METHOD FOR TRANSMITTING DATA IN MULTIPLE ANTENNA SYSTEM

[Fig. 5]

AA ... Start
S110 ... Performing precoding based on codebook for the SxT number of transmission antennas which is generated from codebook for the T number of transmission antennas
S120 ... Transmitting precoded symbol
BB ... End

Abstract: A method for transmitting data in a multiple antenna system comprises the steps of: (1) precoding an input symbol based on a secondary codebook generated from a primary codebook for plural transmission antennas, and transmitting the precoded symbol. The secondary codebook is for the integer number of the transmission antennas among the plural transmission antennas, and a precoding matrix included in the secondary codebook is generated through the combination of the precoding matrices included in the primary codebook.

WO 2010/013919 A2

공개: — 국제조사보고서 없이 공개하며 보고서 접수 후 이를 별도 공개함 (규칙 48.2(g))
명세서
다중안테나 시스템에서 데이터 전송방법

기술분야

배경기술
[2] 최근에는 무선통신 시스템의 성능과 통신용량을 극대화하기 위하여 다중입출력(Multiple Input Multiple Output; MIMO) 시스템이 주목받고 있다. MIMO 기술은 지금까지 하나의 송신 안테나와 하나의 수신 안테나를 사용했던 것에서 탈피하여, 다중 송신 안테나와 다중 수신 안테나를 채택해 송수신 데이터 전송 효율을 향상시킬 수 있는 방법이다. MIMO 시스템을 다중안테나(Multiple antenna) 시스템이라고도 한다. MIMO 기술은 하나의 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않고 여러 안테나에서 수신된 단편적인 데이터 조각을 한데 모아 완성하는 기술을 이용한 것이다. 그 결과, 특정 범위에서 데이터 전송 속도를 향상시키거나 특정 데이터 전송 속도에 대해 시스템 범위를 증가시킬 수 있다.

[3] MIMO 기술에는 송신 다이버시티(transmit diversity), 공간 다중화(spatial multiplexing) 및 빌형성beamforming 등이 있다. 송신 다이버시티는 다중 송신 안테나에서 동일한 데이터를 전송하여 전송 신뢰도를 높이는 기술이다. 공간 다중화는 다중 송신 안테나에서 서로 다른 데이터를 동시에 전송하여 시스템의 대역폭을 증가시키지 않고 고속의 데이터를 전송할 수 있는 기술이다. 빌 형성은 다중 안테나에서 채널 상태에 따른 가중치를 가하여 신호의 SINR(Signal to Interference plus Noise Ratio)을 증가시키기 위해 사용된다. 이때, 가중치는 가중치 벡터(weight vector) 또는 가중치 행렬(weight matrix)로 표시될 수 있고, 이를 프리코딩 벡터(precoding vector) 또는 프리코딩 행렬(precoding matrix)이라 한다.

[4] 공간 다중화는 단일 사용자에 대한 공간 다중화와 다중 사용자에 대한 공간 다중화가 있다. 단일 사용자에 대한 공간 다중화는 SU-MIMO(Single User MIMO)라고도 하며, 다중 사용자에 대한 공간 다중화는 SDMA(Spatial Division Multiple Access) 혹은 MU-MIMO(Multi User MIMO)로 불린다. MIMO 채널의 용량은 안테나 수에 비례하여 증가한다. MIMO 채널은 독립 채널로 분해될 수 있다. 송신 안테나의 수를 Nt, 수신 안테나의 수를 Nr이라 할 때, 독립 채널의 수 Ni는 Ni ≤ min{Nt, Nr}이 된다. 각각의 독립 채널은 공간 계층(spatial layer)이라 할 수 있다. 랭크(rank)는 MIMO 채널 행렬의 영이 아닌 고유값(non-zero eigenvalue)의 수로, 다중화될 수 있는 공간 스트림의 수로 정의될 수 있다.

[5] MIMO 기술에는 코드북(codebook) 기반의 프리코딩 기법이 있다. 코드북
기반의 프리코딩 기법은 미리 결정된 프리코딩 행렬 중에서 MIMO 채널과 가장 유사한 프리코딩 행렬을 선택하여 프리코딩 행렬 인덱스 (precoding matrix indicator; PMI)를 전송하는 방식으로, 귀환테이터의 오버헤드를 줄일 수 있다. 코드북은 공간 채널을 대표할 수 있는 코드북 세트 (codebook set)로 구성된다. 데이터의 송신을 높이기 위해서는 안테나의 수를 증가시켜야 하는데, 안테나의 수가 증가함수록 더 많은 코드북 세트로 코드북을 구성하여야 한다. 안테나의 수의 증가에 따른 코드북 세트의 증가로 인하여 귀환테이터의 오버헤드가 증가할 뿐만 아니라 코드북을 설계하는 데에도 어려움이 있다.

기존의 안테나보다 수적으로 증가되는 다중_antenna 시스템에서 코드북 기반의 프리코딩 기법을 효율적으로 적용할 수 있는 방법이 필요하다.

발명의 상세한 설명

기술적 과제

본 발명이 이루고자 하는 기술적 과제는 기존의 코드북을 활용하여 증가되는 다중_antenna에 대하여 코드북 기반의 프리코딩 기법을 효율적으로 적용할 수 있는 방법을 제공함에 있다.

기술적 해결방법

본 발명의 일 양태에 따른 다중_antenna 시스템에서 데이터 전송방법은 복수의 송신_antenna를 위한 제1 코드북 (codebook)으로부터 생성되는 제2 코드북을 기반으로 입력 심볼의 프리코딩 (precoding)을 수행하는 단계, 및 상기 프리코딩된 심볼을 전송하는 단계를 포함하되, 상기 제2 코드북은 상기 복수의 송신_antenna의 정수배의 송신_antenna를 위한 코드북이고, 상기 제2 코드북에 포함되는 프리코딩 행렬은 상기 제1 코드북에 포함되는 프리코딩 행렬의 결합으로 생성된다.

본 발명의 다른 양태에 따른 송신기는 t개의 송신_antenna를 위한 제1 코드북으로부터 생성되는 sxt개의 송신_antenna를 위한 제2 코드북을 기반으로 프리코딩을 수행하는 프리코더 (t, s > 1인 정수), 상기 프리코더에 의해 프리코딩된 심볼을 부반송과에 묶어가는 부반송과 멤버, 및 상기 부반송과에 묶어가는 심볼을 OFDM 신호로 출력하는 OFDM 신호 생성기를 포함한다.

유리한 효과

기존의 다중_antenna 시스템의 안테나보다 증가되는 다중_antenna에 대하여 기존의 코드북을 활용할 수 있으므로 시스템의 복잡도를 줄일 수 있고, 증가된 다중_antenna를 지원하지 못하는 단말에 대한 역지원성 (backward compatibility)을 보장할 수 있다.

