
(12)
(19)

(54)

(51)7

(21)

(87)

(30)

(31)

(43)
(43)
(44)

(71)

(72)

(74)

PATENT (11) Application No. AU 199710844 B2
AUSTRALIAN PATENT OFFICE (10) Patent No. 718827

Title
Telecommunications switch having a universal applications program interface for
stantardized interactive call processing communications

International Patent Classification(s)
H04Q 003/62
H04L 029/06

H04Q 003/545
H04Q011/04

Application No: 199710844 (22) Application Date: 1996.11.27

WIPO No: WO97/20439

Priority Data

Number (32) Date (33) Country
08/566414 1995.11.30 US

Publication Date : 1997.06.19
Publication Journal Date : 1997.08.14
Accepted Journal Date : 2000.04.20

Applicant(s)
Excel Switching Corporation

Inventor(s)
Mark P Hebert

Agent/Attorney
PHILLIPS ORMONDE and FITZPATRICK,367 Collins Street,MELBOURNE VIC
3000

Related Art
US 5546453
US 5426694

(56)

OPI DATE 19/06/97 APPLN. ID 10844/97
AOJP DATE 14/08/97 PCT NUMBER PCT/US96/18959

X*»J

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/20439
H04Q 3/62, 11/04, H04L 29/06, H04Q
3/545

Al
(43) International Publication Date: 5 June 1997 (05.06.97)

(21) International Application Number: PCT/US96/18959

(22) International Filing Date: 27 November 1996 (27.11.96)

(30) Priority Data:
08/566,414 30 November 1995 (30.11.95) US

'S'—mtghi

(71) Applicant: EXCEL,-INC. [US/US]; 255 Independence Drive,
·· Hyannis, MA 02601 (US). -3SK <3 Id Pl u maAk βοα.»
PC> SSI . SaOtOn-ve»®- Soo-c.li(hcssac-ku ta-H s

' o -
(72) Inventor: HEBERT, Mark, P.; 34 Harvest Drive, Kingston,

MA 02364 (US).

(74) Agents: ATTAYA, Michael, E. et al.; Cesari and McKenna
L.L.P., 30 Rowes Wharf, Boston, MA 02110 (US).

(81) Designated States: AL, AU, BB, BG, BR, CA, CN, CZ, EE,
GE, HU, IL, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK,
MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, UZ,
VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published . .
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: TELECOMMUNICATIONS SWITCH HAVING A UNIVERSAL APPLICATIONS PROGRAM INTERFACE FOR STAN-
TARDIZED INTERACTIVE CALL PROCESSING COMMUNICATIONS

(57) Abstract

PC I/O BUS

PC POKER BUS

t—-124

/--126

118

SWITCH
110

ANALOG
LINES OR
TRUNKS

—LUU
f—T- ANALOG

· (UNIVERSAL)
LINE CARD

HPLC BUS

TDHBUS
LC STATUS/CONTROL BUS

TIWNG/CONTROL BUS

: EXTERNAL I

r_£

PC
CPU

104 j
CPU/HATRIX

i CARO

Ϊ
(Tl)

LINE CARO

DIGITAL
116---

EXTERNAL I
BATTERY/RING !

VOLTAGE !
SUPPLY :

BATTERY/RING VOLTAGE BUS

PACKET
ENGINE
CARO

DIGITAL
(El)

LINE CARD

The present invention
is a standardized host-to-switch
application program interface
(API) for performing call
control processing, capable
of being customized to meet
telecommunications application
and network signalling protocol
requirements. The universal
API comprises one or more
generic messages having
programmable fields for
transmitting commands, status,
and data between the host
application and the switch.
The present invention further
comprises a programmable
telecommunication switch that
provides a user with the ability
to define a desired API protocol,
either "standard" or custom
in nature, for performing any
desired switching functions.
The present invention includes
a protocol development environment which enables a user to define a separate finite state machine for each port provided by the switch.
Each finite state machine may be independently defined by combining a series of elementary processing steps, called atomic functions, into
primitives, which are in turn combined with states and events to define the desired state machine. Such state machines may include atomic
functions configured to generate predetermined messages under predetermined conditions and containing predetermined information. Such
state machines may further include the ability to respond to state events that include the receipt of generic API messages configured to
provide the state machine with information from the host application.

? -τ

WO 97/20439 PCT/US96/18959

1

TELECOMMUNICATIONS SWITCH HAVING A UNIVERSAL
APPLICATIONS PROGRAM INTERFACE FOR STANDARDIZED

INTERACTIVE CALL PROCESSING COMMUNICATIONS

5 BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to the field of telecommunications and,

more specifically, to a universal applications program interface (API) for standardized

10 interactive call control processing with a programmable telecommunication switch and

a host computer supporting various telecommunications applications.

Description of the Related Art

Programmable telecommunication switches are used in a wide variety of

15 applications such as voice messaging, telemarketing services and the like. A computer

that runs a telecommunications application program. A customer may programmable

switch is usually controlled by a host device, which is typically a either purchase a

commercially available application program that is compatible with the host and switch

hardware or may elect to write a custom program.

20 In most applications, a programmable switch is connected to a public telephone

network by one or more analog trunks or digital spans (e.g., a T1 span) which are

terminated at the switch. The switch may also terminate one or more "lines" which are

connected to devices such as telephone sets. Communication over any given trunk,

span or line is carried out in accordance with an assigned signalling protocol.

25 For various switching system applications, the sequence of switching events

must be controlled and the switching functions must be performed in accordance with

the requisite protocols. Throughout the world, there are numerous "standard"

signalling protocols in use, including E&M wink start, loopstart, groundstart,

international compelled R2 using MFR2 address signalling, and El Channel Associated

30 Signalling (CAS) protocols using DTMF/MFR1 signalling. Typically, conventional

programmable switches are configured such that a particular signalling protocol is

associated with a particular trunk, span or line.

WO 97/20439 PCT/US96/18959

2

To control the telecommunications switch at the various levels necessary to

satisfy specialized switching functions, conventional host applications have been

configured to generate digital signal commands corresponding to a plurality of

switching events. Correspondingly, conventional communications switches have been

5 configured to generate digital signal responses related to the processing of these events

at the ports. These messages are constant or "hard-coded" messages, each configured

to communicate specific information between the host application and the switch. The

interface between the telecommunications application and the switch through which

these messages are transferred is referred to as an applications program interface, or

10 API.

Each of the signalling protocols requires predetermined host-to-switch call

control processing protocols to be established, each protocol including the exchange of

one or more constant messages. Thus, to control the programmable switch to perform

the requisite switching events necessary to maintain communications, communications

15 switches must be capable of supporting extremely large number of these specific host-

to-switch command messages and associated protocols. Accordingly, each signalling

protocol has associated with it one or more different message sets stored and indexed at

the host as well as at the switch. The message sets and resulting host-to-switch

protocol are also dependent upon specific telecommunications applications

20 requirements, such as the amount and type of information an application requires for it

to appropriately control the switch to support a particular signalling protocol.

Furthermore, conventional programmable switches may be connected between

the public telephone network and other devices such as a voice messaging system.

Because such devices may perform specialized functions and are not intended to

25 connect directly to the public telephone network, they do not typically adhere to

standard signalling protocols. Thus, for a user to be able to control the programmable

switch in such a fashion that proper communication is maintained both, with the public

telephone network and with other devices connected to the switch, complex and varied

API signalling protocol requirements must be satisfied. Conventional communications

30 switches implement numerous specific sets of API messages to support these varied

requirements.

3

As a result of the implementation of constant messages and the various
telecommunications applications and signalling protocol requirements, there has been
no standardization of the interface between the host applications and the
telecommunications switch. This has led to increased cost in developing the necessary

5 hardware and software to support specific API protocols to satisfy host applications
requirements as well as signalling protocol requirements for each trunk, span, and line.

Furthermore, as a result of having separate and distinct API messages, each
dedicated to a specific command or data transfer, the addition of features to the
telecommunications switch necessitates the creation and implementation of one or more

10 additional API messages to support the associated API protocol between the host and
switch. To implement each new unique message, a costly and time-consuming
software change to the switch and host must be made.

What is needed, therefore, is a standardized API message protocol supporting
host-to-switch call control processing that may be used regardless of the host

15 application or signalling protocol requirements. Furthermore, such a universal API
protocol must be sufficiently flexible and versatile to be customized to support present
and future requirements of telecommunications applications and signalling protocols
now or later developed.

3a

SUMMARY OF THE INVENTION

According to one aspect of the present invention there is provided a

telecommunications system, including:

a host device;

5 a programmable telecommunication switch, connected in communicating

relationship with and responsive to said host device, for performing call

processing functions related to communication paths established between

various ones of a plurality of channels; and

a universal applications program interface (API) having standardized

10 messages for communication between said telecommunications switch and said

host device.

According to a further aspect of the present invention there is provided a

telecommunications system, including:

a host device;

15 a programmable telecommunication switch, connected in communicating

relationship with and responsive to said host device, for performing call

processing functions related to communication paths established between

various ones of a plurality of channels; and

means for effecting communications between said switch and said host

20 using a programmable universal applications program interface (API) including

standardized messages for transmitting information between said host and said

switch.

According to a still further aspect of the present invention there is

provided a functionally-layered programmable telecommunication switch

25 including:

controllable-switching means for dynamically connecting or

disconnecting communication paths between various ones of a plurality of

channels in response to messages generated by a telecommunications series

application;

30 one or more instantiations of a plurality of programmable protocol

language (PPL) component state machines, each of which is associated with a

PPL component of said telecommunications switch and each of which

represents one of a plurality of protocols configured to perform call processing

functions with respect said plurality of channels, wherein said plurality of PPL

W:\marie\GABNODEL\10844c.doc

3b

component state machines are functionally associated with the functional layers

ofthetelecommunications switch including said PPL components; and

a programmable universal applications program interface (API) for

transferring standardized messages between said functional layers and

5 between said functional layers and said telecommunications services

application.

According to a still further aspect of the present invention there is

provided a universal applications program interface (API) for standardized

interactive call processing communications between functional layers of a

10 telecommunications system including a telecommunications switch and a host

device coupled to the switch, including:

a first programmable message for transferring all call control processing

commands and data from said host to said functional layers of said

telecommunications switch; and

15 a second programmable message for transferring all call control

processing status and data from said functional layers of said

telecommunications switch to said host.

According to a still further aspect of the present invention there is

provided a method for developing call-associated protocols for performing call

20 processing functions related to communication paths established between

various ones of a plurality of channels in a programmable telecommunications

switch, said call processing function associated with the functions performed by

a particular functional layer of said switch, the method including the steps of:

(a) creating one or more state/event tables each of which defines,

25 a plurality of predetermined logical states,

one or more predetermined events associated with each of said plurality

of predetermined logical states, said one or more predetermined events

including receipt of one or more application program interface (API) messages

generated at the same or different functional layer as said created call-

30 associated protocol, and

a primitive associated with each said one or more predetermined events,

wherein said primitive is invoked upon an occurrence of said one or more

3c

(b) creating one or more primitive tables each of which defines a

predetermined series of predetermined layer-dependent functions for each said

primitive, one or more of said predetermined functions generating an API

message to said functional layer; and

5 (c) creating one or more protocols each of which is represented by a

predetermined association of one or more of said state/event tables and one or

more of said one or more primitive tables.

According to a still further aspect of the present invention there is

provided a functionally-layered programmable telecommunication switch

10 including:

a layer-specific processor having a state machine engine configured to

execute an instantiation of a PPL component state machine representing a call

processing protocol associated with a communications channel in the switch,

said state machine invoking one or more predetermined functions in

15 accordance with a current state and the occurrence of a predetermined event,

wherein said one or more predetermined functions includes generating a

first application program interface (API) message having a first predetermined

message format for all messages transferring call control processing

information from said state machine; and

20 wherein said predetermined event is one of a plurality of events including

the receipt of a second API message having a second predetermined message

format for all messages transferring call control processing to said state

machine.

According to a still further aspect of the present invention there is

25 provided a method for communicating between two layers of a functionally-

layered programmable telecommunication switch system utilizing a

standardized universal application program interface (API), the method

including the steps of:

(1) invoking one or more instantiations of a layer-specific program

• ·
• ·

♦ · 9
• ·
• ·

• ·

30 protocol language (PPL) component state machine at a layer-specific PPL

processor having a state machine engine, each of said one or more

3d

(2) invoking atomic functions in accordance with state/event and

primitive tables defining said state machine and stored in the processor to

perform various functions, said atomic functions generating internal

representations of a API event indication message; and

5 (3) transferring said internally-represented PPL event indication

message to a communications processor coupled to said processor for

translation into a universal standardized PPL event indication message.

The present invention may include a standardized host-to-switch

application program interface (API) for performing call control processing,

10 capable of being customized to meet telecommunications application and

network signalling protocol requirements. The universal API may comprise one

or more generic messages having programmable fields for transmitting

commands, status, and data between the host application and the switch. The

present invention may further comprise a programmable telecommunication

15 switch that provides a user with the ability to define a desired API protocol,

either “standard” or custom in nature, for performing any desired switching

functions.

The present invention may include a protocol development environment

which enables a user to define a separate finite state machine for each port

20 provided by the

W:\marie\GABNODEL\10844c.doc

4

switch. Each finite state machine may be independently defined by combining a series
of elementary processing steps, called atomic functions, into primitives, which are in
turn combined with states and events to define the desired state machine. Such state
machines may include atomic functions configured to generate predetermined messages

5 under predetermined conditions and containing predetermined information. Such state
machines may further include the ability to respond to state events that include the
receipt of generic API messages configured to provide the state machine with
information from the host application.

In addition, the present invention may serve as a development tool for creating
10 customized API protocols having customized standard messages supporting

telecommunications applications such as personal communications services (PCS),
800/900 service, voice mail, telemarketing, among others. The present invention may
also be used to control or manage a wide variety of communications services within a
programmable switch through the transfer of the generic API messages, including

15 conferencing, voice recorded announcements, tone generation, tone reception, call
progress analysis, voice recognition, voice compression and fax encoding/decoding.

