02/069561 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

A 000

(43) International Publication Date (10) International Publication Number

6 September 2002 (06.09.2002) PCT WO 02/069561 A2

(51) International Patent Classification’: HO04L 9/00 (74) Agent: VILLENEUVE, Joseph, M.; BEYER WEAVER
& THOMAS, LLP, P.O. Box 778, Berkeley, CA 94704-
(21) International Application Number: PCT/US02/05977 0778 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

(22) International Filing Date: 26 February 2002 (26.02.2002)

(25) Filing Language: English GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(26) Publication Language: English MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
(30) Priority Data: ZA, ZW.
60/272,213 27 February 2001 (27.02.2001) US

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

(71) Applicant (for all designated States except US): VISA IN- Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)
TERNATIONAL SERVICE ASSOCIATION [US/US]; Buropean patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
900 Metro Center Boulevard, Foster City, CA 94404 (US). GB, GR, TE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
(72) Inventors; and NE, SN, TD, TG).

(75) Inventors/Applicants (for US only): FAITH, Patrick, L.
[US/US]; 2810 Jones Gate Court, Pleasanton, CA 94588 Published:
(US). SIEGEL, Kevin, P. [US/US]; 456 Cascadita Terrace, — without international search report and to be republished
Milpitas, CA 95035 (US). upon receipt of that report

[Continued on next page]

(54) Title: DISTRIBUTED QUANTUM ENCRYPTED PATTERN GENERATION AND SCORING

PROFILING 152 | CLUSTERING
BASE | ENGINE ENGINE 1 ”
< < LOCAL ==
L 151140 142 ENGINE CLIENT
138a y 150
|| <
rIRANSACTION 145a
ROFILE DATABASE [CLUSTER -
138b DATABASE
LOCATION/FRAUD KEY ENGINE |~ 164
138 PROFILE DATABASE - 146b
KEY COMPRESSION 3
| TRANSACTIONAL '”83 0
INFORMATIONAL TRANSACTION REELGINEON rald
SOURCES COMPRESSION TABLE [T 148b REPLICALEY 162
© REPLICATOR DATABASE
CENTRAL DB
178
132 D 3 174 .
CONTROL DPERATIONS -
SERVER SYSTEM | DATABASE INTERFACE TRANSACTION
ENGINE
130 / OPERATIONS i i
Distributed Risk
SUPPORT 176 Assessment System

(57) Abstract: Transaction scoring is performed in a distributed manner across a client-server computing system. A computing
system for processing a transaction includes a server system and a client system. The server system is arranged to process information
associated with the transaction, while the client system communicates with the server system and includes a key engine which is
arranged to generate keys. The client system and the server system are arranged to cooperate to assess risk associated with the
transaction. The client is arranged to send the keys generated by the key engine as a transaction to the server system.

w0 02/069561 A2 I 0RO 000 00 0

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/069561 PCT/US02/05977

PATENT APPLICATION

DISTRIBUTED QUANTUM ENCRYPTED PATTERN GENERATION AND
SCORING

BACKGROUND OF THE INVENTION
1. Field of Invention

The present invention relates generally to computing systems for use in
financial data analysis. More particularly, the present invention relates to methods
and apparatus for efficiently enabling financial data analysis to occur in a distributed

computing environment.

2. Description of the Related Art

As the use of bankcards is becoming more prevalent, issuers of bankcards are
finding that their credit and frand charge-offs, including bankruptcy losses, are
increasing. When a bankcard account holder is forced to default on payments for
transactions, e.g., financial transactions, performed using his or her bankcard, it is the
issuers of the bankcards who are most often forced to absorb the associated losses.
Hence, to protect themselves financially, issuers of bankcards are developing so-
called “risk prediction” models which they use to assess risks, e.g., bankruptcy risk,
fraud risk and non-bankruptcy risk, associated with a bankcard account holder. Risk
prediction models for the detection of fraud are typically based upon the analysis of
patterns exhibited in series of transactions performed by the bankcard holder in a

single account.

Models for evaluating bankruptcy and credit risks are typically based on
historical payment data and account performance data. Generally, risk prediction
models for the evaluation of bankruptcy and credit risk use historical account
performance data associated with a bankcard account or, more generally, the holder of
a bankcard account, to identify a pattern of payment and to correlate the pattern of

payment to known patterns of payment. In other words, the payment pattern of the

10

15

20

25

30

WO 02/069561 PCT/US02/05977

account holder is compared against payment patterns which are considered as being
indicative of a relatively high risk of future financial problems, as for example

bankruptcy or credit loss.

With respect to fraud detection systems transaction data (data in the format of a
string of data containing a series of different data fields), typically is not used direcﬂy
by the fraud detection models. In general, the transaction data, which includes such
data as an account number, a transaction amount, a transaction time, and a merchant zip
code, as well as various other data, must be transformed into characteristic variables
which may be used as direct inputs to the risk prediction models. These characteristic
variables include, for example, a variable which holds the risk associated with a
transaction occurring in a particular geographic area, a time-weighted sum of the total
number of consummated financial purchases, and a running sum of the total amount of

consummated purchases.

Typically, characteristic variables are generated from transaction data at a
central server. In other words, transaction data is provided to a central server from a
client, e.g., a payment gateway or a customer computer, and the central server
processes, L.e., scores, the transaction data. To provide transaction data to a central
server, the transaction data is typically sent from a client over a network connection.
Such data transmission generally involves sending private information, e.g., credit
account numbers, over the network connection. As the private information is being
transmitted it may be accessed by virtually any individual who has access to the
network connection. In addition, even if present at a central location, the private
information might be viewed by a programmer or other data processor who is scoring
the information. When the private information is accessed by an individual who wishes
to use the information fraudulently, the integrity of the account number associated with

the information may be compromised (among other information).

Further, additional information which may be useful in assessing risk, or
generating a score, is often not transmitted from a client to a central server for

processing. That is, some “at-source” data is often not provided to and, hence,

2

10

15

20

25

30

WO 02/069561 PCT/US02/05977

unavailable to, a transaction server. As such, information that is potentially relevant to
assessing risk may not be included in a risk assessment. For example, during an
Internet transaction, information related to a web browser, the TCP/IP address, etc., is
often not transmitted to a central server. Other types of “at source” data might not be

transmitted to a central server.

Transaction data could be processed at distributed locations, but this presents
problems relating to algorithms for scoring and how to keep the data secret at
distributed locations. Therefore, what is needed is a method and an apparatus which is
secure and enables substantially all at-source data to be used in a scoring process. In
other words, what is desired is a secure, distributed system which enables transactions

to be scored.

SUMMARY OF THE INVENTION

The present invention relates to performing transaction scoring in a distributed
matter across a client-server computing system. Among other advantages, performing
transaction scoring in a distributed manner across a networked client-server computing
system enables transaction scoring to occur securely, while enabling information that is
generally only available on the client to be used in the transaction scoring process.
Novel scoring techniques are presented that allow scoring at distributed locations. In
addition, scoring is performed upon encrypted transaction data to preserve privacy.

The data need not be decrypted at any point.

According to one aspect of the present invention, a computing system for
processing a transaction includes a server system and a client system. The server
system is arranged to process information associated with the transaction, while the
client system communicates with the server system and includes a key engine which is
arranged to generate keys. The client system and the server system are arranged to
cooperate to assess risk associated with the transaction. In one embodiment, the client
is arranged to send the keys generated by the key engine as a transaction to the server

system.

10

15

20

25

30

WO 02/069561 PCT/US02/05977

In another embodiment, the server system includes a profiling engine, a
clustering engine, and a replication engine. The profiling engine is arranged to receive
information associated with the transaction and to generate features associated with
keys associated with the transaction. The clustering engine is in communication with
the profiling engine, and is arranged to substantially cluster the features into secondary
keys. The replication engine is arranged to compare the keys to the secondary keys to
identify differences between the keys and the secondary keys. In such an embodiment,
the replication engine may further be arranged to encrypt the differences between the

keys and the secondary keys.

According to another aspect of the present invention, a computer-implemented
method for processing a current transaction includes receiving information associated
with the current transaction, and generating features for a first set of keys associated
with the current transaction. The method also includes clustering the features into a
first set of secondary keys, then comparing the first set of keys to a second set of keys
which are associated with at least one previous transaction and comparing the first set
of secondary keys and a second set of secondary keys that are associated with the
previous transaction. A determination is made as to whether there are differences
between the first set of keys and the second set of keys, and a determination is made as
to whether there are differences between the first set of secondary keys and the second
set of secondary keys. Any differences between the first set of keys and the second set
of keys are encrypted. In addition, any differences between the first set of secondary

keys and the second set of secondary keys are also encrypted.

In one embodiment, the method includes sending the encrypted differences
between the first set of keys and the second set of keys to a key engine, and sending the
encrypted differences between the first set of secondary keys and the second set of
secondary keys to the key engine. In another embodiment, the method includes saving
the information associated with the transaction to a second database. In such an
embodiment, the information may be saved to the second database by a profiling

engine,

10

15

20

25

30

WO 02/069561 PCT/US02/05977

According to still another aspect of the present invention, a computer-
implemented method for handling a local transaction includes receiving a local
transaction from a source, and encrypting at least a portion of the local transaction into
one or more local transaction keys. At least one enhanced key is generated using the
local transaction key or keys, and a determination is made regarding whether the
enhanced key is a new key. The method also includes sending the enhanced key to the
source when it is determined that the enhanced key is the new key, and processing the
local transaction with the enhanced key using the source by applying a measure of
transaction risk. In one embodiment, producing the enhanced key using the local

transaction key includes applying the local transaction key to a local key database.

