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Beschreibung

GEBIET DER ERFINDUNG

[0001] Die Erfindung betrifft die Verschlüsselung mit öffentlichem Schlüssel.

[0002] Die zunehmende Verwendung und Weiterentwicklung der Datenübertragung auf den Gebieten wie Te-
lekommunikation, Netzwerkbetrieb, Zellulare Kommunikation, Funk-Kommunikation, "Smart Card"-Anwendun-
gen, audiovisuelle und Video-Kommunikationen hat zu einem zunehmenden Bedarf an Systemen geführt, die 
eine Datenverschlüsselung, Authentifizierung und Verifizierung gestatten.

[0003] Es ist bekannt, dass Daten unter Verwendung eines Schlüsselpaars verschlüsselbar sind, wobei der 
eine Schlüssel öffentlich und der andere privat ist. Die Schlüssel stehen mathematisch derart in Beziehung, 
dass mit dem öffentlichen Schlüssel verschlüsselte Daten nur mit dem privaten Schlüssel entschlüsselt werden 
können, und umgekehrt, wobei mit dem privaten Schlüssel verschlüsselte Daten nur mit dem öffentlichen 
Schlüssel entschlüsselt werden können. Auf diese Weise kann der öffentliche Schlüssel eines Empfängers 
derart verfügbar gemacht werden, dass für den Empfänger vorgesehene Daten mit dem öffentlichen Schlüssel 
verschlüsselt werden können und nur mit dem privaten Schlüssel des Empfängers entschlüsselt werden kön-
nen, oder umgekehrt, verschlüsselte gesendete Daten als authentisch verifiziert sind, wenn sie mit dem öffent-
lichen Schlüssel des Senders entschlüsselt werden.

[0004] Es ist bekannt, dass durch die Verwendung von Berechnungen in einem endlichen Körper, dessen Ele-
mente auf einer elliptischen Kurve liegen, d.h. durch Definieren einer Gruppenstruktur G auf den Lösungen von 
y2 + xy = x3 + ax2 + b über einem endlichen Körper, das Problem aufgrund der Attribute elliptischer Kurven 
schwierig ist. Deshalb ist es möglich, ein höheres Sicherheitsmaß für eine gegebene Schlüsselgröße zu errei-
chen. Alternativ kann ein verkleinerter Schlüssel dazu benutzt werden, ein gewünschtes Maß an Sicherheit zu 
bewahren.

[0005] Die durch den Gebrauch elliptischer Kurven geschaffene inhärente Sicherheit wird abgeleitet aus der 
Besonderheit, dass die Addition zweier Punkte auf der Kurve definiert werden kann als weiterer Punkt, der sich 
auf der Kurve befindet. In ähnlicher Weise resultiert das Ergebnis der Addition eines Punkts mit sich selbst zu 
einem weiteren, auf der Kurve liegenden Punkt. Durch Auswählen eines Anfangspunkts auf der Kurve und Mul-
tiplizieren des Punkts mit einer ganzen Zahl wird also ein neuer Punkt gewonnen, der auf der Kurve liegt. Dies 
bedeutet, dass wenn P = (x, y) ein Punkt auf einer elliptischen Kurve über einem endlichen Körper [E(F )] mit 
x und y jeweils als Vektor aus n Elementen ist, dann von einem weiteren Punkt R ∊ < P > (die von P erzeugte 
Untergruppe) gilt dP = R. Um ein solches Schema anzugehen, besteht die Aufgabe darin, ein effizientes Ver-
fahren zum Auffinden einer ganzen Zahl d, 0 ≤ d ≤ (Grad von P)–1 derart aufzufinden, dass dP = R. Um ein 
solches Schema aufzubrechen, besitzen die bislang besten bekannten Algorithmen Laufzeiten von nicht bes-
ser als O(√P), mit p als größte Teiler-Primzahl für den Grad der Kurve (die Anzahl von Punkten auf der Kurve).

[0006] Damit lässt sich in einem kryptografischen System, in welchem die ganze Zahl d geheim bleibt, die 
Schwierigkeit ausnutzen, um d zu bestimmen.

[0007] Aus Menezes A J et al. "Elliptic Curve Cryptosystems And Their Implementation", Journal of Cryptolo-
gy, vol. 6, no. 4, 1. Januar 1992 (1992-01-01), Seiten 209–224, XP002069135 ist es bekannt, Koordinaten ei-
nes auf einer elliptischen Kurve liegenden Punkt dadurch zu übermitteln, dass eine x-Koordinate und ein ein-
zelnes Bit der y-Koordinate gesendet werden, woraus die vollständige y-Koordinate durch Berechnungen ge-
wonnen werden kann.

[0008] Aspekte der Erfindung sind in den beigefügten Ansprüchen angegeben.

[0009] Im Folgenden wird eine Ausführungsform der Erfindung beispielhaft unter Bezugnahme auf die beglei-
tenden Zeichnungen beschrieben. Es zeigen:

[0010] Fig. 1 ein Diagramm der Übertragung einer verschlüsselten Nachricht von einem Ort zu einem ande-
ren,

[0011] Fig. 2 ein Diagramm eines Verschlüsselungsmoduls, welches in dem in Fig. 1 gezeigten Kommunika-
tionssystem verwendet wird,

q
n
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[0012] Fig. 3 ein Diagramm eines bei dem Verschlüsselungs- und Entschlüsselungsmodul nach Fig. 2 ver-
wendeten Prozessors für endliche Körper.

[0013] Fig. 4 ist ein Flussdiagramm, welches die Bewegung der Elemente durch den Prozessor nach Fig. 3
bei der Berechnung einer inversen Funktion veranschaulicht.

[0014] Fig. 5 ist ein Flussdiagramm, welches die Bewegung der Elemente durch den Prozessor nach Fig. 3
bei der Berechnung der Addition zweier Punkte veranschaulicht.

[0015] Im Folgenden wird eine Ausführungsform der Erfindung anhand eines EIGamal-Schlüsselaustausch-
protokolls und eines Galois-Felds F  zum Erläutern der grundlegenden Prinzipien erläutert. Anschließend 
werden Verfeinerungen beschrieben.

Systemkomponenten

[0016] Nach Fig. 1 soll eine Nachricht M von einem Sender 2 über einen Übertragungskanal 14 zu einem 
Empfänger 12 übertragen werden. Jeder Sender 10 und Empfänger 12 besitzt ein ihm zugehöriges Verschlüs-
selungs-/Entschlüsselungsmodul 16 zum Implementieren eines Schlüsselaustauschprotokolls und eines Ver-
schlüsselungs-/Entschlüsselungsalgorithmus.

[0017] Das Modul ist 16 schematisch in Fig. 2 dargestellt und enthält eine arithmetische Einheit 20 zum 
Durchführen von Berechnungen beim Schlüsselaustausch und bei der Schlüsselerzeugung. Ein Privatschlüs-
selregister 22 enthält einen Privatschlüssel d, erzeugt als 155 Bit lange Datenkette durch einen Zufallszahlge-
nerator 24 und verwendet zum Erzeugen eines öffentlichen Schlüssels, der in einem Register 26 für öffentliche 
Schlüssel gespeichert wird. Ein Basispunktregister 28 enthält die Koordinaten eines Basispunkts P, der in der 
ausgewählten elliptischen Kurve mit jeder Koordinate (x, y) liegt, dargestellt als 155 Bit lange Datenkette.