The universal API of the present invention may be implemented to achieve
communications internal to the switch as well. For example, the standardized

,· messages of the universal API may be used to support communications between any
”*· 20 software laver within the switch.• · · · ·• -
*i’J. Advantageously, the generic message structure of the present invention enables
• · *
L" additional call processing features to be added to the telecommunications switch that

• ·”**. the host can initiate without implementing additional content-specific API messages
' dedicated to that feature. This enables the creation of customized API message

25 protocols that can grow beyond the limitations of specific messages for specific
features and functions.

Another advantage of the generic message structure of the present invention is
that it may provide the conmonality and flexibility necessary to be a standardized
interface for application development. Ulis may significantly reduce the complexity of the

30 host/switch communications interface and eliminates the cost of supporting an interface
composed of numerous specialized messages.

5

Another advantage of the present invention is that it may provide the user with the
ability to transmit and receive information to all software layers of the switch using
standardized messages. Significantly, this may eliminate the burden of having to store
large numbers of distinct messages for managing dissimilar functions performed by the

5 same or different software layers of the switch. Thus, the large message sets stored
and indexed in conventional switches may be eliminated by the present invention.

Another advantage of the present invention is the increased degree of
interaction with the host that can be achieved simply by introducing at various
processing points an atomic function that sends and receives data into numerous

10 locations in the switch.
Another advantage of the present invention is that it may enable a user to create

multiple network signalling protocols by creating separate state machines to address
each variation of a signalling protocol. The universal API may be programmed to
achieve the necessary communications to support each of these protocol-specific state

15 machines. Thus, the structure of the messages comprising the host-to-switch interface
may remain unchanged despite the multiple signalling protocols supported by the
switch.

Further features and advantages of the present invention as well as the structure
..*·** and operation of various embodiments of the present invention are described in detail
..*·** 20 below with reference to the accompanying drawings. In the drawings, like reference

9 99
numbers indicate identical or functionally similar elements. Additionally, the left-most

• •9 9J : one or two digits of a reference number identifies the drawing in which the reference
* · · · σ

*:**·; number first appears.

25 BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the appended claims. The
above and further advantages of this invention may be better understood by referring to

J the following description taken in conjunction with the accompanying drawings, in
I 30 which:• · ·

WO 97/20439 PCT/US96/18959

6

Figure 1 is a block diagram of a programmable telecommunications switch

which may be programmed by a user in accordance with a preferred embodiment of

the present invention;

Figure 2 is diagram which depicts the layers of software used to control the

5 switch of Figure 1;

Figures 3A and 3B depict some of the specific features and functions associated

with each of the software layers depicted in Figure 2;

Figure 4 is a block diagram of a finite state machine development environment

constructed in accordance with a preferred embodiment of the present invention;

10 Figure 5 is a block diagram illustrating the structure and contents of a generic

PPL Event Indication and PPL Event Request message of the present invention;

Figure 6 is a block diagram of a PPL Event Indication Acknowledgement and

PPL Event Request Acknowledgment message of the present invention.

Figures 7A and 7B are a state diagram of a finite state machine for providing

15 call control processing utilizing the universal API of the present invention to support a

highly interactive host telecommunications application requirement;

Figure 7C is an interface diagram of the universal API supporting the call

control processing illustrated in Figures 7A and 7B;

Figures 7D and 7E are a diagram of the finite state machine of Figures 7A and

20 7B in which each series of atomic functions is defined as a primitive;

Figures 7F and 7G are tables showing the correspondence between the atomic

functions, primitives and states Of Figures 7A-7E;

Figures 8A and 8B are a state diagram of a finite state machine for providing

call control processing utilizing the universal API of the present invention to support a

25 limited interactive host telecommunications application requirement;

Figure 8C is an interface diagram of the host-to-switch API generated by the

cal control processing illustrated in Figures 8A and 8B;

Figures 8D and 8E are a diagram of the finite state machine of Figures 8A and

8B in which each series of atomic functions is defined as a primitive;

30 Figures 8F and 8G are tables showing the correspondence between the atomic

functions, primitives and states of Figures 8A-8E;

WO 97/20439 PCT/US96/18959

7

Figure 9 is a functional block diagram illustrating an exemplary process flow to

create a PPL Event Indication message;

Figure 10 is a block diagram of the message buffer created by an Layer 4 PPL

processor during the creation of the PPL Event Indication message of Figure 9; and

5 Figure 11 is a functional block diagram illustrating an exemplary process flow

to create a PPL Event Request message.

DETAILED DESCRIPTION OF THE INVENTION

10 Figure 1 shows a commercially available personal computer (PC) 102 which

includes a PC central processing unit (CPU) 104 and a hard disk drive 106

interconnected by a PC input/output (I/O) bus 108 and a PC power bus 109. The PC
102 is preferably a PC-AT*, sold by International Business Machines (IBM), or a

compatible thereof. Other personal computers having more memory or more powerful
15 CPUs than the PC-AT* may also be used. The PC 102 preferably operates under an

application-oriented operating system, such as DOS* or UNIX*.

The PC 102 consists of a chassis or housing in which a motherboard is

mounted, along with the disk drive 106 and other optional assemblies such as floppy

disk drives, modems and the like. The PC CPU 104 is mounted on the motherboard,

20 which includes a series of edge connectors into which other boards (cards) may be

inserted and thereby connected to the PC I/O and power busses 108 and 109.

A programmable telecommunication switch 110 resides within the PC 102. A

CPU/matrix card 112 is inserted into one of the slots on the motherboard and thus

connected to the busses 108 and 109. The CPU/matrix card 112 is interconnected with

25 a digital (Tl) line card 114, a digital (El) line card 115, a digital signal processing

(DSP) card 116, a packet engine card 117, an analog (universal) line card 118 and a

terminator card 119 by four busses: a high level data link control (HDLC) or

interprocessor bus 120; a time division multiplex (TDM) bus 122; a line card (LC)

status/control bus 124; and a timing/control bus 126. A battery/ring voltage bus 128

30 supplies battery voltage (48VDC) and ringing voltage (109VAC) to the analog line

WO 97/20439 PCT/US96/18959

8

card 118. The terminator card 119 serves to physically terminate busses 120, 122,

124, 126 and 128.

The line cards 114, 115 and 118 and the DSP card 116 are all connected to and

receive their basic operating power from the PC power bus 109. Although only one

5 digital (Tl) line card 114, one digital (El) line card 115 and one analog line card 118

are depicted, it should be understood that additional line cards of any type may be

added subject to two physical limitations: (1) the maximum switching capacity of the

CPU/matrix card 112, and (2) the physical space within the chassis of the PC 102.

An external host 130, which may comprise a separate personal computer,

10 workstation or other computer, may optionally be connected via a communication

channel 132 to the CPU/matrix card 112. The CPU/matrix card 112 preferably

includes a conventional RS-232 compatible interface for connecting the channel 132.

The external host 130 preferably operates under an application-oriented operating

system.

15 If desired, the switch 110 can reside on a passive backplane (no PC CPU 104

or disk 106 present) from which its receives electrical power and be controlled by the

external host 130. For example, the present invention may be implemented in other

processing platforms such as the expandable telecommunications switch disclosed in

copending patent application, serial number 08/207,931, titled Expandable

20 Telecommunications System, assigned to the assignee of the present application and

which is hereby incorporated by reference in its entirety.

An external battery/ring voltage supply 131 is connected via a path 133 to the

terminator card 119. Supply 131 may comprise, for example, a commercially

available power supply.

25 With the exception of the digital (El) line card 115, the DSP card 116 and the

packet engine card 117, details regarding the construction of the various cards shown

in Figure 1 are set forth in U.S. Patent No. 5,321,744, titled Programmable

Telecommunications Switch for Personal Computer, assigned to the assignee of the

present application and which is hereby incorporated by reference in its entirety.

30 Digital (El) line card 115 is preferably constructed using similar hardware to that

WO 97/20439 PCT/US96/18959

9

disclosed for T1 line card 114, except for differences in conventional circuitry which

allow line card 115 to terminate El spans as opposed to T1 spans.

Details regarding the construction of the DSP card 116 and the packet engine

card 117 are set forth in U.S. Patent No. 5,349,579, titled Telecommunications Switch

5 With Programmable Communications Services, assigned to the assignee of the present

application and which is hereby incorporated by reference in its entirety.

Figure 2 is a layer model of the software used to control the programmable

switch 110 of Figure 1. The lefthand column of Figure 2 shows seven layers defined

in the Open Systems Interconnection (OSI) reference model. The righthand column of

10 Figure 2 shows five layers used to control switch 2 and their general correspondence to

the OSI model.

Referring now to both Figures 1 and 2, the Application Layer 5, which

corresponds generally with the Application layer of the OSI model, represents

application software which typically runs on either the PC CPU 104 or the external

15 host 130. Application Layer 5 software may be used to implement any of a number of

desired telecommunications services such as toll free (800) service, voice mail,

automatic call distribution (ACD), to name but a few. Application Layer 5 may

communicate with any other layer of the programmable switch through the application

program interface (API) of the present invention. When Application Layer 5 resides

20 on external host 130, the API manages communications over communication channel

132. When Application Layer 5 resides on PC CPU 104, the API manages call control

processing communications over PC I/O bus 108.

Call Management Layer 104, which corresponds generally with the

Presentation, Session and Transport layers of the OSI model, represents software

25 which runs on the CPU/matrix card 12. Call Management Layer 4 is responsible for

performing centralized call processing functions and providing a common interface to

Application Layer 5 regardless of the type or types of network signalling protocols

which may be used within the switch 102. Typically, Call Management Layer 4

performs functions which are required following call setup.

30 Network Signalling Protocol Layer 3 corresponds generally with the Network

layer of the OSI model. The software represented by Network Signalling Protocol

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

10

Layer 3 runs either on the CPU/matrix card 112 or on line cards which include their

own microprocessors, such as line cards 114 or 115 or packet engine card 117, and is

responsible for in and out-of-band network signalling supervision as well as network

protocol level control of incoming and outgoing calls.

Link Layer 2 corresponds generally with the Data Link layer of the OSI model.

Link Layer 2 software runs on the CPU/matrix card 112, the line cards which include

their own microprocessors, the DSP card 116 or the packet engine card 117 (each of

which includes its own microprocessor) and is responsible for the detection as well as

physical transfer of network signalling information across a network or line interface.

Finally, the Physical Layer 1 corresponds to the Physical layer of the OSI

model. Line cards 114, 115 and 118 provide physical TI, El and analog electrical

interfaces, respectively, to the switch 110.

Figures 3A and 3B are a tabular listing of representative features and functions

provided by each of the software Layers 2-5 of Figure 2. The present invention may

be used as a development tool to develop suitable software to implement any of the

features and functions shown in Figures 3A and 3B. Illustrative examples of the use of

the present invention in the context of each of Layers 2-5 are set forth in U.S. Patent

No. 5,426,694, assigned to the assignee of the present invention, herein incorporated

by reference in its entirety.

Figure 4 is an overall block diagram of a finite state machine development

environment, constructed in accordance with a preferred embodiment of the present

invention, which enables a customer or user to create and define finite state machines

for performing desired telecommunications functions, controlled by one or more

applications through the universal API of the present invention. Before considering

this Figure in detail, the definitions of certain terms should be addressed.

As used herein, the term state refers to a number which represents the current

"context" for a particular channel or port. In a preferred embodiment of the present

invention, there are three types of states defined: normal, internal and blocking.

Normal states can be wait states (i.e., a SEIZE ACK state, a condition in which further

action is suspended until the occurrence of a particular event) or stable states (i.e., a

conversation is taking place). Internal states are used to test conditions and effectively

WO 97/20439 PCT/US96/18959

11

operate as decision branches. Normal and internal states may be specified by a

customer or user, in accordance with present invention, to define a finite state machine

for performing a desired function. Blocking states are generated automatically by the

present invention and are used, on a channel-by-channel basis, in connection with the

5 management of off-board resources.

An event is a number which identifies a condition which is accepted by a

particular state. Data may be associated with an event.

An atomic function is one which performs an elementary task such as setting a

timer. User-specified data may be associated with an atomic function. A primitive is a

10 predetermined sequence of atomic functions which is invoked upon the occurrence of a

particular event. Users may create or define primitives from a library of available

atomic functions. In a preferred embodiment, each primitive may contain up to 20

atomic functions.

A state/event table defines the valid events for a particular state and the

15 primitive which is invoked upon the occurrence of each such event. In a preferred

embodiment, a state/event table may contain up to 100 states and up to 20 events per

state.

A primitive table defines the primitives which are used by a state/event table.

In a preferred embodiment, a primitive table may contain up to 200 primitives.

20 A protocol is defined as the association of various types of tables, the least of

which is a state/event table and primitive table, and is identified by a protocol ID (a

number).

An API protocol is defined as the host-to-switch control protocol between host

applications and software layers of the switch.

25 A program protocol language (PPL) is a programmable environment for

managing network signalling protocols and communications services.

A data block, such as those denoted by reference numbers 40a, 40n, is assigned

for each channel (port) 0...n of the switch. Each data block 40a, 40n contains the

following information pertaining to its respective channel: the current state of the

30 channel; a pointer to an active state/event table; a pointer to an active primitive table; a

pointer to an assigned state/event table; and a pointer to an assigned primitive table.

WO 97/20439 PCT/US96/18959

12

In the case of channel 0, the active state/event table and active primitive table

pointers are pointing, as indicated by the phantom lines, to tables which are associated

with a resident protocol 0, denoted by reference number 442a. The assigned

state/event table and assigned primitive table pointers for channel 0 are pointing to

5 tables which are associated with a dynamically loaded, customer-defined protocol 1,

denoted by reference number 444a.

Other protocols which are present and available for use are resident protocols

1...n (442b, 442c) and downloaded, customer-defined protocols η+l...m (444b,

444c). The resident protocols 442a-442c represent preprogrammed or "standard"

10 protocols, which are typically provided by a manufacturer with a switch. In contrast,

the customer-defined protocols n+ l...m are created by a customer or user and may be

completely "custom" or "proprietary" in nature.

