(12) PATENT (11) Application No. AU 199710844 B2
(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 718827

(54)

(51)

(21)
(87)

(30)
(31)

(43)
(43)
(44)

(71)
(72)

(74)

(56)

Title
Telecommunications switch having a universal applications program interface for
stantardized interactive call processing communications

International Patent Classification(s)

H04Q 003/62 H04Q 003/545
HO4L 029/06 H04Q 011/04
Application No: 199710844 (22) Application Date: 1996.11.27

WIPO No: WO097/20439

Priority Data

Number (32) Date (33) Country
08/566414 1995.11.30 uUs
Publication Date : 1997.06.19

Publication Journal Date : 1997.08.14
Accepted Journal Date : 2000.04.20

Applicant(s)
Excel Switching Corporation

Inventor(s)
Mark P Hebert

Agent/Attorney
PHILLIPS ORMONDE and FITZPATRICK,367 Collins Street, MELBOURNE VIC
3000

Related Art
US 5546453
US 5426694

&«, ‘@ e e - .. - . .- - - Sas)

R 1 s o e o T ||| it
{ ‘| AOJP DATE 14/08/97 PCT NUMBER PCT/US96/18959
/\‘\ | . AU9710844
\ _ ' ' ‘
(51) International Patent Classification 6 : (11) International Publication Number: WO 97/20439
H04Q 3/62, 11/04, HO4L 29/06, H04Q V A o
3/545 (43) International Publication Date: S June 1997 (05.06.97)
(21) International Application Number: PCT/US96/18959 | (81) Designated States: AL, AU, BB, BG, BR, CA, CN, CZ, EE,
GE, HU, IL, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK,
. (22) International Filing Date: 27 November 1996 (27.11.96) MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, UZ,
- VN, ARIPO patent (KE, LS, MW, §

D, SZ, UG), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
(30) Priority Data: patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,

08/566,414 30 November 1995 (30.11.95) US LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).
Eegr Switering Gogpo RATIOAS

(71) Applicant: EXGE!:—INC—[‘US?US

o Ole\ m\k Qoa.d ‘Published .
S®es 331, 3°%°‘“§“L; °’"'“ M s With international search reporl
(72) Inventor: HEBERT, Mark, P.; 34 Harvest Dnve. Kingston, Before the expiration of the time limit for amending the
MA 02364 (US). claims and to be republished in the event of the receipt of
amendments.

(74) Agents: ATTAYA, Michael, E. et al.; Cesari and McKenna
L.L.P., 30 RowesWharf Boston, MA 02110 (US).

(54) Title: TELECOMMUNICATIONS SWITCH HAVING A UNIVERSAL APPLICATIONS PROGRAM INTERFACE FOR STAN-
TARDIZED INTERACTIVE CALL PROCESSING COMMUNICATIONS

(57) Abstract : 13

3 T EXTERNAL
. . "1 BATTERY/RING

The present invention 106 VOLTAGE

is a standardized host-to-switch 0I SupPLY
application program interface i 108
(API) for performing call |) U P 1/0 BUS : I e
control processing, capable ; A PC PONER BUS
of being customized to meet | 1 — 1 | -
telecommunications application ! 1 | 119

and network signalling protocol ' CPU/MATRIX | T1 ""' DI(GTIIIiAL P14 0P OO N TERUINATOR
requirements. The universal C'}U G D R B 3 1161 CARD

API comprises one or more : —
12 i AL U5 :;-;I_J

generic messages having L--—---E-Z-_-:-_-
iz TON BUS |

programmable fields for
transmitting commands, status, purry LG STATUS/CONTROL BUS .
1% TIMING/CONTROL BUS —

and data between the host
: 115
— il

application and the switch. 13’6
ANALOG (===t ANALOG PACKET DIGITAL =

The present invention further

comprises a programmable
mES < : | winvesi | 18| exce) | }s,f},,s
TRNKS (=e—et LINECARD [~ | CARD LINE CARD

either "standard" or custom 128

in nature, for performing any : 102 ~—~ | __ SNITCH mh _I BATFERI/RING VOLTAGE BUS 1 — —
desired switching functions. bemririiiiiimmmmm——-—m—m——-—-—m—m—-;(,(——mrnvpnpnmnn—
The present invention includes

a protocol development environment which enables a user to define a separate finite state machine for each port provided by the switch.
Each finite state machine may be independently defined by combining a series of elementary processing steps, called atomic functions, into
primitives, which are in turn combined with states and events to define the desired state machine. Such state machines may include atomic
functions configured to generate predetermined messages under predetermined conditions and containing predetermined information. Such
state machines may further include the ability to respond to state events that include the receipt of generic API messages configured to
provide the state mdchine with information from the host application.