도면의 간단한 설명

도 1은 무선 통신 시스템을 나타낸 블록도이다.
도 2는 송신기 구조의 일례를 나타낸다.
도 3은 송신기 구조의 다른 예를 나타낸다.
도 4는 다중안테나 시스템에서 송신기와 수신기 간의 데이터 처리를 나타낸다.
도 5는 본 발명의 일 실시예에 따른 코드북을 이용한 데이터 전송방법을 나타낸다.
도 6은 단말의 요소를 나타낸 블록도이다.
발명의 실시를 위한 형태
도 1은 무선통신 시스템을 나타낸 블록도이다. 무선통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.
도 1을 참조하면, 무선통신 시스템은 단말(10; User Equipment, UE) 및 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, 노드-B(Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. 하나의 기지국(20)에는 하나 이상의 셀이 존재할 수 있다.
이하에서 하향형등(downlink; DL)는 기지국(20)에서 단말(10)로의 통신을 의미하며, 상향형등(uplink; UL)은 단말(10)에서 기지국(20)으로의 통신을 의미한다. 하향형등에서, 송신기는 기지국(20)의 일부일 수 있고 수신기는 단말(10)의 일부일 수 있다. 상향형등에서, 송신기는 단말(10)의 일부일 수 있고 수신기는 기지국(20)의 일부일 수 있다.
무선통신 시스템은 OFDM(Orthogonal Frequency Division Multiplexing) /OFDMA(Orthogonal Frequency Division Multiple Access) 기반 시스템일 수 있다. OFDM은 다수의 직교 부반응파를 이용한다. OFDM는 IFFT(inverse fast Fourier Transform)과 FFT(fast Fourier Transform) 사이의 직교성 특성을 이용한다. 송신기는 데이터에 IFFT를 수행하여 전송한다. 수신기는 수신신호에 FFT를 수행하여 원래 데이터를 복원한다. 송신기는 다중 부반응파들을 결합하기 위해 IFFT를 사용하고, 수신기는 다중 부반응파들을 분리하기 위해 대응하는 FFT를 사용한다.
무선통신 시스템은 다중안테나(multiple antenna) 시스템일 수 있다. 다중안테나 시스템은 다중입출력(multiple-input multiple-output; MIMO) 시스템일 수 있다. 또는 다중안테나 시스템은 다중 입력 상응 출력(multiple-input single-output; MISO) 시스템 또는 상응 입력 상응 출력(single-input single-output; SISO) 시스템 또는 상응 입력 다중 출력(single-input multiple-output; SIMO) 시스템일 수도 있다. MIMO 시스템은 다수의 전송 안테나와 다수의 수신 안테나를 사용한다. MISO 시스템은 다수의 수신 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 수신 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 수신 안테나와 다수의 수신 안테나를 사용한다.
다중 안테나 시스템에서 다중 안테나를 이용한 기법으로는 랜크 1에서 SFBC(Space Frequency Block Code), STBC(Space Time Block Code)와 같은 STC(Space-Time Coding), CDD(Cyclic Delay Diversity), FSTD(frequency switched transmit diversity), TSTD(time switched transmit diversity) 등이 사용될 수 있다.
랜크 2 이상에서는 공간 다중화(Spatial Multiplexing; SM), GCDD(Generalized Cyclic Delay Diversity), S-VAP(Selective Virtual Antenna Permutation) 등이 사용될 수 있다. SFBC는 공간 영역과 주파수 영역에서의 선택성을 효율적으로 작용하여 해당 차원에서의 다이버시티 이득과 다중 사용자 스클루징 이득까지 모두 확보할 수 있는 기법이다. STBC는 공간 영역과 시간 영역에서 선택성을 작용하는 기법이다. FSTD는 다중 안테나로 전송되는 신호를 주파수로 구분하는 기법이고, TSTD는 다중 안테나로 전송되는 신호를 시간으로 구분하는 기법이다. 공간다중화는 안테나별로 서로 다른 데이터를 전송하여 전송률을 높이는 기법이다. GCDD는 시간 영역과 주파수 영역에서의 선택성을 작용하는 기법이다. S-VAP는 단일 피리코딩 행렬을 사용하는 기법으로, 공간 다이버시티 또는 공간다중화에서 다중 코드워드를 안테나 간에 씀어주는 MCW(Multi Codeword) S-VAP와 단일 코드워드를 사용하는 SCW(Single Codeword) S-VAP가 있다.

도 2는 송신기 구조의 일례를 나타낸다.

도 2를 참조하면, 송신기(100)는 인코더(110-1,...,110-K), 변조기(120-1,...,120-K), 계층 매퍼(130), 프리코더(140), 부반응과 매퍼(150-1,...,150-K) 및 OFDM 신호 발생기(160-1,...,160-K)를 포함한다. 송신기(100)는 Nt(Nt≥1)개의 송신 안테나(170-1,...,170-Nt)를 포함한다.

인코더(110-1,...,110-K)는 입력되는 테이터를 경계진 코딩 방식에 따라 인코딩하여 부호화된 테이터(coded data)로 형성한다. 부호화된 테이터를 코드워드(codeword)라 하며, 코드워드 b는 수학적 1과 같이 표현될 수 있다.

수학적 1

\[b^{(q)}(0), \ldots, b^{(q)}(M_{bit}^{(q)} - 1) \]

여기서, q는 코드워드의 인덱스이고,

\[M_{bit}^{(q)} \]

은 q 코드워드의 비트수이다.

코드워드는 스 크 랜 블링 (scrambling)이 수행된다. 스 크 랜 블링된 코드워드 c는 수학적 2와 같이 표현될 수 있다.

수학적 2

\[c^{(q)}(0), \ldots, c^{(q)}(M_{bit}^{(q)} - 1) \]

변조기(120-1,...,120-K)는 코드워드를 신호 성상(signal constellation) 상의
위치를 표현하는 심볼로 배치한다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation)일 수 있다. 예를 들어, m-PSK는 BPSK, QPSK 또는 8-PSK 일 수 있다. m-QAM은 16-QAM, 64-QAM 또는 256-QAM 일 수 있다.

[32] 신호 성상 상의 심볼로 배치되는 코드워드 d는 수학식 3과 같이 표현될 수 있다.

수학식 3

$$d^{(q)}(0), \ldots, d^{(q)}(M^{(q)}_{symb} - 1)$$

[34] 여기서,

$M^{(q)}_{symb}$

은 q 코드워드의 심볼 수이다.

[35] 계층 맵퍼(130)는 프리코더(140)가 안테나 특정 심볼을 각 안테나의 경로로 분배할 수 있도록 입력 심볼의 계층을 정의한다. 계층(layer)은 프리코더(140)로 입력되는 정보 경로(information path)로 정의된다. 각 안테나의 경로로 입력되는 심볼 x는 수학식 4와 같이 표현될 수 있다.

수학식 4

$$x(i) = \begin{bmatrix} x^{(0)}(i) & \ldots & x^{(U-1)}(i) \end{bmatrix}^T$$

[37] 여기서,

U

는 계층 수를 의미한다.

[38] 프리코더(140) 이전의 정보 경로를 가상 안테나(virtual antenna) 또는 계층(layer)이라 할 수 있다. 프리코더(140)는 입력 심볼을 다중 송신 안테나(170-1, ..., 170-Nt)에 따른 MIMO 방식으로 처리한다. 프리코더(140)는 코드북(codebook) 기반의 프리코딩을 이용할 수 있다. 코드북 기반의 프리코딩에서 코드북은 분 발망에 따라 기존의 코드북(예를 들어, 2Tx 맵크 1 코드북)으로부터 생성되는 코드북(예를 들어, 4Tx 맵크 1 코드북)이 이용될 수 있다.

[39] 프리코더(140)는 안테나 특정 심볼을 해당 안테나의 경로의 부반송파 맵퍼(150-1, ..., 150-K)로 분배한다. 프리코더(140)에 의해 하나의 부반송파 맵퍼를 통해 하나의 안테나로 보내어지는 각 정보 경로를 스트림(stream)이라 한다. 이를 물리적 안테나(physical antenna)라 할 수 있다.