A layer dependent atomic function library 446 is connected to provide

information to a state machine engine 448. State machine engine 448 is also connected

15 to receive the active state/event table pointer and active primitive table pointer from

each of data blocks 440a-440n. Also, as denoted by reference number 450, utilities

are provided for layer dependent environment support.

The function of the state machine engine 448 is to drive each channel in

accordance with its assigned protocol, which is defined by the assigned state/event

20 table and assigned primitive table. Upon the occurrence of a valid event for a normal

state, a primitive is invoked in accordance with the entries in the assigned state/event

table. The state machine engine 448 uses the atomic function library 446 to perform

the atomic functions represented by the invoked primitive.

The state machine engine 448 will drive through any necessary internal states.

25 automatically generating appropriate blocking states, until the channel once again

reaches a normal state. At that time, processing by the state machine engine 448 is

complete until the occurrence of another valid event.

Each channel is initially assigned one of the customer-defined protocols or one

of the preprogrammed protocols. This is accomplished by the transmission of an API

30 message from the Application Layer 5 to the Call Management Layer 4, which in turn

issues an appropriate message to Layer 3 which may also be configured in accordance

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

13

with the API of the present invention. The assigned state/event table pointer and

assigned primitive table pointer point to the protocol which was last assigned. Thus, a

customer may assign a desired one of the available protocols by simply specifying the

appropriate pointers in each data block. In this fashion, the present invention

advantageously permits the customer to assign, on a channel-by-channel basis, a

desired protocol from among multiple protocols resident within a single switch.

Alternatively, or if the customer elects not to assign protocols to some or all of

the channels, default values are preferably provided so that each channel always has a

valid protocol (e.g., one of the resident protocols 442a-442c) assigned to it.

The active state/event table and active primitive table pointers, which are

provided to the state machine engine 448, point to the protocol which is currently

controlling the channel.

The protocol assigned to a particular channel is not necessarily permanent and

may be dynamically changed in real time in response to the occurrence of a specified

event, as described in detail in connection with Figure 7. Further, because the atomic

functions provided by the library 446 represent elementary functions, customers or

users are advantageously able to implement desired changes in protocols without

substantial, or possibly any, changes to the underlying code. In addition, the

environment support utilities are provided to simplify protocol development for the

customer or user. The utilities provide ready-to-use resource management functions

(e.g., timers) which greatly simplify the state machine logic required to implement

desired protocols. Different utilities are preferably provided for each software layer

since the resources required by each layer may be different.

In accordance with the present invention, call processing control

communications between the Application Layer 5, typically residing on external host

130, and the other layers of switch 102 illustrated in Figure 2, is conducted though the

transfer of generic messages of the universal API of the present invention.

Specifically, in the preferred embodiment of the universal API of the present

invention, a single message type, referred to as the PPL Event Request message, is

used to transfer all call control processing commands and data from the host

application (Layer 5) to the telecommunications switch (all other software layers).

WO 97/20439 PCT/US96/189S9

5

10

15

20

25

30

14

Likewise, a single message, referred to as the PPL Event Indication message, is used

to transfer all call control processing status and data from the telecommunications

switch to the host applications. These generic API messages have optional fields and

are the only messages necessary to maintain call processing regardless of the

application requirements, network signalling protocol requirements, or features

presently existing or to be added to the telecommunications switch. The programmable

switch of the present invention enables a user to define and assign a desired

applications program interface protocol, either "standard" or custom in nature, for

performing various switching functions to accommodate any of the above

requirements.

Referring to Figure 5, a PPL Event Request message is sent from the host to

the switch to initiate a host event on a PPL component with optional ICB data. The

PPL Event Request message is the only call control processing message passed from

the host to the switch and, in the preferred embodiment, having the format of message

500 illustrated in Figure 5. The PPL Event Request message comprises a number of

fields and subfields, each of which is described below.

PPL Event Request message includes a frame byte 502 having a constant value

identifying it as the first byte of a frame.

Message length field 504 contains the length of the particular PPL Event

Request message. This is necessary due to the ability of the generic API messages of

the present invention to include optional fields, changing the length of the message.

Typically the length field value does not include the frame byte 502.

A message type field 506 contains a constant value identifying the particular

message as a PPL Event Request message. The message type field is constant for all

PPL Event Request messages.

Sequence number field 508 is a specific numeric identifier assigned to each PPL

Event Request message that is generated by the host application. This value is used to

distinguish between different PPL Event Request messages transmitted from the host to

the switch. For example, when the host acknowledges the receipt of a PPL Event

Request message, it includes the sequence number in its acknowledgement to identify

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

15

which of the PPL Event Request messages is associated with the status information

contained within the acknowledgement.

As noted, every PPL component state machine in a switch is assigned a unique

reference number. PPL component ID 510 is a one word field that identifies which

PPL component implemented in the switch is referenced by a particular PPL Event

Request message 500.

There may be multiple instantiations of a PPL component state machine in a

switch at any given time. For example, in the preferred embodiment there is an El

PPL component state machine assigned to each channel. Thus, in the illustrative

embodiment wherein a single El card supports 256 channels, there may be as many as

256 instantiations of the El PPL component state machine, each associated with a

distinct channel. In order to selectively provide access to every instantiation of a PPL

component, the universal API of the present invention provides the ability to perform

multiple levels of addressing. Thus, once the PPL component has been identified in

the PPL component ID field 510, an address element field 514 is provided to identify

which instantiation(s) of that PPL component state machine is(are) being referenced.

As shown in Figure 5, the PPL Event Request message provides the ability to include

any number of address element fields 514, and thus may simultaneously communicate

with multiple instantiations of a single PPL component state machine. The total

number of address element fields 514 included in a PPL Event Request message is

provided in address element count field 512.

To accommodate the additional levels of addressing noted above, address

element field 514 contains a number of subfields for further identifying which state

machine instantiation is to receive the PPL Event Request message. Specifically, an

address element type field 516 is provided to reference the hierarchial components of

the switch that may contain or be associated with the desired state machine

instantiation. In the above example of an El PPL state machine instantiation, the

address element type field 516 indicates which span and channel the state machine

instantiation is associated with. An address information subfield 520 provides specific

addresses for each of the hierarchial components indicated in the address element type

field 516.

WO 97/20439 PCT/US96/18959

16

Since the addressing information contained in field 520 varies in accordance

with the type of device addressed, the length of the AE field 514 may vary and thus is

provided in length subfield 518. It is considered to be apparent to one skilled in the

relevant art to use other addressing schemes appropriate for a particular PPL

5 component state machine and switch architecture. It should also be noted that, in the

above example, a single state machine instantiation exists for each channel since the

PPL component state machine is assigned to each channel individually. However, it is

considered to be apparent to one skilled in the relevant art that a particular state

machine may be configured to manage any number of channels.

10 The multiple levels of addressing provide the universal API PPL Event Request

message with a flexible addressing scheme. This enables a host application, using a

single PPL Event Request message, to address a range of state machine instantiations

having a common PPL component ID to generate a particular event at all addressed

state machines.

15 Each PPL event has a unique ID relative to each PPL component. The PPL

event ID field 522 provides the switch with a user-defined PPL event ID that the

switch recognizes as being associated with the particular request. The recipient PPL

component maps the unique PPL event ID to a PPL event that is unique to that PPL

component.

20 Each PPL Event Request message may also contain one or more data fields in

the form of information control blocks (ICB)s. ICBs are defined for each PPL

component based upon the software layer and the communications protocol supported

by that PPL component. Thus, any signalling information may be passed between the

host and switch using the generic, programmable messages of the present invention.

25 Also referring to Figure 5, a PPL Event Indication message is sent from the

switch to the host by a PPL component to report an event at the ports to the host with

optional ICB data. The PPL Event Indication message is the only call control

processing message passed from the switch to the host and in the preferred

embodiment, has the same format as the PPL Event Request message illustrated in

30 Figure 5. Except as noted below, the fields of the PPL Event Indication message are

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

17

identical to and perform the same functions as, the analogous fields of the PPL Event

Request message discussed above.

As noted above, there may be multiple instantiations of a PPL component state

machine. For the PPL Event Indication message, the address element field(s) indicate

which instantiation of a particular state machine is actually invoking the atomic

function that generates the PPL event indication message.

In the PPL Event Indication message, the PPL event ID field 522 is a specific

value representing the occurrence of a specific event in the switch that results in the

PPL Event Indication message being sent from the PPL component state machine. As

noted, this is managed with an atomic function that is programmed to send the

particular PPL Event Indication message in response to the occurrence of a particular

event, the PPL Event ID included in the message being programmed by the user.

It is considered to be obvious to one skilled in the relevant art to configure all

transfers of information in the switch using the universal API of the present invention,

including all layer-to-layer communications. For example, the exemplary

communications described in the above-incorporated U.S. Patent No. 5,426,694 may

be replaced with the universal API messages of the present invention.

The PPL components can be layer specific, function specific, interface specific,

protocol specific, or channel specific. This enables a host Layer 5 telecommunications

application to be as interactive as desired or necessary, accessing each layer of the

switch and managing each PPL component regardless of where the component is

located. An application can therefore use the universal API interface to manage any

PPL component. This provides a consistent and predictable means for managing every

PPL component in the switch, regardless of what level of processing is being

performed, ranging from, for example, a very detailed signalling analysis, to network

signalling, to high-level call routing, to call management connection functions.

In the preferred embodiment of the present invention, the manner in which the

data is identified and passed to the host includes the implementation of one or more

atomic functions configured to store and retrieve data of a certain type to specific

memory locations in conjunction with one or more atomic functions that generate a

generic PPL Event Indication providing the host with all previously stored data.

WO 97/20439 PCT/US96/18959

18

However, as one skilled in the art would find apparent, there are numerous ways in

which atomic functions may be configured to pass data in the PPL Event Indication

message. For example, a separate atomic function may be implemented to transfer

specific types of data in a PPL event indication message.

5 The short-hand notation for depicting the PPL Event Request and the PPL

Event Indication messages is shown in on the bottom of Figure 5.

Referring to Figure 6, the telecommunications switch responds to the PPL

Event Request with a PPL Event Request Response message having the format of

message 600. Similarly, the host applications responds to the PPL Event Indication

10 message with a PPL Event Indication Acknowledge message, also having the format

illustrated in Figure 6. Generic acknowledgement message 600 includes a frame byte

602, length byte 604, message type 606, and sequence number 608, all of which

perform the same function as the corresponding fields in the PPL Event Request

message 500. In addition, a status field 610 provides the recipient with message-

15 specific status information. The short-hand notation for depicting the PPL Event

Request Acknowledge and the PPL Event Indication Acknowledge messages is shown

in Figure 6.

Referring to Figures 7A-8G, two examples of the utilization of the universal

API of the present invention to perform interactive voice processing functions are

20 provided below. The first example illustrates a universal API for managing host-to-

switch communications when the telecommunications switch is controlled by a highly

interactive host application Layer 5 to perform interactive voice announcements. The

second example illustrates a universal API for managing host-to-switch

communications when the host application Layer 5 has limited interaction with the

25 telecommunications switch to perform the same function. These examples illustrate the

ability of the universal API to accommodate various applications requirements.

In the following Figures, a state is depicted as a circle, an atomic function is

depicted as a rectangular box, and an event is represented by a word abbreviation

located along a path leading out of a state. Information shown in parentheses in an

30 atomic function represents arguments or data that are associated with that function.

WO 97/20439 PCT/US96/18959

19

Reference numbers are provided below in parentheses when necessary to avoid

confusion with other numeric descriptors.

Figures 7A-7B illustrate an example of an application of the present invention

in Call Processing Layer 4 with a high level of interaction required by the host

5 application layer 5. In this example, the present invention is used to implement a

protocol for providing host application decisionmaking throughout the performance of

an interactive voice response to an incoming call.

The protocol begins with the associated channel (channel 1) in normal state

NSO, which is the IDLE state 702. Upon the occurrence of the event of layer 3

10 transmitting to layer 4 a setup message ((50)L4PPLevL3_SETUP_INDICATION)), the

atomic function af35 is performed. As noted in its descriptor, the Layer 4 PPL event

(L4PPLev) is received from network signalling protocol layer 3 (L3), reporting that it

has detected an incoming call (SETUP_INDICATION). The number 50 in the

parenthetical preceding the message descriptor is the PPL event ID assigned to that

15 event by the Layer 4 PPL. Thus, when Layer 4 is notified of an incoming call,

represented by a PPL event ID of 50, the PPL component state machine in Figure 7A

leaves idle state 702 and performs atomic function af35 (704).

Atomic function af35 (704) operates to notify the host application (Layer 5) of

the event, assigning to the event a PPL event ID of 1. The host application interprets

20 this PPL event ID (the number 1) as a notification of an incoming call. Referring to

Figure 7C, atomic function 35 (704) generates a PPL Event Indication message 701 to

notify the host of the incoming call. This PPL Event Indication message has the

following format:

25 PPL Event Ind (L4PPL, chi, 1)

wherein the PPL component ID indicates the Layer 4 PPL component (L4PPL), the

instantiation of the Layer 4 PPL component state machine addressed by this message is

the instantiation associated with channel 1 (chi), and the PPL event ID (1) indicates

30 that an incoming message has been received while the PPL component state machine

has been in the idle state NSO.

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

20

As shown, the arguments associated with atomic function af35 (704) specify a

Layer 4 PPL event ID. Note that more generally, atomic function af35 is a PPL Send

Event Indication message atomic function, used whenever a PPL Event Indication

message is to be sent to the host Layer 5, each message having arguments for

indicating the unique PPL event ID associated with the occurrence of a different event.

The host responds with a PPL Event Indication Acknowledge message 703 having the

general format:

PPL Event Ind Ack (sequence #, status)

wherein the sequence number is the sequence number provided in the PPL Event

Indication message 701, and the status indicates the status of the associated PPL event

indication message. For purposes of this and the following examples, the PPL Event

Indication Acknowledge messages all indicate that the immediately previous PPL Event

Indication message was successfully received.