telecommunication switch that
provides a user with the ability
to define a desired API protocol,

}
o

e - - - =+ —— e~ = —— - —— = f—

L
[
e e e e T

e e

—- —.-—-—-—--—-—--l

‘®

WO 97/20439 ' PCT/US96/18959

TELECOMMUNICATIONS SWITCH HAVING A UNIVERSAL
APPLICATIONS PROGRAM INTERFACE FOR STANDARDIZED
INTERACTIVE CALL PROCESSING COMMUNICATIONS

5 BACKGROUND OF THE INVENTION

Field of the Invention
The present invention relates generally to the field of telecommunications and,
more specifically, to a universal applications program interface (API) for standardized
10 interactive call control processing with a programmable telecommunication switch and

a host computer supporting various telecommunications applications.

Description of the Related Art
Programmable telecommunication switches are used in a wide variety of

15 applications such as voice messaging, telemarketing services and the like. A computer
that runs a telecommunications application program. A customer may programmable
switch is usually controlled by a host device, which is typically a either purchase a
commercially available application program that is compatible with the host and switch
hardware or may elect to write a custom program.

20 In most applications, a programmable switch is connected to a public telephone
network by one or more analog trunks or digital spans (e.g., a T1 span) which are
terminated at the switch. The switch may also terminate one or more "lines" which are
connected to devices such as telephone sets. Communication over-any given trunk,
span or line is carried out in accordance with an assigned signalling protocol.

25 For various switching system applications, the se__qu'enc'e of Ewitching events
must be controlled and the switching functions must be performéd in accordance with
the requisite protocols. Throughout the world, there are numerous "standard"
signalling protocols in use, including E&M wink start, loopstart, groundstart,
international compelled R2 using MFR2 address signalling, and E1 Channel Associated

30 Signalling (CAS) protocols using DTMF/MFRI signalling. Typically, conventional
programmable switches are configured such that a particular signalling protocol is

associated with a particular trunk, span or line.

WO 97/20439 PCT/US96/18959

10

15

20

25

30

To control the telecommunications switch at the various levels necessary to
satisfy specialized switching functions, conventional host applications have been
configured to generate digital signal commands corresponding to a plurality of
switching events. Correspondingly, conventional communications switches have been
configured to generate digital signal responses related to the processing of these events
at the ports. These messages are constant or “hard-coded" messages, each configured
to communicate specific information between the host application and the switch. The
interface between the telecommunications application and the switch through which
these messages are transferred is referred to as an applications program interface, or
APIL.

Each of the signalling protocols requires predetermined host-to-switch call
control processing protocols to be established, each protocol including the exchange of
one or more constant messages. Thus, to control the programmable switch to perform
the requisite switching events necessary to maintain communications, communications
switches must be capable of supporting extremely large number of these specific host-
to-switch command messages and associated protocols. Accordingly, each signalling
protocol has associated with it one or more different message sets stored and indexed at
the host as well as at the switch. The message sets and resulting host-to-switch
protocol are also dependent upon specific telecommunications applications
requirements, such as the amount and type of information an application requires for it
to appropriately control the switch to support a particular signalling protocol.

Furthermore, conventional programmable switches may be connected between
the public telephone network and other devices such as a voice messaging system.
Because such devices may perform specialized functions and are not intended to
connect directly to the public telephone network, they do not typically adhere to
standard signalling protocols. Thus, for a user to be able to control the programmable
switch in such a fashion that proper communication is maintained both, with the public
telephone network and with other devices connected to the switch, complex and varied
API signalling protocol requirements must be satisfied. Conventional communications
switches implement numerous specific sets of API messages to support these varied

requirements.

[4
1

10

15

As a result of the implementation of constant messages and the various
telecommunications applications and signalling protocol requirements, there has been
no standardization of the interface between the host applications and the
telecommunications switch. This has led to increased cost in developing the necessary
hardware and software to support specific API protocols to satisfy host applications
requirements as well as signalling protocol requirements for each trunk, span, and line.