[40] 각 안테나 포트 p로 보내어지는 신호

$$y^{(p)}(i)$$

는 수학식 5와 같이 표현될 수 있다.
수학식 5

\[y(i) = \left[\ldots \ y^{(p)}(i) \ \ldots \right]^T \]

부반송과 멀티(150-1,...,150-K)는 프리코딩된 심볼을 적절한 부반송과에 할당하고, 사용자에 따라 다중화한다. OFDM 신호 발생기(160-1,...,160-K)는 부반송과에 멀티된 심볼을 OFDM 방식으로 변조하여 OFDM 심볼을 출력한다. OFDM 신호 발생기(160-1,...,160-K)는 입력 심볼에 대해 IFFT(Inverse Fast Fourier Transform)를 수행할 수 있으며, IFFT가 수행된 시간 영역 심볼에는 CP(cyclic prefix)가 삽입될 수 있다. OFDM 심볼은 각 송신 안테나(170-1,...,170-Nt)를 통해 송신된다.

MIMO 시스템에서 송신기(100)는 두 가지 모드로 동작할 수 있다. 하나는 SCW 모드이고, 다른 하나는 MCW 모드이다. SCW 모드에서는 MIMO 채널을 통해 송신되는 송신 신호가 동일한 송신률(data rate)을 갖는다. MCW 모드에서는 MIMO 채널을 통해 송신되는 데이터가 독립적으로 인코딩되어, 송신 신호가 서로 다른 송신률을 가질 수 있다. MCW 모드는 링크가 2이상인 경우에 동작한다.

OFDM/OFDMA 시스템의 주된 문제점 중 하나는 PAPR(Peak-to-Average Power Ratio)이 매우 클 수 있다는 것이다. PAPR 문제는 전송 신호의 최대 전동(peak amplitude)이 평균 전동보다 매우 크게 나타나는 것으로, OFDM 심볼이 서로 다른 부반송과 상에서 N개의 정현과 신호(sinusoidal signal)의 중첩이라는 사실에 기인한다. PAPR은 특히 베타리의 용량과 관련되어 전력 소모에 민감한 단말에서 문제가 된다. 전력 소모를 줄이기 위해서는 PAPR을 낮추는 것이 필요하다.

PAPR를 낮추기 위해 제안되고 있는 시스템 중 하나가 단일 반송과 주파수 분할 다중 접속(Single Carrier-Frequency Division Multiple Access; SC-FDMA)이다. SC-FDMA는 SC-FDE(Single Carrier-Frequency Division Equalization) 방식의 FDMA(Frequency Division Multiple Access)를 접목한 형태이다. SC-FDMA는 이산 푸리에 변환(Discrete Fourier Transform; DFT)을 이용하여 데이터를 시간 영역 및 주파수 영역에서 변조 및 복조한다는 점에서 OFDMA와 유사한 특성을 갖지만, 전송 신호의 PAPR이 낮아 전송 전력 절감에 유리하다. 특히 베타리 사양과 관련하여 전송 전력에 민감한 단말에서 기지국으로 통신하는 상향링크에 유리하다고 할 수 있다. SC-FDMA 시스템에서 각 안테나 경로의 심볼 x는 DFT 스프레딩(spread)되고, 낮은 PAPR를 유지하기 위하여 프리코딩된 심볼들은 국지적 맵핑(localized mapping) 또는 인터리밍 맵핑(interleaved mapping) 등으로 부반송과에 멀티된다.

단말이 기지국으로 데이터를 전송할 때, 중요한 점은 전송하는 데이터의 대역폭은 크지 않은 대신 파워를 집중할 수 있는 넓은 커버리지(coverage)이다.
SC-FDMA 시스템은 신호의 변화량이 작도록 만들어 주어, 동일한 전력 중복기(power amplifier)를 사용했을 때 다른 시스템보다 더 넓은 커버리지를 가진다.

[47] 한편, SC-FDMA 기법과 달리, clustered DFT-S-OFDM은 DFT 확산된 N 심볼열 중 M(<N) 심볼열은 연속된 무반복과에 할당(또는 태평)하고, 나머지 N-M 심볼열은 M 심볼열이 할당(또는 태평)된 무반복과에서 임정 간격 떨어진 연속된 무반복과에 할당(또는 태평)한다. clustered DFT-S-OFDM을 사용할 경우, 주파수 선택적 스케줄링(frequency selective scheduling)을 할 수 있는 장점이 있다.

[48] 도 3은 송신기 구조의 다른 예를 나타낸다. SC-FDMA 접속 방식을 사용하는 상황링크 전송을 위하여 사용될 수 있다.

[49] 도 3을 참조하면, 송신기(200)는 스크램블링 유닛(scrambling unit, 210), 변조기(modulator, 220), 변환 프리코더(transform precoder, 230), 자원요소 맵퍼(resource element mapper, 240) 및 SC-FDMA 신호 발생기(250)를 포함한다.

[50] 스크램블링 유닛(210)은 입력되는 코드워드에 대해 스크램블링을 수행한다. 코드워드는 하나의 서브프레임의 PUSCH를 통하여 전송되는 비트수만큼의 집단을 가질 수 있다. 변조기(220)는 스크램블된 코드워드를 신호 성상 성의 위치를 포함하는 변조심볼로 배치한다. 변조 방식에는 제한이 없으며, m-PSK 또는 m-QAM 고유 있다. 예를 들어, PUSCH에서 변조 방식으로 QPSK, 16QAM, 64QAM 등이 사용될 수 있다.

[51] 변환 프리코더(230)는 DFT 연산을 이용하여 DFT 심볼을 출력할 수 있다. 변환 프리코더(230)는 신호 성상 성의 변조심볼로 배치된 코드워드를 스프레딩(spinning)하여 하나의 SC-FDMA 심볼에 대응시킨다. MIMO 시스템에서 변환 프리코더(230)는 제중 맵핑된 변조심볼을 스프레딩할 수 있다. 또는 변환 프리코더(230)는 제중 맵핑 전의 심볼을 변환한 후 제중 맵핑을 수행할 수도 있다.

[54] 도 4은 다중안테나 시스템에서 송신기와 수신기 간의 데이터 처리를 나타낸다.

[55] 도 4을 참조하면, 송신기(300)는 스케줄러(310), 체널인코더/맵퍼(320), MIMO 인코더(330) 및 OFDM 변조기(340)를 포함한다. 송신기(300)는 Nt(Nt>1)개의 송신안테나를 포함한다. 송신기(300)는 하향링크에서 기지국의 일부분일 수 있고, 상향링크에서 단말의 일부분일 수 있다.

[56] 스케줄러(310)는 N명의 사용자들로부터 데이터를 입력받아, 한 번에 전송될
K개의 스트림을 출력한다. 스케줄러(310)는 각 사용자의 채널정보를 이용하여
가용할 수 있는 무선자원에 전송할 사용자와 전송률을 결정한다.
스케줄러(310)는 귀환 데이터로부터 채널 정보를 추출하여 코드율(code rate),
변조 및 코딩 방식(modulation and coding scheme; MCS) 등을 선택한다. MIMO
시스템의 동작을 위해 귀환데이터에는 CQI(channel quality indicator), CSI(channel
state information), Channel Covariance Matrix, Precoding Weight, Channel Rank 등의
제어정보가 포함될 수 있다. CSI에는 송수신기 사이의 채널행렬(channel matrix),
채널의 상관행렬(channel correlation matrix), 양자화된(quantized) 채널행렬 또는
양자화된 채널상관 행렬 등이 있다. CQI에는 송수신기 사이에
신호대잡음비(signal to noise ratio; SNR), 신호대간섭과잡음비(signal to
interference and noise ratio; SINR) 등이 있다.