[0018] Jede der Datenketten ist ein Vektor aus Binärziffern, wobei jede Ziffer der Koeffizient eines Elements 
des endlichen Körpers in der Normalbasisdarstellung der Koordinate ist.

[0019] Die ausgewählte elliptische Kurve hat die allgemeine Form y2 + xy = x3 + ax2 + b, wobei die Parameter 
dieser Kurve, nämlich die Koeffizienten a und b, in einem Parameterregister 30 gespeichert sind. Die Inhalte 
der Register 22, 24, 26, 28 und 30 können unter der Steuerung einer CPU 32 bedarfsweise zu der arithmeti-
schen Einheit 20 transferiert werden.

[0020] Die Inhalte des Registers für öffentliche Schlüssel 26 stehen auch für den Übertragungskanal 14 bei 
Empfang einer entsprechenden Anforderung zur Verfügung. In der einfachsten Implementierung arbeitet jedes 
Verschlüsselungsmodul 16 in einer gemeinsamen Sicherheitszone mit derselben Kurve und demselben Basis-
punkt, so dass die Inhalte der Register 28 und 30 nicht zugänglich sein müssen. Wenn eine weitere Verfeine-
rung erforderlich ist, kann allerdings jedes Modul 16 seine eigene Kurve und eigenen Basispunkt auswählen, 
in welchem Fall die Inhalte der Register 28 und 30 für den Kanal 14 zugänglich sein müssen.

[0021] Das Modul 16 enthält weiterhin ein Ganzzahlregister 34, welches eine ganze Zahl k, den "Sessi-
on-Seed", von dem Generator 24 zur Verwendung bei der Verschlüsselungen und beim Schlüsselaustausch 
aufnimmt. Das Modul 16 besitzt einen Schreib-/Lesespeicher (RAM) 36, der als Zwischenspeicher während 
Berechnungen fungiert.

[0022] Das Verschlüsseln der Nachricht M mit einem Chiffrierschlüssel kdP, der von dem öffentlichen Schlüs-
sel dP und der Session-Seed-Ganzzahl k abgeleitet ist, erfolgt in einer Verschlüsselungseinheit 40, die einen 
ausgewählten Verschlüsselungsalgorithmus implementiert. Ein einfacher wenngleich effektiver Algorithmus 
besteht in einer XOR-Funktion, welche die Nachricht m mit den 310 Bits des Schlüssels kdP einer Exklu-
siv-Oder-Verknüpfung unterzieht.

[0023] Ein alternatives Verschlüsselungsprotokoll behandelt die Nachricht m1, m2, jeweils mit einer Länge von 
155 Bits im Fall von F , und bildet eine XOR-Verknüpfung der Nachricht m1, m2 mit den Koordinaten des Ses-
sion-Schlüssels kdP, um ein Paar Bit-Ketten (m1 ⊕ x0) (m2 ⊕ y0) zu bilden. Zur weiteren Sicherheit wird außer-
dem ein Paar Körperelemente z1z2 aus den Koordinaten (x0y0) des kdP gebildet.

[0024] In einer Ausführungsform werden die Elemente z1z2 aus der Aneinanderreihung eines Teils von x0 mit 
einem Teil von y0 gebildet, beispielsweise z1 = x01||y02 und z2 = x02||y01  
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wobei x01 die erste Hälfte der Bit-Kette von x0 ist  
x02 die zweite Hälfte der Bit-Kette von x0 ist  
y01 die erste Hälfte der Bit-Kette von y0 ist  
y02 die zweite Hälfte der Bit-Kette von y0 ist.

[0025] Die ersten Elemente z1 und z2, die als Körperelemente behandelt werden, werden anschließend mit 
den jeweiligen Bit-Ketten (m1 ⊕ x0) und (m2 ⊕ y0) multipliziert, um die Bit-Ketten c1c2 des chiffrierten Textes c 
zu bilden. d.h.

c1 = z1 (m1 ⊕ x0)

C2 = z2 (m2 ⊕ y0)

[0026] In einer bevorzugten Implementierung des Verschlüsselungsprotokolls wird anstelle von y0 in der obi-
gen Ausführungsform eine Funktion von x0 verwendet, beispielsweise dient die Funktion x  als die zweite 
155-Bit-Kette, so dass 

c1 = z1 (m1 ⊕ x0)

c2 = z2(m2 ⊕ x )

und 

Z1 = X01||x

z2 = X02||x

wobei x  die erste Hälfte von x  ist und  
x  die zweite Hälfte von x  ist.

[0027] Dieses Protokoll ist auch anwendbar auf die Implementierung einer Verschlüsselung mit elliptischer 
Kurve in einem anderen Körper als F  beispielsweise ZP oder allgemein F .

[0028] Wenn ZP verwendet wird, kann es notwendig sein, die Werte von x0 und y0 oder x  einzustellen, um 
einen Überlauf bei der Multiplikation mit z1 und z2 zu vermeiden. Üblicherweise geschieht dies durch Einstellen 
des höchstwertigen Bits x0 und F  oder y0 auf null.

Schlüsselerzeugung, -austausch und Verschlüsselung

[0029] Damit der Sender 10 die Nachricht M an den Empfänger 12 sendet, wird der öffentliche Schlüssel des 
Empfängers von dem Sender 10 erhalten. Der öffentliche Schlüssel wird von dem Empfänger 12 dadurch er-
halten, dass er das Produkt des geheimen Schlüssels d und des Basispunkts P in der arithmetischen Einheit 
20 berechnet, wie im Folgenden ausführlich erläutert wird. Das Produkt dP stellt einen Punkt auf der ausge-
wählten Kurve dar und dient als öffentlicher Schlüssel. Der öffentliche Schlüssel dP wird in Form von zwei 155 
Bit langen Datenketten in dem Register 26 für öffentliche Schlüssel gespeichert.

[0030] Nach Erhalt des öffentlichen Schlüssels dP durch den Sender 10 wird der Schlüssel im RAM 36 ge-
speichert. Man sieht, dass selbst dann, wenn der Basispunkt P bekannt und öffentlich verfügbar ist, die Attri-
bute der elliptischen Kurve das Herleiten des geheimen Schlüssels d verhindern.

[0031] Der Sender 10 verwendet die arithmetische Einheit 20 zum Berechnen des Produkts des Sessi-
on-Seeds k und des öffentlichen Schlüssels dP und speichert das Ergebnis kdP in dem RAM 36 zur Verwen-
dung bei dem Verschlüsselungs-Algorithmus. Das Ergebnis kdP ist ein weiterer Punkt auf der ausgewählten 
Kurve, wiederum dargestellt durch zwei 155 Bit lange Datenketten oder Vektoren, und dient als Chiffrierschlüs-
sel.