In accordance with yet another aspect of the present invention, a method for
handling a current transaction within a client-server system that has a client computing
system and a server computing system includes receiving information associated with
the current transaction on the client computing system, and producing enhanced keys
from the information associated with the current transaction using the client computing
system. The enhanced keys are sent from the client computing system to the server
computing system, and features for keys associated with the current transaction are
generated using the server computing system. Secondary keys associated with the
features are generated using the server computing system, and it is determined whether
the keys associated with the current transaction and the secondary keys associated with
the current transaction differ from the keys and the secondary keys associated with a
past transaction using the server computing system. Finally, a key database is modified
based upon the determination of whether the keys associated with the current
transaction and the secondary keys associated with the features for keys associated with
the current transaction differ from the keys and the secondary keys associated with the

past transaction.

These and other advantages of the present invention will become apparent upon
reading the following detailed descriptions and studying the various figures of the

drawings.

10

15

20

25

30

WO 02/069561 PCT/US02/05977

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the following description
taken in conjunction with the accompanying drawings in which:

FIG. 1A is a diagrammatic representation of a client-server environment in
accordance with an embodiment of the present invention.

FIG. 1B is a diagrammatic representation of a distributed risk assessment
system in accordance with an embodiment of the present invention.

FIG. 2 is a diagrammatic representation of a transaction profile in accordance
with an embodiment of the present invention.

FIG. 3 is a diagrammatic representation of an entry in a location compression
identifier table in accordance with an embodiment of the present invention.

FIG. 4 is a diagrammatic representation of an entry in the transaction
compression table of FIG. 1B.

FIG. 5 is a diagrammatic representation of a cluster database in accordance with
an embodiment of the present invention.

FIG. 6A illustrates the framework for the cryptmatics used for locks and keys.

FIG. 6B illustrates the relationships between keys, locks, doors and a process.

FIG. 6C is a diagrammatic representation of the relationships associated with an
object in accordance with an embodiment of the present invention.

FIG. 6D is a diagrammatic representation of a key and a door in accordance
with an embodiment of the present invention.

FIG. 6E is a diagrammatic representation of a tumbler cluster in accordance
with an embodiment of the present invention.

FIG. 6F is a diagrammatic representation of a tumbler look up process in
accordance with an embodiment of the present invention.

FIG. 7 is a flow diagram which illustrates the steps associated with quantizing
probabilistic logic using a server in accordance with an embodiment of the present
invention.

FIG. 8 is a flow diagram which illustrates the steps associated with local, or at-
source, processing in accordance with an embodiment of the present invention.

FIG. 9 is a flow diagram which illustrates step 814 of FIG. 8.

6

10

15

20

25

30

WO 02/069561 PCT/US02/05977

FIG. 10 is a possible system architecture for the profiling engine of FIG. 1B.

DETAILED DESCRIPTION OF THE EMBODIMENTS

A conventional system which uses data from multiple sources to perform
pattern generation and, hence, scoring and processing of the data, generally performs
scoring at a single, e.g., central, location. The performance of scoring at a single
location generally does not enable all available detail to be included in the scoring or
processing of a data to determine a likelihood of fraud. By way of example, not all of
the information associated with the online purchases of a user is generally provided to a
central scoring location. For instance, if a user is in the process of purchasing five
thousand dollars worth of computer equipment, a central scoring location is
substantially provided with information which states that the user is purchasing five
thousand dollars worth of computer equipment. As such, no differentiation is made
between the purchase of five computer systems which cost one thousand dollars each,
and the purchase of one computer system which costs five thousand dollars. Hence, the
fact that the likelihood of a purchase transaction being fraudulent is higher for the
purchase of five computer systems than it is for the purchase of one computer system is

not factored into an overall transaction scoring process.

Enabling distributed scoring to occur such that mathematics associated with
transaction scoring may occur at different locations within a distributed network
enables substantially all sets of data associated with a transaction to be factored into the
scoring of the transaction. That is, “at source” data including, but not limited to,
internet protocol routers, e-mail addresses, all information concerning the transaction,
information concerning servers, etc., may be used in addition to information stored at a

central scoring location to score a transaction.

In one embodiment, transaction information may be encrypted to provide
security, while scoring occurs in a distributed manner. The information is encrypted

and processed such that it is not necessary to decrypt the encrypted data, i.e., the

7

10

15

20

25

30

WO 02/069561 PCT/US02/05977

mathematics associated with transaction scoring may be performed on encrypted data
without decrypting the data, and without the need to preserve data. As such, encryption
may be performed such that some data, such which may be substantially irrelevant to
transaction scoring may be lost, since such encrypted data need not be preserved. It
should be appreciated that encryption in which some data may be lost with substantially
no adverse consequences may occur more efficiently than encryption in which all data

must be preserved for decryption purposes.

SYSTEM COMPONENTS

FIG. 1A is a diagrammatic representation of a client-server environment in
accordance with an embodiment of the present invention. A client-server environment
102, generally includes a central server 110, clients 118, and a transaction engine 114,
and is arranged to enable data to be accumulated from throughout client-server
environment 102 to perform pattern generation, e.g., scoring and processing. Clients
118 may include, but are not limited to, customer sites and point-of-sale terminals.
Clients 118 may communicate substantially directly with central server 110 through a
client/server interface. However, clients may also communicate with central server 110
through an agent 122. As shown, a client, e.g., client 118b, may communicate both

directly with central server 110 and indirectly with central server 110 via agent 122.

In general, central server 110, clients 118, and agent 122 are computing systems
which each include a processor and system memory. Typically, central server 110,
clients 118, and agent 122 also include fixed storage such as a hard drive, removable
storage such as a CD-ROM drive or a disk drive, and a network interface which
effectively allows central server 110, clients 118, agent 122, and transaction engine 114
to communicate. It should be appreciated that suitable computing systems may
generally include additional or fewer subsystems. For example, one suitable
computing system may include more than one processor, i.e., a computing system may

be a multi-processor system, or a cache memory.

10

15

20

25

30

WO 02/069561 PCT/US02/05977

Substantially any suitable type of communications link may be used to enable
communication to occur between server 110, clients 118, and agent 122. The
communications link may be, for example, a wired or cabled link. Alternatively, the
communications link may be an unwired link, e.g., a radio frequency (RF) link. It
should be appreciated that client-server environment 102 may generally include
different types of links. By way of example, some links within client-server
environment 102 may be cable links such as fiberoptic cable links or ISDN lines, while

other links within client-server environment 102 may be unwired links.

Central server 110 is arranged to process transactions through communication
with clients 118. In one embodiment, central server 110 may perform some processing
of financial transactions, while clients 118 may perform other processing of financial
transactions. That is, the processing of transactions may occur in a distributed manner
such that central server 110 and at least one client 118 are involved in the processing.
Central server 110 include engines such as a profiling engine, a clustering engine, and a

replication engine, as will be described below with reference to FIG. 1B.

Typically, central server 110, agent 122, and clients 118 are linked to
transaction engine 114. Transaction engine 114 is generally a network of computing
systems, and may be associated with the Internet. Transaction engine 114 may also be
associated with substantially any suitable system including, but not limited to, an
issuing system, an acquiring system, or a telecommunications network. The
telecommunications network provides secure communications between entities. The
telecommunications communications network may be any suitable communications
network that allows secure communication between computers. For example,
communication via media such as telephone lines, cable, fiber optic, microwave,
satellite, etc., may be used. Existing networks using secure links such as ATM
networks, the Internet or propriety networks may be used. In one embodiment of the
invention, the network is implemented using VisaNet, an existing global clearing and
settlement system provided by Visa International Service Association of Foster City,

California.

10

15

20

25

30

WO 02/069561 PCT/US02/05977

With reference to FIG. 1B, a distributed risk assessment system will be
described in accordance with an embodiment of the present invention. A distributed
risk assessment system (DRAS) 130 generally enables an encrypted scoring system to
operate in a distributed manner. In general, DRAS 130 includes a server system 132
and a client 134, which may be considered to be a customer domain. Server system
132, which may be a central server such as central server 110 of FIG. 1A, is arranged to
accept data in different formats from a detailed transactional information source 138.
Data from transactional information sources 138 may include, but are not limited to,
data in an FTL format, as well as clearing and settlement exception data. Examples of
transactional information sources are banks, merchants, payment gateways and
aggregators. In one embodiment, sources 138 include BASE I and BASE 11, described

below.

Transaction information sources 138 provide data, i.e., transaction data, to a
profiling engine 140 that is associated with server system 132. Although profiling
engine 140 may generally perform a variety of tasks, profiling engine 140 is arranged to
communicate with a database 150 and a clustering engine 142. In one embodiment,
profiling engine 140 is effectively a data collection, transaction profiling, and
aggregation module. Profiling engine 140 processes data and outputs the data, e.g., in a
substantially compressed format, to clustering engine 142, in the form of a fransaction
profile, which will be described below with respect to FIG. 2. As will be appreciated
by those skilled in the art, a suitable transaction profile may be defined through an
extensible markup language (XML).