스케줄러(310)가 할당하는 가용 무선자원은 무선통신 시스템에서 데이터
전송시에 사용되는 무선자원을 의미한다. 예를 들어, TDMA(Time division
multiple access) 시스템에서는 각 시간 슬롯(time slot)이 자원이고, CDMA(Code
division multiple access) 시스템에서는 각 코드와 시간 슬롯이 자원이며,
OFDMA(Orthogonal frequency division multiple access) 시스템에서는 각
무선공과 시간슬롯이 자원이다. 동일한 세그먼트(CELL) 내에서 다른
사용자에게 간섭을 입으키지 않기 위하여 각 자원은 시간, 코드 또는 주파수
영역에서 직교하게 정의될 수 있다.

채널인코딩/복호화(320)는 입력되는 스트림을 정해진 코딩방식에 따라
인코딩하여 부호화된 데이터를 형성하고 부호화된 데이터를 신호 성상(signal
constellation) 상의 위치를 표현하는 심볼로 매핑한다. MIMO 인코더(330)는
입력되는 심볼에 대해 프리코딩(precoding)을 수행한다. 프리코딩은 전송할
심볼에 전처리를 수행하는 기법이며, 이러한 프리코딩 기법 중에서는 가중치
벡터 또는 프리코딩 행렬 등을 적용하여 심볼을 생성하는 RBF(random
beamforming), ZFBB(zero forcing beamforming) 등이 있다. 프리코딩 기법으로
미리 정해진 코드북 세트를 이용하는 코드북 기반의 프리코딩을 이용할 수 있다.

OFDM 변조기(340)는 입력되는 심볼을 적절한 부호공간에 할당하여
송신안테나를 통해 송신한다.

수신기(400)는 OFDM 복조기(410), 채널추정기(420), MIMO 디코더(430), 채널
디코더/디미퍼(440) 및 귀환정보 획득기(450)를 포함한다. 수신기(400)는
Nr(Nr>1)개의 수신 안테나를 포함한다. 수신기(400)는 하향링크에서 단말의
일부분일 수 있고 상향링크에서基站 국의 일부분일 수 있다.

수신안테나로부터 수신된 신호는 OFDM 복조기(410)에 의해 복조되고, 채널
추정기(420)는 채널을 추정하고, MIMO 디코더(430)는 MIMO 인코더(230)에
대응하는 후처리를 수행한다. 디코더/디미퍼(440)는 입력되는 심볼을 부호화된
데이터로 디미핑하고 부호화된 데이터를 디코딩하여 원래 데이터를 복원한다.
귀환정보 획득기(450)는 CSI, CQI, PMI 등을 포함하는 사용자 정보(460)를
생성한다. 생성된 사용자 정보(360)는 귀환데이터로 구성되어 송신기(200)로 전송된다.

[M62] <MIMO-OFDM 시스템의 귀환데이터>

[M63] MIMO-OFDM 시스템의 동작을 위해 CQI, CSI, 채널 분산 행렬(channel covariance matrix), 프리코딩 가중치(precoding weight), 채널 랭크(channel rank) 등의 제어정보가 요구된다. FDD(frequency division duplex) 시스템에서 수신기는 이러한 정보들을 귀환 채널을 통해 보고한다. TDD(time division duplex) 시스템에서는 채널의 상호관계(reciprocity) 특성을 이용해 상향링크 채널을 추정하여 하향링크 전송에 사용될 정보들을 획득할 수 있다.

[M64] CQI는 자원 할당 및 연결 적합성(link adaptation)을 위해 필요하며, CQI로는 SNR/SINR 등을 사용할 수 있다. SNR/SINR은 1.89dB 간격 16 레벨로 양자화되어 4비트 CQI로 정의될 수 있다. 수신기는 SNR/SINR를 양자화한 후 정의된 CQI 인덱스를 송신기로 보고한다. 또한 MIMO 기법이 사용될 때 최대 2 코드워드(CW)가 지원될 수 있다. 즉, 랭크 2이상의 전송을 위해서는 제1 CW 및 제2 CW의 CQI가 송신기로 보고되어야 한다. 제1 CW는 4bit로 표현되고 제2 CW는 제1 CW에 대한 차이값으로 3비트로 표현될 수 있다.

[M65] 프리코딩 기법은 전처리 가중치를 사용하여 송신 데이터 열을 전처리하여 전송하는 MIMO 기법이다. 수학식 6은 전처리 가중치를 사용하여 송신 데이터 열 x를 전처리하는 프리코딩 기법을 나타낸다.

수학식 6

\[
\begin{bmatrix}
y^{(0)}(i) \\
\vdots \\
y^{(L-1)}(i)
\end{bmatrix} = W(i) \begin{bmatrix}
x^{(0)}(i) \\
\vdots \\
x^{(L-1)}(i)
\end{bmatrix}
\]

\[w_{r_{01}}, \ldots, M_{21}^{\text{upper}}\]

[M66] 여기서, W(i)는 프리코딩 행렬을 나타낸다. 전처리된 송신 데이터 열 y는 수학식 7과 같이 CDD(cyclic delay diversity)를 위한 다이버시티 행렬 D(i) 및 DFT 행렬 U가 적용될 수 있다.

수학식 7

\[
\begin{bmatrix}
y^{(0)}(i) \\
\vdots \\
y^{(L-1)}(i)
\end{bmatrix} = W(i)D(i)U \begin{bmatrix}
x^{(0)}(i) \\
\vdots \\
x^{(L-1)}(i)
\end{bmatrix}
\]

[M68] D(i)와 U는 전송 계층에 따라 결정될 수 있다.

[M70] 수학식 8은 랭크에 따른 프리코딩 행렬 W(i)를 생성하는 일례를 나타낸다.

수학식 8
\[
W(i) = C_k \\
k = \text{mod}\left(\left\lfloor \frac{i}{\nu} \right\rfloor \text{mod} 4 \right) + 1 \\
k \in \{1, 2, \cdots, 4\}
\]

여기서, C1, C2, C3, C4는 프리코더 인덱스 12, 13, 14, 15에 대응하는 프리코딩 행렬을 나타내고, \(\nu\)는 랜크(전송 계층)를 나타낸다.

표 1은 전송 계층에 따라 적용되는 CDD(cyclic delay diversity)를 위한 지연 행렬 \(D(i)\) 및 DFT 행렬 \(U\)의 일례를 나타낸다.

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>D(i)</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td>0 e^{-j2\pi/2}</td>
<td>0 e^{-j2\pi/2}</td>
</tr>
<tr>
<td>3</td>
<td>1 0 0</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td>0 e^{-j2\pi/2} 0 e^{-j2\pi/2}</td>
<td>0 e^{-j2\pi/2} 0 e^{-j2\pi/2}</td>
</tr>
<tr>
<td>4</td>
<td>1 0 0 0 0</td>
<td>1 1 1</td>
</tr>
<tr>
<td></td>
<td>0 0 e^{-j2\pi/4} 0 0 e^{-j2\pi/4}</td>
<td>0 0 e^{-j2\pi/4} 0 0 e^{-j2\pi/4}</td>
</tr>
</tbody>
</table>

프리코딩 가중치를 생성하는 방법에 따라 Zero Forcing Beamforming, Eigen Beamforming 및 코드북 기반 프리코딩(codebook based precoding) 등으로 구분할 수 있다. 각 기법을 적용하기 위해서는 CSI, 채널 분산 행렬, 코드북 인덱스 등이 필요하다. 기존의 시스템에서는 2개의 안테나(2Tx) 및 4개의 안테나(4Tx) MIMO 전송에서 코드북 기반 프리코딩이 지원되며, 이를 위해서 2Tx/4Tx를 위한 각각의 코드북이 정의된다.