After the telecommunications switch provides the host with notification of an

incoming call utilizing the PPL Event Indication message of the present invention, the

Layer 4 PPL component state machine enters normal state NS1, which is a WAIT state

706, during which the Layer 4 PPL component waits for the host application to

respond to the notification. The host sends a Layer 5 PPL Event Request message 705

(see Figure 7C) with an event ID of 1, indicating that it is requesting that the switch

proceed with the call received on channel 1. Message 705 has the following format:

PPL Event Req (L4PPL, chi, 1)

indicating that the switch is to respond to the incoming call received on channel 1. A

PPL Event Request message having a PPL Event ID of 1 is interpreted by the Layer 4

PPL component state machine as an event. As illustrated in Figure 7A, the receipt of

this PPL Event Request message is assigned by the Layer 4 PPL component state

machine a Layer 4 unique PPL event ID of 501, indicating that a Layer 5 PPL Event

Request (with a PPL Event ID of 1) has occurred.

WO 97/20439 PCT/US96/18959

21

In response to PPL event 501, the Layer 4 PPL component state machine

performs 5 atomic functions: atomic function af60 (708), atomic function af62 (710),

atomic function afl40 (712), atomic function af212 (714) and atomic function af50

(716). Atomic function af60 is an atomic function that generates a generic PPL Event

5 Request Acknowledge message in accordance with the present invention. This atomic

function af60 may be used whenever a PPL component of the switch is to acknowledge

the receipt of a PPL Event Request message. The argument number 16 represents an

acknowledgement status that the PPL Event Request message was successfully

received. This atomic function af60 (708) generates the PPL Event Request

10 Acknowledge message 707, having the same general format as the PPL Event

Indication Acknowledge message described above. The PPL Event Request

Acknowledge message 707 indicates that the above incoming message has been

successfully received.

Atomic functions af62 (710) and atomic function afl40 (712), serve,

15 respectively, to send a connect message (to answer the call) to Layer 3 and to send a

message to allocate a DSP resource for interactive digit string collection. Atomic

function af212 (714) plays an opening announcement to the caller. As shown, there

are two arguments to af212: an announcement ID and an announcement control option.

af212 (714) was selected to play an opening announcement. Atomic function af50

20 (716) is performed to set a timer to wait for a selected period of time for receipt of

incoming digits, entered in response to the announcement played by atomic function

af212 (714). As shown, the first argument indicates that the multi-purpose timer to be

used for performing this function is timerl. The second argument indicates the

number of 1000 ms units the timer is to count. Here, the second argument is 10,

25 indicating that timerl will count for 10 seconds. Thus, atomic function af50 (716)

enables timerl to expire in 10 seconds, during which time the Layer 4 PPL component

enters normal state S2, which is WAIT state 718, wherein the PPL state machine waits

for a digit to be detected on channel 1.

If the next PPL event is the expiration of timerl ((191) PPLevTIMERl)

30 indicating that no digits were received with the 10 second period, atomic function af35

(720) is performed to inform the host that no digits were received. The receipt of a

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

22

PPLevTIMERl message is assigned a PPL event ID of 191 by Layer 4 PPL

component. As noted, atomic function 35 generates the PPL Event Indication message

of the present invention. Here, however, a PPL Event ID of 4 is included in the PPL

Event Indication message, indicating that there has been a failure to detect digits on the

selected channel. The format of this PPL Event Indication message is, therefore:

PPL Event Ind (L4PPL, chi, 4)

indicating that no digits have been detected on the channel associated with the channel

1 instantiation of the Layer 4 PPL component while the Layer 4 PPL component was

in the wait state 718.

Since the interface diagram of Figure 7C illustrates the universal API protocol

associated with the successful receipt of digits and subsequent processing of the call

announcement, this message is not illustrated in Figure 7C. Processing then continues

with a series of atomic functions not shown where, under host application control

through the implementation of the universal API of the present invention, the

telecommunications switch performs various functions in response to the failure to

detect digits on channel 1.

If the next event to occur while the Layer 4 PPL component state machine is in

wait state 718 is the receipt of a message indicating that digits have been detected on

channel 1, ((66)L4PPLevDSP_RESULT_DIGITS), atomic function af47 (722) is

performed. The receipt of this message is assigned a unique PPL Event ID of 66.

Thus, when Layer 4 is notified that digits have been received, the Layer 4 PPL

component state machine leaves wait state S2 (718) and performs atomic function af47

(722). Atomic function af47 disables the PPL multipurpose timer (timerl) selected by

atomic function af50 (716), as indicated in the argument to the atomic function.

Atomic function af53 (724) stores the received digits in a selected general purpose

register. Here, af53 (724) stores the received digit in general purpose register 1.

In accordance with the present invention, atomic function af36 (726) is an

atomic function configured to send a PPL Event Indication message with the contents

of a selected general purpose register (argument 2), with a PPL event ID (argument 1).

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

23

Here, atomic function af36 (726) sends the contents of the general purpose register 1

to the Layer 5 host application as a PPL Event Indication message 709 having an Event

ID of 2. PPL Event Indication message 709 has the format

PPL Event Ind (L4PPL, chi, 2, digit)

wherein L4PPL is the PPL component ID, chi is the address element, 2 is the PPL

event ID, and "digit" is the received digit. This PPL Event Indication message

exemplifies the capability of the universal API of the present invention to transfer data

as well as commands utilizing a single generic PPL Event Indication message format.

The host responds with a PPL Event Indication Acknowledgement message 711,

indicating that the PPL Event Indication message 709 was successfully received.

Atomic function afl47 (728) is then performed to cancel digit reception by

disconnecting the DTMF receiver from channel 1.

The Layer 4 PPL component state machine then enters state S4 which is a

WAIT state 730, wherein the Layer 4 PPL component state machine will wait

indefinitely for the host application Layer 5 to direct the Layer 4 PPL component state

machine how to respond to the digit that was received. As shown in Figure 7B, in the

exemplary embodiment, the host application may send the Layer 4 PPL component any

one of 3 different responses, having PPL Event ID 504, 505, and 506.

If a PPL Event Request message 713 having a PPL event ID of 4 is received by

the Layer 4 PPL component state machine, ((504)PPLevL5_EVENT_REQ_4) the

Layer 4 PPL component state machine assigns a Layer 4 unique PPL event ID 504 to

it, indicating that Layer 5 provided a PPL Event Request message having a PPL event

ID of 4. PPL Event Request message 711 directs the Layer 4 PPL component state

machine to play a specific outgoing announcement. The format of PPL Event Request

message 713 is:

PPL Event Req (L4PPL, chi , 4)

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

24

wherein the PPL component ID indicates that the message is directed towards the

Layer 4 PPL component (L4PPL), the address element indicates that channel 1 is the

channel by which the communication is occurring (chi), and the PPL event ID (4)

indicates that a specific additional outgoing announcement is to be played on the

identified channel.

In response to PPL event 504, Layer 4 performs 4 atomic functions: atomic

function af60 (732), atomic function afl40 (734), atomic function af212 (736) and

atomic function af50 (738). Atomic function af60 (732) is an atomic function that

generates a generic PPL Event Request Acknowledge message in accordance with the

present invention. As noted, atomic function af60 is used whenever a PPL component

is to acknowledge the receipt of a PPL Event Request message. The argument

number 16 represents an acknowledgement status that the PPL Event Request message

was successfully received. This atomic function generates the PPL Event Request

Acknowledge message 764, having the general format described above.

Atomic function afl40 (734) serves to allocate a DSP resource for interactive

digit string collection to channel 1. Atomic function af212 (736) plays an additional

outgoing announcement on channel 1. An announcement ID of 3 is indicated by the

first argument; no options were selected according to the second argument. Atomic

function af50 (738) is performed to set timer 1 to wait for a 10 seconds for receipt of

incoming digits. The PPL component enters state S5 (740) to wait for the incoming

digit for the selected period of time.

The performance of atomic function af212 (736) results in the playing of an

announcement to the caller. As shown, there are two arguments to af212: the

announcement ID and announcement control options. Atomic function af212 (736)

was selected to play an outgoing announcement.

Atomic function af50 (738) is performed to set a timer to wait for a selected

period of time for receipt of incoming digits, entered in response to the announcement

played by atomic function af212 (736). In accordance with the arguments, atomic

function af212 (736) sets timerl to expire in 10 seconds. During this period, the Layer

4 PPL component state machine enters state S5, which is a WAIT state 740 wherein

the state machine waits for digits to be received.

WO 97/20439 PCT/US96/18959

25

In this exemplary embodiment, the host may have alternatively responded with

either a PPL Event Request having a PPL event ID of 5 or 6 indicating to the Layer 4

PPL Component to perform other functions not shown. In both cases, the PPL

component state machine performs atomic function af60 (731,733, respectively),

5 indicating that the respective PPL Event Request message was successfully received.

If the next event is the expiration of timerl((191) PPLevTIMERl), the protocol

again performs an atomic function af35. Atomic function af35 (742) is performed to

inform the host that no digits were received within the allotted time. As noted, atomic

functions af35 are configured to generate a PPL Event Indication message in

10 accordance with the present invention. Here, a PPL Event ID of 4 is included in the

PPL Event Indication message by atomic function af35 (742), indicating that there has

been a failure to detect digits on the selected channel. The format of this PPL Event

Indication message is:

15 PPL Event Ind (L4PPL, chi, 4)

indicating that for the channel 1 instantiation of the Layer 4 PPL Component, no digits

were detected within the allotted time. Since the interface diagram of Figure 7C

illustrates the API protocol associated with the successful processing of the call

20 announcement sequence, this message is not illustrated in that Figure.

If the next PPL event is the expiration of timerl ((191) PPLevTIMERl)

indicating that no digits were received within the 10 second period, atomic function

af35 (742) is performed to inform the host that no digits were received by generating

the PPL Event Indication message of the present invention with a PPL Event ID of 4,

25 the format of which is:

PPL Event Ind (L4PPL, chi, 4)

For reasons given above, this is not shown in Figure 7C. Processing then continues

30 with a series of atomic functions not shown where, under host ampliation control

through the implementation of the universal API of the present invention, the

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

26

telecommunications switch performs various functions in response to the failure to

detect digits on channel 1.

If the next event to occur while the Layer 4 PPL component state machine is in

wait for digit state 740, is the receipt of a message indicating that digits have been

detected on channel 1, ((66)L4PPLevDSP_RESULT_DIGITS), atomic functions af47

(744), af53 (746) and af36(748) are performed to disable the PPL multipurpose timer

(timerl) previously selected, storing the received digits in a selected general purpose

register, and sending a PPL Event Indication Message 717, respectively.

In accordance with the present invention atomic function af36 (748) is an

atomic function configured to send a PPL Event Indication message with the contents

of general purpose register 1 with a PPL event ID of 3. Here, atomic function af36

(748) sends the contents of the general purpose register 1 to the Layer 5 host

application as a PPL Event Indication message 717 having an Event ID of 3. PPL

Event Indication message 717 has the format:

PPL Event Ind (L4PPL, chi, 3, digit)

wherein L4PPL is the PPL component ID, chi is the address element, 3 is the PPL

event ID, and "digit" is the received digit. This event ID indicates that the returned

digit is in response to an af212 atomic function playing an outgoing announcement

having at announcement ID of 3. The host responds with a PPL Event Indication

Acknowledgement message 719, indicating that the PPL Event Indication message 711

was successfully received.

Referring now to Figure 7D, it may be seen that the each sequence of atomic

functions shown in Figures 7A-7B has been defined as a primitive. In effect, each

primitive provides a shorthand way to identify a desired sequence of atomic functions

to invoke. The table of Figure 7D lists in tabular format the sequence of atomic

functions for each primitive.

Figure 7E is a state/event table that defines the relationships between the states,

events and primitives of Figure 7D. In accordance with a preferred embodiment of the

present invention, a customer wishing to create the protocol depicted in Figures 7A-

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

27

7B, would need only define the tables shown in Figure 76D and 7E. Those tables

would then be downloaded to the switch 102 (Figure 1) through a series of messages

from the host device.

Referring to Figures 8A-8G, a second example of the universal API of the

present invention configured to manage host-to-switch communications is illustrated.

IN this example, the host application Layer 5 has limited interaction with the

telecommunications switch while performing these functions. Specifically, the

telecommunications switch is configured to automatically respond to the digits that are

entered. In contrast to the previous example, the Layer 4 PPL state machine includes

internal states responsive to prompts internally generated during digit collection.

These aspects of the switch replace the atomic functions generating PPL Event

Indication messages to the host providing the received digit, and the subsequent wait

states wherein the switch waits for the host to supply it with a PL Event Request

message.

Figures 8A-8B illustrate an example of an application of the present invention

in Call Processing Layer 4 with a limited level of interaction required by the host

application Layer 5 to implement a protocol for providing limited host application

decisionmaking in the performance of an interactive voice response to an incoming

call.

The protocol begins with the associated channel (channel 1) in normal state SO,

which is the IDLE state 702. Upon the occurrence of the event of layer 3 transmitting

to layer 4 a setup message ((50)L4PPLevL3_SETUP_INDICATION)), the PPL

component state machine in Figure 8A leaves idle state 802 and performs atomic

function af35 (804).

Atomic function af35 (804) operates to notify the host application (Layer 5) of

the event, assigning to the event a PPL event ID of 1. The host application interprets

this PPL event ID value of 1 as a notification of an incoming call. Referring to Figure

8C, atomic function 35 (804) generates a PPL Event Indication message 801 to notify

the host of the incoming call. This PPL Event Indication message has the same format

as PPL Event Indication message 701, and indicates that the channel 1 instantiation of

the Layer 4 PPL component state machine addressed by this message received an

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

28

incoming message while the Layer 4 PPL component state machine was in the idle

state.
The host responds with a PPL Event Indication Acknowledge message 702

having the general format described above, indicating that the previous PL Event

Indication message was successfully received.

After the telecommunications switch provides the host with notification of an

incoming call utilizing the PPL Event Indication message of the present invention, the

Layer 4 PPL component state machine enters normal state SI, which is the WAIT state

706, during which the Layer 4 PPL component waits for the host application to

respond to the notification. The host sends a Layer 5 PPL Event Request message 705

with an event ID of 1, indicating that it is requesting that the switch proceed with the

call received on channel 1. This message has the format described above, indicating

that an incoming message has been received on channel 1 for that instantiation of the

Layer 4 PPL component while the Layer 4 PPL component state machine has been in

the idle state.