Profiling engine 140 typically also provides outputs to database 150. The
format of the output provided by profiling engine 140 to database 150 may vary widely
depending upon the requirements of DRAS 130. In the described embodiment, output
to database 150 is provided in a location compression identifier format and a
transaction compression identifier format, as will be described below with reference to

FIGS. 3 and 4, respectively.

10

10

15

20

25

30

WO 02/069561 PCT/US02/05977

Profiling engine 140 may include three “passes,” or effective groups of
operational processes. Each pass or group of operational processes may be executed
prior to the execution of a subsequent pass or group of operational processes. A first
pass may filter transactional information sources 138. A second pass may compress
transaction data and generate risk curve data for clustering engine 142. A third pass
may provide data used by the second pass to aggregate information, and may also
forward aggregated data to clustering engine 142. Profiling Engine 140 is described
further in FIG. 10.

Database 150 is effectively an amalgamation of smaller databases 146 and
tables 148. Database 146 may include a transaction profile database 146a and a
location/fraud profile database 146b, while tables 148 may include a key compression
table 148a and a transaction compression table 148b. Transaction profile database
146a may include transaction profile records for any number of transactions. By way of
example, transaction profile database may include a profile associated with the most
recent transactions over a current time period, and a profile may appear as shown in
FIG. 2. In one embodiment, transaction profile database 146a may include records for

the approximately 180 most recent transactions which have occurred.

Location/fraud profile database 146b includes records for locations associated
with the most recent transactions which were processed using profiling engine 140.
Information included in each record includes number of transactions, total dollar
amount, distribution of transactions by dollar amount, IP addresses for a given location,
etc. Also included is a location compression identifier which is used in a location
compression table, illustrated in FIG. 3. An entry in transaction compression table

148b may appear as shown in FIG. 4.

Profiling engine 140 communicates substantially bidirectionally with database
150 over link 151, and unidirectionally with clustering engine 142 over link 152.
Clustering engine 142, which typically includes a key compression engine that is
arranged to convert a transaction profile record into a key, is arranged to cluster and

distribute information, and to read from and write to a cluster database 170. Cluster

11

10

15

20

25

30

WO 02/069561 PCT/US02/05977

database 170 includes key databases, as will be described below with respect to FIG. 5.
Information associated with cluster database 170 is used by a replication engine 160
which compares past information stored in cluster database 170 with current
information, i.e., information associated with a current transaction passed from
clustering engine 142 through cluster database 170. Replication engine 160 generally
includes a replicator central database which facilitates the clustering of “deltas,” or
differences between current information and recent information. Generally, the
replicator central database associated with replication engine 160 includes some

information associated with cluster database 170.

Replication engine 160 communicates with an operations interface 174 and a
replicated database 162 that is part of client 134. Operations interface 174 enables
operations support 176 and control database 178 to be interfaced with replication
engine 160. More generally, operations interface 174 enables operations support 176 to
interface with server system 132. Operations support 176 is arranged to monitor server
system 132 to assure that information, e.g., files, are provided to and from server
system 132 in a timely manner and, further, to enable changes to be made to server
system 132. Control database 178 is arranged to schedule jobs associated with server
system 132, and to perform different aspects of process management. Operations
interface 174 is preferably an XML-based interface containing public keys allowing for

modification to the model.

Link 161 between replication engine 160 and a replicated database 162 is
generally a secure transfer link which may be an internet link, and effectively serves as
a client/server interface. Typically, link 161 passes encrypted information from
replication engine 160, which generally encrypts information using standard encryption
techniques, to replicated database 162. Replicated database 162 includes information,
e.g., encrypted clusters of information, contained on both the replicator central database

associated with replication engine 160 and cluster database 170.

Client 134 is generally associated with a payment gateway (not shown), e.g., a

computer associated with a customer. A key engine 164, which is arranged to generate

12

10

15

20

25

30

WO 02/069561 PCT/US02/05977

keys 180 communicates with replicated database 162. A local engine 182 generally
sends a transaction to key engine 164 to cause keys 180 to be generated. In one
embodiment, key engine 164 essentially serves as a scoring engine which causes scores
to be generated. Alternatively, a scoring engine (not shown) may be maintained
separately from key engine 164. Such a scoring engine may be arranged to perform a
risk analysis for a given transaction. Local engine 182, in the described embodiment,
is in communication with a transaction engine 172, which may be a part of transaction
engine 114 of FIG. 1A. Transaction engine 172 may also be in communication with

server system 132 through transactional information sources 138.

FIG. 2 is a diagrammatic representation of a transaction profile in accordance
with an embodiment of the present invention. A transaction profile 200 includes an
account number field 204 which identifies an account, e.g., a financial or credit
account, and may be stored in a transaction profile database, as for example transaction
profile database 146a of FIG. 1B. Transaction profile 200 also includes a field 208
which holds information relating to a number of recent transactions associated with an
account identified in account number field 204. Although the number of recent
transactions may vary, in the described embodiment, the number of recent transactions

is generally limited to up to approximately 180 transactions.

A time of the most recent transaction recorded for an account identified in
account number field 204 is stored in a field 212. The time may be stored in terms of a
transaction year, a date, and a minute. Transaction profile 200 also includes fields 216
which contain lags. A lag, as will be understood by those skilled in the art, is
effectively an array element in an array of values that corresponds to a particular
transaction. Hence, fields 216 which contain lags essentially contain portions of arrays.
In general, lags may include, but are not limited to, data elements pertaining to time
deltas, dollar amounts, location compression identifiers, and transaction compression

identifiers.

Referring next to FIG. 3, one embodiment of an entry in a location compression

identifier table will be described. An entry 300 in location compression identifier table

13

10

15

20

25

30

WO 02/069561 PCT/US02/05977

may used to correlate a location compression identifier stored in a location/fraud profile
database, e.g., location/fraud profile database 146b of FIG. 1B, with an actual location.
Entry 300 includes a location compression identifier field 304 which is arranged to
contain an identifier that effectively serves to identify entry 300. That is, location
compression identifier field 304 holds a location compression identifier which is used
in a location/fraud profile database. Entry 300 may also include a location identifier
field 308 which holds a location identifier such as an electronic mail or e-mail address.
The e-mail address contained in field 308 may be associated with a customer who

caused a transaction to occur.

In general, the location identifier contained in location identifier field 308 is a
unique identifier for either a physical or virtual location. Unique identifiers are
comprised of but are not limited to merchant name, merchant category code and zip
code. It should be appreciated that an e-mail address is only one example of a unique
identifier. Other examples of unique identifiers may include, but are not limited to, a
social security number or a tax payer identification number for an individual or an

organization.

Also included as a part of entry 300 is a merchant categdry code field 312
which effectively identifies a type of goods or service which a merchant named in a
field 316. A field 320 contains a zip code that is associated with the merchant named
in field 316, while a field 324 contains an internet protocol (IP) address which
identifies a virtual location associated with a transaction. In general, entry 300 may
include substantially any field which identifies either a physical address or a virtual
address.

As will be appreciated by those skilled in the art, not all fields within entry 300
may be filled in. In other words, only location compression identifier field 304 and one
other field may be filled in for any given entry 300. Alternatively, more than one other
field may be filled in as necessary. The information in entry 300 is intended to identify

a “target,” e.g., source, associated with a transaction. Accordingly, some sources, as
>, 6.8

14

10

15

20

25

30

WO 02/069561 PCT/US02/05977

for example physical sources, may essentially require more information in entry 300

than a virtual source.

FIG. 4 is a diagrammatic representation of an entry in a transaction compression
identifier table, e.g., transaction compression table 148b of FIG. 1B, in accordance with
an embodiment of the present invention. An entry 400 in a transaction compression
table includes a transaction compression identifier field 404 which holds a transaction
compression identifier. A field 408 is arranged to hold a transaction type, e.g., field
408 may contain an identifier which indicates that a transaction was a purchase. A
field 412 is arranged to contain a CVV index which, in the described embodiment, is
typically set to a true value. A card type may be stored in a field 416 which indicates
which type of transaction card, e.g., a gold credit card or a platinum credit card. It
should be appreciated that entry 400 may include other fields 420 which may contain,

but are not limited to, information associated with a card type.

As mentioned above with respect to FIG. 1B, a cluster database may include
key databases. With reference to FIG. 5, one embodiment of a cluster database will be
described in accordance with the present invention. Cluster database 170 is generally
read from by a clustering engine and a replication engine, while also being written to by
the clustering engine. Cluster database 170 includes, but is not limited to, a primary
key database 502 containing block keys, a secondary key data set 504 containing
transfer keys, and a secondary key reference database 506 containing block and transfer
keys. Block keys hold one value in a 32-byte data structure while transfer keys hold a
fixed number of small data values, each of which is a pair of (value, probability)
encoded into a single byte. Primary key database 502 also includes a list of primary
keys.

KEY CRYPTMATICS

“Keys,” and “locks,” are used by the distributed risk assessment system 130 to
determine whether a transaction is or is likely to be fraudulent. In general, at least one

of a server, i.e., a central processing system, and a client makes use of keys and locks in

15

10

15

20

25

30

WO 02/069561 PCT/US02/05977

order to determine the likelihood that a transaction is fraudulent. A process for doing

s0 is described in FIGS. 7-9.