[0032] Der Sender 10 berechnet außerdem das Produkt des Session-Seeds k und des Basispunkts P, um ei-
nen neuen Punkt kP, nämlich den öffentlichen "Session-Schlüssel" oder "Sitzungs-Schlüssel" bereitzustellen, 
der in dem RAM 36 gespeichert wird.
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[0033] Der Sender 10 ist nun im Besitz des öffentlichen Schlüssels dP des Empfängers 12, eines öffentlichen 
Session-Schlüssels kP und eines Chiffrierschlüssels kdP und kann diese dazu benutzen, eine verschlüsselte, 
d.h. chiffrierte Nachricht zu senden. Der Sender 10 verschlüsselt die Nachricht M mit dem Chiffrierschlüssel 
kdP in der Verschlüsselungseinheit 40, wobei die ausgewählten, oben diskutierten Verschlüsselungsprotokolle 
implementiert werden, um eine verschlüsselte Nachricht C zu bilden. Der chiffrierte Text C wird zusammen mit 
dem Wert kP an das zu dem Empfänger 12 gehörige Verschlüsselungsmodul 16 gesendet.

[0034] Der Empfänger 12 macht Gebrauch von dem öffentlichen Session-Schlüssel kP mit Hilfe seines Pri-
vatschlüssels d, um den Chiffrierschlüssel kdP in der Arithmetikeinheit 20 zu berechnen und anschließend den 
chiffrierten Text C in der Verschlüsselungseinheit 40 zu entschlüsseln und die Nachricht M wiederzugewinnen.

[0035] Während dieses Austauschvorgangs bleiben der geheime Schlüssel d und der Session-Seed k ge-
heim und sicher. Obwohl P, kP und dP bekannt sind, lässt sich der Chiffrierschlüssel kdP nicht berechnen, be-
dingt durch die Schwierigkeit des Erhaltens von entweder d oder k.

[0036] Die Effizienz der Verschlüsselung hängt ab von der effizienten Berechnung der Werte kP, dP und kdP 
mit Hilfe der arithmetischen Einheit 20. Jede Berechnung erfordert die wiederholte Addition von zwei Punkten 
auf der Kurve, was wiederum die Berechnung von Quadraten und Inversen in F  erfordert.

Arbeitsweise der arithmetischen Einheit

[0037] Der Betrieb der arithmetischen Einheit 20 ist schematisch in Fig. 3 dargestellt. Die Einheit 20 enthält 
einen Multiplizierer 48 mit einem Paar zyklischer Schieberegister 42, 44 und einem Akkumulatorregister 46. 
Jedes der Register 42, 44 und 46 enthält M Zellen 50a, 50b...50m, im vorliegenden Beispiel 155 Zellen, um 
die m Elemente einer Normalbasisdarstellung einer der Koordinaten von beispielsweise x von P aufzunehmen. 
Wie vollständig in dem US-Patent 4 745 568 erläutert ist, sind die Zellen 50 der Register 42, 44 mit entspre-
chenden Zellen 50 des Akkumulatorregisters 46 derart verbunden, dass in jeder Zelle des Registers 46 ein 
gruppenweiser Term erzeugt wird. Die Register 42, 44 und 46 sind außerdem direkt bitweise verbunden, um 
rasche Transfers von Daten zwischen den Registern zu ermöglichen.

[0038] Die Bewegung der Daten durch die Register wird gesteuert von einem Steuerregister 52, welches den 
Befehlssatz gemäß folgender Tabelle ausführen kann: 

2
m
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[0039] Die Einheit 20 enthält einen Addierer 54 zum Empfangen von Daten aus den Registern 42, 44, 46 und 
dem RAM 36. Der Addierer 54 bildet eine XOR-Funktion, sein Ausgangssignal entspricht einem Datenstrom, 
der in dem RAM 36 oder in einem der Register 42, 44 gespeichert werden kann. Obwohl als serielles Bauele-
ment dargestellt, ist ersichtlich, dass er in Form zweier paralleler Bauelemente implementiert werden kann, um 
die Berechnungszeit zu verbessern. In ähnlicher Weise können die Register 42, 44 und 46 parallel geladen 
werden. Jedes der Register 42, 44 und 46 ist ein 155 Bit langes Register und wird adressiert von einem 
32-Bit-Datenbus, so dass 32 Bits Daten in zwei Taktzyklen transferiert werden können und der gesamte Lade-
vorgang in fünf Operationen geschieht.

[0040] Die bei der Berechnung verwendeten Unterroutinen werden im Folgenden diskutiert.

TABELLE 1

BEFEHLSSATZ
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a) Multiplikation

[0041] Das zyklische Verschieben der Elemente durch die Register 42 und 44 mit m Wiederholungen in Ver-
bindung mit einer zugehörigen Verschiebung des Akkumulatorregisters 46 akkumuliert aufeinander folgende 
Gruppenterme in einzelnen Akkumulatorzellen, wobei eine vollständige Umwälzung der Elemente in den Re-
gistern 42 und 44 die Elemente des Produkts im Akkumulatorregister 46 bildet.

b) Quadrierung

[0042] Durch Arbeiten in F  und Einführen einer Normalbasisdarstellung der Körperelemente kann der Multi-
plizierer 48 auch das Quadrat einer Zahl dadurch bilden, dass die Elemente einer Zelle durch das Register 42
zyklisch verschoben werden. Nach einer Zellenverschiebung repräsentieren die in dem Register enthaltenen 
Elemente das Quadrat der Zahl. Allgemein lässt sich eine Zahl zur Potenz 29 erheben, indem man g-mal eine 
zyklische Verschiebung durch ein Register vollzieht.

c) Inversion

[0043] Die Berechnung der Inversen einer Zahl lässt sich in effizienter Weise mit dem Multiplizierer 48 da-
durch vornehmen, dass man einen Algorithmus implementiert, der von mehreren Quadrierungen Gebrauch 
macht. Die Inverse X–1 wird dargestellt in der Form

.

[0044] Wenn man m-1 als das Produkt zweier Faktoren g, h ansieht, lässt sich X–1 umschreiben in der Form

der

, mit β = X2.

[0045] Der Exponent 2gh–1 ist äquivalent zu 

[0046] Der Term 2g–1lässt sich schreiben in der Form 

so dass

und wird als γ bezeichnet.

[0047] Dieser Term lässt sich mit dem Multiplizierer 48 gemäß Fig. 4 dadurch berechnen, dass man zunächst 
das Register 42 mit dem Wert X lädt. Dies wird um eine Zelle verschoben, um β (d.h. x2) darzustellen, das Er-
gebnis wird in beide Register 42, 44 geladen.

[0048] Das Register 44 wird dann verschoben, um β2 zu erhalten, und die Registerinhalte der Register 42 und 
44 werden multipliziert, um im Akkumulatorregister 46 den Wert β2+1 zu erhalten. Erreicht wird die Multiplikation 
mit einer Bewegung in Form einer m Bits umfassenden zyklischen Verschiebung jedes der Register 42, 44 und 

2
m
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46.

[0049] Der akkumulierte Term β1+2 wird in die Register 44 und 42 transferiert, die β2 enthalten, und dies wird 
um eine Stelle zum Erhalten von β4 verschoben. Dann werden die Register 42, 44 multipliziert, um β1+2+4 zu 
erhalten.

[0050] Diese Prozedur wird (g-2)-mal wiederholt, um γ zu erhalten. Wie im Folgenden beschrieben wird, lässt 
sich γ in ähnlicher Weise exponenzieren, um 

,d.h. x–1, zu erhalten.

[0051] Dieser Term lässt sich ausdrücken in der Form

.

