware. Exemplary
embodiments of hardware may comprise an iPad, a Nexus 7,
or a Lenovo x230.

[0029] Inan exemplary embodiment, the Platform is hard-
ware agnostic, which allows the Platform to reside on a
plurality of hardware systems at one time, wherein each of
the hardware systems comprise a minimum processing and
memory capability to support the Platform. In an exemplary
embodiment, the Virtual Instrument Layer, the Physical
Instrument Layer, and the Test Executable Layer are not
tightly integrated, which allows each layer to reside on
hardware systems that are separate from the Platform.

[0030] In an exemplary embodiment, the Virtual Instru-
ment Layer is not tightly coupled with a Physical Instru-
ment, thus more than one Virtual Instrument abstraction can
run for a given Physical instrument. This enables the func-

Apr. 19,2018

tionality of a given Physical Instrument to be exposed in
multiple different manners providing a greater flexibility of
end-usage. For example, a Physical instrument comprises an
LED. The LED can be exposed as a Virtual Instrument
which abstracts the LED to the user. In an exemplary
embodiment, the LED may be abstracted to the user as a
Flashlight (the LED turns on and off), a Random Light
Pattern Maker, and a Morse Code Visual Signaling device.
In an exemplary embodiment, each Virtual Instrument can
reside on the hardware system simultaneously and can run
simultaneously if the given desired application implemen-
tation demands or benefits from simultaneous execution.

[0031] In an exemplary embodiment, the Physical Instru-
ment is not tightly coupled with the Platform, thus a plurality
of hardware and software capabilities can exist simultane-
ously and run simultaneously within the given hardware
system. For example, an Optical light Source Physical
Instrument, an Optical Power Meter Physical Instrument,
and a Copper Power Meter Physical Instrument can be
simultaneously supported on a given complete system run-
ning the Platform and provide the user the capability to test
an optical-copper link from end-to-end. In an exemplary
embodiment, a complete system may comprise the mini-
mum system to support the Platform as referenced above,
stimulus and measurement hardware for each of the Physical
Instruments, and either hardwired or wireless connectivity
between the hardware system hosting the Platform, wherein
the hardware systems embodies the stimulus and measure-
ment (such as a OPM Module, OLS Module, CPM Module).

[0032] In an exemplary embodiment, a complete system
may comprise a Lenovo X320 laptop running the Platform.
In an exemplary embodiment, three Independent modules
(OPM, OLS, CPM) each have their own battery, their own
onboard processing, and their own wireless link. In an
exemplary embodiment, each module is wirelessly con-
nected to the laptop via 802.11g. In an exemplary embodi-
ment, the Physical Instrument Driver for each module would
be executed on the Lenovo Laptop. In an exemplary embodi-
ment, different Virtual Instrument Drivers would run on the
laptop and interface with the Platform. The above system
would give a complete test system buildable upon any laptop
and infinitely configurable with Physical Instrument Mod-
ules and Virtual instruments.

[0033] In an exemplary embodiment, a Virtual Instrument
is not tightly coupled with the Physical Instrument, thus a
Virtual Instrument can be developed which interfaces with
one or more Physical Instruments. In an exemplary embodi-
ment, the complete system described above can expose an
OLS Virtual Instrument, an OPM Virtual Instrument, and a
CPM Virtual Instrument simultaneously, or a single Virtual
Instrument for a Fiber-Chopper Link Tester can be exposed
which wrappers all three Physical Instruments into a single
application.

[0034] Inan exemplary embodiment, the Platform layer is
hardware agnostic and the Physical and Virtual Instrument
layers are not tightly coupled, thus the communication
protocol between said pieces is flexible and is defined only
for a given complete system incarnation and meeting the
minimum requirements of the Physical Instrument embodi-
ment. In other words, as communication technology
improves (copper, Bluetooth, Wifi, etc) the complete system
is unlimited by the actual architecture implementation
through the “Platform™ and “Virtual Instrument” layer.

US 2018/0109599 A1l

[0035] Referring to the drawings, FIG. 1 is a diagram of an
exemplary embodiment of a distributed test system archi-
tecture 1. In an exemplary embodiment, the system 1
comprises core components, which comprise an application
manager 3, a service manager 5, a foundation loader 7, and
an inter process communicator 9. In an exemplary embodi-
ment, the application manager 3 monitors applications in the
system 1, detects crashes in the system, informs an error
handling management component 29 if a crash is detected,
and ensures that each application in the system performs an
application lifecycle. In an exemplary embodiment, the
application lifecycle comprises a start, and onresume, an
onpause, and a stop.