FIG. 6A illustrates the key-lock cryptmatics framework. This figure illustrates
the relationship between a process, a “door,” a “lock,” “keys” and “tumblers.” A
process is any suitable application software used to help process a transaction. Below

is a brief description of elements of the system; more detailed explanation follows.

The “key” structure is the basic element of the system. A key is the structure
used to group information from a transaction profile record. For instance, a key can
represent an account number; an individual transaction within the account and for each
transaction, a key can represent the location ID, amount, and status fields within the
transaction. Attributes include: chain name; token; a unique identifier; a type such as

account, transaction, location id, amount and status; and a timestamp.

The “chain” structure is another basic element of the system. A chainisa
structure that contains keys. The chain can have zero keys, many keys, a limited
number of keys, or an unlimited number of keys. Attributes include: key names; and

maximum keys.

The “token” structure another basic element of the system. A token acts as a
container for ptokens. All ptokens contained within the token preferably conform to
the probability-type attribute. For example, if the probability-type is equal to “p”, all
ptokens within the token will have a percentage as the value of the probability attribute.
If the if probability-type is equal to “h”, all ptokens within the token will have a whole
number as the value of the probability attribute. Attributes include: string, holding a

ptoken value; probability type; and maximum number of ptokens.
The “ptoken” structure is another basic element of the system. A ptoken

structure represents a probability distribution or a histogram. The probability attribute

can be either a percentage or whole number. Attributes include: a value which

16

10

15

20

25

30

WO 02/069561 PCT/US02/05977

identifies the number of occurrences in a probability distribution; and a probability

representing a percentage.

The “door” element is used to control lock elements. It can have zero or more
lock elements within it and may have one description. A door has an inhibitor
threshold that compares against the key probability in order to constrain door
processing if unnecessary. Attributes include: a lock; a unique identifier; an inhibitor
identifier that points to a key identifier that contains a probability; and an inhibitor
threshold. The inhibitor identifier identifies whether or not the door should act on a
given key. The inhibitor threshold is a value that is used to control whether or not a
door processes a given key. This value is compared to the probability contained within
the key that the inhibitor identifier is pointing to. If this value is greater than the
probability of that key, the door processes the key, if not, the door does nothing.

The “lock” structure is another basic element of the system. A lock is used to
control the processing of a key. Each lock performs-one specific function, for example
a given lock might just perform encryption on a key and nothing else. A lock can
perform hashing, or encryption on a key. A lock can create new keys or append data
onto a key. Attributes include: a unique identifier; append, whether or not the lock
appends data onto a result key or creates a new key; governor name; hash name;
encryptor name; input identifier, a reference to a key acting as input to a tumbler; result
identifier, a reference to the result key of the lock operation; tumbler identifier;
distributed, whether or not there is a probability distribution within the tumbler
population; and probability threshold. The probability threshold is used to restrict the
lock operation in use of the tumbler. If the probability value of a tumbler element does

not meet the threshold of the lock, the element will be ignored.

The “tumbler” provides the lock’s data structure for matching input keys to
identify result keys. The tumbler is an n-ary tree structure pre-configured with input
key matches pre-encrypted and compressed. The n-ary tree structure is chosen for the

benefit of improved search time performance. There is one tumbler tree for each lock.

17

10

15

20

25

30

WO 02/069561 PCT/US02/05977

The tumbler tree contains chain and key with identifier, timestamp, and storage

attributes.

The “hash” structure provides hashing capabilities to a lock and has a unique
identifier. The “encryptor” structure provides encryption functionality to a lock. A
lock uses an encryptor to encrypt data within a key. The “governor” structure is used to
slow down the lock’s processing time. Using a governor makes it harder for hackers to

crack the encryption.

FIG. 6B illustrates the relationships between keys, doors and locks. Contrasted
with FIG. 6A, FIG. 6B shows multiple locks associated with a door, and the various

possibilities.

The key-lock design designed is based on a paradigm consisting of keys,
tumblers, locks, and doors. These terms have been briefly described above. Detailed
definitions of these elements are now provided. The key-lock paradigm shown in FIG.
6B illustrates the following features: the result key can become an input key to one or
more locks; a lock utilizes a tumbler to transform an input key to a result key; a door

utilizes one or more locks; and a process utilizes one or more doors.

A result key is generated by the tumbler of a lock. The result key is used as
either an end result of a process or as in input key in an interim stage of overall
processing. A result key is used as an end result to provide a risk evaluation (for
example) for a given transaction. A result key is also used as a next link in processing
an additional tumbler generating yet another result key. The result key is unencrypted
when first generated from the tumbler, but is preferably encrypted if it is to be used as a
subsequent input key for further processing. A result key may also be a container class

of multiple keys.

An input key is generated either from a previous tumbler calculation or as an

extract from one or more fields of transaction. The input key is encrypted at client sites

18

10

15

20

25

30

WO 02/069561 PCT/US02/05977

so that client users cannot discern the underlying process. As with a result key, an

input key can be a container class of keys.

A key structure represents all fields within a transaction profile record. For
instance, a key can correspond to an account number, transactions within the account
and for each transaction, a key can relate to location id, amount, and status of the
transaction. A ‘key” is frequently represented as a key structure or key container class
containing the hierarchy of key structures described in FIG. 6D. The key’s chain is a
chain of keys that are related to a particular key. Each key has a token that is a
container class for ptokens. Ptokens are either probability distributions or histograms

for the key as defined in the token.

Regarding tokens and ptokens, each key has a token that describes the
probability type of the (input or result) key and the number of ptokens for the key. The
probability type can be either a probability distribution or a histogram. There is a
ptoken for each discrete value range for probability curves and histograms. Each
ptoken has an attribute for both a specific probability and the number of occurrences of

that probability. Each token defines the number of ptokens (probabilities).

Locks are used to specify risk for a given transaction. The lock utilizes a
tumbler to perform the actual translation of the input key to the result key. There is
preferably one tumbler for each lock. Each lock has a corresponding hash (search
algorithm) applied against the tumbler. The hash represents how the tumbler n-ary tree
is traversed to acquilre the result key based upon the input key. The hash-tumbler n-ary
tree is used ’éo maximize performance on what are potentially millions of tumbler node
potential matches. This subsequently minimizes response time for identifying

transaction-based risk.
Each lock also has an encryptor that encrypts the result keys used subsequently

as input keys to other lock-tumbler pairs. The encryptor is preferably not applied to

result keys used as an end-result of risk evaluation. Input keys (and tumbler lowest

19

10

15

20

25

30

WO 02/069561 PCT/US02/05977

level tree nodes) are preferably encrypted in order to keep clients from discerning the

underlying risk evaluation process.

The lock specifies if the input key is included as part of (appended to) the result
key. If the “appended” attribute is not set then the result key contains only the contents
of the leaf to the tumbler node matching the input key. If the “appended” attribute is
set then the result key is the concatenation of the input key and the result key contents
of the respective tumbler node leaf. The lock expires the input key in that it is no
longer utilized in the system. This is useful in that the input key is no longer needed

and eliminates the need to consciously remove the input key.

The lock also has a governor element that slows down processing of the lock.
This has the effect that if there is an illicit intrusion into the lock structure, the system
has sufficient time to detect and counteract the intrusion. The lock also has a
probability threshold that rejects the input key if it does not meet the threshold. The

input key’s probability is stored in its ptokens element.

The lock indicates if the tumber n-ary tree nodes are unique. If they are not
unique, the lock ensures that the tumbler is fully traversed as opposed to stopping when
the first input key match is found. There are situations where an input key may match

multiple tumbler nodes thereby releasing multiple result keys.

The lock indicates via a “distributed” attribute if the tumbler n-ary tree consists
of a range of probability distribution nodes that the input key must fit into as opposed
to matching a node in the tumbler. The tumbler trees are composed of nodes that either
match the input key or represent distribution curves that relate to the nput key

probability attribute (found in the input key’s ptoken).

FIG. 6C is a diagrammatic representation of the relationships associated with an
object in accordance with an embodiment of the present invention. An object 602 is
associated with an object list 604, a key 610, and a lock 612. Object list 604 is a

container class with a chain containing a list of keys and a door containing a list of

20

10

15

20

25

30

WO 02/069561 PCT/US02/05977

locks, namely chain 606 and door 608. Chain 606 is a key chain, 'and door 608 is
effectively a collection of locks. In one embodiment, chain 606 is a chain of keys that

is associated with a particular key, e.g., an input key.

Door 608 generally includes locks which are likely to be implemented together,
i.e., have at least a relatively a strong cohesion with one another. Specifically, door 608
is arranged to include locks which may be implemented together to determine a
transaction risk. A door accomplishes a particular risk evaluation process through the
use of multiple locks that depend on input keys to generate result keys. Door 608 also
includes a threshold which is compared to each entrant input key probability, which
may be stored in a ptoken of the key, to determine if the input key has permission to
enter the door. In one embodiment, the input key is considered as having permission to
enter the door if the entrant input key probability is either substantially equal to or
above the threshold. Alternatively, if the entrant input key probability is less than the
threshold, then the input key may not be given permission to enter the door. The use of
a threshold, e.g., an inhibitor threshold, in addition to the use of ptokens enables a
determination to be readily made as to whether a particular input key should be
permitted to enter a door. This eliminates unnecessary processing that would reduce

system performance.