[0052] Wie oben angemerkt, lässt sich γ dadurch auf 29 exponenzieren, dass man die Normalbasisdarstel-
lung g-mal im Register 42 oder 44 verschiebt.

[0053] Damit werden die Register 42 und 44 jeweils mit dem Wert γ geladen, und das gmal verschobene Re-
gister 42 liefert den Wert  Die Register 42, 44 werden multipliziert, um  oder  zu erhalten im Ak-
kumulatorregister 46. Dieser Wert wird zum Register 44 transferiert, und das Register 42 wird g-mal verscho-
ben, um  zu erhalten.

[0054] Dann liefert die Multiplikation  . Das Wiederholen dieser Prozedur insgesamt (h-1)g-1-mal lie-
fert die Inverse von X im Akkumulatorregister 46.

[0055] Aus dem oben Gesagten ergibt sich, dass Quadrieren, Multiplizieren und Invertieren in effektiver Wei-
se unter Verwendung des für endliche Körper ausgelegten Multiplizierers 48 erfolgen können.

Addition des Punkts p auf sich selbst (p + p) unter Verwendung von Unterroutinen

[0056] Um den Wert von dP zum Erzeugen des öffentlichen Schlüssels zu berechnen, berechnet die zum 
Empfänger 12 gehörige arithmetische Einheit 20 zunächst die Addition P + P. Wie eingangs erwähnt, besitzt 
bei einer nicht-supersingulären Kurve der neue Punkt Q Koordinaten (X3, Y3) mit 

[0057] Um X3 zu berechnen, können gemäß Fig. 5 die folgenden Schritte implementiert werden.

[0058] Die m Bits, die X1 darstellen, werden aus dem Basispunktregister 28 in das Register 42 geladen und 
eine Zelle nach rechts verschoben, um X  zu erhalten. Dieser Wert wird im RAM 36 gespeichert, und es wird 
in der oben beschriebenen Weise die Inverse von X  berechnet.

[0059] Der Wert von X  wird in das Register 44 geladen, und der Parameter b wird aus dem Parameterregis-
ter 30 geholt und in das Register 42 geladen. Das Produkt bX  wird im Akkumulatorregister 46 berechnet durch 
Drehen der Bit-Vektoren, und der Ergebniswert wird in dem Addierer 52 mit dem Wert X , der in dem RAM 36
gespeichert ist, eine Exklusiv-Oder-Verknüpfung unterzogen, um die Normalbasisdarstellung von X3 zu erhal-
ten. Das Ergebnis kann in dem RAM 36 gespeichert werden.

[0060] Eine ähnliche Prozedur kann dazu benutzt werden, Y3 zu generieren, indem zunächst X1 invertiert 
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wird, das Ergebnis mit Y multipliziert wird und dann in dem Addierer 52 mit X1 einer Exklusiv-Oder-Verknüpfung 
unterzogen wird. Dies wird dann mit X3 multipliziert, welches im RAM 36 gespeichert ist, und das Ergebnis wird 
exklusiv-oder-verknüpft mit dem Wert von X3 und X , um Y3 zu erhalten.

[0061] Der Ergebniswert von (X3, Y3) bedeutet die Summe P + P und ist ein neuer Punkt Q auf der Kurve. 
Dieser Wert kann dann auf P addiert werden, um einen neuen Punkt Q' zu bilden. Dieser Prozess kann 
(d-2)-mal wiederholt werden, um dP zu generieren.

[0062] Die Addition von P + Q erfordert die Berechnung von (X3, Y3) mit 

und

[0063] Dies wird (d-2)-mal mit einem neuen Wert für Q bei jeder Iteration wiederholt, um dP zu berechnen.

[0064] Während dies im Prinzip mit Hilfe der Arithmetikeinheit 20 geschehen kann, machen in der Praxis die 
großen Zahlen eine derartige Prozedur undurchführbar. Eine elegantere Vorgehensweise ist mit Hilfe der Bi-
närdarstellung der ganzen Zahl d verfügbar.

Berechnung von dP aus 2P

[0065] Um das Addieren nicht-ähnlicher Punkte P und Q zu vermeiden, dient die Binärdarstellung von d in 
Verbindung mit einem Verdopplungsverfahren zum Reduzieren der Anzahl von Additionen und deren Komple-
xität.

[0066] Die ganze Zahl d lässt sich ausdrücken in der Form

[0067] Die Werte von λ sind die binäre Darstellung von d.

[0068] Nach der Berechnung von 2P kann der gewonnene Wert mit sich selbst addiert werden, wie oben in 
Verbindung mit Fig. 5 beschrieben wurde, um 22P zu erhalten, welcher Wert wiederum auf sich selbst addiert 
werden kann, um 23P zu erhalten, etc. Dies wird solange wiederholt, bis 2iP erhalten ist.

[0069] Bei jeder Iteration wird der Wert von 2iP in dem RAM 36 gehalten für nachfolgende Additionen zwecks 
Gewinnung von dP.

[0070] Die arithmetische Einheit 20 führt eine weitere Menge von Additionen für nichtähnliche Punkte gleicher 
Terme durch, wobei λ den Wert 1 hat, so dass der Ergebniswert des Punkts (x3, y3) für dP erhalten wird.

[0071] Wenn beispielsweise k=5, so lässt sich dies berechnen in der Form 22P + p oder 2p + 2P + P oder Q 
+ Q + P. Das Ergebnis lässt sich also durch drei Additionen erhalten. 2P = Q erfordert eine Addition, 2P + 2p 
= Q + Q = R bedeutet eine Addition, und R + P bedeutet eine Addition. Es sind höchstens t Verdopplungen und 
t anschließende Additionen erforderlich, abhängig davon, wie viele λ den Wert 1 haben.

Leistung der arithmetischen Einheit 20

[0072] Für Berechnungen in einem Galois-Feld F  hat sich gezeigt, dass das Berechnen der Inversen etwa 
3800 Taktzyklen erfordert.
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[0073] Das Verdoppeln eines Punkts, das ist die Addition eines Punkts auf sich selbst, nimmt größenord-
nungsmäßig 4500 Taktzyklen in Anspruch, und für eine praktische Implementierung eines privaten Schlüssels 
lässt sich die Berechnung des öffentlichen Schlüssels dP größenordnungsmäßig innerhalb von 1,5 × 105 Takt-
zyklen erhalten. Bei einer typischen Taktgeschwindigkeit von 40 MHz erfordert die Berechnung dP etwa 3 ×
10–2 Sekunden. Dieser Durchsatz lässt sich steigern, wenn man den Seed-Schlüssel k mit einem Ham-
ming-Gewicht, beispielsweise mit 20, begrenzt, um dadurch die Anzahl von Additionen nicht-ähnlicher Punkte 
einzugrenzen.

Berechnung eines öffentlichen Session-Schlüssels kP und des Chiffrierschlüssels kdP

[0074] Der öffentliche Session-Schlüssel kP lässt sich in ähnlicher Weise mit Hilfe der arithmetischen Einheit 
20 des Senders 10 unter Verwendung des Basispunkts P aus dem Register 28 berechnen. Weil der öffentliche 
Schlüssel dP als ein Punkt (x3, y3) dargestellt wird, lässt sich in ähnlicher Weise auch der Chiffrierschlüssel kdP 
berechnen.