[0036] In an exemplary embodiment, the service manager
5 is responsible for how a service should be started, when the
service should be started, when the service should be shut
down, supporting the restarting of services, grants applica-
tion access to services, revokes application access to ser-
vices, provides an Application Programming Interface (API)
that will get a list of all available services on the system and
their current state, starts services when system actions have
been detected, and supports modular hardware. Exemplary
embodiments of system actions comprise OnStart, OnDe-
mand, OnEvent, and manual. In an exemplary embodiment,
the service manager 5 may be accessed remotely.

[0037] In an exemplary embodiment, OnDemand is a
system action which allows a service to be started only when
an application has requested it. OnDemand is a system
action which allows a service to shut down once that
application informs the service manager that it is no longer
required. In an exemplary embodiment, OnStart is a system
action which allows a service to start with the system 1 and
remain running at all times. In an exemplary embodiment,
OnEvent is a system action which allows a service to start
when a watcher plugin has detected some event. In an
exemplary embodiment, Manual is a system action which
allows an application to start and stop a service.

[0038] In an exemplary embodiment, the foundation
loader 7 starts both the Application Manager and Service
Manager, and is in control of system level power manage-
ment. In an exemplary embodiment, the foundation boot
loader composes the minimum services described above.

[0039] In an exemplary embodiment, the remote connec-
tion configuration 9 allows the system 1 to communicate
between itself, applications, and other systems. Exemplary
embodiments of a remote connection configuration com-
prise wired Ethernet, WiF1i, Bluetooth, and other connection
means such as [P addressing, Proxy, and VPN. Exemplary
embodiments of applications and other systems comprise an
android system, an iPhone, a WinPhone, and a PC Appli-
cation.

[0040] In an exemplary embodiment, various secondary
components can complement the performance of the core
components. In an exemplary embodiment, the secondary
components comprise a Package Manager 15, a License
Manager 17, a Data Storage Manager 19, a Power Manage-
ment Extension 21, a Remote Device Control 23, a Remote
Service Access (not shown), a Visual Studio Templates 25,
a Hardware Service 27, and an Error Handling Management
component

[0041] Inan exemplary embodiment, a Foundation API 30
is contained within the well-behaved application and the
appliance application.

Apr. 19,2018

[0042] FIG. 2 is an exemplary embodiment of a Founda-
tion API 30 contained within a well-behaved application. In
an exemplary embodiment, the Foundation API 30 com-
prises a power API 31, a licenses API 32, a Plugin API 33,
an ASYNC API (not shown), a package management API
34, an intent API 35, a Setting API 36, a Data Storage API
37, an Inter Process Communication API 38, an Export/
Import API 39, an Error Handling/Management API 40, and
a Network Configuration API 41.

[0043] In an exemplary embodiment, the power API pro-
vides access to current power status, provides the ability to
dim the screen in periods of inactivity, provides the ability
to shut off the screen in periods of inactivity, provides the
ability to shut down the system at specific power levels,
provides the ability to shut down the system with a specific
API call, provides the ability to restart the system with a
specific API call, and provides the ability to suspend the
system with a specific API call.

[0044] In an exemplary embodiment, the licenses API 32
installs licenses, requests information, such as type, about a
given license, removes licenses, verifies licenses, provides
an override mechanism that will force a manager to return
true for a license request, supports remote and local con-
nectivity, supports a number of license types, including full,
trial, and count limited licenses, and is secure enough to pass
a “Fired Employee Test”.

[0045] In an exemplary embodiment, the Plugin-API 33
obtains a list of all classes in a given assembly and dynami-
cally loads classes from specific assemblies at runtime. In an
exemplary embodiment, the ASYNC API performs back-
ground operations without having to use a NET thread class,
updates a Ul without special developer code to invoke
threads, and removes the complexity of join, cancel, and
synchronize functions from the developers hands.

[0046] In an exemplary embodiment, a package manage-
ment API 34 installs service and applications for the Foun-
dation API, downloads packages from various locations (e.g.
USB, Network Server, Cloud, etc.), checks software depen-
dencies during package installations, maintains a package
repository, define and enforce structure for valid Foundation
packages, and comprises a system package which installs
core services on a new unit. In an exemplary embodiment,
the package management API 34 exists on a unit OS before
any other applications or services are installed on that unit.

[0047] In an exemplary embodiment, an intent API 35
sends an intent class to an application launcher. The launcher
will determine if an application that could fill the intent can
be found on the system. If one is found, the application will
be started, the intent will passed to the applications, the
application will then return a message that will flow through
the application launcher and back to the original application.

[0048] In an exemplary embodiment, a setting API 36
generates simple application settings classes. In an exem-
plary embodiment, the setting API 36 loads a settings tile
with 100 simple types in under 500 ms, saves a settings file
with 100 simple types under 500 ms, supports migration
natively, and supports all bask types including integer, float,
double, and string.