Door 608 effectively provides a logical grouping of locks. In the described
embodiment, door 608 may be located in storage, as for example on a disk, such that
the seek and access times associated with locating the door on the disk may be
minimized, thereby minimizing computational cost and response time, as will be
appreciated by those skilled in the art. Hence, the performance of an overall system

may be substantially optimized.

Key 610 is arranged to be processed in order to operate on a lock. In general,
key 610 includes a list of tokens, and probabilities or histograms associated with the
tokens. The probabilities or histograms are stored in ptokens that are associated with
key 610. Each token defines the number of ptokens, or probabilities, while each ptoken

has an attribute for both a specific probability and the number of occurrences of that

21

10

15

20

25

30

WO 02/069561 PCT/US02/05977

probability. It should be understood that tokens, or tumbler numbers, are generally
binary strings of bits. A key structure may represent substantially all fields within a
transaction profile record, e.g., transaction profile 200 of FIG. 2. Hence, key 610 may
correspond to at least one of an account number and a transaction. For each
transaction, it should be appreciated that key 610 may relate to a location identifier, an

amount, and a status of a transaction.

Typically, one or more locks 612 may be used to specify risk for a given
transaction. Lock 612 generally utilizes tumbler 618 to translate an input key to a result
key. It should be appreciated that there is generally only one tumbler that is associated
with each lock. Lock 612 may have a corresponding search algorithm which is applied
against the tumbler 618. The search algorithm, which may be considered to be a hash,
provides a representation which enables a result key to be acquired based on an input
key. In one embodiment, the use of such a hash generally minimizes response times for

identifying transaction-based risk.

Lock 612 is associated with an alarm 614, a governer 616, a tumbler 618, a
“sparse” 620, a “neuro” 622, and a “histo” 624. Alarm 614 is arranged to send an alert
when a particular occurrence happens at a predefined frequency. Governer 616 is
arranged to slow down a speed of computation, and may allow operations to occur
substantially only at a particular computational speed. The use of governer 616 to slow
down the processing of lock 612 allows an overall system, e.g., a fraud detection
system, additional time to detect and, hence, to counteract any illicit intrusion with
respect to lock 612. In one embodiment, governer 616 is further arranged to prevent
break-ins with respect to lock 612 from occurring. Tumbler 618 is effectively a table,
e.g., a look-up table, which serves as a decoder. That is, tumbler 618 may be used
either to further encrypt encrypted data, or to expand out data using different
probabilities.

Sparse 620 is for a sparse matrix lookup, neuro 622 takes the input key and
applies a neural net against tumblers, and histo 624 is a histogram of the input against-

possible tumblers.

22

10

15

20

25

30

WO 02/069561 PCT/US02/05977

Generally, an input key is used to operate upon a lock that is a part of a door.
The lock uses a tumbler to transform an input key into a result key. A result key may
be used as either an end result of a process or as an input key at some stage, e.g., an
intermediate stage, of overall processing. When a tumbler generates a result key, the
result key is typically unencrypted. It should be appreciated that if the result key is to
be used as an input key for subsequent processing, the result key may then be

encrypted.

As previously mentioned, a tumbler is an n-ary tree data structure that generates
a result key. The result key is a leaf of a node on the lowest node level of the tree. The
node with the leaf result key is an encrypted copy of an input key or fits within a node-
specified distribution of the input key probability. This node is used to match an
encrypted input key to its mate on the tree. The match can occur either if the input key
and node are identical or if the input key falls within a probability distribution specified
by the node. This match of input keys in turn identifies the desirable result key. The
correct matching node is found using a hash of the tree. The tumbler tree has all
permutations of input key combinations at the lowest node level of the n-ary tree. This
data structure can be tailor-designed for each lock to meet functional and performance
needs. Tumblers are preferable in client configurations where clients are not allowed to

discern the relationships between input keys and result keys.

With reference to FIG. 6D shown is a high level visual representation of a
possible hierarchy among elements. Key 610 may be considered to be a structure that
is used to group information from a transaction profile record, e.g., transaction profile
record 200 of FIG. 2. Key 610 may include a token 625, a chain 606°, a ptoken 626,
and akey 627. Token 625 serves as a container for ptokens 626. Chain 606’ is
generally a structure which contains keys. As previously mentioned, ptoken 626
represents a probability distribution or a histogram. Typically, a probability attribute

for ptoken 626 may be either a percentage or a whole number.

23

10

15

20

25

30

WO 02/069561 PCT/US02/05977

Door 608 may be used to control locks 629. Although door 608 is shown as
including one lock 629, it should be appreciated that the number of locks 629
associated with door 608 may generally be widely varied. For instance, a door 608 may
have no associated locks. Lock 629 is typically used to control the processing of a key.
It should be appreciated that each lock 629 within door 608 is generally arranged to
perform a specific function. By way of example, a lock may perform hashing on a key,

perform encryption on a key, create new keys, or append data to a key.

In the described embodiment, a lock 629 contains a tumbler 618°, a governor
616°, a hash element 628, and an encryptor 630. Lock 629 uses an input key to search
tumbler 618°, which typically returns a result key. Governor 616°, hash element 628,
and encryptor 630 may be used by lock 629 to perform additional processing.

As previously mentioned, a tumbler such as tumbler 618 of FIG. 6C provides a
structure for essentially matching input keys to result keys. A tumbler may be pre-
configured with input key matches, pre-encrypted, and compressed. Although the
tumbler may be of substantially any suitable structure, the use of an n-ary tree structure
provides from an improved search time performance over the search time performance

associated with other structures.

FIG. 6E is a diagrammatic representation of a the generation of a tumbler
cluster in accordance with an embodiment of the present invention. Such generation is
preferably performed by the clustering engine. A tumbler cluster may be used to
facilitate the look up of a result key for any given input key. For coding practice a
tumbler can have a tumbler within a tumbler and it is possible to allow for multi-

dimensional sparse matrix lookups.

A tumbler cluster 632 is associated with a sample volume file 634 which
includes a key 636 and a tumbler combination 638. Tumbler combination 638 is
generally associated with key 636. As will be appreciated by those skilled in the art,

sample volume file 634 typically includes multiple keys and tumbler combinations.

24

10

15

20

25

30

WO 02/069561 PCT/US02/05977

A clustering engine such as clustering engine 142 of FIG. 1B is arranged to
effectively “strip” key 636 from sample volume file 634, sort tumbler combination 638,
and perform a frequency analysis with respect to tumbler combination 638. The
frequency analysis with respect to tumbler combination 638 may produce a series 640
of tumbler combination components, e.g., components 638a and 638b, and a count 642.

The count is the number of occurrences of a specific combination.

The clustering engine then creates a new key 644, i.e., a “T key” or a result key,
which is associated with tumbler combination 638, and a component of a cluster table

646.

Figure 6F is a diagrammatic representation of a tumbler look up process used by
the clustering engine. A full volume input file 670 includes features which are
outputted from profiling engine 140. The features include keys 672a, such as input
keys, and values 672b, 672¢. Keys 672a are typically approximately two bytes in size,
and include information such as an account number and a location. Values 672b, 672¢
may either be integers or floating point values, and may represent daily amounts of
transactions, zip codes, and substantially any information which may be suitable for

assessing risk.

Full volume file 670 is typically converted and placed into cluster database 170
using a tumbler look-up 673. Within the cluster database, a key 672a may be stored in
a file 675 which includes tumbler numbers 674, or tokens. Specifically, tumbler look-

up 673 converts values 672b, 672c to tumbler numbers 674.

Within the cluster database, in addition to file 675, a key chain 676 may also be
present. Key chain 676 includes key 672a, as well as a temporary key, e.g., “T key”
677, and a probability 678. Probability 678 typically represents the probability that key
672 is effectively the same as “T key” 677. It should be appreciated that there may be a
series of key chains 676 w.ithin the cluster database. If there are substantial differences
between key 672a and “T key” 677, then key 672a may be inserted in a primary key

database 680 associated with a cluster database.

25

10

15

20

25

30

WO 02/069561 PCT/US02/05977

PROCESSING FLOW

Keys, locks, and tumblers are used by the distributed risk assessment system
130 to determine whether a transaction is or is likely to be fraudulent. In general, at
least one of a server, i.e., a central processing system, and a client makes use of keys,

locks, and tumblers in order to determine the likelihood that a transaction is fraudulent.

Referring next to FIG. 7, the steps performed by a server system 132 will be
described in accordance with an embodiment of the present invention. That is, the
steps associated with quantizing probabilistic logic with respect to the authenticity of a
transaction by a server of a client-server system will be described. A method of
quantizing probabilistic logic begins at step 702 in which a distributed risk assessment
system receives a transaction. The transaction is typically received from within sources
138, and may include, but is not limited to, an alert, settlement advice, payment
information, and performance data. In other words, the transaction may relate to

substantially any type of financial transaction.

After the transaction is received, the profiling engine saves the transaction into
a database in step 706. In one embodiment, the profiling engine saves the transaction
into a database that contains a transaction profile database, a location/fraud profile
database, a key compression table, and a transaction compression table, e.g., database
150 of FIG. 1B. Once the transaction is saved into a database, features for keys
associated with the transaction are generated and output to a clustering engine in step
710 as input keys. In other words, compression keys are effectively created in-line by a
profiling engine through communication with a database, e.g., database 150 of FIG. 1B,
and a series of values associated with the keys are output to the clustering engine. The

values may include, but are not limited to, probabilities associated with the keys.