Furthermore, as a result of having separate and distinct API messages, each
dedicated to a specific command or data transfer, the addition of features to the
telecommunications switch necessitates the creation and implementation of one or more
additional API messages to support the associated API protocol between the host and
switch. To implement each new unique message, a costly and time-consuming
software change to the switch and host must be made.

What is needed, therefore, is a standardized API message protocol supporting
host-to-switch call control processing that may be used regardless of the host
application or signalling protocol requirements. Furthermore, such a universal API
protocol must be sufficiently flexible and versatile to be customized to support present

and future requirements of telecommunications applications and signalling protocols

now or later developed.

10

15

25

30

3a
SUMMARY OF THE INVENTION _

According to one aspect of the present invention there is provided a
telecommunications system, including:

a host device;

a programmable telecommunication switch, connected in communicating
relationship with and responsive to said host device, for performing call
processing functions related to communication paths established between
various ones of a plurality of channels; and

a universal applications program interface (API) having standardized
messages for communication between said telecommunications switch and said
host device.

According to a further aspect of the present invention there is provided a
telecommunications system, including:

a host device;

a programmable telecommunication switch, connected in communicating
relationship with and responsive to said host device, for performing call
processing functions related to communication paths established between
various ones of a plurality of channels; and

means for effecting communications between said switch and said host
using a programmable universal applications program interface (API) including
standardized messages for transmitting information between said host and said
switch. _

According to a still further aspect of the present invention there is
provided a functionally-layered programmable telecommunication switch
including:

controllable-switching means for dynamically connecting or
disconnecting communication paths between various ones of a plurality of
channels in response to messages generated by a telecommunications series
application;

one or more instantiations of a plurality of programmable protocol

" language (PPL) component state machines, each of which is associated with a -

PPL component of said telecommunications switch and each of which
represents one of a plurality of protocols configured to perform call processing
functions with respect said plurality of channels, wherein said plurality of PPL

W:\marie\GABNODEL\10844c.doc

10

15

25

30

3b
component state machines are functionally associated with the functional layers
of the telecommunications switch including said PPL components; and

a programmable universal applications program interface (API) for
transferring standardized messages between said functional layers and
between said functional layers and said telecommunications services
application.

According to a still further aspect of the present invention there is
provided a universal applications program interface (APl) for standardized
interactive call processing communications between functional layers of a
telecommunications system including a telecommunications switch and a host
device coupled to the switch, including:

a first programmable message for transferring all call control processing
commands and data from said host to said functional layers of said
telecommunications switch; and

a second programmable message for transferring all call control
processing status and data from said functional layers of said
telecommunications switch to said host. '

According to a still further aspect of the present invention there is
provided a method for developing call-associated protocols for performing call
processing functions related to communication paths established between
various ones of a plurality of channels in a programmable telecommunications
switch, said call processing function associated with the functions performed by
a particular functional layer of said switch, the method including the steps of:

(a) creating one or more state/event tables each of which defines,

a plurality of predetermined logical states,

one or more predetermined events associated with each of said plurality
of predetermined logical states, said one or more predetermined events
including receipt of one or more application program interface (APl) messages
generated at the same or different functional layer as said created call-
associated protocol, and

a primitive associated with each said one or more predetermined events,
wherein said primitive is invoked upon an occurrence of said one or more

associated events;

W:\marie\GABNODEL\10844c.doc

10

15

25

30

3c

(b) creating one or more primitive tables each of which defines a
predetermined series of predetermined layer-dependent functions for each said
primitive, one or more of said predetermined functions generating an API
message to said functional layer; and

(c) creating one or more protocols each of which is represented by a
predetermined association of one or more of said state/event tables and one or
more of said one or more primitive tables.

According to a still further aspect of the present invention there is
provided a functionally-layered programmable telecommunication switch
including: ‘

a layer-specific processor having a state machine engine configured to
execute an instantiation of a PPL component state machine representing a call
processing protocol associated with a communications channel in the switch,
said state machine invoking one or more predetermined functions in
aécordance with a current state and the occurrence of a predetermined event,

wherein said one or more predetermined functions includes generating a
first application program interface (API) message having a first predetermined
message format for all messages transferring call control processing
information from said state machine; and '

wherein said predetermined event is one of a plurality of events including
thé receipt of a second APl message having a second predetermined message
format for all messages transferring call control processing to said state
machine.