[0075] Jede dieser Operationen beansprucht ähnlich viel Zeit und kann vor dem Sendevorgang abgeschlos-
sen werden.

[0076] Der Empfänger 12 muss in ähnlicher Weise dkP berechnen, wenn er den verschlüsselten Text C emp-
fängt, was wiederum 3 × 10–2 Sekunden in Anspruch nimmt, also innerhalb der für eine praktische Implemen-
tierung einer Verschlüsselungseinheit erwarteten Zeit liegt.

[0077] Der öffentliche Schlüssel dP und der Session-Schlüssel kP werden jeweils dargestellt in Form einer 
310 Bit langen Datenkette, und sie erfordern insoweit eine deutlich verringerte Bandbreite für die Übertragung. 
Gleichzeitig schaffen die Attribute von elliptischen Kurven eine sichere Verschlüsselungsstrategie mit prakti-
scher Implementierung aufgrund der Effizienz der arithmetischen Einheit 20.

Kurvenauswahl

a) Auswahl des Körpers F

[0078] Das obige Beispiel hat von einem Körper von 2155 Gebrauch gemacht sowie von einer nicht-supersin-
gulären Kurve. Der Wert 155 wurde zum Teil deshalb gewählt, weil es eine optimale Normalbasis in F  über 
F2 gibt. Allerdings besteht eine Haupterwägung in der Sicherheit und der Effizienz des Verschlüsselungssys-
tems. Der Wert 155 ist groß genug, um sicher zu sein, gleichzeitig aber auch klein genug, um einen effizienten 
Betrieb zu ermöglichen. Die Berücksichtigung üblicher Angriffe zum Knacken eines verschlüsselten Textes legt 
nahe, dass bei elliptischen Kurven über F  ein Wert von m von etwa 130 ein sehr sicheres System ergibt. Die 
Verwendung von 1000 parallel arbeitenden Geräten ermöglicht das Auffinden eines Logarithmus in einer Zeit 
von etwa 1,5 × 1011 Sekunden oder mindestens 1500 Jahren mit Hilfe des besten bekannten Verfahrens und 
des Körpers F . Andere Methoden führen zu noch längeren Laufzeiten.

b) Supersinguläre gegenüber nicht-supersingulären Kurven

[0079] Ein Vergleich von Angriffen auf mit Hilfe elliptischer Kurven verschlüsselte Daten legt nahe, dass 
nicht-supersinguläre Kurven robuster sind als supersinguläre Kurven. Für einen Körper F  zeigt ein Angriff ba-
sierend auf dem Verfahren, wie es von Menezes, Okamoto und Vanstone in dem Artikel "Reducing elliptic cur-
ve logarithms to logarithms in finite field", veröffentlicht in Proceeding 22 Annual ACM Symposium Theory 
Computing 1991, Seiten 80–89 (The MOV attack) offenbart ist, dass bei kleinen Werten von k der Angriff sub-
exponenziell wird. Zu den meisten supersingulären Kurven gehören kleine Werte von k. Im Allgemeinen jedoch 
haben nicht-supersinguläre Kurven große Werte von k, und bei k>log2q wird der MOV-Angriff weniger wirksam 
als mehr herkömmliche allgemeine Angriffe.

[0080] Die Verwendung einer supersingulären Kurve ist deshalb attraktiv, weil die Verdopplung eines Punkts 
(d.h. P = Q) keine Echtzeit-Inversion des zugrunde liegenden Körpers erfordert. Bei einer supersingulären Kur-
ve lauten die Koordinaten von 2P sind 

[0081] Weil a eine Konstante ist, sind a–1 und a–2 für eine gegebene Kurve fest und können vorab berechnet 
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werden. Die Werte x  und x  lassen sich mit einer einfachen bzw. doppelten zyklischen Verschiebung im Mul-
tiplizierer 48 errechnen. Allerdings erfordert die anschließende Addition von nicht-ähnlichen Punkten zur Bil-
dung des Werts von dP immer noch die Berechnung der Inversen in der Form 

und 

[0082] Obwohl also supersinguläre Kurven zu effizienten Implementierungen führen, gibt es eine relativ kleine 
Menge von supersingulären Kurven, aus denen ausgewählt werden kann, insbesondere dann, wenn die Ver-
schlüsselung robust sein soll. Bei einer supersingulären Kurve, bei der m ungerade ist, gibt es drei Klassen 
von Kurven, die weiter betrachtet werden können, nämlich 

y2 + y = x3

y2 + y = x3 + x

y2 + y = x3 + x + 1

[0083] Allerdings zeigt eine Betrachtung dieser Kurven für den Fall m = 155, dass keine von ihnen die für At-
tacken notwendige Widerstandsfähigkeit besitzt.

[0084] Eine verbesserte Sicherheit für supersinguläre Kurven lässt sich dadurch erreichen, dass man quadra-
tische Erweiterungen des zugrunde liegenden Körpers verwendet. Tatsächlich gibt es in Fq mit q = 2310, d.h. 
einer quadratischen Erweiterung von F  unter den supersingulären Kurven insgesamt vier, bei denen der 
MOV-Angriff die Berechnung diskreter log-Werte in F  erfordert. Diese Kurven, liefern die erforderliche hohe 
Sicherheit und ermöglichen auch einen hohen Durchsatz. In ähnlicher Weise existieren in anderen Erweiterun-
gen von Unterkörpern von F  (z.B. F ) weitere Kurven, die die erforderliche Robustheit besitzen. Allerdings 
erhöht ihre Verwendung die Anzahl der Ziffern, die einen Punkt definieren, mithin die Bandbreite bei ihrer Über-
tragung.

[0085] Im Gegensatz dazu beträgt die Anzahl nicht-supersingulärer Kurven von Fq mit q = 2155:2(2155 – 1). 
Durch Auswahl von q = 2, d.h. eines Körpers F , kann der Wert von a in der Darstellung der Kurve y2 + xy = x3

+ ax2 + b so gewählt werden, dass er entweder 1 oder 0 lautet, ohne dass hierdurch ein Verlust von Allgemein-
gültigkeit entsteht. Diese umfangreiche Wahl von Kurven ermöglicht das Auffinden einer großen Anzahl von 
Kurven über diesem Körper, für die der Grad einer Kurve durch einen großen Primfaktor teilbar ist. Im Allge-
meinen ist die Bestimmung des Grads einer beliebigen nicht-supersingulären Kurve über Fq nicht trivial, eine 
Möglichkeit ist ausgeführt in einem Papier mit dem Titel "Counting Points on Elliptic Curves" von Menezes, 
Vanstone und Zuccherato, Mathematics of Computation 1992.

[0086] Im Allgemeinen jedoch ist die Auswahl geeigneter Kurven im Stand der Technik bekannt. Als Beispiel 
wird verwiesen auf "Application of Finite Fields", Kapitel 7 und 8, von Menezes, Blake et al., Kluwer Academic 
Publishers (ISBN 0-7923-9282-5). Wegen der großen Anzahl derartiger Kurven, die den Anforderungen ent-
sprechen, wird ungeachtet der zusätzlichen Berechnungen die Verwendung von nicht-supersingulären Kurven 
bevorzugt.