The clustering engine, upon receiving features for keys associated with the
transaction, clusters the features in step 714 into secondary keys, or T-keys. A

replication engine, e.g., replication engine 160 of FIG. 1B, compares the keys and the

26

10

15

20

25

30

WO 02/069561 PCT/US02/05977

secondary keys of the transaction, i.e., the current transaction, to the keys and the
secondary keys of previous transactions. The comparison is generally made to
determine if any updating is needed, and may be performed through the use of

tumblers, as described above.

A determination is made in step 722 as to whether there are any differences
between the keys. Ifit is determined that there are substantially no differences between
the keys, then the processing by a central system in response to a transaction is
completed. Alternatively, if it is determined that there are differences between the
keys, then the indication is that updating is needed. Accordingly, process flow moves
from step 722 to step 726 in which key changes are stored in a cluster database, e.g.,
cluster database 170 of FIG. 1B. It should be appreciated that the key changes which

are stored in the cluster database are typically unencrypted.

After the key changes a stored in the cluster database, the replication engine
encrypts the key changes in step 730. Once encrypted, the key changes are sent in step
734 to a key engine such as key engine 164 of FIG. 1B, and the processing performed
by a central processor is completed. It should be appreciated that, in general, a key

engine is associated with an at-source processor, or a customer domain.

FIG. 8 is a process flow diagram which illustrates the steps associated with
local, or at-source, processing in accordance with an embodiment of the present
invention. The local processing, e.g., processing by a client or customer domain 134,
begins at step 802 in which encrypted key changes are received from a server system
132. Although the encrypted key changes may be received over substantially any
suitable transmission linkage, in the described embodiment, encrypted key changes are
received over a communications link between a replication engine and a replicated
database, e.g., communications link 161 between replication engine 160 and replicated
database 162 of FIG. 1B. Once the encrypted key changes are received, the encrypted
key changes are stored locally in step 804 to a local key database. In one embodiment,

the local key database is a part of the replicated database.

27

10

15

20

25

30

WO 02/069561 PCT/US02/05977

In step 806, a key engine receives a local, at-source transaction from a local
engine or server. Then, in step 810, the local transaction is encrypted into keys by the
key engine. Typically, the local transaction is a clear token, i.e., the local transaction is
unencrypted. Hence, encrypting the local transaction into keys generally involves

encrypting the clear token.

After the local transaction is encrypted, local transaction keys are applied to the
local key database in step 814 to produce enhanced keys. The steps associated with
applying local transaction keys to the local key database will be described below with
respect to FIG. 9. Once enhanced keys are produced, a determination is made in step
818 regarding whether an alert has resulted from applying local transaction keys to the
local key database. If an alert is generated, the implication is that new keys have been
generated. Typically, such new keys are added into a database associated with a central
processing system. Accordingly, process flow moves from step 818 to step 822 in
which the new keys are sent to the central processing system as a transaction. When
the new keys are sent to the central processing system, the new keys are inserted into a
database associated with a profiling engine. Altematively, if the determination in step
818 is that no alert was generated, the indication is that no new keys have been
generated, e.g., when the local transaction was encrypted into keys in step 810. As
such, process flow proceeds from step 818 to step 826 where the key engine sends a
transaction with the enhanced keys back to the local engine. In one embodiment,

probabilities are sent back to the local engine in addition to the enhanced keys.

Once the enhanced keys are sent back to the local engine, a transaction engine
processes the local transaction, i.e., the local transaction received in step 806. The
transaction engine processes the local transaction with enhanced keys as appropriate
based upon the transaction risk in step 830. That is, the transaction engine processes
the local transaction based upon factors including the probabilities associated with the

local transaction.

After the transaction engine, e.g., transaction engine 172 of FIG. 1B, processes

the local transaction, the local key database is modified based upon business rules

28

10

15

20

25

30

WO 02/069561 PCT/US02/05977

associated with the overall system in step 834. Modifying the local key database
generally includes storing a key type on the local system. In one embodiment, a
transaction key type may be temporarily stored, e.g., persistently stored temporarily.

Once the local key database is modified, local processing is completed.

As previously mentioned with respect to step 814, local transaction keys may be
applied to a local key database in order to produce enhanced keys. With reference to
FIG. 9, the steps associated with one method of applying local transaction keys to a
local key database will be described in accordance with an embodiment of the present
invention. A process of applying local transaction keys begins at step 902 in which a
key engine receives input keys, i.e., local transaction keys. The key engine, as
discussed above with respect to FIG. 1B, is a part of a client, and may receive the input
keys from a server system via a replicated database. Once the local transaction keys are
received, the first door, or series of locks, associated with the key engine or a local key
database is initialized in step 906. It should be appreciated that substantially any

suitable method may be used to initialize a first door.

After the first door is initialized in step 906, the first lock within the “current”
door, e.g., the first door, is initialized in step 910. Then, in step 914, the first lock is
operated upon with the input keys received in step 902. Typically, if the lock is
operated upon successfully by the input keys, then the indication is that the input keys
are versions of pre-existing keys. If the lock is not operated upon successfully, then in
one embodiment, an alert may be generated to indicate that input keys were not
successfully applied to a local key database. It should be understood that the operation
of input keys on the first lock may result in the generation of enhanced keys.

In step 918, a determination is made as to whether there are additional locks
associated with the door, e.g., the first door to which the input keys were initialized in
step 906. Ifit is determined that there are no additional locks associated with the door,
then process flow moves to step 926 in which a determination is made regarding
whether there are additional doors to be operated upon using the input keys. When it is
determined that there are no additional doors, the process of applying local transaction

keys to a local key database is completed. However, when it is determined that there is

29

10

15

20

25

30

WO 02/069561 PCT/US02/05977

at least one additional door remaining, then the implication is that the locks associated
with any additional doors are to be operated upon. Accordingly, the next door that is
available is identified in step 930, and the input keys are initialized to the first lock

within the next door in step 910.

Alternatively, if it is determined in step 918 that there are additional locks in the
door, then the indication is that the entire door has yet to be operated upon. Hence, the
next lock associated with the door is operated upon in step 922, and process flow
returns to step 918 and a determination of whether there are additional locks in the

door.

PROFILING ENGINE EMBODIMENT

FIG. 10 illustrates one possible system architecture for the profiling engine of
FIG. 1B. As described earlier, the profiling engine accepts input from transactional
information sources 138, which may include BASE I and BASE II. BASEIisa
component of the VisaNet Integrated Payment System that provides online
authorization services for Visa International Service Association and other transactions.
BASE I performs Stand-in Processing and supports PIN Verification Service, Card
Verification Value Service, Address Verification Service, etc. BASE Il provides global
electronic processing of clearing and settlement transactions. The system collects and
distributes financial and non-financial information and reports between members. Of
course, input may come from other sources as previously described.

The profiling engine processes transaction data to generate risk profiles for the
key compression engine. Output from the profiling engine is directed to database 150
and to clustering engine 142. Key compression as shown is performed by the profiling

engine.

In turn, the key compression engine converts the account risk profiles into
key/lock structures. Shown in FIG. 10 are the processes, input files, output files,
control mechanisms and monitoring mechanisms for implementing the profiling

engine. The processes and structures shown are organized by “passes.” Each pass

30

10

15

20

25

30

WO 02/069561 PCT/US02/05977

describes a group of operational processes that are executed as a group prior to
execution of a subsequent pass. Pass 1 filters the BASE I and BASE II transaction
extracts. Pass 2 compresses the transaction data and generates risk curve data for the
key compression engine. Pass 3 provides interim data used by Pass 2 to aggregate
information across the Pass 2 processes. A daemon job control mechanism manages

the execution of all Pass 1, 2 and 3 processes.

Regarding Pass 1, the download extract pass, it selects the BASE I and BASE II
fields applicable to the profiling engine and organizes them into an Account Profile
File. The BASE I Extract contains the FTL account transaction data. It is acquired on
a daily basis. The BASE I Extract is provided as an input to the Profile Build - BASE I
process on a daily basis. The BASE II Extract contains the clearing and settlement
exception data. It is acquired by the BASE II Extract on an “as available” basis, which

occurs at least once per week.

Inputs from the client may be provided. These inputs would consist of data
distinct from that provided by the Profile Build — BASE I and H processes. An
example is e-mail addresses associated with accounts. The control processes and data
formats of files in this pass are preferably updated accordingly to process and store this

information.

The Profile Build Processes filter and merge the BASE I Extract, the BASE II
Extract, and the Client Input, it then merges these into the Account Profile File. The
Account Profile File contains a binary representation of the daily output of Pass 1 with
the integrated and filtered BASE 1 Extract, BASE 2 Extract and Client input account
data. The Account Profile File is generated once per day, stored in binary form, and

configured as a read-only file, to be used in Pass 2.

Regarding Pass 2, the profile builder pass, it builds the account risk profiles
necessary for the key compression engine to calculate risk ratio. The profile builder
pass relies on various XML control definitions to guide the driving processes of this

pass. There are various key index working files used to drive processes of this pass to

31

10

15

20

25

WO 02/069561 PCT/US02/05977

speed processing. The profile builder also relies on previous day versions of the Pass 3

aggregation run.