[0049] In an exemplary embodiment, the data storage API
37 includes methods to create, retrieve, update, and delete
any data element needed by an application or service; is
accessible as a standard on-device or off-device (remote)
service; supports multiple data storage medium types in its

US 2018/0109599 A1l

API; provides a SQL database data store plugin, and sup-
ports adding data store plugins during upgrades.

[0050] In an exemplary embodiment, an Inter Process
Communication API 38 allows for cross process communi-
cations. In an exemplary embodiment, the Inter Process
Communication API 38 provides a mechanism to call meth-
ods in a different process, sends large amounts of data (>256
KB) from one process to another in under 1 sec, provides a
mechanism for two way communication, provides a mecha-
nism for sending structured data such as objects, and gen-
erates client side code from a given interface. Exemplary
embodiments of mechanisms for the Inter Process Commu-
nication API are Windows Messaging for a Windows system
and Named Pipes tor a Unix or Linux system.

[0051] In an exemplary embodiment, an export/import
API 39 extracts specified data from a device to leverage it
for other purposes, which is called exporting, and adds data
to a device so that the device can use it for various purposes,
which is called importing. In an exemplary embodiment, the
export/import API provides support for copying files to and
from a unit, imports simple CSV (comma separated value)
files into a data store plugin medium, exports data from a
data store plugin medium to a CSV file, provides hooks for
a user to design personalized import or export plugins, and
export data from data store plugin to either a PDF document,
a DB file, or an XML file.

[0052] In an exemplary embodiment, an error handling/
management API 40 provides error handling functionality
across all of the services and applications in the system 1. In
an exemplary embodiment, the error handling functionality
comprises error detection with error reception; error recov-
ery, which handles saving a state of running applications and
services as well as scheduling and execution of failover
options; error logging, which automatically logs and shares
certain errors via the logging service; and notification, which
allows apps and services to register for certain errors and
notifies the apps or services when those errors occur. In an
exemplary embodiment, errors may be classified as “Fatal”,

“Critical”, “Error”, “Warning”, “Informational”, and
“Debug.”
[0053] In an exemplary embodiment, a Network Configu-

ration API 41 provides the ability to control IP addressing.
In an exemplary embodiment, the Network Configuration
API 41 obtains IP addresses from a DHCP server on the
network, and provides the ability to set Provide, the ability
to set a known IP address, a subnet mask, a gateway address,
and primary and secondary DNS Addresses in a static
address system. In a proxy, the Network Configuration API
41 has the ability to set a Proxy server name, a port, a
username, and a password.

[0054] In an exemplary embodiment, the secondary com-
ponents shown in FIG. 1 are runtime components of the
Foundation API. In other words, the secondary components
are processes that will start up with the system. In an
exemplary embodiment the API’s built into every Founda-
tion application will interact with the runtime components to
perform their tasks. In an exemplary embodiment, the pack-
age management API 34 interacts with the Package Manager
15 to perform the associated tasks.

[0055] FIG. 3 is a flowchart of an exemplary embodiment
of'a plurality of processes in which a Foundation API utilizes
a system for communication between a first application/
device and a second application/device.

Apr. 19,2018

[0056] In an exemplary embodiment, the first step of a
method is that a first application/device makes a request to
a remote connection configuration in a distributed architec-
ture system. In a second step, the request is processed by a
service manager in the system. In a third step, the service
manager communicates with the second application/device
and identifies a location of the second application/device. In
an exemplary embodiment, the second application/device is
test equipment hardware, as shown in FIG. 3. In a fourth
step, the service manager sends the location of the second
application/device to the first application/device through the
remote connection configuration. In a fifth step, the first
application/device communicates directly with the second
application/device based upon the location provided by the
system. In an exemplary embodiment, FIG. 3 shows the first
application/device obtaining a reading from the second
application/device based upon the location provided by the
system.

[0057] In an exemplary embodiment, the first application/
device is a laptop and the second application/device is a fax
machine, scanner, or printer. In an exemplary embodiment,
the steps of the above method are produced without identi-
fying a head for the system.

[0058] FIG. 4A is a diagram of an exemplary embodiment
of a device running Platform connecting with a plurality of
devices. In an exemplary embodiment, a custom base unit 51
comprises an OTDR Physical Instrument, a CWDM Physi-
cal Instrument, and an OLS Virtual Instrument, which con-
trols the light Source Physical Instrument 56. In an exem-
plary embodiment, the custom base unit 51 {facilitates
communication between itself, the Light Source Physical
Instrument 55, the Power Meter Physical Instrument 56, and
the Device under test 53. In an exemplary embodiment, the
Power Meter Physical Instrument and the Light Source
Physical Instrument are on a Personal Computer (PC).