[0087] Eine alternative Vorgehensweise, welche die Anzahl von Inversionen bei Verwendung nicht-supersin-
gulärer Kurven reduziert, besteht in der Verwendung von homogenen Koordinaten. Ein Punkt P wird definiert 
durch die Koordinaten (x, y, z) und Q durch den Punkt (x2, y2, z2).

[0088] Der Punkt (0, 1, 0) bedeutet die Identität 0 in E.

[0089] Um die Additionsformen für die elliptische Kurve mit dieser Darstellung herzuleiten, nehmen wir die 
Punkte P = (x1, y2, z1) und Q = (x2, y2, z2), normieren jeweils auf (x1/z1, y1/z1, 1), (x2/z2, y2/z2, 1) und wenden die 
obigen Additionsformen an.  
Wenn  
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P = (x1, y1, z1), Q = (x2, y2, z2), P, Q ≠ O, und P ≠ –Q, dann ist  
P + Q = (x3, y3, z3), wobei, falls P ≠ Q, dann  
x3 = AD  
y3 = CD + A2(Bx1 + Ay1)  
Z3 = A3Z1Z2  
wobei A = x2z1 + x1z2, B = y2z1 + y1z2, C = A + B und  
D = A2(A + az1z2) + z1z2BC.

[0090] Im Fall von P = Q gilt  
x3 = AB  
y3 = x A + B(x  + y1z1 + A)  
z3 = A3 wobei A = x1z1 und B = bz  + x

[0091] Man sieht, dass die Berechnung von x3, y3 und z3 keinerlei Inversion erfordert. Um allerdings die Ko-
ordinaten x , y  in einer nicht-homogenen Darstellung herzuleiten, ist es notwendig, die Darstellung so zu nor-
mieren, dass 

[0092] Dieser Vorgang erfordert eine Inversion, die die oben angesprochene Prozedur verwendet. Allerdings 
ist lediglich eine Inversion zum Berechnen von dP erforderlich.

[0093] Durch die Verwendung homogener Koordinaten ist es immer noch möglich, dP unter Verwendung der 
Version des Verdopplungs- und Additionsverfahrens zu berechnen, welches oben beschrieben wurde. Der Be-
rechnungsvorgang von P + Q, P ≠ Q, erfordert 13 Körper-Multiplikationen, und 2P erfordert 7 Multiplikationen.

Alternativer Schlüsseltransfer

[0094] In dem obigen Beispiel werden die Koordinaten der Schlüssel kP transferiert als zwei 155 Bit lange 
Körperelemente für F . Um die Bandbreite noch weiter zu reduzieren, ist es möglich, nur eine der Koordinaten 
zu senden und die anderen Koordinaten im Empfänger zu berechnen. Eine Kennung, beispielsweise ein ein-
zelnes Bit des korrekten Werts der anderen Koordinate, kann ebenfalls übertragen werden. Dies ermöglicht, 
die zweite Koordinate am Empfänger zu berechnen und die korrekte Koordinate anhand der Kennung zu iden-
tifizieren.

[0095] Bezugnehmend auf Fig. 1 holt also der Sender 10 zunächst den öffentlichen Schlüssel dP des Emp-
fängers 12, ferner eine Bit-Kette für die Koordinate x0 und ein einzelnes Bit der Koordinate y0.

[0096] Der Sender 10 besitzt die Parameter der Kurve im Register 30 und kann daher die Koordinate x0 und 
die Kurven-Parameter dazu benutzen, mögliche Werte der anderen Koordinate y0 aus der arithmetischen Ein-
heit 20 zu erhalten.

[0097] Für eine Kurve in der Form y2 + xy = x3 + ax2 + b und eine Koordinate x0 sind dann die möglichen Werte 
y1, y2 für y0 die Wurzeln der quadratischen Gleichung y2 + x0Y = x  + ax  + b.

[0098] Durch Auflösen nach y in der arithmetischen Einheit 20 erhält man zwei mögliche Wurzeln, und ein 
Vergleich mit dem gesendeten Informations-Bit gibt an, welcher der Werte der passende Wert für y ist.

[0099] Die beiden möglichen Werte der zweiten Koordinate (y0) unterscheiden sich um x0, d.h. y1 = y2 + x0.

[0100] Da die beiden Werte von y0 um x0 voneinander abweichen, unterscheiden sich y, und y2 stets, wobei 
"1" in der Darstellung von x0 auftritt. Folglich wird das zusätzlich gesendete Bit aus einer jener Positionen aus-
gewählt, und die Untersuchung des entsprechenden Bits der Werte von y0 gibt an, welche der beiden Wurzeln 
der passende Wert ist.

[0101] Auf diese Weise kann der Empfänger 10 die Koordinaten des öffentlichen Schlüssels dP auch dann 
generieren, wenn nur 156 Bits aufgefunden werden.

[0102] Ähnliche Wirkungsweisen lassen sich beim Senden des Session-Schlüssels kP zu dem Empfänger 12
realisieren, da der Sender 12 nur eine Koordinate übertragen muss, nämlich x0 und das ausgewählte Ken-
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nungsbit für y0. Der Empfänger 12 kann dann die möglichen Werte von y0 rekonstruieren und den passenden 
Wert wählen.

[0103] Im Körper F  ist es nicht möglich, mit Hilfe der quadratischen Formel bei 2a = 0 eine Lösung für y zu 
erhalten. Folglich werden andere Methoden benötigt, wobei die arithmetische Einheit 20 speziell ausgebildet 
ist, um dies effizient auszuführen.

[0104] Im Allgemeinen ist x0 von null verschieden, und wenn y = x0z, so gilt x z2 + x z = x  + ax  + b

[0105] Dies lässt sich umschreiben in der Form

[0106] Das heißt: z2 + z = c.

[0107] Wenn m ungerade ist, so gilt entweder

oder

um zwei mögliche Werte für y0 zu schaffen.

[0108] Eine ähnliche Lösung existiert für den Fall, dass m gerade ist, so dass ebenfalls die Terme in der Form 
c20 benutzt werden.

[0109] Dies eignet sich besonders zur Verwendung bei einer Normalbasisdarstellung in F

[0110] Wie oben angemerkt, lässt sich das Erheben eines Köperelements in F  in die Potenz von g erreichen 
durch eine g-fache zyklische Verschiebung, bei der das Körperelement als eine Normalbasis dargestellt wird.

[0111] Folglich lässt sich jeder Wert von z berechnen, indem man Verschiebungen und Additionen durchführt, 
um die Wert für y0 zu erhalten. Der korrekte Wert bestimmt sich durch das zusätzlich übertragene Bit.

[0112] Die Verwendung einer Normalbasisdarstellung in F  vereinfacht mithin das Protokoll zum Wiederge-
winnen der Koordinate y0.

[0113] Wenn P = (x0y0) ein Punkt auf der elliptischen Kurve E : y2 + xy = x3 + ax2 + b ist, definiert über einem 
Körper F , dann ist 0 definiert zu 0, falls x0 = 0, und bei x0 ≠ 0 ist 0 definiert durch das niedrigstwertige Bit in 
dem Körperelement y0·x .

[0114] Die x-Koordinate x0 von P und das Bit 0 werden zwischen dem Sender 10 und dem Empfänger 12
übertragen. Die y-Koordinate y0 lässt sich dann folgendermaßen gewinnen. 