코드북 기반 프리코딩에서, 수신기는 미리 결정된 몇 개의 프리코딩 행렬을 보유하고 있으며, 송신기로부터 전송되는 신호를 이용하여 채널을 추정하고 추정된 채널 상태가 가장 유사한 프리코딩 행렬을 결정한다. 수신기는 결정된 프리코딩 행렬의 인덱스(PMI) 송신기로 귀환시킨다. 송신기는 귀환된 프리코딩 행렬에 적합한 코드북을 선택하여 데이터를 전송한다. 코드북 기반 프리코딩에서는 PMI만이 전송되므로 귀환데이터의 양이 매우 줄어든다. 코드북 기반 프리코딩 기법은 코드북을 구성하는 방법, 코드북의 종류, 코드북의 크기에 따라 시스템의 성능에 차이가 발생한다. 코드북 기반 프리코딩 기법에서 코드북이 채널상태를 충분히 나타내지 못하면 성능 영향이 발생할 수 있으나,
코드북의 크기가 증가되면 채널상태를 충분히 나타낼 수 있어 최적의 성능에 근접할 수 있다. 따라서 귀환데이터의 양을 충분히 줄이면서 최적의 성능에 근접할 수 있는 코드북의 설계가 요구된다. [77]

송신안테나의 수가 증가할수록 요구되는 코드북의 크기도 증가된다. 기존 시스템의 2Tx 전송에서는 랭크 1을 위해 4개의 프리코딩 행렬을 가진 코드북이 정의된다. 예를 들어, 상향링크 전송에서 2개의 송신안테나를 가진 단말이 랭크 1 전송을 수행할 때, 랭크 1을 위한 4개의 프리코딩 행렬 중 어느 하나를 이용하여 상향링크 전송을 수행한다. [78]

<페루프 MIMO>

채널 상황에 따라 채널과 유사한 프리코딩 가중치를 사용하는 방식을 페루프(.closed-loop) MIMO 방식이라 하고, 채널 상황과 무관하게 일정한 규칙에 따라 프리코딩 가중치를 사용하는 방식을 개방루프(open-loop) MIMO 방식이라 한다. [79]

페루프 MIMO를 위해서 수신기가 보고하는 프리코딩 가중치의 양은 주파수 단위, 보고 수치 등에 따라 달라질 수 있다. 주파수 단위는 하나의 프리코딩 가중치가 적용되는 주파수 범위로 정의될 수 있으며, 주파수 범위에 따라 시스템 대역폭(system bandwidth)은 광대역 범드(Wideband, WB), 서브밴드(subband, SB), 베스트 밴드(bestband, BB) 등으로 주파수 단위가 구분될 수 있다. 서브밴드는 적어도 하나의 부분차관을 포함하며, 광대역 범드는 적어도 하나의 서브밴드를 포함할 수 있다. 베스트 밴드는 수신기에서의 채널 측정에 따라 채널 상태가 좋은 밴드를 의미한다. 코드북 기반 프리코딩에서는 정의된 PMI가 귀환되는데, PMI가 적용되는 범위에 따라 WB PMI, SB PMI, BB PMI로 정의될 수 있다. 정의된 프리코딩 행렬 중에서 일정 대역의 차원의 평균 처리율(throughput)을 최대화할 수 있는 PMI가 선택된다. 프리코딩 가중치는 적용되는 범위가 좁을수록 더 좋은 성능을 보인다. [80]

연속된 12개의 부분차관의 묶음을 자원블록(resource block)이라 하면, 시스템 대역폭과 서브밴드는 자원블록을 기본 단위로 표현될 수 있다. 표 2는 시스템 대역폭과 서브밴드를 자원블록을 기분 단위로 하여 표현한 일례이다. [81]

<table>
<thead>
<tr>
<th>System bandwidth</th>
<th>Subband size</th>
<th>M (number of bestband)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-7</td>
<td>Wideband CQI only</td>
<td>Wideband CQI only</td>
</tr>
<tr>
<td>8-11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11-26</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>27-63</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>64-110</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

광대역 범드 (WB)는 시스템 대역폭으로 정의될 수 있고, CQI를 계산하는 가장 큰 단위로 정이될 수 있다. 서브밴드는 연속된 k개의 자원블록으로 정의될 수 [82]
있고, CQI를 계산하는 최소 단위로 정해질 수 있다. 베스트브랜드의 수는 시스템 대역폭에 따라 달리 결정될 수 있다.

[84] 시스템 대역폭에 따라 서로 다른 서브브랜드 크기가 정의될 수 있다. CQI 계산 범위와 PMI 적용 범위는 동일한 크기에 사용될 수 있다. 24 자원블록을 시스템 대역폭으로 갖는 시스템을 예로 들어 CQI 계산 및 PMI 적용 방법에 대하여 설명한다.

[85] (1) WB CQI/WB PMI를 전송하는 경우, 수신기는 24 자원블록의 평균적인 처리량(throughput)을 최대화할 수 있는 PMI를 선택하고, 선택된 PMI를 적용하여 24 자원블록의 평균적인 CQI를 계산한다. 수신기는 하나의 WB CQI 및 하나의 WB PMI를 구할 수 있다.

[86] (2) SB CQI/SB PMI를 전송하는 경우, 수신기는 2 자원블록으로 이루어지는 서브브랜드들에 대한 PMI를 선택하고 평균 CQI를 계산한다. 수신기는 12개의 SB CQI와 12개의 SB PMI를 구할 수 있다.

[87] (3) SB CQI/WB PMI를 전송하는 경우, 수신기는 24 자원블록의 평균적인 처리량을 최대화할 수 있는 PMI를 선택하고, 이 PMI를 이용하여 각 2 자원블록 단위로 평균 CQI를 계산한다(12 CQIs/1 PMI). 수신기는 12개의 SB CQI와 하나의 WB PMI를 구할 수 있다.

[88] (4) WB CQI/SB PMI를 전송하는 경우, 수신기는 2 자원블록 단위로 PMI를 선택하고 선택된 PMI들을 적용하여 24 자원블록의 평균 CQI를 계산한다. 수신기는 하나의 WB CQI와 12개의 SB PMI를 구할 수 있다.

[89] (5) Best M average CQI/PMI 및 WB CQI/PMI를 전송하는 경우, 수신기는 2 자원블록 단위의 서브브랜드 중 처리량이 가장 높은 3개의 서브브랜드를 선택하고 베스트 벨드(2x3=6RB)를 위한 PMI를 선택하고 베스트 벨드의 평균 CQI를 계산하며, 전대역 24 자원블록에 대한 PMI를 선택하고 CQI를 계산한다.