There are several processes in Pass 2 that process specific keys. The four
processes currently are: Account Key; Location Key; Issuer Key; and Transaction Key.

Each process follows these steps:

1. Acquires the Pass 1 output binary Account Profile File;

2. Updates the corresponding Index File to incorporate any new field values

encountered in the Account Profile File;

3. Utilizes the Account Profile File, the pertinent Index File, and pertinent
Dimensional Key File outputs from the Reference region of the Aggregation
Pass 3 to generate risk average ratios for each key type (e.g., account, location,
issuer, transaction). The risk ratios are specific field instances divided by the

total number of field instances; and

4. Utilizes the Key XML Definition file to format the output of this process into
the ASCII-based, space-delimited format necessary for the key compression

engine.

The Key Index File contains a compressed version of all valid permutations of
the process specific key (e.g., account, location, issuer, transaction) fields. The index is
used to represent the applicable permutation encountered in each account transaction
captured from the Account Profile File. The formula for obtaining the index is
reversible such that the permutation can be calculated based upon the index. For each
process within Pass 2, there is a Key XML file that is used to drive the given Key
Process. The file contains the processing instructions that will tell the process how to
behave. The Key Processes (e.g., account, location, issuer, transaction) in Pass 2
generate an output Key File. This Key File contains the risk ratios for the specific key
field.

32

10

15

20

25

30

WO 02/069561 PCT/US02/05977

Regarding Pass 3, the Aggregation Pass, it has various Aggregation
Dimensional Processes that combine Pass 2 outputs for subsequent input to the Pass 2,
to aggregate field risk ratios. The Pass 3 processes illustrated in FIG. 10
are lumped together and called the Generic Aggregation Dimensional Process. The
output from each Aggregation Dimensional Process is stored in a Reference Region
such that it can be used the next day as the input to the Pass 2 set of processes. The
Aggregation Dimensional Process utilizes the Aggregation XML Definition control
format to drive the Aggregation Dimensional Process and format the (Generic)
Dimensional Key File output. These output files are generated daily, stored in the

reference region, and also forwarded to the Key Compression engine.

The Aggregation Dimensional Process takes inputs from various Pass 2 Profile
Builder processes, aggregates select transaction field data from them as defined by the
Aggregation Key XML Definition file, outputs the pertinent transaction field data into
the Generic Dimensional Key files based on format definition from the Aggregation
Key XML Definition file, forwards them to the Key Compression engine, and stores
them as a Generic Dimensional Key File in the Aggregation Reference Region. The
Reference Region represents the results of a previous pass iteration. It is next used ina
following day’s profile process. There are preferably multiple Aggregation Key XML
Definitions, Aggregation Dimensional Processes, and Generic Dimensional Key Files

(e.g., MCC-Zip).

For each Generic Aggregation Dimensional Process there is an Aggregation
XML file used by the Aggregation Dimensional Process to control the content and
manner of aggregation to be written to the Generic Dimensional Key output file. The
Generic Aggregation Dimensional Process generates an output Generic Dimensional
Key File. This file contains the risk ratios for the aggregation of key fields. The format
of this file is specified by the Aggregation XML Definition described above and is such
that each account transaction key field risk ratio is delimited by a space. This file is

stored in ASCII format.

33

10

15

WO 02/069561 PCT/US02/05977

Although only a few embodiments of the present invention have been
described, it should be understood that the present invention may be embodied in many
other specific forms without departing from the spirit or the scope of the present
invention. By way of example, the present invention has been described as being
suitable for use in a distributed environment where a client and a server are associated
with substantially separate computing environments. However, it should be
appreciated that the client and the server may not necessarily be separate computing
environments. In other words, the present invention may be implemented with respect

to a client and a server which share the same process.

In general, the steps associated with the various methods of the present
invention may be widely varied. For instance, steps may be added, removed, reordered,
and altered. As an example, the steps associated with processing a transaction on a
server may include, in one embodiment, encrypting keys and secondary keys in
addition to encrypting key changes. Therefore, the present examples are to be
considered as illustrative and not restrictive, and the invention is not to be limited to the

details given herein, but may be modified within the scope of the appended claims.

34

10

15

20

25

30

WO 02/069561 PCT/US02/05977

CLAIMS

1. A computing system for processing a transaction, the computing system
comprising:

a server system, the server system being arranged to process information
associated with the transaction; and

a client system, the client system being in communication with the server
system, wherein the client system includes a key engine which is arranged generate
keys and the client system and the server system are arranged to cooperate to assess risk

associated with the transaction.

2. A computing system according to claim 1 wherein the server system includes:
a profiling engine, the profiling engine being arranged to receive information
associated with the transaction, the profiling engine further being arranged to generate
features associated with keys associated with the transaction;
a clustering engine, the clustering engine being in communication with the
profiling engine, the clustering engine being arranged to substantially cluster the
features into secondary keys; and |

areplication engine, the replication engine being arranged to compare the keys

to the secondary keys to identify differences between the keys and the secondary keys.

3. A computing system according to claim 2 wherein the replication engine is

further arranged to encrypt the differences between the keys and the secondary keys.

4. A computing system according to claim 3 wherein the replication engine is

further arranged to provide the encrypted differences to the key engine.

5. A computing system according to claim 2 wherein the server system further
includes:
a first database, wherein the profiling engine is further arranged to store at least

some of the information in the first database; and

35

10

15

20

25

30

WO 02/069561 PCT/US02/05977

a second database, wherein the replication engine is arranged to store the

differences in the second database.

6. A computing system according to claim 1 wherein the client is arranged to send

the keys generated by the key engine as a transaction to the server system.

7. A computing system according to claim 1 further including a transaction
engine, the transaction engine being arranged to facilitate communication between the

server system and the client system.

8. A computer-implemented method for processing a current transaction, the
computer-implemented method comprising:

receiving information associated with the current transaction;

generating features for a first set of keys associated with the current transaction;

clustering the features into a first set of secondary keys;

comparing the first set of keys to a second set of keys, wherein the second set of
keys are associated with at least one previous transaction;

comparing the first set of secondary keys and a second set of secondary keys,
wherein the second set of secondary keys is associated with the at least one previous
transaction;

determining whether there are differences between the first set of keys and the
second set of keys;

determining whether there are differences between the first set of secondary
keys and the second set of secondary keys;

encrypting the differences between the first set of keys and the second set of
keys when it is determined that there are differences between the first set of keys and
the second set of keys; and

encrypting the differences between the first set of secondary keys and the
second set of secondary keys when it is determined that there are differences between

the first set of secondary keys and the second set of secondary keys.

9. A computer-implemented method as recited in claim 8 further including:

36

10

15

20

25

30

WO 02/069561 PCT/US02/05977

storing the differences between the first set of keys and the second set of keys in
a first database when it is determined that there are differences between the first set of
keys and the second set of keys; and

storing the differences between the first set of secondary keys and the second set
of secondary keys in the first database when it is determined that there are differences

between the first set of secondary keys and the second set of secondary keys.

10. A computer-implemented method as recited in claim 8 further including:
sending the encrypted differences between the first set of keys and the second
set of keys to a key engine; and
sending the encrypted differences between the first set of secondary keys and

the second set of secondary keys to the key engine.

11. A computer-implemented method as recited in claim 8 further including saving

the information associated with the transaction to a second database.

12. A computer-implemented method as recited in claim 11 wherein the

information is saved to the second database by a profiling engine.

13. A computer-implemented method as recited in claim 8 wherein the features for
the first set of keys are generated by a profiling engine and the features are clustered

into the first set of secondary keys by a clustering engine.

14. A computer-implemented method as recited in claim 13 wherein the first set of
keys is compared to the second set of keys by a replication engine, and the first set of
secondary keys is compared to the second set of secondary keys by the replication

engine.

15. A computer-implemented method as recited in claim 14 wherein the differences
between the first set of keys and the second set of keys and the differences between the
first set of secondary keys and the second set of secondary keys are encrypted by the

replication engine.

37

10

15

20

25

30

WO 02/069561 PCT/US02/05977

16. A computer-implemented method as recited in claim 15 wherein the profiling

engine, the clustering engine, and the replication engine are substantially separate.

17. A computer-implemented method for handling a local transaction, the
computer-implemented method comprising:

receiving a local transaction from a source;

encrypting at least a portion of the local transaction into at least one local
transaction key;

producing at least one enhanced key using the at least one local transaction key;

determining when the at least one enhanced key is a new key;

sending the at least one enhanced key to the source when it is determined that
the at least one enhanced key is the new key; and

processing the local transaction with the at least one enhanced key using the
source, wherein processing the local transaction with the at least one enhanced key

include applying a measure of transaction risk.

18. A computer-implemented method as recited in claim 17 wherein producing the
at least one enhanced key using the at least one local transaction key includes:

applying the at least one local transaction key to a local key database.

19. A computer-implemented method as recited in claim 18 wherein applying the at
least one local transaction key to the local key database includes:

initializing the at least one local transaction key to a first lock; and

operating on the lock with the at least one transaction key, wherein operating on
the lock with the at least one transaction key at least partially creates the at least one

enhanced key.

20. A computer-implemented method as recited in claim 18 further including:

storing key information in a key database.

38

WO 02/069561 PCT/US02/05977

10

15

20

25

30

21. A computer-implemented method as recited in claim 20 wherein the key

information includes encrypted key information.