1. Wenn x0 = 0, so wird y0 durch zyklisches Verschieben der Vektordarstellung des Körperelements b, die 
in dem Parameterregister 30 um eine Position nach links gespeichert ist, erhalten. Das heißt, wenn b = 
bm–1bm–2 .... b1b0 dann y0 = bm–2 .... b1b0bm–1

2. Wenn x0 ≠ 0, dann geschieht Folgendes:  
2.1 Berechne das Körperelement c = x0 + a + bx  in F   
2.2 Sei die Vektordarstellung von c C = Cm–1 Cm–2 ....C1C0.  
2.3 Konstruiere ein Körperelement z = Zm–1Zm–2 ....Z1Z0, indem gesetzt wird: Z0 = y0, Z1 = C0 ⊕ Z0, Z2 = C1 ⊕
Z1, Zm–2 = Cm–3 ⊕ Zm–3,  
2.4 Schließlich berechne man y0 = x0·z.

[0115] Man sieht, dass die Berechnung x  in einfacher Weise in der arithmetischen Einheit 20 in oben be-
schriebener Weise vorgenommen werden kann, und dass die Berechnung von y0 mit Hilfe des Multiplizierers 
48 vorgenommen werden kann.
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[0116] In den obigen Beispielen wurde die Identifizierung des richtigen Werts von y0 erreicht durch Übertragen 
eines einzelnen Bits und durch einen Vergleich des Werts der gewonnenen Wurzel. Allerdings können auch 
andere Indikatoren zum Identifizieren des passenden Werts verwendet werden, wobei der Vorgang nicht be-
schränkt ist auf die Verschlüsselung mit Hilfe elliptischer Kurven auf dem Körper GF(2m). Wenn beispielsweise 
der Körper ausgewählt ist zu Zp p = 3 (mod 4), so könnte das Legendre-Symbol in Verbindung mit dem pas-
senden Wert gesendet werden, um den richtigen Wert zu kennzeichnen. Alternativ könnte die Menge der Ele-
mente in Zp aufgeteilt werden in ein Paar Untermengen mit der Eigenschaft, dass, wenn y in der einen Unter-
menge liegt, -y in der anderen liegt, vorausgesetzt, dass y≠0. Dann lässt sich den einzelnen Untermengen ein 
beliebiger Wert zuordnen und mit der Koordinate x0 übertragen, um anzugeben, in welcher Untermenge sich 
der passende Wert für y0 befindet. Folglich lässt sich der passende Wert für y0 bestimmen. In geeigneter Weise 
ist es möglich, eine passende Darstellung zu verwenden, bei der die Untermengen angeordnet sind als Inter-
valle, um so die Kennzeichnung des passenden Werts von y0 zu erleichtern.

[0117] Diese Methoden eignen sich besonders gut für die Verschlüsselung unter Verwendung elliptischer Kur-
ven, lassen sich aber auch einsetzen bei beliebigen algebraischen Kurven und finden Anwendung auf anderen 
Gebieten, so z.B. bei einer Fehlerkorrekturkodierung, bei der Koordinaten von Punkten auf Kurven zu transfe-
rieren sind.

[0118] Man erkennt daher, dass durch Verwenden einer elliptischen Kurve, die in dem endlichen Körper GF
liegt, und durch Verwenden einer Normalbasisdarstellung die zum Verschlüsseln mit elliptischen Kurven not-
wendigen Berechnungen effizient ausgeführt werden können. Derartige Berechnungen lassen sich entweder 
in Software oder in Hardware implementieren, und die Strukturierung der Berechnungen macht Gebrauch von 
einem Multiplizierer für endliche Körper, was insbesondere bei Implementierung als Hardware effizient ist.

Patentansprüche

1.  Verfahren zum Transferieren von Koordinaten eines Punkts auf einer nicht supersingulären elliptischen 
Kurve von einem ersten Korrespondenten (10) zu einem zweiten Korrespondenten (12), welcher mit dem ers-
ten Korrespondenten durch eine Datenübertragungsverbindung (12) verbunden ist und die Parameter der Kur-
ve enthält, wobei die Koordinaten eine erste Koordinate beinhalten, die zwei mögliche Punkte auf der Kurve 
bestimmen, die jeweils beide eine zugehörige zweite Koordinate besitzen, umfassen folgende Schritte:  
a) der erste Korrespondent wird entsprechend der ersten Koordinate des Punkts zu dem zweiten Korrespon-
denten vorgerückt;  
b) der erste Korrespondent identifiziert für den zweiten Korrespondenten eine Untermenge, die eine der zwei-
ten Koordinaten entsprechend dem genannten Punkt beinhaltet und die andere der zweiten Koordinaten aus-
schließt;  
c) der zweite Korrespondent berechnet die zweite Koordinate aus der ersten Koordinate und der Kurve;  
d) der zweite Korrespondent bestimmt, welche der zweiten Koordinaten in der identifizierten Untermenge ent-
halten ist, um dadurch den Wert der einen der zweiten Koordinaten entsprechend dem genannten Punkt zu 
bestimmen.

2.  Verfahren nach Anspruch 1, bei dem für jedes in einer der Untermengen enthaltenen, von null verschie-
denen Element, eine Negation des Elements nicht in der Untermenge enthalten ist.

3.  Verfahren nach Anspruch 1 oder 2, bei dem die Untermenge ein Intervall ist.

4.  Verfahren nach einem der Ansprüche 1 und 3, bei dem der Schritt (b) die Übertragung eines der identi-
fizierten Untermenge zugewiesenen Werts beinhaltet.

5.  Verfahren nach einem vorhergehenden Anspruch, bei dem die algebraische Kurve über dem Feld Zp 
definiert ist.

6.  Verfahren zum Transferieren von Koordinaten eines Punkts auf einer nichtsupersingulären elliptischen 
Kurve von einem ersten Korrespondenten (10) zu einem zweiten Korrespondenten (12), welcher mit dem ers-
ten Korrespondenten durch eine Datenübertragungsverbindung (14) verbunden ist und die Parameter der Kur-
ve enthält, wobei die Koordinaten eine erste Koordinate beinhalten, die zwei mögliche Punkte auf der Kurve 
bestimmen, die jeweils beide eine zugehörige zweite Koordinate besitzen, umfassen folgende Schritte:  
a) der erste Korrespondent wird entsprechend der ersten Koordinate des Punkts zu dem zweiten Korrespon-
denten vorgerückt; und  
b) der erste Korrespondent identifiziert für den zweiten Korrespondenten eine Untermenge, die eine der zwei-
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ten Koordinaten entsprechend dem genannten Punkt enthält, schließt die andere der zweiten Koordinaten aus;  
wobei der zweite Korrespondent die zweiten Koordinaten berechnen kann aus der ersten Koordinate und der 
Kurve, und bestimmen kann, welche der zweiten Koordinaten in der identifizierten Untermenge enthalten ist, 
um dadurch den Wert der einen der zweiten Koordinaten entsprechend dem genannten Punkt zu bestimmen.

7.  Verfahren nach Anspruch 6, bei dem für jedes in der Untermenge enthaltene, von null verschiedene Ele-
ment eine Negation des Elements nicht in der Untermenge enthalten ist.