The receipt of this PPL Event Request message is identified by the Layer 4 PPL

component state machine as a PPL event and is assigned a Layer 4 unique PPL event

ID of 501, indicating that a Layer 5 PPL Event Request (1) has occurred.

In response to PPL event 501, the Layer 4 PPL component state machine

performs 5 atomic functions: atomic function af60 (808), atomic function af62 (810),

atomic function afl40 (812), atomic function af212 (814) and atomic function af50

(816). As noted, atomic function af60 is used whenever a PPL component is to

acknowledge the receipt of a PPL Event Request message. The argument number 16

represents an acknowledgement status that the PPL Event Request message was

successfully received. This atomic function af60 (808) generates the PPL Event

Request Acknowledge message 807, having the same general format as the PPL Event

Indication Acknowledge message described above. The PPL Event Request

Acknowledge message 807 indicates that the above incoming message has been

successfully received.

Atomic functions af62 (810), afl40 (812), af212 (814) and af50 (816) perform

the same function as the analogous atomic functions described above with reference to

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

29

Figure 7A. Atomic function af50 (816) enables timerl to expire during which time the

Layer 4 PPL component enters normal state S2, which is WAIT state 818, wherein the

PPL state machine waits for a digit to be detected on channel 1.

As in the above example, if the next PPL event is the expiration of timerl

((191) PPLevTIMERl) indicating that no digits were received within the selected

waiting period, atomic function af35 (820) is performed.

If the next event to occur while the Layer 4 PPL component state machine is in

wait state 818 is the receipt of a message indicating that digits have been detected on

channel 1, ((66)L4PPLevDSP_RESULT_DIGITS), atomic functions af47 (822), af53

(824), and af47 (828) are performed. These atomic functions performs similar

functions to the analogous atomic functions described above with reference to Figures

7A and 7B. Note that an atomic function analogous to af36 (726) is not invoked.

Thus, the received digit is not provided to the host application.

Atomic function af28 (829) is performed to test the value of the digit stored in

the general purpose register used in atomic function af63 (824) to store the received

digit. The Layer 4 PPL component state machine enters internal state IS3 which is a

TEST state 830, wherein the Layer 4 PPL component state machine tests the value of

the digit that was received and stored in general purpose register 1. As shown in

Figure 7B, in the exemplary embodiment, the tested digit may have any one of 3

different values, each generating an internal event having PPL Event ID 200, 201, and

202.

If a PPL Internal Event message having a PPL event ID of 0

((200)PPLevINT_EVENT_0) is provided to the Layer 4 PPL component state

machine, the Layer 4 PPL component state machine assigns a Layer 4 unique PPL

event ID 200 to it to indicate that the internal event having a PPL event ID of 0 was

received.
In response to PPL event 200, the Layer 4 PPL component state machine

performs 3 atomic functions afl40 (834), af212 (836) and atomic function af50 (838),

each of which perform functions similar to the analogous atomic functions described

above with reference to Figures 7A and 7B. Note that an atomic function analogous to

af60 (732) is not performed since the switch tests the incoming digit itself, and does

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

30

not wait for a host generated PPL Event Request message. Therefore, no

acknowledgement is required to be generated.

The Layer 4 PPL component state machine then enters normal state NS4, which

is a WAIT state 840 wherein the state machine again waits for digits to be received.

If no digits are received, the next event is the expiration of timerl((191)

PPLevTIMERl), the protocol performs an atomic function af35 (842) to inform the

host that no digits were received within the allotted time. Processing then continues

with a series of atomic functions not shown where, under host ampliation control

through the implementation of the universal API of the present invention, the

telecommunications switch performs various functions in response to the failure to

detect digits on channel 1.

If the next event to occur while the Layer 4 PPL component state machine is in

wait for digit state 840, is the receipt of a message indicating that digits have been

detected on channel 1, ((66)L4PPLevDSP_RESULT_DIGITS), atomic functions afl47

(844), af53 (846) are performed. These atomic functions perform similar functions to

the analogous atomic functions described above with reference to Figures 7A and 7B.

Further, atomic function af28 (847) is performed to test the value of the now second

received digit stored in general purpose register 1. A function analogous to atomic

function af36 (748) is not performed, thereby not providing the host with a PPL Event

Indication message.

Referring now to Figure 8D-8E, it may be seen that the each sequence of

atomic functions shown in Figures 8A-8B has been defined as a primitive. In effect,

each primitive provides a shorthand way to identify a desired sequence of atomic

functions to invoke. The table of Figure 8F lists in tabular format the sequence of

atomic functions for each primitive.

Figure 8F is a state/event table that defines the relationships between the states,

events and primitives of Figure 8D. In accordance with a preferred embodiment of the

present invention, a customer wishing to create the protocol depicted in Figures 8A-

8B, would need only define the tables shown in Figure 8D and 8E. Those tables

would then be downloaded to the switch 102 (Figure 1) through a series of messages

from the host device.

WO 97/20439 PCT/US96/18959

31

Referring to Figures 9-11, a Layer 4 PPL component 901 is executed as part of

a Layer 4 PPL processor 902. As noted above, there may be multiple instantiations of

a PPL component operating simultaneously, each of which has an associated state

machine and tables. All instantiations of a the Layer 4 PPL component 901 are

5 executed on a PPL state machine engine 1104. Layer 4 PPL processor 902 also

includes a Layer 4 PPL message processor 1102 for receiving and processing internal

PPL Event Request messages 1106. Each PPL processor such as Layer 4 PPL

processor 902 may contain any number of PPL components. In the exemplary

embodiment shown in Figures 9 and 11, the Layer 4 PPL processor 902 contains a

10 single Layer 4 PPL component 901.

Figure 9 illustrates the process flow related to the invocation and execution of

an atomic function to create a PPL Event Indication message. For exemplary

purposes, Figure 9 illustrates the functions preformed in relation to the processing of

atomic function af35 (704) of primitive #1 (750) to create PPL Event Indication

15 message 701. Atomic function af35 (704) is part of the Layer 4 PPL component 901.

Layer 4 PPL processor 902 resides on CPU/matrix card 112 in the illustrative

embodiment discussed above, and invokes atomic functions in accordance with the

state/event and primitive tables to perform various functions, including the functions

discussed above with reference to the Call Management Layer 4 in Figure 2. As

20 noted, Call Management Layer 4 is responsible for performing centralized call

processing functions and providing a common interface to Application Layer 5.

In the preferred embodiment of the present invention, the functions performed

by the Layer 4 PPL processor 902 are implemented in a publicly available, proprietary

operating system referred to as PSOS, available from Integrated Systems, Inc., Santa

25 Clara, California, USA. However, as will become apparent to one skilled in the

relevant art, the present invention may be implemented in any commonly known

software program and in any software language now or later developed.

Generally, the Layer 4 PPL processor 902 invokes atomic functions that

generate internal representations of the PPL Event Indication message. The internal

30 message is passed to a communications processor 906, also residing on the CPU/matrix

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

32

card 112, for translation into a PPL Event Indication message of the universal API of

the present invention.

When Layer 4 PPL processor 902 executes a primitive of a PPL component

state machine, it invokes each of the atomic functions associated with that primitive, as

indicated by the primitive table 780 discussed above. In the example discussed above

with reference to Figures 7A and 7B, atomic function af35 (704) is the only atomic

function included in primitive #1 (750). As noted, atomic function 35 is a PPL Send

Event Indication atomic function used whenever a PPL Event Indication is to be sent to

the host, each occurrence of the atomic function having a different PPL event ID to

indicate the occurrence of a different event.

A number of functions, each of which is described below, are performed by the

Layer 4 PPL atomic function af35 (704) to create the PPL Event Indication message

701 for transmission to a Layer 5 host application. Referring to Figure 10, layer 4

PPL processor 902 allocates a message buffer 1050 to "attach" to the internal

representation of the PPL Event Indication message 904 generated by the atomic

function af35 (704). The message buffer is used by the PSOS operating system to

store the necessary information for creation of the PPL Event Indication message 701.

A pointer to that message buffer is obtained through the PSOS operating system when

the buffer is allocated.

Once the message buffer is allocated, destination and source ID fields 1052,

1054 are loaded. The contents of these two fields is determined by the relative

location of the transmitting and receiving elements. In addition to enabling a PPL

component to communicate with Layer 5 applications residing on the host, the

universal API of the present invention may be implemented to manage communications

between any two instantiations of any PPL components residing in the same or

different PPL processors.

When the universal API is utilized to achieve communications between PPL

components that are located in, or "owned", by the same PPL processor, then the

source and destination ID fields are loaded with the PPL component ID. Otherwise,

the source and destination ID fields are loaded with the processor virtual ID, and the

message type field 1058 is used by the destination PPL component or application to

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

33

direct the message to the appropriate instantiation of the desired PPL component

residing in the destination PPL processor. The message type field 1058 contains a

unique message type identifier that is associated with a specific PPL component.

The Layer 4 PPL processor 902 also loads a PPL event ID into the associated

field 1056 of the message buffer, the event ID identified in the PPL primitive table 780

provided to atomic function af35 (704). In the example illustrated in Figure 7,

atomic function af35 (704) indicates the detection of an incoming call during idle state

SO, and is assigned a PPL event ID of 1.

An ICB count field 1062 is loaded with the number of trailing ICB data fields

1064, if any.

The Layer 4 PPL processor 902 transfers the data buffer 1050 to the PPL Event

Indication message 904. This is accomplished by invoking a function that attaches the

allocated buffer 1050 to the PPL Event Indication message 904 by providing the

communications processor 906 with a pointer to the data buffer 1050. The

communications processor 906 reformats the API messages of the present invention

from the internal representation usable by the PPL processor 902 to the format shown

in Figure 5 for transmission to the host application. Communications processor 906

performs well known translating operations typical of message handling

communications processors, and is considered to be well known in the art.

Communications processor 906 then transmits the PPL Event Indication message 701

to an applications program located in host computer 130 via the API interface 908.

The scheme discussed above with respect to the Layer 4 PPL processor 902 is

shown below by the following pseudo-code. It is envisioned that this pseudo-code can

be used to generate source code for the present invention in any suitable language, such

as C, C + + or PASCAL:

1. allocate psos msg data buffer (ppl_data_buff);

2. psos_msg.ppl_component=L4PPL;

3. psos_msg.event_id=event_id;

4. psos_msg. destination = HOST;

5. psos_msg. source = L4PPL;

6. psos_msg.timeslot_addr = CHANNEL 1;

WO 97/20439 PCT/US96/18959

5

10

15

20

25

30

34

7. 14ppl_send_msg (psos_msg, comm queue);

Figure 11 illustrates the process flow related to the receipt and processing of a

PPL Event Request message. For exemplary purposes, Figure 11 illustrates the

functions related to the processing of PPL Event Request message 705 received at wait

state SI (706), invoking primitive 2 atomic functions as shown in primitive table 780.

The communications processor 1006 performs the inverse operation of that

performed above with respect to the PPL Event Indication message. That is, the

communications processor 1006 receives the API version of the PPL Event Request

message 705 over API 1008 and translates it into an internal PS OS PPL Event Request

message 1106. Communications processor 1006 transmits the PPL Event Request

message 1106 to the Layer 4 PPL processor 1002. A Layer 4 PPL message processor

1102 receives and processes the internal PPL Event Request message 1106 and

generates a distinct Layer 4 PPL event for the Layer 4 PPL state machine engine 1104.

The Layer 4 PPL message processor 1102 converts the PPL event ID 522 of

message 705 into a Layer 4 unique PPL event ID for the Layer 4 PPL state machine

1104 by adding a layer 5 event request base value of 500 to the PPL event ID. Thus,

in the exemplary embodiment, the Layer 4 PPL message processor 1102 adds a base

value of 500 to the PPL Event Request message PPL event ID of 1 to result in a Layer

4 unique PPL event ID of 501.

Once the PPL Event Request message is mapped to a Layer 4 unique PPL event

ID, a pointer is derived to the selected channel's PPL data based upon the address

element value in the message that contained a logical span and channel ID. In other

words, the Layer 4 PPL message processor 1102 converts the logical address into a

physical address, i.e.., a physical time slot in switch 102. Then the PPL state machine

engine is invoked, typically as a function call, with the channel pointer for the PPL

component instantiation data block and a pointer to the data block associated with the

PPL Event Request message 1106 that was received from the communications

processor 1006.

The Layer 4 PPL component state machine engine 1104 processes the Layer 4

unique PPL event ID, searching the state/event table 790 for that PPL Event ID for the

present state. If a matching event is found, the state machine engine 1104 invokes the

WO 97/20439 PCT/US96/18959

35

identified primitive in the state/event table, retrieving from primitive table 780 the

atomic functions associated with the primitive ID.

Thus, in the illustrative embodiment, the Layer 4 PPL component state machine

engine 1104 processes PPL event 501, locating the PPL Event ID of 501 for the

5 present state SI (706) in the state/event table 790 and invoking the atomic functions

associated with primitive #2. The PPL state machine engine 1104 enters the state

indicated in the Layer 4 PPL state/event table 790 after processing all the atomic

functions associated with primitive 2.

Pseudo-code for Layer 4 PPL message processor 1102 as contemplated by

10 embodiments of the present invention is disclosed below:

1. ppl_event=psos_msg.ppl_data_buff®ppl_event + ppl_L5_event_req_base

2. ppl_chan_ptr = ppl_data [psos_msg.hdr.timeslot_addr]

3. ppl_stmch(ppl_chan_ptr, ppl_event, psos.msg)

15

It should be understood that embodiments of the present invention can be

implemented in hardware, software or a combination thereof. In such embodiments,

the various components and steps would be implemented in hardware and/or software

to perform the functions of the present invention. Any presently available or future

20 developed computer software language and/or hardware components can be employed

in such embodiments of the present invention. In particular, the pseudo-code discussed

above can be especially useful for creating the software embodiments.