According to a still further aspect of the present invention there is
provided a method for communicating between two layers of a functionally-
layered programmable telecommunication switch system utilizing a
standardized universal application program interface (APl), the method
including the steps of: | '

(1) invoking ene or more instantiations of a layer-specific program
protocol language (PPL) component state machine at a layer-specific PPL
processor having a state machine engine, each of said one or more

instantiations representing a call processing protocol;

W:\marie\GABNODEL\10844c.doc

10

15

3d
(2) invoking atomic functions in accordance with state/event and

primitive tables defining said state machine and stored in the processor to

perform various functions, said atomic functions generating internal

representations of a API event indication message; and

(3) - transferring said internally-represented PPL event indication
message to a communications processor coupled to said processor for
translation into a universal standardized PPL event indication meséage.

The present invention may include a stahdardized host-to-switch
application program interface (API) for performing call control processing,
capable of being customized to meet telecommunications application ‘and
network signalling protocol requirements. The universal AP| may comprise one
or more generic messages having programmable fields for transmitting
commands, status, and data between the host application and the switch. The
present invention may further comprise a programmable telecommunication
switch that provides'a user with the ability to define a desired API protocol,
either “standard” or custom in nature, for performing any desired switching
functions. |

The present invention may include a protocol development environment

which enables a user to define a separate finite state machine for each port

provided by the

W:\marie\GABNODEL\10844c.doc

switch. Each finite state machine may be independently defined by combining a series
of elementary processing steps, called atomic functions, into primitives, which are in
turn combined with states and events to define the desired state machine. Such state
machines may include atomic functions configured to generate predetermined messages
5 under predetermined conditions and containing predetermined information. Such state
machines may further include the ability to respbnd to state events that include the
receipt of generic API messages configured to provide the state machine with»
information from the host application. '
In addition, the present invention may serve as a development tool for creating
10 customized API protocols having customized standard messages supporting
telecommunications applications such as personal communications services (PCS),
800/900 .scrvice, voice mail, telemarketing, among others. The present invention may
also be used to control or manage a wide variety of communications services within a
programmable switch through the transfer of the generic API messages, including
15 conferencing, voice recorded announcements, tone generation, tone reception, call
progress analysis, voice recognition, voice compression and fax encoding/decoding.
The universal API of the present invention may be implemented to achieve

communications internal to the switch as well. For example, the standardized

..;_. messages of the;. universal API may be used to support communications between any
":2" 20 software layer within the switch. '
:::E.. ' Advantageously, the generic message structure of the present invention enables
‘ . . additional call processing features to be added to the telecommunications switch that
Tesee” the host can initiate without implementing additional content-specific API messages

dedicated to that feature. This enables the creation of customized API message

25 protocols that can grow beyond the limitations of specific messages for specific

.::: :' features and functions.
.2:”: ~ Another advantage of the generic message structure of the present invention is
o that it my provide the commonality and flexibility necessary to be a standardized

interface for application development. This my significantly reduce the complexity of the
. * 30 host/switch communications interface and eliminates the cost of supporting an interface

composed of numerous specialized messages.

10

15

20

25

Another advantage of the present invention is that it may provide the user with the
ability to transmit and receive information to all software layers of the switch using
standardized messages. Significantly, this may eliminate the burden of having to store
large numbers of distinct messages for managing dissimilar functions performed by the
same or different software layers of the switch. Thus, the large message sets stored
and indexed in conventional switches may be eliminated by the present invention.

~ Another advantage of the present invention is the increased degree of
interaction with the host that can be achieved simply by introducing at various
processing points an atomic function that sends and receives data into numerous
locations in the switch.