[0059] FIG. 4B is a diagram of a second exemplary
embodiment of a device running Platform. In an exemplary
embodiment, the second device 57 runs Platform and OTDR
Virtual Instrument, which controls the OTDR Physical
Instrument on the custom base unit 51. In an exemplary
embodiment, the second device 57 may be an iPad con-
nected to the custom base unit 51 by a wireless connection.

[0060] FIG. 4C is a diagram of a third exemplary embodi-
ment of a device running Platform. In an exemplary embodi-
ment, the third device 58 runs Platform and a Channel
Checker Virtual Instrument which controls a CWDM Physi-
cal Instrument on the custom base unit 51, a Power Meter
Virtual Instrument, which controls the Power Meter Physical
Instrument, and a Light Source Physical Instrument. In an
exemplary embodiment, the third device 58 is a PC with a
Windows OS.

[0061] Inan exemplary embodiment, the Platform and the
Virtual Instrument run on the iPad (second device 57) so
control a separate Physical Instrument in the system. In an
exemplary embodiment, the Platform runs on a specifically
designed base unit which physically encompasses two dif-
ferent Physical Instruments. In an exemplary embodiment,
the Platform and a plurality of Virtual Instruments run on the
PC (third device 58) with multiple Physical Instruments
connected, either wired or wirelessly, to separate Physical
Instrument modules. In an exemplary embodiment, the
devices of FIGS. 4A, 4B, and 4C work simultaneously to
create a complete test system.

US 2018/0109599 A1l

1-9. (canceled)

10. A method of connecting a first device comprising a
processor and a first application and a second device com-
prising a processor and a second application, the method
comprising:

registering at least one of the first device or the first

application within the first device with a configuration
manager;
requesting, by at least one of the second device or the
second application within the second device, the con-
figuration manager for connection information of a
device comprising a processor and an application;

providing the connection information of at least one of the
first device or the first application to at least one of the
second device or the second application wherein at
least one of the second device or the second application
directly communicates with at least one of the first
device or the first application based upon the connec-
tion information; and

wherein one of the first device, first application, second

device, or second application controls another of the
first device or second device to cause the another of the
first device or second device to obtain a reading from
the other of the first device or second device.

11. The method of claim 10, wherein the configuration
manager comprises an application manager that maps con-
nectivity between defined devices and applications.

12. The method of claim 11, wherein the connection
manager defines all devices and all applications in the
system and the defined devices and the defined applications
communicate directly with each other when the defined
devices and applications are configured and mapped.

13. The method of claim 11, wherein the configuration
manager defines all devices and applications in a virtual
system spread across multiple physical machines and the
devices and the applications communicate directly once
configured and mapped.

14. The method of claim 10, wherein the first device and
second device each comprise a plurality of applications.

15. The method of claim 10, wherein the one of the first
device, first application, second device, or second applica-
tion controls the another of the first device or second device
to cause the other of the first device or second device to
perform a measurement.

16. The method of claim 10, wherein the first device and
second device each comprises one of an Optical-based

Apr. 19,2018

Physical Instrument, a Copper-based Physical Instrument,
an Optical-based Virtual Instrument, or a Copper-based
Virtual Instrument.

17. A method of connecting devices, the method com-
prising:

receiving, by an application manager in a distributed

architecture system, a request by a first device com-
prising a processor to a remote connection configura-
tion in the distributed architecture system;

requesting, by the application manager, a service manager

to find a second device corresponding to the request to
the remote connection configuration;

receiving, by the application manager, information on the

location of the second device; and
sending, by the application manager, the information on
the location of the second device to the first device
through the remote connection configuration; and

connecting the first device with the second device based
upon the location information provided by the appli-
cation manager, wherein one of the first device or
second device controls the other of the first device or
second device to cause the other of the first device or
second device to obtain a reading from the other of the
first device or second device.

18. The method of claim 17, wherein the first device and
the second device directly communicate based on the loca-
tion information.

19. The method of claim 17, further comprising:

communicating, by the service manager, with the second

device and identifying the location of the second
device; and

sending, by the service manager, information on the

location of the second device to the application man-
ager.

20. The method of claim 17, wherein the first device and
second device each comprise a plurality of applications.

21. The method of claim 17, wherein the one of the first
device or second device controls the other of the first device
or second device to cause the other of the first device or
second device to perform a measurement.

22. The method of claim 17, wherein the first device and
second device each comprises one of an Optical-based
Physical Instrument, a Copper-based Physical Instrument,
an Optical-based Virtual Instrument, or a Copper-based
Virtual Instrument.