[90] <기회적 빌포밍>

[91] 채널 상황이 거의 최고점에 있는 사용자에게 자원을 할당하는 스킬룰을 고려할 때, 각 사용자의 채널이 변화가 느린 정적인 채널상황인 경우에 다중사용자 다이버시티 이득(multi-user diversity gain)이 적어진다. 이러한 정적인 채널상황을 공간적인 신호처리를 통해 채널상황의 변화를 더 빠르고 크게 만들어 줄수록 다중사용자 이득은 높아지는 기법을 기회적 빌포밍(opportunistic beamforming) 기법이라고 한다. 기회적 빌포밍 기법을 적용하면, 기지국은 각 안테나에 불균일한 형태의 크기와 위치를 갖는 프리코딩 가중치를 사용함으로써 마치 불균일한 방향으로 빛을 형성하는 효과를 얻을 수 있다. 이에 따라 각 사용자들의 채널 상황을 좀 더 역동적으로 바꾸게 된다.

따라서 채널이 느리게 변화하는 채널상황에서 기회적 빌포밍 기법을 사용하고 동시에 스킬룰 기법을 사용하면 더욱 큰 다중사용자 다이버시티 이득을 얻을 수 있다. 또한 OFDMA 시스템에서는 주파수 자원별로 서로 다른 프리코딩 가중치를 적용할 수 있으며, 주파수 균일 채널(frequency flat channel)을 주파수
선택적 채널(frequency selective channel)로 만들어 줄으므로 스케줄링 이득을 얻을 수 있다. OFDMA 시스템에서의 주파수 자원에는 서브블록(subblock), 자원블록(resource block), 부반송파(subcarrier) 등이 있다.

[92] 코드북 기반 프리코딩 기법은 미리 결정된 프리코딩 행렬 중 채널상황과 가장 유사한 프리코딩 행렬을 선택하여 PMI를 보고하는 방식으로 귀환데이터에 의한 오버헤드를 줄일 수 있는 장점이 있으나, 코드북은 공간 채널을 대표할 수 있는 코드북 세트의 조합으로 구성되므로 송신안테나의 수가 증가할수록 더 많은 코드북 세트의 조합으로 코드북을 구성하여야 한다. 송신안테나 수의 증가에 따라 코드북 설계에 어려움이 생기고, 코드북 크기가 증가함에 따라 귀환데이터의 오버헤드가 증가할 수 있다.

[93]

[94] <기존의 코드북을 활용하여 증가된 송신안테나를 위한 코드북의 생성>

[95] 이제, 기존에 정의된 코드북을 활용하여 증가된 송신안테나를 위한 코드북을 생성하여 데이터를 전송하는 방법에 대하여 설명한다. 2Tx 앰프가 1 코드북으로부터 4Tx 앰프가 1 코드북을 생성하는 방법을 예로 들어 설명한다. 2Tx 앰프가 1 코드북은 2개의 송신안테나를 이용하는 단말이 앰프가 1의 상향행인 진송을 수행할 때 사용될 수 있으며, 4Tx 앰프가 1 코드북은 4개의 송신안테나를 이용하는 단말이 앰프가 1의 상향행인 진송을 수행할 때 사용될 수 있다. 그러나, 본 발표는 기존의 적은 수의 송신안테나를 위한 코드북으로부터 증가된 송신안테나를 위한 코드북을 생성하는 방식에 관한 것으로 하향행인 진송에도 사용될 수 있다. 또한, 본 발표는 안테나의 수에 제한되지 않는다. 예를 들어, 2개의 송신안테나를 위한 코드북으로부터 4개 이상의 송신안테나를 위한 코드북을 생성할 수 있다. 또한, 앰프가 1인 경우를 가정하여 설명하지만, 제안하는 방법은 앰프가 2 이상에서도 적용될 수 있을 것이다.

[96] 도 5는 본 발표의 실시예로 따른 코드북을 이용한 데이터 전송방법을 나타낸다.

[97] 도 5를 참조하면, 복수의 송신안테나를 위한 코드북으로부터 증가된 송신안테나를 위한 코드북이 생성될 수 있으며, 생성된 코드북을 기반으로 프리코딩이 수행된다(S110). 즉, 기존의 T개의 송신안테나를 위한 코드북으로부터 T개의 정수배인 S*T개의 송신안테나를 위한 코드북이 생성될 수 있다(S,T>1인 정수).

[98] 이하, 설명의 편의를 위해, 기존의 코드북을 제1 코드북이라고 하고 제1 코드북에 포함되는 프리코딩 행렬을 제1 프리코딩 행렬이라 하며, 증가된 송신안테나를 위한 코드북을 제2 코드북이라고 하고 제2 코드북에 포함되는 프리코딩 행렬을 제2 프리코딩 행렬이라 한다.

[99] 수학식 9는 프리코딩 행렬 W(i)의 각 행(Row)에 임의의 위상 회전을 위한 사상 형태의 위상 회전 행렬 D(ki)가 적용된 경우를 나타낸다.

[100] 수학식 9
\[D(k_i)W(i) = \begin{bmatrix} e^{j\theta_p} & 0 & \cdots & 0 \\ 0 & e^{j\theta_p} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{j\theta_p} \end{bmatrix} W(i) \]

[101] 여기서,
\[e^{j\theta_p} \]
는 임의의 위상을 나타내며
\[\theta_p \]
는
\[-\pi \]
와
\[\pi \]
사이의 값을 갖는다. 그리고 각 element들은 서로 독립적인 위상
\[\theta_p \]
을 갖는 임의의 복소값(complex valued)으로 표시될 수 있다 (\[-\pi < \theta_p \leq \pi, \quad p = 0, \ldots, P-1 \]).

[102] 또한,
\[\theta_p = -2\pi \cdot k_i \cdot p \cdot \delta, \quad p = 0, \ldots, P-1 \]
이고, \(k_i \)는 복소값(complex valued) 십분 y(i)가 백정되는 자원요소의 주파수 영역 인덱스이다. \(k_i \)는 주파수 인덱스, \(p \)는 송신안테나 인덱스이고, \(\theta_p \)는 \(k_i \) 및 \(p \)가 증가함에 따라 증가되는 위성을 나타낸다. 지연값 \(\delta \)는 표 3과 같이 정의될 수 있다.

[103] 표 3

<table>
<thead>
<tr>
<th></th>
<th>2Tx</th>
<th>4Tx</th>
<th>8Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/\eta</td>
<td>1/\eta</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4/\eta</td>
<td>2/\eta</td>
<td>1/\eta</td>
</tr>
</tbody>
</table>

\(\eta = \{128, 256, 512, 1024, 2048\} \)

[104] 여기서, \(\eta \)는 시스템 대역폭의 FFT 크기와 같은 값을 사용할 수도 있고, 시스템 대역폭과 상관없이 5개의 값을 하나를 고정적으로 사용할 수도 있다. 랜프 1 전송에서 지연 행렬 D(k)는 [1]이 되므로, 랜프 1 전송에서 지연 행렬은 생략될 수 있다.

[105] 제1 코드복으로부터 생성되는 제2 코드복은 수학식 10과 같이 표현될 수 있다.
수학식 10

\[W(i) = \begin{bmatrix} W_0(i) \\ W_1(i) \end{bmatrix} \]

수학식 11

\[W(i) = \begin{bmatrix} aW_0(i) \\ bW_1(i) \end{bmatrix} \]

프리코딩 범위를 간단히 하기 위해 가중치 상수는 제한되어 표현될 수 있다.