Another advantage of the present invention is that it may enable a user to create
multiple network signalling protocols by creating separate state machines to address A
each variation of a signalling protocol. The universal API may be programmed to
achieve the necessary communications to support each of these protocol-specific state
machines. Thus, the structure of the messages comprising the host-to-switch interface
may remain unchanged despite the multiple signalling protocols supported by the
switch. '

Further features and advantages of the present invention as well as the structure
and operation of various embodiments of the present invention are described in detail
below with reference to the accompanying drawings. In the drawings, like reference
numbers indicate identical or functionally similar elements. Additionally, the left-most

one or two digits of a reference number identifies the drawing in which the reference

number first appears.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the appended claims. The
above and further advantages of this invention may be better understood by referring to
the following description taken in conjunction with the accompanying drawings, in

which:

WO 97/20439 PCT/US96/18959

10

15

20

25

30

Figure 1 is a block diagram of a programmable telecommunications switch
which may be programmed by a user in accordance with a preferred embodiment of
the present invention;

Figure 2 is diagram which depicts the layers of software used to control the
switch of Figure 1;

Figures 3A and 3B depict some of the specific features and functions associated
with each of the software layers depicted in Figure 2;

Figure 4 is a block diagram of a finite state machine development environment
constructed in accordance with a preferred embodiment of the present invention;

Figure 5 is a block diagram illustrating the structure and contents of a generic
PPL Event Indication and PPL Event Request message of the present invention;

Figure 6 is a block diagram of a PPL Event Indication Acknowledgement and
PPL Event Request Acknowledgment message of the present invention.

Figures 7A and 7B are a state diagram of a finite state machine for providing
call control processing utilizing the universal API of the present invention to support a
highly interactive host telecommunications application requirement;

Figure 7C is an interface diagram of the universal API supporting the call
control processing illustrated in Figures 7A and 7B;

Figures 7D and 7E are a diagram of the finite state machine of Figures 7A and
7B in which each series of atomic functions is defined as a primitive;

Figures 7F and 7G are tables showing the correspondence between the atomic
functions, primitives and states of Figures 7A-7E;

Figures 8A and 8B are a state diagram of a finite state machine for providing
call control processing utilizing the universal API of the present invention to support a
limited interactive host telecommunications application requirement;

Figure 8C is an interface diagram of the host-to-switch API generated by the
cal control processing illustrated in Figures 8A and 8B;

Figures 8D and 8E are a diagram of the finite state machine of Figures 8A and
8B in which each series of atomic functions is defined as a primitive;

Figures 8F and 8G are tables showing the correspondence between the atomic

functions, primitives and states of Figures 8A-8E;

WO 97/20439 ' PCT/US96/18959

10

15

20

25

30

Figure 9 is a functional block diagram illustrating an exemplary process flow to
create a PPL Event Indication message;

Figure 10 is a block diagram of the message buffer created by an Layer 4 PPL
processor during the creation of the PPL Event Indication message of Figure 9; and

Figure 11 is a functional block diagram illustrating an exemplary process flow

to create a PPL Event Request message.
DETAILED DESCRIPTION OF THE INVENTION

Figure 1 shows a commercially available personal computer (PC) 102 which
includes a PC central processing unit (CPU) 104 and a hard disk drive 106
interconnected by a PC input/output (I/O) bus 108 and a PC power bus 109. The PC
102 is preferably a PC-ATO, sold by International Business Machines (IBM), or a
compatible thereof. Other personal computers having more memory or more powerful
CPUs than the PC-AT may also be used. The PC 102 preferably operates under an
application-oriented operating system, such as DOS’ or UNIX'.

The PC 102 consists of a chassis or housing in which a motherboard is
mountéd, along with the disk drive 106 and other optional assemblies such as floppy
disk drives, modems and the like. The PC CPU 104 is mounted on the motherboard,
which includes a series of edge connectors into which other boards (cards) may be
inserted and thereby connected to the PC I/O and power busses 108 and 109.

A programmable telecommunication switch 110 resides within the PC 102. A
CPU/matrix card 112 is inserted into one of the slots on the motherboard and thus
connected to the busses 108 and 109. The CPU/matrix card 112 is interconnected with
a digital (T1) line card 114, a digital (E1) line card 115, a digital signal processing
(DSP) card 116, a packet engine card 117, an analog (universal) line card 118 and a
terminator card 119 by four busses: a high level data link control (HDLC) or
interprocessor bus 120; a time division multiplex (TDM) bus 122; a line card (LC)
status/control bus 124; and a timing/control bus 126. A battery/ring voltage bus 128
supplies battery voltage (48VDC) and ringing voltage (109VAC) to the analog line

WO 97/20439 PCT/US96/18959

10

15

20

25

30

card 118. The terminator card 119 serves to physically terminate busses 120, 122,
124, 126 and 128.