While the invention has been particularly shown and described with reference to

preferred embodiments thereof, it will be understood by those skilled in the art that

25 various changes in form and details may be made therein without departing from the

spirit and scope of the invention. Furthermore, the terms and expressions which have

been employed are used as terms of description and not of limitation, and there is no

intention, in the use of such terms and expressions, of excluding any equivalents of the

features shown and described or portions thereof, but it is recognized that various

30 modifications are possible within the scope of the invention claimed.

36

CLAIMS

1 1. A telecanrunications system, including:
2 a host device;
3 a programmable telecommunication switch, connected in communicating
4 relationship with and responsive to said host device, for performing call processing
5 functions related to communication paths established between various ones of a
6 plurality of channels; and
7 a universal applications program interface (API) having standardized messages
8 for communication between said telecommunications switch and said host device.

1 2. The system of claim 1, wherein said universal API comprises:
2 a single message type, referred to as a programmable protocol language (PPL)
3 event request message, for transferring all call control processing commands and data
4 from said host device to said telecommunications switch; and
5 a single message type, referred to as the PPL event indication message, for
6 transferring all call control processing status and data from said telecommunications
7 switch to said host device.

1 3. The system as in claim 2, wherein said telecommunications switch further
2 comprises one or more instantiations of one or more finite state machines, each of said
3 one or more finite state machines representing one of said one or more protocols and
4 comprising,
5 one or more libraries each containing one or more predetermined functions;
6 one or more predetermined logical states;
7 at least one predetermined event associated with each said one or more
8 predetermined logical states, each said at least one predetermined event uniquely
9 identified relative to each said one or more PPL component state machines; and
10 wherein upon an occurrence of one of said one or more predetermined events, a
11 predetermined primitive associated with the occurring event is invoked, said

WO 97/20439 PCT/US96/18959

12

13

1

2

3

4

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

1

2

3

4

5

37

predetermined primitive comprising a predetermined series of one or more said

predetermined functions.

4. The system as in claim 3, wherein

said switch further comprises one or more state machine engines,

wherein each of said one or more state machines is configured to be interpreted

by one or more state machine engines.

5. The system of claim 3, wherein said PPL event request message comprises:

a PPL component ID for identifying which of said one or more state machines

is referenced by a particular PPL event request message;

one or more address elements, each identifying one of said one or more

instantiations of said state machine identified in said PPL component ID field; and

a user-defined PPL event ID representing an associated one of said at least one

predetermined events associated with the particular state machine identified in said PPL

component ID field.

6. The system of claim 5, wherein said PPL event request message further

comprises:

an address element type associated with said address element, for referencing

components of said telecommunications switch associated with said state machine

instantiation identified by said associated address element; and

a component address of each of said telecommunications switch components

identified by said address element type.

7. The system of claim 5, wherein said PPL event request message further

comprises:
one or more data fields associated with each of said one or more state

machines, for transferring call control processing information from said host device to

said telecommunications switch.

38

1 8. The system of claim 3, wherein said PPL e. ent indication message comprises:
2 a PPL component ID for identifying which of said one or more state machines
3 is referenced by a particular PPL event indication message;
4 one or more address elements, each identifying one of said one or more
5 instantiations of said state machine has invoked the function that generates said PPL
6 event indication message; and
7 a user-defined PPL event ID representing an occurrence of a specific one of
8 said at least one event in said telecommunications switch that results in a particular
9 PPL event indication message being generated by said state machine.

1 9. The system of claim 8, wherein each said PPL event indication message is
2 generated by one of said one or more functions configured to send a PPL event
3 indication message in response to the occurrence of a particular event, and wherein
4 each said one or more address element fields comprises:
5 an address element type referencing PPL components of said
6 telecommunications switch associated with said state machine instantiation identified by
7 said one or more address elements; and
8 a PPL component address of each of said PPL components identified by said
9 address element type.

1 10. The system of claim 8, wherein said PPL event indication message further
2 comprises:
3 one or more data fields associated with each of said one or more state
4 machines, for transferring call control processing information from said host device to
5 said telecommunications switch.

1 11. A telecommunications system, including;
2 a host device;
3 a programmable telecommunication switch, connected in communicating
4 relationship with and responsive to said host device, for performing call processing

WO 97/20439 PCT/US96/18959

5

6

7

8

9

1

2

1

2

3

4

5

6

7

1

2

3

4

5

6

1

2

3

4

5

6

39

functions related to communication paths established between various ones of a

plurality of channels; and

means for effecting communications between said switch and said host using a

programmable universal applications program interface (API) including standardized

messages for transmitting information between said host and said switch.

12. The system of claim 11, wherein said API is configured to be customized to

meet telecommunications application and network signaling protocol requirements.

13. The system of claim 11, wherein said API comprises:

a first predetermined message format for all messages transferring call control

processing information from said host device to said telecommunications switch; and

a second predetermined message format for all messages transferring call

control processing information from said telecommunications switch to said host

device.

14. The system as in claim 13, wherein said telecommunications switch further

comprises:

one or more programmable protocol language (PPL) component state machines,

each of which represents one of said one or more protocols for performing said call

processing functions, said one or more state machines responsive to one or more

predetermined events associated with said state machine.

15. The system as in claim 14, wherein

said switch further comprises one or more state machine engines, and wherein

each said one or more finite state machines comprises one or more libraries of

predetermined functions,

wherein each of said one or more finite state machines is configured to be

interpreted by one of said one or more state machine engines.

WO 97/20439 PCT/US96/18959

1

2

3

4

5

6

7

8

9

10

1

2

3

4

1

2

3

4

1

2

3

4

5

6

7

1

2

40

16. The system as in claim 15, wherein each of said one or more state machines is

defined by a functional combination of a state/event table and a primitive table,

wherein

said state/event table defines one or more predetermined logical states and at

least one of said one or more predetermined events associated with each said one or

more predetermined logical states, and wherein

said primitive table defines one or more primitives each of which comprises a

predetermined series of one or more said predetermined functions, whereby upon an

occurrence of one of said one or more predetermined events, a predetermined primitive

associated with the occurring event is invoked.

17. The system of claim 14, wherein said first predetermined message format is a

variable length PPL event request message comprising:

a PPL component ID for identifying which of said one or more PPL component

state machines is referenced by a particular PPL event request message.

18. The system of claim 14, wherein said telecommunications switch further

comprises:

one or more instantiations of each of said one or more PPL component state

machines.

19. The system of claim 18, wherein said first message format is a variable length

PPL event request message comprises:

a PPL component ID identifying which of said one or more PPL component

state machines is referenced by a particular PPL event request message; and

one or more address elements, each identifying one of said one or more

instantiations of said PPL component state machine identified by said PPL component

ID.

20. The system of claim 19, wherein each said one or more address elements

comprises:

41

3 an address element type for referencing components of said telecommunications
4 switch associated with said state machine instantiation identified by said one or more
5 address elements; and
6 PPL component address information providing specific addresses for each of
7 said PPL components identified by said one or more address elements.

21. The system as in claim 18, wherein said PPL event request message ccnprises a
2 programmable variable addressing scheme to address a desired one or more of said at
3 least one instantiation of each of said plurality of PPL component state machines.

1 22. The system of claim 19, wherein,
2 each said one or more events is uniquely identified relative to each said one or
3 more PPL component state machines, and further wherein,
4 said PPL event request message further comprises a PPL event ID field
5 containing a user-defined event ID representing an associated event unique to a
6 particular PPL component state machine identified in said PPL component ID field.

1 23. The system of claim 22, wherein said PPL event request message further
2 comprises:
3 one or more data fields associated with each of said one or more PPL
4 component state machines, for transferring call control processing information from
5 said host to said switch.

1 24. The system of claim 14, wherein said second predetermined message format is
2 a variable length PPL event indication message comprises:
3 a PPL component ID for identifying which of said one or more PPL component
4 state machines is referenced by a particular PPL event indication message.

1 25. The system as in claim 18, wherein said PPL event indication message
2 comprises a programmable variable addressing scheme to address a desired one or

WO 97/20439 PCT/US96/18959

3
4

1

2

3
4

5

6

7

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

1

2

42

more of said at least one instantiation of each of said plurality of PPL component state

machines.

26. The system of claim 18, wherein said first message format is a variable length

PPL event indication message comprises:

a PPL component ID identifying which of said one or more PPL component

state machines is referenced by a particular PPL event indication message; and

one or more address elements, each identifying one of said one or more

instantiations of said PPL component state machine has invoking the function that

generates said PPL event indication message.

27. The system of claim 26, wherein said PPL event indication message is

generated by one of said one or more functions configured to send the particular PPL

event indication message in response to the occurrence of a particular event, and

wherein each said one or more address element fields comprises:

an address element type subfield for referencing components of said switch

associated with said state machine instantiation identified in said one or more address

element fields; and

an address information subfield provides specific addresses for each of the

hierarchical components indicated in said address element type field.

28. The system of claim 26, wherein,

each said one or more events is uniquely identified relative to each said one or

more PPL component state machines, and further wherein,

said PPL event indication message further comprises a PPL event ID field

containing a user-defined event ID representing the occurrence of a specific event in

said switch that results in a particular PPL event indication message being generated by

said PPL component state machine.

29. The system of claim 23, wherein said PPL event indication message further

comprises:

43

3 one or more data fields associated with each of said one or more PPL
4 component state machines, for transferring call control processing information from
5 said host to said switch.

1 30. The system of claim 11, wherein said call processing functions include
2 dynamically connecting or disconnecting communication paths between various ones of
3 a plurality of channels.

1 31. A functionally-layered progranmable teleconnunication switch including:
2 controllable-switching means for dynamically connecting or disconnecting
3 communication paths between various ones of a plurality of channels in response to
4 messages generated by a telecommunications services application;
5 one or more instantiations of a plurality of programmable protocol language
6 (PPL) component state machines, each of which is associated with a PPL component
7 of said telecommunications switch and each of which represents one of a plurality of
8 protocols configured to perform call processing functions with respect said plurality of
9 channels, wherein said plurality of PPL component state machines are functionally
10 associated with the functional layers of the telecommunications switch including said

• ·« «
11 PPL components; and
12 a programmable universal applications program interface (API) for transferring
13 standardized messages between said functional layers and between said functional
14 layers and said telecommunications services application.

1 32. The telecommunications switch of claim 31, wherein said functional layers of
2 said telecommunication switch comprise:
3 an application layer comprising said telecommunications service applications
4 configured to operate in conjunction with one or more of said functional layers to
5 perform telecommunications service functions.

1 33. The telecommunications switch of claim 32, wherein said application layer
2 resides in said telecommunications switch and further wherein said universal API

WO 97/20439 PCT/US96/18959

44

3 defines communications that occur over a bus internal to said telecommunications

4 switch.

1 34. The telecommunications switch of claim 32, wherein said functional layers

2 further include an application layer residing in a host computer system coupled to said

3 telecommunications switch, and wherein said API defines communications that occur

4 over a communication channel coupling said telecommunications switch and said host

5 device.

1 35. The telecommunications switch of claim 32, wherein said telecommunications

2 services provided by said telecommunication service application includes toll-free

3 service functions.

1 36. The telecommunications switch of claim 32, wherein said telecommunications

2 service provided by said telecommunication service application includes voice mail

3 service functions.

1 37. The telecommunications switch of claim 32, wherein said telecommunications

2 service provided by said telecommunication service application includes automatic call

3 distribution service functions.

1 38. The telecommunications switch of claim 32, wherein said call processing

2 function performed by said telecommunication service application includes interactive

3 voice-response functions.

1 39. The telecommunications switch of claim 32, wherein said call processing

2 function performed by said telecommunication service application includes personal

3 communications services functions.

WO 97/20439 PCT/US96/18959

45

1 40. The telecommunications switch of claim 32, wherein said call processing

2 function performed by said telecommunication service application includes tone

3 generation functions.

1 41. The telecommunications switch of claim 32, wherein said call processing

2 function performed by said telecommunication service application includes call

3 conferencing functions.

1 42. The telecommunications switch of claim 32, wherein said call processing

2 function performed by said telecommunication service application includes call

3 management functions.

1 43. The telecommunications switch of claim 32, wherein said call processing

2 function performed by said telecommunication service application includes call

3 progress tone control functions.

1 44. The telecommunications switch of claim 32, wherein said call processing

2 function performed by said telecommunication service application includes inbound

3 call routing and queuing functions.

1 45. The telecommunications switch of claim 31, wherein said functional layers

2 comprise:

3 a call management layer for performing centralized call processing functions.

1 46. The telecommunications switch of claim 45, wherein said centralized call

2 processing functions performed by said call management layer includes recorded

3 announcement control functions for interactive voice response application support.

1 47. The telecommunications switch of claim 45, wherein said centralized call

2 processing functions performed by said call management layer includes reconnection

3 and transfer functions.

WO 97/20439 PCT/US96/18959

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

4

1

2

1

2

46

48. The telecommunications switch of claim 45, wherein said centralized call

processing functions performed by said call management layer includes the provision

of multiple call management features.

49. The telecommunications switch of claim 45, wherein said centralized call

processing functions performed by said call management layer includes conferencing

connection management functions.

50. The telecommunications switch of claim 31, wherein said functional layers

comprise:

a network signaling protocol layer for performing network signaling functions.

51. The telecommunications switch of claim 50, wherein said network signally

functions performed by said network signalling protocol layer includes in- and out-of-

band network signalling supervision.

52. The telecommunications switch of claim 50, wherein said network signalling

functions performed by said network signalling protocol layer includes network

protocol level control of incoming and outgoing calls.

53. The telecommunications switch of claim 31, wherein said functional layers

comprise:

a link layer for detecting and transferring network signaling information across

a network or line interface.

54. The telecommunications switch of claim 53, wherein said link layer runs on a

CPU/matrix card.

55. The telecommunications switch of claim 53, wherein said link layer runs on

line cards.

WO 97/20439 PCT/US96/18959

1

2

1

2

1

2

1

2

1

2

1

2

3

1

2

3

1

2

3

4

5

6

7

47

56. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include Tl robbed bit signal scanning.

57. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include El channel associated signaling scanning.

58. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include Tl/El line interface frame alarm control.

59. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include DSP tone generation control.

60. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include DSP recorded voice announcement control.