수학식 12

\[W(i) = \begin{bmatrix} aW_0(i) \\ bW_0(i) \end{bmatrix} \]

\[a=1, b=1 \text{이고 } W_0(i)=W_0(i) \text{이면, 제2 코드북은 수학식 13과 같이 표현될 수 있다.} \]

수학식 13

\[W(i) = \begin{bmatrix} W_0(i) \\ W_0(i) \end{bmatrix} \]

\[a=1, b=1 \text{이고 } W_0(i)=W_0(i) \text{이면, 제2 코드북은 수학식 14와 같이 표현될 수 있다.} \]

수학식 14

\[W(i) = \begin{bmatrix} W_0(i) \\ -W_0(i) \end{bmatrix} \]

\[a=1, b=j \text{이고 } W_0(i)=W_0(i) \text{이면, 제2 코드북은 수학식 15와 같이 표현될 수 있다.} \]
수학식 15

$$W(i) = \begin{bmatrix} W_0(i) \\ jW_0(i) \end{bmatrix}$$

수학식 16

$$W(i) = \begin{bmatrix} W_0(i) \\ -jW_0(i) \end{bmatrix}$$

제한된 가중치 상수가 적용된 제2 코드북은 수학식 17과 같이 표현될 수 있으며,임의의 단일 행렬(unitary matrix) $W_2(i)$는 수학식 18과 같이 표현될 수 있다.

수학식 17

$$W(i) = \frac{1}{\sqrt{2}} \begin{bmatrix} W_0(i) \\ -W_0(i) \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} W_0(i) \\ jW_0(i) \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} jW_0(i) \\ -jW_0(i) \end{bmatrix}$$

수학식 18

$$W_2(i) = \begin{bmatrix} 1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}, 1 \begin{bmatrix} 1 \\ j \end{bmatrix}, 1 \begin{bmatrix} 1 \\ -j \end{bmatrix} \end{bmatrix}$$

이와 같이, $W_0(i)$ 및 $W_1(i)$는 $W_0(i) = W_1(i)$로 강제될 수 있으며, 이에 따라 귀환 정보로 $W_0(i)$ 또는 $W_1(i)$가 지시하는 지시자가 사용될 수 있다.

이제, 제1 코드북이 2Tx 백그 1 코드북이고, 제2 코드북이 4Tx 백그 1 코드북인 경우에 있어서, 제1 코드북으로부터 제2 코드북을 생성하는 방법에 대하여 설명한다.

수학식 19는 2Tx 백그 1 코드북으로부터 생성되는 4Tx 백그 1 코드북을 나타낸다. 2Tx 백그 1 코드북은 N개의 요소, 즉 포리코딩 행렬을 포함한다(N>0인 정수).

수학식 19

$$W(k) = \begin{bmatrix} e^{j\theta_1(k)} & 0 & 0 & 0 \\ 0 & e^{j\theta_2(k)} & 0 & 0 \\ 0 & 0 & e^{j\theta_3(k)} & 0 \\ 0 & 0 & 0 & e^{j\theta_4(k)} \end{bmatrix} \cdot V_1(n) \otimes V_2(m)$$

여기서, V_1 및 V_2는 2Tx 백그 1 코드북을 의미하고, n=0,..,N-1이고, m=0,..,N-1이고, k=0,..,NxN-1이다. θ는 임의의 입력을 의미한다. W(k)는 4Tx 백그 1
코드북으로서, 4×1의 프리코딩 행렬로 표현된다.

\[V' = \begin{bmatrix} 1 \\ 1 \\ j \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ j \\ -1 \\ 1 \end{bmatrix} \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

여기서, \(\otimes \)는 크로네커 프로덕트(Kronecker product)를 나타낸다.

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

여기서, \(\otimes \)는 크로네커 프로덕트(Kronecker product)를 나타낸다.

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]

\[V'_{2} = V'_{1} \]

\[W(k) = V_{1}(n) \otimes V_{2}(m) \]

\[n = 0, \ldots, 3 \quad m = 0, \ldots, 3 \quad k = 0, \ldots, 15 \]
변태부터 세 번째 행의 위치는 0으로 두고 4번째 행의 위치를 수학식 22와 같이 회전시킬 수 있으며, 이에 따라 4Tx 랜크 1 코드복은 수학식 23과 같이 생성될 수 있다.

[138] 수학식 22

\[
\begin{align*}
 j\pi \left(k - \left\lfloor \frac{k}{4} \right\rfloor \right), & \quad k = 0, \ldots, 15 \\
 e &
\end{align*}
\]

[139] 수학식 23

\[
V_1 = \left\{ \left\{ 1 \right\}, \left\{ 1 \right\}, \left\{ 1 \right\}, \left\{ 1 \right\} \right\}, \quad V_2 = V_1
\]

\[
W(k) = \begin{pmatrix}
 e^{i0} & 0 & 0 & 0 \\
 0 & e^{i0} & 0 & 0 \\
 0 & 0 & e^{i0} & 0 \\
 0 & 0 & 0 & e^{i\pi \left(k - \left\lfloor \frac{k}{4} \right\rfloor \right)}
\end{pmatrix} \cdot V_1(n) \otimes V_2(m)
\]

\[
n = 0, \ldots, 3 \\
m = 0, \ldots, 3 \\
k = 0, \ldots, 15
\]

[140] 수학식 23에 따라 4Tx 랜크 1 코드복은 표 5와 같이 생성될 수 있다. 이때 4Tx 랜크 1 코드복의 최소 코드 거리는 0.8660이며, 이는 최적 거리(optimal distance)를 만족한다.

[141] 표 5

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>j</td>
<td>-1</td>
<td>-j</td>
<td>1</td>
<td>-j</td>
<td>1</td>
<td>j</td>
<td>-j</td>
</tr>
<tr>
<td>1</td>
<td>-j</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>j</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-j</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>-j</td>
<td>1</td>
<td>-j</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-j</td>
<td>1</td>
<td>j</td>
<td>-1</td>
<td>-j</td>
<td>1</td>
<td>-j</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>j</td>
<td>-1</td>
<td>-j</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>-j</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-j</td>
<td>1</td>
<td>j</td>
<td>-1</td>
<td>-j</td>
<td>1</td>
<td>-j</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>j</td>
<td>-1</td>
<td>-j</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>-j</td>
<td>1</td>
</tr>
</tbody>
</table>

[142] 이렇게 생성된 코드복은 행 퍼뮤테이션(row permutation)되여도 동일한 거리를
것은 코드북 세트를 얻을 수 있다. 또한 수학식 24와 같이
\[-\pi \]
위상 회전을 고려할 수 있다.

[143] 수학식 24
\[e^{(-j\pi\left(k-\frac{k}{4}\right))}, k=0,\ldots,15 \]

생성된 4Tx 맵크 1 코드북의 프리코딩 행렬은 전부 사용되지 않고 일부 선택적으로 사용될 수 있다. 사용되는 4Tx 맵크 1 코드북의 프리코딩 행렬은 기지국과 단말 간에 미리 정의되거나, 기지국이 단말에 알려 줄 수 있다.

[144] 맵크 1 코드북은 안테나 선택 코드북(antenna selection codebook)이나 안테나 그룹 선택 코드북(antenna group selection codebook)과 함께 사용될 수 있다. 안테나 전력의 정상화 인자(antenna power normalization factor)로서 1/2이 사용될 수 있다.

[145] 표 6은 4개의 안테나 중에서 2개의 안테나가 선택되는 안테나 그룹 선택 코드북의 일례를 나타낸다.

[146] 표 6

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[147] 4개의 안테나 중에서 선택되는 2개의 안테나 그룹의 조합은 (1,2)(3,4) 또는 (1,3)(2,4) 또는 (1,4)(2,3)과 같이 구성될 수 있다. 여기서, (x,y)는 x번째 안테나와 y번째 안테나의 그룹을 의미한다. 표 6은 (1,2)(3,4)의 안테나 그룹 조합을 가지는 안테나 그룹 선택 코드북의 예이다. 선택되는 2개의 안테나에 대하여 QPSK 위상을 가도록 안테나 그룹 선택 코드북이 구성될 수 있다.