The line cards 114, 115 and 118 and the DSP card 116 are all connected to and
receive their basic operating power from the PC power bus 109. Although only one
digital (T1) line card 114, one digital (E1) line card 115 and one analog line card 118
are depicted, it should be understood that additional line cards of any type may be
added subject to two physical limitations: (1) the maximum switching capacity of the
CPU/matrix card 112, and (2) the physical space within the chassis of the PC 102.

An external host 130, which may comprise a separate personal computer,
workstation or other computer, may optionally be connected via a communication
channel 132 to the CPU/matrix card 112. The CPU/matrix card 112 preferably
includes a conventional RS-232 compatible interface for connecting the channel 132.
The external host 130 preferably operates under an application-oriented operating
system.

If desired, the switch 110 can reside on a passive backplane (no PC CPU 104
or disk 106 present) from which its receives electrical power and be controlled by the
external host 130. For example, the present invention may be implemented in other
processing platforms such as the expandable telecommunications switch disclosed in
copending patent application, serial number 08/207,931, titled Expandable
Telecommunications System, assigned to the assignee of the present application and
which is hereby incorporated by reference in its entirety.

An external battery/ring voltage supply 131 is connected"via a path 133 to the
terminator card 119. Supply 131 may comprise, for example, a commercially
available power supply.

With the exception of the digital (E1) line card 115, the DSP card 116 and the
packet engine card 117, details regarding the construction of the various cards shown
in Figure 1 are set forth in U.S. Patent No. 5,321,744, titled Programmable
Telecommunications Switch for Personal Computer, assigned to the assignee of the
present application and which is hereby incorporated by reference in its entirety.

Digital (E1) line card 115 is preferably constructed using similar hardware to that

WO 97/20439 PCT/US96/18959

10

15

20

25

30

disclosed for T1 line card 114, except for differences in conventional circuitry which
allow line card 115 to terminate E1 spans as opposed to T1 spans.

Details regarding the construction of the DSP card 116 and the packet engine
card 117 are set forth in U.S. Patent No. 5,349,579, titled Telecommunications Switch
With Programmable Communications Services, assigned to the assignee of the present
application and which is hereby incorporated by reference in its entirety.

Figure 2 is a layer model of the software used to control the programmable
switch 110 of Figure 1. The lefthand column of Figure 2 shows seven lavers defined
in the Open Systems Interconnection (OSI) reference model. The righthand column of
Figure 2 shows five layers used to control switch 2 and their general correspondence to
the OSI model.

Referring now to both Figures 1 and 2, the Application Layer 5, which
corresponds generally with the Application layer of the OSI model, represents
application software which typically runs on either the PC CPU 104 or the external
host 130. Application Layer 5 software may be used to implement any of a number of
desired telecommunications services such as toll free (800) service, voice mail,
automatic call distribution (ACD), to name but a few. Application Layer 5 may
communicate with any other layer of the programmable switch through the application
program interface (API) of the present invention. When Application Layer 3 resides
on external host 130, the API manages communications over communication channel
132. When Application Layer 5 resides on PC CPU 104, the API manages call control
processing communications over PC 1/0 bus 108.

Call Management Layer 104, which corresponds generally with the
Presentation, Session and Transport layers of the OSI model, represents software
which runs on the CPU/matrix card 12. Call Management Layer 4 is responsible for
performing centralized call processing functions and providing a common interface to
Application Layer 5 regardless of the type or types of network signalling protocols
which may be used within the switch 102. Typically, Call Management Layer 4
performs functions which are required following call setup.

Network Signalling Protocol Layer 3 corresponds generally with the Network
layer of the OSI model. The software represented by Network Signalling Protocol

WO 97/20439 PCT/US96/18959

10

15

20

25

30

10

Layer 3 runs either on the CPU/matrix card 112 or on line cards which include their
own microprocessors, such as line cards 114 or 115 or packet engine card 117, and is
responsible for in and out-of-band network signalling supervision as well as network
protocol level control of incoming and outgoing calls.

Link Layer 2 corresponds generally with the Data Link layer of the OSI model.

Link Layer 2 software runs on the CPU/matrix card 112, the line cards which include
their own microprocessors, the DSP card 116 or the packet engine card 117 (each of
which includes its own microprocessor) and is responsible for the detection as well as
physical transfer of network signalling information across a network or line interface.