61. The telecommunications switch of claim 31, said functional layers comprise:

a physical layer implemented in line cards providing physical and electrical

network and line interfaces to the switch.

62. The system of claim 31, wherein said API comprises:

predetermined message formats for all messages transferring call control

processing commands, status and data between said functional layers.

63. The switch as in claim 31, wherein each said one or more PPL component state

machines comprises,

one or more libraries each containing one or more predetermined functions;

one or more predetermined logical states;

at least one predetermined event associated with each said one or more

predetermined logical states, each said at least one predetermined event uniquely

identified relative to each said one or more PPL component state machines; and

WO 97/20439 PCT/US96/18959

8

9

10

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

48

wherein upon an occurrence of one of said one or more predetermined events, a

predetermined primitive associated with the occurring event is invoked, said primitive

comprising a predetermined series of one or more said predetermined functions.

64. The switch as in claim 63, wherein

said switch further comprises one or more state machine engines, and wherein

each said one or more component state machines comprises one or more

libraries of predetermined functions,

wherein said each said one or more component state machines is configured to

be interpreted by one or more state machine engines.

65. The switch as in claim 63, each said one or more finite state machines

comprising,

one or more libraries each containing one or more predetermined functions;

one or more predetermined logical states;

at least one predetermined event associated with each said one or more

predetermined logical states, each said at least one predetermined event uniquely

identified relative to each said one or more PPL component state machines; and

a predetermined series of one or more said predetermined functions,

wherein upon an occurrence of one of said one or more predetermined events, a

predetermined primitive associated with the occurring event is invoked.

66. The switch as in claim 65, wherein each of said one or more state machines is

defined by a functional combination of a state/event table and a primitive table,

wherein

said state/event table defines one or more predetermined logical states and at

least one of said one or more predetermined events associated with each said one or

more predetermined logical states, and wherein

said primitive table defines one or more primitives each of which comprises a

predetermined series of one or more said predetermined functions.

49

1 67. The switch as in claim 65, wherein
2 said switch further comprises one or more state machine engines, and wherein
3 wherein said each said one or more finite state machines is configured to be
4 interpreted by one or more state machine engines.

1 68. The switch of claim 65, wherein said PPL event request message cooprises:
2 a PPL component ID for identifying which of said one or more PPL component
3 state machines is referenced by a particular PPL event request message;
4 one or more address element fields, each identifying one of said one or more
5 instantiations of said PPL component state machine identified in said PPL component
6 ID field; and
7 a PPL event ID field containing a user-defined event ID representing an
8 associated event unique to a particular PPL component state machine identified in said
9 PPL component ID field.

1 69. The switch of claim 68, wherein each said one or more address element fields
2 comprises:
3 an address element type subfield for referencing components of said switch
4 associated with said state machine instantiation identified in said one or more address
5 element fields; and
6 an address information subfield provides specific addresses for each of the
7 hierarchical components indicated in said address element type field.

70. The switch of claim 68, wherein said PPL event request message further
2 comprises:
3 one or more data fields associated with each of said one or more PPL
4 component state machines, for transferring call control processing information from
5 said host to said switch.

71. The switch of claim 65, wherein said PPL event indication message canprises:

50

2 a PPL component ID for identifying which of said one or more PPL component
3 state machines is referenced by a particular PPL event indication message;
4 a PPL component ID field for identifying which of said one or more PPL
5 component state machines is referenced by a particular PPL event indication message;
6 one or more address element fields, each identifying one of said one or more
7 instantiations of said PPL component state machine has invoking the function that
8 generates said PPL event indication message; and
9 a PPL event ID field containing a user-defined event ID representing the
10 occurrence of a specific event in said switch that results in a particular PPL event
11 indication message being generated by said PPL component state machine.

1 72. The switch of claim 71, wherein said PPL event indication message is
2 generated by one of said one or more functions configured to send the particular PPL
3 event indication message in response to the occurrence of a particular event, and
4 wherein each said one or more address element fields comprises:
5 an address element type subfield for referencing components of said switch
6 associated with said state machine instantiation identified in said one or more address
7 element fields; and
8 an address information subfield provides specific addresses for each of the
9 hierarchical components indicated in said address element type field.

1 73. The switch of claim 71, wherein said PPL event indication message further
2 comprises:
3 one or more data fields associated with each of said plurality PPL component
4 state machines, for transferring call control processing information between said
5 functional layers, said data blocks defined for each said plurality of PPL components
6 based upon which of said functional layers said PPL component state machine is
7 associated with and the communications protocol supported by that PPL component
8 state machine.

51

1 74. A universal applications program interface (API) for standardized interactive
2 call processing communications between functional layers of a telecommunications
3 system including a telecommunications switch and a host device coupled to the switch,
. including:

5 a first programmable message for transferring all call control processing
6 commands and data from said host to said functional layers of said telecommunications
7 switch; and
8 a second programmable message for transferring all call control processing
9 status and data from said functional layers of said telecommunications switch to said
10 host.

1 75. The API of claim 74, wherein the telecommunications switch comprises:
2 one or more instantiations of one or more PPL component state machines each
3 of which represents a call processing protocol, each said one or more finite state
4 machines comprising,
5 one or more libraries each containing one or more predetermined functions;
6 one or more predetermined logical states;
7 at least one predetermined event associated with each said one or more
8 predetermined logical states, each said at least one predetermined event uniquely
9 identified relative to each said one or more PPL component state machines; and
10 wherein upon an occurrence of one of said one or more predetermined events, a
11 predetermined primitive associated with the occurring event is invoked, said primitive
12 comprising a predetermined series of one or more said predetermined functions,
13 wherein said one or more predetermined events includes receipt of said first
14 programmable message and wherein at least one of said one or more predetermined
15 functions generates said second programmable message.

1 76. The API as in claim 75, therein
2 said telecommunications switch further comprises one or more state machine
3 engines, and wherein

52

4 each said one or more PPL component state machines comprises one or more
5 libraries of said one or more predetermined functions, and wherein
6 . each said one or more PPL component state machines is configured to be
7 interpreted by said one or more state machine engines.

1 77. The switch as in claim 75, wherein said API further comprises:
2 an acknowledge message including a status field providing the recipient with
3 message-specific status information,
4 wherein said host device transmits said acknowledge message to said
5 telecommunications switch upon receipt of said first programmable message and
6 wherein at one of said one or more predetermined functions is configured to transmit
7 said acknowledge message to said host device upon receipt of said second
8 programmable message.

• · · ·
• · · ·

• · ··• ··
····
• · ·

1 78. A method for developing call-associated protocols for performing call
2 processing functions related to communication paths established between various ones
3 of a plurality of channels in a programmable telecommunications switch, said call
4 processing function associated with the functions performed by a particular functional
5 layer of said switch, the method including the steps of:
6 (a) creating one or more state/event tables each of which defines,
7 a plurality of predetermined logical states,
8 one or more predetermined events associated with each of said plurality of
9 predetermined logical states, said one or more predetermined events including receipt
10 of one or more application program interface (API) messages generated at the same or
11 different functional layer as said created call-associated protocol, and
12 a primitive associated with each said one or more predetermined events,
13 wherein said primitive is invoked upon an occurrence of said one or more associated
14 events; .
15 (b) creating one or more primitive tables each of which defines a
16 predetermined series of predetermined layer-dependent functions for each said

53

17 primitive, one or more of said predetermined functions generating an API message to
18 said functional layer; and
19 (c) creating one or more protocols each of which is represented by a
20 predetermined association of one or more of said state/event tables and one or more of
21 said one or more primitive tables.

1 79. The method of claim 78, further comprising the steps of:
2 (d) storing said one or more call-associated protocols stored within said
3 programmable telecommunications switch; and
4 (e) executing said one or more call-associated protocols within said
5 telecommunications switch.

1 80. The method as in claim 78, wherein each of said one or more protocols is
2 represented by a finite state machine having access to a comprising a library containing
3 definitions of said predetermined functions, and configured to be interpreted by a state
4 machine engine, said state machine engine operating in response to said pointers.

1 81. A functionally-layered programmable telecommunication switch including:
2 a layer-specific processor having a state machine engine configured to execute
3 an instantiation of a PPL component state machine representing a call processing
4 protocol associated with a communications channel in the switch, said state machine
5 invoking one or more predetermined functions in accordance with a current state and
6 the occurrence of a predetermined event,
7 wherein said one or more predetermined functions includes generating a first
8 application program interface (API) message having a first predetermined message
9 format for all messages transferring call control processing information from said state
10 machine; and
11 wherein said predetermined event is one of a plurality of events including the
12 receipt of a second API message having a second predetermined message format for all
13 messages transferring call control processing to said state machine.

WO 97/20439 PCT/US96/18959

1

2

3

4

5

6

7

1

2

3

1

2

3

4

5

6

7

1

2

3

1

2

3

1

2

54

82. The switch of claim 81, wherein said layer-specific processor is configured to

process said first and second API messages in an internally-represented form, and

wherein said switch further comprises:

a communications processor, coupled to said layer-specific processor,

configured to convert between internally-represented API message form and said

universal standardized API message form, and further configured to transmit said first

universal API message.

83. The switch of claim 82, wherein said system includes a host configured to

support applications residing in an application layer and further wherein said API

messages are transmitted from the switch to the host and vice versa.

84. The switch of claim 81, wherein said processor comprises:

an atomic function message buffer including a destination identification field

and a source identification field containing respective addresses of a source and

receiving PPL component instantiation residing in the same or different PPL

processors; and

means for attaching said message buffer to said internal representation of said

PPL event indication message generated by said atomic function.

85. The switch of claim 84, wherein said message buffer further comprises:

a PPL event identification field identifying the event that generated said atomic

function.

86. The switch of claim 84, wherein said message buffer further comprises:

one or more data fields containing information associated with said event and

said atomic function for a receiving instantiation.

87. The switch of claim 83, wherein said plurality of PPL component state

machines are layer specific.

55

1 88. The switch of claim 83, wherein said plurality of PPL component state
2 machines are function specific.

1 89. The switch of claim 83, wherein said plurality of PPL component state
2 machines are interface specific.

1 90. The switch of claim 83, wherein said plurality of PPL component state
2 machines are protocol specific.

1 91. The switch of claim 83, wherein said plurality of PPL component state
2 machines are protocol specific.

1 92. A method for communicating between two layers of a functionally-layered
2 programmable telecommunication switch system utilizing a standardized universal
3 application program interface (API), the method including the steps of:
4 (1) invoking one or more instantiations of a layer-specific program protocol
5 language (PPL) component state machine at a layer-specific PPL processor having a
6 state machine engine, each of said one or more instantiations representing a call
7 processing protocol;
8 (2) invoking atomic functions in accordance with state/event and primitive
9 tables defining said state machine and stored in the processor to perform various
10 functions, said atomic functions generating internal representations of a API event
11 indication message; and
12 (3) transferring said internally-represented PPL event indication message to
13 a communications processor coupled to said processor for translation into a universal
14 standardized PPL event indication message.

1 93. The method of claim 92, further comprising the step of:
2 (4) transmitting said universal API message to another PPL component state
3 machine instantiation residing in the same or different PPL processor.

WO 97/20439 PCT/US96/18959

1

2

3

4

5

1

2

3

4

5

6

1

2

3

1

2

3

1

2

3

4

5

6

7

8

9

56

94. The method of claim 92, wherein said system includes a host supporting

applications residing in an application layer and wherein the method further comprises

the step of:

(4) transmitting said universal API message to an application located on the

host.

95. The method of claim 93, further comprising the steps of:

(5) creating an atomic function message buffer, by said processor, including

a destination identification field and a source identification field containing respective

addresses of said source and receiving PPL component instantiation; and

(6) attaching said message buffer to said internal representation of said PPL

event indication message generated by said atomic function.

96. The method of claim 95, wherein said message buffer further comprises:

a PPL event identification field identifying the event that generated said atomic

function.

97. The method of claim 95, wherein said message buffer further comprises:

one or more data fields containing information associated with said event and

said atomic function for a receiving instantiation.

98. The method of claim 92, further comprising the steps of:

(4) receiving at said communications processor, a universal API PPL event

request message;

(5) translating at said communications processor, said universal API PPL

event request message into an internally-represented PPL event request message;

(6) transmitting said internally-represented PPL event request message to

said layer-specific PPL processor;

(7) receiving and processing, at said layer-specific PPL processor, said

internally-represented PPL event request message; and

57

10 (8) converting a PPL event ID value included in said internally-represented
11 PPL event request message into a layer-specific unique PPL event identification value
12 for said layer-specific state machine; and
13 (9) processing the layer-unique PPL event identification value by said layer-
14 specific PPL component state machine engine.

1 99. The method of claim 98, wherein said step (9) comprises the steps of:
2 (a) searching said state/event table for that PPL event identification value
3 for the present state of said state machine;
4 (b) when a matching event is found, invoking the identified primitive in the
5 state/event table, retrieving from primitive table the atomic functions associated with
6 the primitive ID;
7 (c) invoking an identified primitive in the state/event table; and
8 (d) retrieving from primitive table the atomic functions associated with the
9 primitive ID.

58

100. A telecommunications system substantially as herein described with

reference to the accompanying drawings.

101. A functionally-layered programmable telecommunications switch '

5 substantially as herein described with reference to the accompanying drawings.

102. An API for standardized interactive call processing communications

between functional layers of a telecommunication system substantially as

herein described with reference to the accompanying drawings.

10

103. A method for developing call-associated protocols substantially as herein

described with reference to the accompanying drawings.

104. A method for communicating between two layers of a functional-layered

15 programmable telecommunication switch system substantially as herein

described with reference to the accompanying drawings.