22. A computer-implemented method as recited in claim 20 further including:

modifying the local key database after processing the local transaction.

22. A computer-implemented method as recited in claim 17 further including:

sending the transaction to the source along with the at least one enhanced key.

23. A computer-implemented method for handling a current transaction within a
client-server system, the client-server system including a client computing system and a
server computing system, the computer-implemented method comprising:

receiving information associated with the current transaction on the client
computing system;

producing enhanced keys from the information associated with the current
transaction using the client computing system;

sending the enhanced keys from the client computing system to the server
computing system;

generating features for keys associated with the current transaction using the
server computing system;

generating secondary keys associated with the features for keys associated with
the current transaction using the server computing system;

determining whether the keys associated with the current transaction and the
secondary keys associated with the features for keys associated with the current
transaction differ from the keys and the secondary keys associated with a past
transaction using the server computing system; and

modifying a key database based upon the determination of whether the keys
associated with the current transaction and the secondary keys associated with the
features for keys associated with the current transaction differ from the keys and the

secondary keys associated with the past transaction.

39

PCT/US02/05977

WO 02/069561

1/14

vLL /

INIONT NOILLOVSNVYYL

8Ll

JuswuoIAUT JaAIBG-USID

V1% Ol

\No_‘

asti

W31SAS
HIAYIS
TVHIN3IO

01t

PCT/US02/05977

WO 02/069561

2/14

Wig)sSAS JusuIssassy
A4Sty peinquisia

9/L1

SNOILLYY3d0

140ddNsS

gl Ol 2
ANIONT
SOVIMELNI ISvAvLYd| WILSAS HIANIS
NOLLOVSNVL SNOILVH3d0 TOYINOD
2L zeT
VLl 0
811
Isyaviva HOLVOl1d (| a1avL NoISSTHAWOD "
Lol - NOILYDI1d3Y TYNOLLYIWHOANI
> . E— TYNOILOYSNVL
091 e8b1 T
0 NOISSTHJINOD AaM
IR S |
Y91 ~{ INIONT A3 . JSvavLvd agsl
; ‘ H3LSOIO ooy) 3svaviva oud
NOILOVSNVAIL
081 \\\\l“] B
28~ 051 egel
151
INGTO AN Zri~ 0L~
eT .
Y INONT | anong [| 3svd
ONIHILSNIO [251 7 ONIMIH0¥d

PCT/US02/05977

WO 02/069561

3/14

v Old

0] 4
Aju3 ejqey uoissaidwon uoyoesuel) \
d31JILNIAl
IdAL QHYO Vv NOI _.w@m_?m | NOISSTHWNOD
NOJLOVSNVHL
q0¢y .\ egcy \ 18 4 .\ ely .\ t2{0) 4 \ y0v \
¢ 9Old 008
Az s|qe | uojssaldwon LoyeooT \
JWVYN 3d00 H3HILN3Al
SSIYAAV di 4402 d1Z INVHONIN Ad0931VD SS3Haav 1vin-3 NOISS3aHdNOD
INVHOH3INW NOILYOO1
yee |\ ONm.\ ovm\ Nvm.\ mom\ vom.\
T4 . old a|lj0ld uoyoesues) » 002
o NOILOVSNYML mzﬂnwwwﬂéh MIGNON
IN3D3H LSOW 40 INIL INNODDVY
1SOW
m_.N.\ va.\ mom.\ #ow.\

WO 02/069561
4/14

170
Y

o
\

N
-

PRIMARY KEY
DATABASE

SECONDARY
KEY DATA SET

\~502

SECONDARY
KEY
REFERENCE
DATABASE

: K-506

\~504

NUSTER DATABASE

FIG. 5

PCT/US02/05977

02/05977
WO 02/069561 PCT/US02/
5/14
Process .
1. Process ealls Door
\ class
)
Door \
Lock)
)) Pracessin (Datq)
. Input Output
Key > Lock w Koy ». Lock
(input) {resunt)
XML AP} XML .
2 Input Key (eontalnes 8. Razult Key {ustng X04L)
class of mulliplo keyz) can be vsad 1o ynloek
tad from tram; subsequent lock In thiz or
flald using XML other doer .
Tumbler
% Inpul Koy Indaxes n-ary Tree !
, Tumblor for Result Koy |
Woreby encypling and
comprossing resut
TomBh 4. Tumber Indoxed (n n~
umbler, 81y bros Stucturo ts
kot p>on | Tree Node improve search spocd
Tumblor Troo Noda, o | | Tumbler Trse Notid) prey Tumbler Troo Nedo, .,
Transacllon, [X Coae| [Transackon,,[Xia Codo.,| * = * [T Xt Code,,,, Tree Node!
] |
()
Key, 'é Yeurr Result Keys m‘”m—- Troa Leaf
: S TTT e P

C\'\l \D’}'V‘“‘\'O\‘-}\(CS 'T:('CAonwr k

WO 02/069561 PCT/US02/05977
6/14

. Key Conlziner Ctass of Doora chrb
he Key Chaln Hlerachy '

chk, ResultKey | Lo;l;, Result Key

. Kays (Contalner Class o
Koys) stored by memary

N5}

[Input Key

Doors, Locks, Tumblers
storad an Disk

FL 6. GFE

(& e ng_g
i’f&\\ , Booc aod\ LOC,K e \atn) \O

WO 02/069561 PCT/US02/05977
7/14

WO 02/069561

PCT/US02/05977

8/14

428

e 6%

~50¢'

l door I é o
— e

g’
77

2
— e

T —

WO 02/069561

9/14

Sort

O 6374 ® &3%56 O

>\,_.-

e
Q) w30

O

PCT/US02/05977

1000000

000000

©
O
O
o

Z

0000 =Z

00006 Z

00000 ¥

B

A BLI'\XJ
o

Gorre)

[

JoW ™

¢

FIG- GE

PCT/US02/05977

WO 02/069561

10/14

UOTHOSU]

ﬁ

SIIIA

d0-tpoo7
Swpun)

j

¥

WO 02/069561 PCT/US02/05977
11/14

DISTRIBUTED RISK ASSESSMENT SYSTEM | —702
(DRAS) RECEIVES A TRANSACTION

v

PROFILING ENGINE SAVE TRANSACTION IN |—706
DATABASE

GENERATE AND OUTPUT FEATURES FOR KEYS 710
ASSOCIATED WITH TRANSACTION TO -
CLUSTERING ENGINE

Y

CLUSTERING ENGINE CLUSTERS FEATURES |—714
INTO SECONDARY KEYS

Y

REPLICATION ENGINE COMPARES KEYS AND
SECONDARY KEYS OF CURRENT TRANSACTION —718
TO KEYS AND SECONDARY KEYS OF PREVIOUS

TRANSACTIONS

722

DIFFERENCE
BETWEEN
KEY&?

-

STORE KEY CHANGES TO CLUSTER DATABASE [~ 728

Y

REPLICATION ENGINE ENCRYPTS KEY ,— 730
CHANGES

v

SEND ENCRYPTED KEY CHANGES TO KEY | —734
ENGINE

FIG. 7

WO 02/069561

12/14

RECEIVE ENCRYPTED KEY CHANGES
. FROM CENTRAL SYSTEM

v

STORE ENCRYPTED KEY CHANGES
LOCALLY TO LOCAL KEY DATABASE

Y

KEY ENGINE RECEIVES A LOCAL, AT-
SOURCE TRANSACTION FROM LOCAL
ENGINE

y

ENCRYPT LOCAL TRANSACTION INTO
KEYS

v

APPLY LOCAL TRANSACTION KEYS TO
LOCAL KEY DATABASE TO PRODUCE
ENHANCED KEYS

Y

— 818

| — 802

— 804

—810

/"' 814

PCT/US02/05977

YES SEND NEW KEYS TO CENTRAL SYSTEM |-—822

AS A TRANSACTION

NO

KEY ENGINE SENDS TRANSACTION WITH
ENHANCED KEYS BACK TO LOCAL ENGINE

826

v

TRANSACTION ENGINE PROCESSES
LOCAL TRANSACTION WITH ENHANCED
KEYS AS APPROPRIATE BASED ON
TRANSACTION RISK

Y

i~
)

— 830

MODIFY LOCAL KEY DATABASE BASED ON|— 834

BUSINESS RULES

FIG. 8

PCT/US02/05977

WO 02/069561

13/14

CeChH

SATH LNdNI HLIM MOOT LX3N NO 3LvH3d0

4{d00d
$SH00d
HJ004d 1X3N OL IA0N NI SMO07
B) S3A TvYNOlLLIgay ON TYNOLLIday
o0&’ 2€b 316
Al5 ~1SAIN LNdNI HUMMAMO0T 1Sdid NO ALvH3dO
> HOOA NIHLIM MO0T 1S4 O 3ZINMVILINI

glb ~ +

204 ~ HOO0A4 LSHI4 O1 IZINVILINI

COb~ SATIN LNdANI SIAIFO3Y IANIONT AT

pL8
1¥vIS

WO 02/069561 PCT/US02/05977
14/14

T5 10
40 Pefiling EnginR

Profile Engine

Sk

b

d
A N

IR
ﬁ(E“,’"“g\: R
N TN,
\'_F",T'_@"

;{A.-; raaiet

M

W N o

b
Py 13
TSR D SHER

o
oy
<3 R ”'Et: Ly

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