8.  Verfahren nach Anspruch 6 oder 7, bei dem die Untermenge ein Intervall ist.

9.  Verfahren nach einem der Ansprüche 6 bis 8, bei dem der Schritt (b) das Übertragen eines der identifi-
zierten Untermenge zugeordneten Werts beinhaltet.

10.  Verfahren nach Anspruch 6 bis 9, bei dem die algebraische Kurve über dem Feld Zp definiert ist.

11.  Verfahren zum Transferieren von Koordinaten eines Punkts auf einer nichtsupersingulären elliptischen 
Kurve von einem ersten Korrespondenten (10) zu einem zweiten Korrespondenten (12), welcher mit dem ers-
ten Korrespondenten durch eine Datenübertragungsverbindung (14) verbunden ist und die Parameter der Kur-
ve enthält, wobei die Koordinaten eine erste Koordinate beinhalten, die zwei mögliche Punkte auf der Kurve 
bestimmen, die jeweils beide eine zugehörige zweite Koordinate besitzen, umfassen folgende Schritte:  
a) der zweite Korrespondent empfängt von dem ersten Korrespondenten die erste Koordinate des genannten 
Punkts;  
b) der zweite Korrespondent empfängt von dem ersten Korrespondenten eine Identifizierung einer Untermen-
ge einer von den zweiten Koordinaten entsprechend im genannten Punkt und schließt die andere der zweiten 
Koordinaten aus;  
c) der zweite Korrespondent berechnet die zweiten Koordinaten aus der ersten Koordinate und der Kurve;  
d) der zweite Korrespondent bestimmt, welche der zweiten Koordinaten in der identifizierten Untermenge ent-
halten ist, um dadurch den Wert der einen der zweiten Koordinaten entsprechend dem genannten Punkt zu 
bestimmen.

12.  Verfahren nach Anspruch 11, bei dem für jedes in der Untermenge enthaltene, von null verschiedene 
Element eine Negation des Elements nicht in der Untermenge enthalten ist.

13.  Verfahren nach Anspruch 11 oder 12, bei dem die Untermenge ein Intervall ist.

14.  Verfahren nach einem der Ansprüche 11 bis 13, bei dem der Schritt (b) das Empfangen eines der iden-
tifizierten Untermenge zugeordneten Werts beinhaltet.

15.  Verfahren nach einem der Ansprüche 11 bis 14, bei dem die algebraische Kurve über dem Feld Zp de-
finiert ist.

16.  System (10, 12, 14), umfassend einen Sender (10) und einen Empfänger (12) sowie eine Übertra-
gungsverbindung (14), die Sender und Empfänger zum Übertragen von Koordinaten eines Punkts auf einer 
nicht-supersingulären elliptischen Kurve von einem ersten Korrespondenten (10) in dem Sender zu einem 
zweiten Korrespondenten (12) in dem Empfänger und mit den Parametern der Kurve verbindet, wobei die Ko-
ordinaten eine erste Koordinate beinhalten die zwei mögliche Punkte auf der Kurve bestimmen, wobei jeder 
der möglichen Punkte eine zugehörige zweite Koordinate besitzt, und der Sender aufweist:  
a) eine Liefereinrichtung zum Liefern der ersten Koordinate des Punkts zu dem zweiten Korrespondenten;  
b) eine Identifiziereinrichtung zum Identifizieren einer die eine der zweiten Koordinaten entsprechend dem ge-
nannten Punkt enthaltende Untermenge für den zweiten Korrespondenten unter Ausschluss der anderen der 
zweiten Koordinaten;  
wobei der Empfänger aufweist:  
c) eine Berechnungseinrichtung zum Berechnen der zweiten Koordinate aus der ersten Koordinate und der 
Kurve; und  
d) eine Bestimmungseinrichtung zum Bestimmen, welche der zweiten Koordinaten in der identifizierten Unter-
menge enthalten ist, um dadurch den Wert der einen der zweiten Koordinaten entsprechend dem genannten 
Punkt zu bestimmen.

17.  System nach Anspruch 16, bei dem der Sender eine Einrichtung aufweist zum Senden eines der iden-
tifizierten Untermenge zugeordneten Werts.
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18.  Sender zur Verwendung bei dem Transferieren von Koordinaten eines Punkts auf einer nicht-supersin-
gulären elliptischen Kurve von einem ersten Korrespondenten (10) zu einem zweiten Korrespondenten (12), 
der mit dem ersten Korrespondenten über eine Datenübertragungsverbindung (14) verbunden ist und die Pa-
rameter der Kurve enthält, wobei die Koordinaten eine erste Koordinate enthalten, welche zwei mögliche Punk-
te auf der Kurve bestimmen, und jeder der möglichen Punkte eine zugehörige zweite Koordinate besitzt, wobei 
der Sender aufweist:  
a) eine Liefereinrichtung zum Liefern der ersten Koordinate des genannten Punkts zu dem zweiten Korrespon-
denten;  
b) eine Identifiziereinrichtung zum Identifizieren einer eine der zweiten Koordinaten entsprechend dem ge-
nannten Punkt enthaltende Untermenge für den zweiten Korrespondenten unter Ausschluss der anderen der 
zweiten Koordinaten;  
wobei der zweite Korrespondent die zweiten Koordinaten berechnen kann aus der ersten Koordinate und der 
Kurve, und bestimmen kann, welche der zweiten Koordinaten in der identifizierten Untermenge enthalten ist, 
um dadurch den Wert der einen der zweiten Koordinaten entsprechend dem genannten Punkt zu bestimmen.

19.  Empfänger zur Verwendung bei dem Transferieren von Koordinaten eines Punkts auf einer nicht-su-
persingulären elliptischen Kurve von einem ersten Korrespondenten (10) zu einem zweiten Korrespondenten 
(12) über eine Datenübertragungsverbindung (14) verbunden ist und die Parameter der Kurve enthält,  
wobei die Koordinaten eine erste Koordinate enthalten, welche zwei mögliche Punkte auf der Kurve bestim-
men, und jeder der möglichen Punkte eine zugehörige zweite Koordinate besitzt, wobei der Empfänger auf-
weist:  
a) eine Einrichtung zum Empfangen der ersten Koordinate des genannten Punkts von dem ersten Korrespon-
denten;  
b) eine Einrichtung zum Empfangen einer Identifizierung einer Untermenge einer der zweiten Koordinaten ent-
sprechend dem genannten Punkt unter Ausschluss der anderen der zweiten Koordinaten von dem ersten Kor-
respondenten;  
c) eine Berechnungseinrichtung zum Berechnen der zweiten Koordinaten aus der ersten Koordinate und der 
Kurve;  
d) eine Bestimmungseinrichtung zum Bestimmen, welche der zweiten Koordinaten in der identifizierten Unter-
menge enthalten ist, um dadurch den Wert der einen der zweiten Koordinaten entsprechend dem genannten 
Punkt zu bestimmen.

20.  Computerprogramm mit durch einen Prozessor implementierbaren Schritten, ausgebildet zum Durch-
führen eines Verfahrens nach einem der Ansprüche 1 bis 15.

Es folgen 5 Blatt Zeichnungen
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Anhängende Zeichnungen
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