DATED: 21 February 2000

PHILLIPS ORMONDE & FITZPATRICK

20 Attorneys for:

EXCEL SWITCHING CORPORATION

FIG. 1

I
I

W
O

 97/20439
PC

T/U
S96/18959

WO 97/20439 PCT/US96/18959

2/24

FIG. 2

NETWORK

DATA LINK

APPLICATION LAYER 5

LAYER 5 CALL PROCESSING
FUNCTIONS USED TO IMPLEMENT

ENHANCED SERVICE APPLICATIONS
(e.g. 800 SERVICE. VOICE MAIL, ACD)

CALL MANAGEMENT LAYER 4

CENTRALIZED CALL PROCESSING
FUNCTIONS USED TO MANAGE 1-WAY,

2-WAY, BROADCAST AND CONFERENCING
CONNECTIONS. PRESENTS A COMMON

LAYER 3 INDEPENDENT INTERFACE TO
THE APPLICATION LAYER.

NETWORK SIGNALLING PROTOCOL LAYER 3

PROVIDES IN/OUT-OF-BAND NETWORK
SIGNALLING ANALYSIS/CONTROL FOR INCOMING

AND OUTGOING CALLS (ie. PRI 0.031, SS7
ISUP, COMPELLED R2. T1 ROBBED BIT)

LINK LAYER 2

RESPONSIBLE FOR THE PHYSICAL TRANSFER
OF NETWORK SIGNALLING INFORMATION ACROSS

A NETWORK OR LINE INTERFACE, (ie. PRI Q.921
LAPD, CHANNEL ASSOCIATED SIGNALLING (CAS).

T1 ROBBED BIT. SS7 MTP2, SS7 MTP3)

PHYSICAL
PHYSICAL LAYER 1

PROVIDES El. T1 AND ANALOG
ELECTRICAL INTERFACES

WO 97/20439 PCT/US96/18959

3/24

FIG. 3A

APPLICATION LAYER (LAYER 5)
• MATRIX/LINE CARD MANAGEMENT

DOWNLOAD CONTROL
ALARM PROCESSING
REDUNDANT MATRIX CONTROL

• CONFIGURATION MANAGEMENT
MATRIX CONFIGURATION
LINE CARD CONFIGURATION

• HIGH LEVEL (LAYER 5) CALL PROCESSING
INTERACTIVE DIGIT COLLECTION
RECORDED ANNOUNCEMENT CONTROL FOR INTERACTIVE VOICE

RESPONSE APPLICATION SUPPORT
BROADCASTING/CONFERENCING CONTROL
INBOUND CALL ROUTING/QUEUEING
OUTBOUND CALL INITIATION WITH DIGIT OUTPULSING
ADDRESS DIGIT ROUTING TO CHANNELS/CHANNEL GROUPS
CALL HUNTING FOR OUTBOUND CHANNEL SELECTION
CALL PROGRESS TONE CONTROL FOR INBOUND/

OUTBOUND CALLS
MULITPLE CALL MGMT FEATURES (TRANSFER, HOLD, CON­

FERENCING, CALLBACK, FORWARDING, ETC.)
CALL DETAIL RECORDING

CALL MANAGEMENT LAYER (LAYER 4)
INTERACTIVE RECORDED ANNOUNCEMENT CONTROL (USER

DIGIT DRIVEN)
LAYER 4/APPLICATION LAYER (LAYER 5) INITIATED CALL PARK
1-WAY/2-WAY/C0NFERENCE CONNECTION MANAGEMENT
RECONNECTION (TRANSFER)
LAYER 4 OUTGOING OUTSEIZE INITIATION FOR 2-WAY CONNECTIONS
MULTIPLE CALL MGMT FEATURES (TRANSFER, HOLD, CONFERENCING,
CALLBACK. FORWARDING, ETC.)
CUSTOMIZATION OF INSEIZE COMPLETION REPORT SENT TO THE

APPLICATION LAYER (LAYER 5)
NETWORK PROTOCOL LAYER (LAYER 3)

• IN BAND LINE/ADDRESS SIGNALLING CONTROL
EGM INTERFACE
LOOPSTART, GROUNDSTART TRUNK INTERFACES
LOOPSTART, GROUNDSTART LINE INTERFACES
MULTI-WINK MFR1 FEATURE GROUP D
DTMF DIALED NUMBER INDENTIFICATION SERVICES (DNIS)
COMPELLED R2 FOR INTERNATIONAL El INTERFACES
IN BAND/EXTENDED IN BAND/MULTI-WINK COIN SIGNALLING
CUSTOM Tl/El SERVICE CARD INTERFACES

• OUT OF BAND SIGNALLING CONTROL
ISDN PRIMARY RATE LAYER 3 Q.931
SS7 ISDN USER PART (ISUP)

WO 97/20439 PCT/US96/18959

4/24

FIG. 3B

LINK LAYER (LAYER 2)
• T1 ROBBED BIT SIGNALLING SCANNING
• El CHANNEL ASSOCIATED SIGNALLING SCANNING
• Tl/El LINE INTERFACE FRAME ALARM CONTROL
• DSP TONE RECEPTION CONTROL

IN BAND ADDRESS SIGNALLING IMFR1, MFR2, DTMF)
CALL PROGRESS ANALYSIS

• DSP TONE GENERATION CONTROL
IN BAND ADDRESS SIGNALLING (MFR1, MFR2, DTMF)
CALL PROGRESS TONE GENERATION
CUSTOM CALL PROGRESS TONE GENERATION

• SS7 MTP2/NTP3
• DSP RECORDED VOICE ANNOUNCEMENT CONTROL
• DSP CONFERENCE GENERATION CONTROL
• GENERIC DSP FUNCTION CONTROL

DSP PROCESSOR TO MFDSP MAIN PROCESSOR DSP CONTROL/
INFORMATIONAL MESSAGES

MFDSP MAIN PROCESSOR TO DSP PROCESSOR CONTROL/
INFORMATIONAL MESSAGES

MFDSP MAIN PROCESSOR DSP FUNCTION ANALYSIS/CONTROL
• LAPD Q.921

PCT/US96/18959WO 97/20439

5/24

FIG. 4

440a£
440n
z

DATA BLOCK (CHANNEL 0) DATA BLOCK (CHANNEL n)
CURRENT STATE CURRENT STATE

ACTIVE STATE/EVENT TBL PTR ACTIVE STATE/EVENT TBL PTR

ACTIVE PRIMITIVE TBL PTR ACTIVE PRIMITIVE TBL PTR

1
I I
1
I
I I tI t 1 f
I
I

I
I
I
I
I

ASSIGNED STATE/EVENT TBL PTR

ASSIGNED PRIMITIVE TBL PTR
H

■—4

ASSIGNED STATE/EVENT TBL PTR

ASSIGNED PRIMITIVE TBL PTR

442c442a I
I 1

»«* t I
442b

RESIDENT

-*1
1

RESIDENT RESIDENT
PROTOCOL n+1 PROTOCOL n+2 PROTOCOL m
PROTOCOL n+1 PROTOCOL n+2 PROTOCOL m
PRIMITIVE TBL PRIMITIVE TBL • ♦ · PRIMITIVE TBL

J
jPROTOCOL n+1 PROTOCOL n+2 PROTOCOL m

STATE/EVENT TBL STATE/EVENT TBL STATE/EVENT TBL

444a
DYNAMICALLY LOADED PNPCS TABLES

444b -j 444c
7

CUSTOMER DEFINED
PROTOCOL 0

CUSTOMER DEFINED
PROTOCOL 1

• · ·

CUSTOMER DEFINED
PROTOCOL n

PROTOCOL 0
PRIMITIVE TBL

PROTOCOL 1
PRIMITIVE TBL

PROTOCOL n
PRIMITIVE TBL

PROTOCOL 0
STATE/EVENT TBL

PROTOCOL 1
STATE/EVENT TBL

PROTOCOL n
STATE/EVENT TBL

FIG. 5

PPL EVENT REQ
PPL EVENT IND

PPL COMP. ID, CHANNEL NO., EVENT ID. DATA)
PPL COMP. ID, CHANNEL NO., EVENT ID, DATA)

W
O

 97/20439
PC

T/U
S96/18959

W
O

 97/20439

FIG . 6

612 610 608 606 604 602
/ / / I 7 L

CHECKSUM STATUS SEQUENCE
NO.

MSG
TYPE

MSG
LENGTH FRAME

PPL EVENT REQ ACK (SEQUENCE NO, STATUS)
PPL EVENT IND ACK (SEQUENCE NO. STATUS)

8/24

FIG.

WO 97/20439 PCT/US96/18959

WO 97/20439 PCT/US96/18959

9/24

(ADDITIONAL
PROCESSES)

(ADDITIONAL
PROCESSES)

FIG. 7C

W
O

 97/20439
PC

T/U
S96/18959

WO 97/20439 PCT/US96/18959

11/24

FIG. 7D

WO 97/20439 PCT/US96/18959

12/24

FIG. 7E

FIG, 7F
780
ί

PRIMITIVE ID 1ST ATOMIC 2ND ATOMIC 3RD ATOMIC 4TH ATOMIC 5TH ATOMIC
FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION

PRIMITIVE #1 af035 (0x01,0x00)

PRIMITIVE #2 af060 (0x16,0x00) af062 (0x00,0x00) afl40 (0x00,0x00) af212 (0x01,0x00) af050 (0x01,0x10)

PRIMITIVE #3 afO35 (0x04,0x00)

PRIMITIVE #4 af047 (0x01,0x00) af053 (0x01,0x00) af036 (0x02,0x01) afl47 (0x00,0x00)

PRIMITIVE #5 af060 (0x16,0x00) afl40 (0x00,0x00) af212 (0x03,0x00) af050 (0x01,0x10)

PRIMITIVE #6 af060 (0x16,0x00)

PRIMITIVE #7 af060 (0x16,0x00)

PRIMITIVE #8 af035 (0x04,0x00)

PRIMITIVE #9 af047 (0x01,0x00) af053 (0x01,0x00) af036 (0x03,0x0)

W
O

 97/20439
PC

T/U
S96/18959

FIG. 7G
790
z

STATE
NO.

EVENT EVENT ID PRIMITIVE ID NEXT STATE STATE TYPE

STATE 0 L4PPLevL3 SETUP INDICATI0N ev050 PRIMITIVE 1 STATE 1 NORMAL
STATE 1 L4PPLevL5 EVENT REQ l ev501 PRIMITIVE 2 STATE 2 NORMAL
STATE 2 PPLevTIMERl evl91 PRIMITIVE 3 STATE ? UNKNOWN

L4PPLevDSP RESULT DIGITS ev066 PRIMITIVE 4 STATE 3 NORMAL
STATE 3 L4PPLevL5 EVENT REQ 4 ev504 PRIMITIVE 5 STATE 4 NORMAL

L4PPLevL5 EVENT REQ 5 ev505 PRIMITIVE 6 STATE ? UNKNOWN
L4PPLevL5 EVENT REQ 6 ev506 PRIMITIVE 7 STATE ? UNKNOWN

STATE 4 PPLevTIMERl evl91 PRIMITIVE 8 STATE ? UNKNOWN
L4PPLevDSP RESULT DIGITS ev066 PRIMITIVE 9 STATE ? UNKNOWN

W
O

 97/20439
PC

T/U
S96/18959

15/24

WO 97/20439 PCT/US96/18959

FIG. 8A

16/24

WO 97/20439 PCT/US96/18959

(ADDITIONAL (ADDITIONAL
PROCESSES) PROCESSES)

INCOMING CALL

PPL EVENT IND (L4PPL. CHI, 1)
L4 PPL

LAYER 5
HOST 130

FIG. 8C
PPL EVENT IND ACK (SEQ, STATUS)

803
L·

3 o
-•J
ow

PPL EVENT REQ (L4PPL. CHI. 1)

PPL EVENT REQ ACK

805 PROCEED

807
_ _ _ _

PC
T/U

S96/18959

18/24

WO 97/20439 PCT/US96/18959

FIG. BD

PROCESSING)

Θ

WO 97/20439 PCT/US96/18959

19/24

FIG. ΘΕ

(ADDITIONAL
PROCESSING)

J- it-

FIG.BF

PRIMITIVE ID 1ST ATOMIC 2ND ATOMIC 3RD ATOMIC 4TH ATOMIC 5TH ATOMIC
FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION

PRIMITIVE #1 af035 (0x01,0x00)

PRIMITIVE #2 af060 (0x16.0x00) af062 (0x00,0x00) afl40 (0x00,0x00) af212 (0x01,0x00) afO5O (0x01,0x10)

PRIMITIVE #3 af025 (0x02,0x01)
PRIMITIVE #4 af047 (0x01,0x00) af053 (0x01,0x00) afl47 (0x60,0x00) af026 (0x01,0x00)

PRIMITIVE #5 afl40 (0x00,0x00) af212 (0x03,0x00) af050 (0x01,0x10)

PRIMITIVE #6 af035 (0x04,0x00)

PRIMITIVE #7 afl47 (0x01,0x00) af053 (0x01,0x00) af028 (0x01,0x00)

W
O

 97/20439
PC

T/U
S96/18959

FIG. 8G
890
ά

STATE
NO.

EVENT EVENT ID PRIMITIVE IO NEXT STATE STATE TYRE

STATE 0 L4PPLevL3 SETUP INDICATI0N ev050 PRIMITIVE 1 STATE 1 NORMAL
STATE 1 L4PPLevL5 EVENT REQ l ev501 PRIMITIVE 2 STATE 2 NORMAL
STATE 2 PPLevTIMERl evl91 PRIMITIVE 3 STATE ? UNKNOWN

L4PPLevDSP RESULT DIGITS ev066 PRIMITIVE 4 STATE 3 INTERNAL
STATE 3 PPLevINT EVENT 0 ev200 PRIMITIVE 5 STATE 4 NORMAL

PPLevINT EVENT 1 ev201 PRIMITIVE ? STATE ? UNKNOWN
PPLevINT EVENT 2 ev202 PRIMITIVE ? STATE ? UNKNOWN

STATE 4 PPLevTIMERl evl91 PRIMITIVE 6 STATE ? UNKNOWN
L4PPLevDSP RESULT DIGITS ev066 PRIMITIVE 7 STATE ? UNKNOWN

ro

W
O

 97/20439
PC

T/U
S96/18959

WO 97/20439 PCT/US96/18959

22/24

FIG. 9

MATRIX CARO 112

WO 97/20439 PCT/US96/18959

23/24

FIG. 10

WO 97/20439 PCT/US96/18959

24/24

FIG. 11