[148] 표 5에 안테나 전력의 정상화 인자 1/2이 적용되고, 표 5 및 6을 합하여 24개의 요소를 포함하는 4Tx 맵크 1 코드북이 표 7과 같이 구성될 수 있다.

[149] 표 7
[151] 안테나 그룹의 조합이 (1,3)(2,4)와 같이 구성되는 안테나 그룹 선택 코드북을 고려한 4Tx 링크 1 코드북은 표 8과 같이 구성될 수 있다.

표 8

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>j</td>
</tr>
<tr>
<td>-1</td>
<td>-j</td>
<td>-1</td>
<td>-j</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

[152] 안테나 그룹의 조합이 (1,4)(2,3)와 같이 구성되는 안테나 그룹 선택 코드북을 고려한 4Tx 링크 1 코드북은 표 9와 같이 구성될 수 있다.

표 9

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>j</td>
</tr>
<tr>
<td>-1</td>
<td>-j</td>
<td>-1</td>
<td>-j</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
이와 같이, 2Tx 랜그 1 코드북을 이용하여 4Tx 랜그 1 코드북이 구성될 수 있다.
표 4 내지 9에서 예시한 요소 중에서 일부만이 4Tx 랜그 1 코드북으로 구성되어
정의될 수 있다. 또한, 안테나 전력 정상화 인자는 제한되지 않으며, QPSK 뿐만
아니라 다른 변조방식이 적용될 수 있다.

2Tx 랜그 1 코드북으로부터 생성되는 4Tx 랜그 1 코드북은 기반으로
프리코딩이 수행된 실볼을 전송된다(S120). 송신기의 프리코더 또는 메모리에
4Tx 랜그 1 코드북이 정의되어 있을 수 있으며, 정의된 4Tx 랜그 1 코드북에
포함되는 요소 중에서 적어도 하나의 프리코딩 행렬이 선택되어 프리코딩이
수행될 수 있다. 프리코딩된 실볼은 부반송과에 면밀되어 OFDM 신호로
생성되어 전송될 수 있다.

이상에서와 같이, 기존의 코드북을 활용하여 확장되는 다중안테나를 지원할 수
있으므로 시스템의 복잡도를 줄일 수 있다. 또한, 확장된 다중안테나를 지원하지
못하는 기존 시스템의 단말은 기존의 코드북을 그대로 사용할 수 있으므로 기존
시스템에 대한 역지성(backward compatibility)이 보장된다.

도 6는 단말의 요소를 나타낸 블록도이다.

도 6을 참조하면, 단말(50)은 프로세서(processor, 51), 메모리(memory, 52),
RF부(RF unit, 53), 디스플레이부(display unit, 54), 사용자 인터페이스부(user
interface unit, 55)를 포함한다. 단말(50)은 복수의 송신안테나를 구비할 수 있다.

프로세서(51)는 우선 인터페이스 프로토콜의 계층들을 구현하여, 제어 명령과
사용자 명령을 제공한다. 각 계층들의 기능은 프로세서(51)를 통해 구현될 수
있다. 프로세서(51)는 제안하는 프리코딩 방식을 구현할 수 있다. 메모리(52)는
프로세서(51)와 연결되어, 단말 구동 시스템, 애플리케이션 및 일반적인 파일을
 저장한다. 메모리(52)는 코드북 기반의 프리코딩을 지원하기 위해 정의되는
코드북을 저장할 수 있다. 디스플레이부(54)는 단말의 여러 정보를 디스플레이하며, LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes) 등 갈 알려진 요소를 사용할 수 있다. 사용자 인터페이스부(55)는 키페드나 터치스크린 등 갈 알려진 사용자 인터페이스의 조합으로 이루어질 수 있다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호(radio signal)를 송신 및/또는 수신한다.

단말과 네트워크 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템 간 상호접속(Open System Interconnection; OSI) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층), L3(제3 계층)로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리 채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공하며, 제3 계층에 위치하는 무선 자원 제어(radio resource control, RRC) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 네트워크 간에 RRC 메시지를 서로 교환한다.

상술한 모든 기능은 상기 기능을 수행하도록 코딩된 소프트웨어나 프로그램 코드 등에 따른 마이크로프로세서, 제어기, 마이크로제어기, ASIC(Application Specific Integrated Circuit) 등과 같은 프로세서에 의해 수행될 수 있다. 상기 코드의 설계, 개발 및 구현은 본 발명의 설명에 기초하여 당업자에게 자명하다고 할 것이다.

이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특히청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.
청구범위

다중애플트 시스템에서 데이터 전송방법에 있어서,
복수의 송신안테나를 위한 제1 코드북(codebook)으로부터 생성되는 제2 코드북을 기반으로 입력 심볼의 프리코딩(precoding)을 수행하는 단계; 및
상기 프리코딩된 심볼을 전송하는 단계를 포함하되, 상기 제2 코드북은
상기 복수의 송신안테나의 장수에 송신안테나를 위한 코드북이고, 상기 제2 코드북에 포함되는 프리코딩 행렬은 상기 제1 코드북에 포함되는
프리코딩 행렬의 결합으로 생성되는 다중애플트 시스템에서 데이터
전송방법.

제1 항에 있어서, 상기 제1 코드북은 랭크(rank) 1을 위한 코드북인 것을
특징으로 하는 다중애플트 시스템에서 데이터 전송방법.

제1 항에 있어서, 상기 제1 코드북은 2개의 송신안테나를 위한 코드북이고,
상기 제2 코드북은 4개의 송신안테나를 위한 코드북인 것을 특징으로 하는
다중애플트 시스템에서 데이터 전송방법.

제1 항에 있어서, 상기 제2 코드북은 상향랭크 전송을 위한 코드북인 것을
특징으로 하는 다중애플트 시스템에서 데이터 전송방법.

제1 항에 있어서, 상기 제1 코드북에 임의의 위상 값이 곱해서 상기 제2
코드북이 생성되는 것을 특징으로 하는 다중애플트 시스템에서 데이터
전송방법.

제5 항에 있어서, 상기 임의의 위상 값은 고정된 값을 특징으로 하는
다중애플트 시스템에서 데이터 전송방법.

제5 항에 있어서, 상기 임의의 위상 값은 상기 제2 코드북의 요소마다 서로
다른 값을 특징으로 하는 다중애플트 시스템에서 데이터 전송방법.

제5 항에 있어서, 상기 임의의 위상 값은 상기 제2 코드북에 포함되는
프리코딩 행렬의 각 행마다 서로 다른 값을 특징으로 하는 다중애플트
시스템에서 데이터 전송방법.

제9 항에 있어서, 상기 제1 코드북으로부터 생성되는 sx1개의
송신안테나를 위한 제2 코드북을 기반으로 프리코딩을 수행하는
프리코딩(t, s > 1인 정수);
상기 프리코딩에 의해 프리코딩된 심볼을 백반송파에 병정하는 부반송파
램프; 및
상기 부반송파에 병정된 심볼을 OFDM 신호로 출력하는 OFDM 신호
생성기를 포함하는 송신기.

제9 항에 있어서, 상기 제1 코드북은 기존 시스템에서 비리 정의되어 있는
코드북인 것을 특징으로 하는 송신기.