Finally, the Physical Layer 1 corresponds to the Physical layer of the OSI
model. Line cards 114, 115 and 118 provide physical T1, E1 and analog electrical
interfaces, respectively, to the switch 110.

Figures 3A and 3B are a tabular listing of representative features and functions
provided by each of the software Layers 2-5 of Figure 2. The present invention may
be used as a development tool to develop suitable software to implement any of the
features and functions shown in Figures 3A and 3B. Illustrative examples of the use of
the present invention in the context of each of Layers 2-5 are set forth in U.S. Patent
No. 5,426,694, assigned to the assignee of the present invention, herein incorporated
by reference in its entirety.

Figure 4 is an overall block diagram of a finite state machine developfnent
environment, constructed in accordance with a preferred embodiment of the present
invention, which enables a customer or user to create and define finite state machines
for performing desired telecommunications functions, controlled by one or more
applications through the universal API of the present invention. Before considering
this Figure in detail, the definitions of certain terms should be addressed.

As used herein, the term state refers to a number which represents the current
"context" for a particular channel or port. In a preferred embodiment of the present
invention, there are three types of states defined: normal, internal and blocking.
Normal states can be wair states (i.e., a SEIZE ACK state, a condition in which further
action is suspended until the occurrence of a particular event) or stable states (i.e., a

conversation is taking place). Inrernal states are used to test conditions and effectively

WO 97/20439 PCT/US96/18959

10

15

20

25

30

11

operate as decision branches. Normal and internal states may be specified by a
customer or user, in accordance with present invention, to define a finite state machine
for performing a desired function. Blocking states are generated automatically by the
present invention and are used, on a channel-by-channel basis, in connection with the
management of off-board resources.

An event is a number which identifies a condition which is accepted by a
particular state. Data may be associated with an event.

An aromic function is one which performs an elementary task such as setting a
timer. User-specified data may be associated with an atomic function. A primitive is a
predetermined sequence of atomic functions which is invokéd upon the occurrence of a
particular event. Users may create or define primitives from a library of available
atomic functions. In a preferred embodiment, each primitive may contain up to 20
atomic functions.

A state/event table defines the valid events for a particular state and the
primitive which is invoked upon the occurrence of each such event. In a preferred
embodiment, a state/event table may contain up to 100 states and up to 20 events per
state.

A primitive table defines the pri‘mitives which are used by a state/event table.
In a preferred embodiment, a primitive table may contain up to 200 primitives.

A protocol is defined as the association of various types of tables, the least of
which is a state/event table and primitive table, and is identified by a prorocol ID (a
number).

An API protocol is defined as the host-to-switch control protocol between host
applications and software layers of the switch.

A program protocol language (PPL) is a programmable environment for
managing network signalling protocols and communications services.

A daa block, such as those denoted by reference numbers 40a, 40n, is assigned
for each channel (port) 0...n of the switch. Each data block 40a, 40n contains the
following information pertaining to its respective channel: the current state of the
channel; a pointer to an active state/event table; a pointer to an active primitive table; a

pointer to an assigned state/event table; and a pointer to an assigned primitive table.

WO 97/20439 _ PCT/US96/18959

10

15

20

25

30

12

In the case of channel 0, the active state/event table and active primitive table
pointers are pointing, as indicated by the phantom lines, to tables which are associated
with a resident protocol 0, denoted by reference number 442a. The assigned
state/event table and assigned primitive table pointers for channel O are pointing to
tables which are associated with a dynamically loaded, customer-defined protocol 1,
denoted by reference number 444a.

Other protocols which are present and available for use are resident protocols
1...n (442b, 442c) and downloaded, customer-defined protocols n+1...m (444b,
444c). The resident protocols 442a-442c represent preprogrammed or "standard”
protocols, which are typically provided by a manufacturer with a switch. In contrast,
the customer-defined protocols n+1...m are created by a customer or user and may be
completely "custom" or "proprietary” in nature.

A layer dependent atomic function library 446 is connected to provide
information to a state machine engine 448. State machine engine 448 is also connected
to receive the active state/event table pointer and active primitive table pointer from
each of data blocks 440a-440n. Also, as denoted by reference number 450, utilities
are provided for layer dependent environment support.

The function of the state machine engine 448 is to drive each channel in
accordance with its assigned protocol, which is defined by the assigned state/event
table and assigned primitive table. Upon the occurrence of a valid event for a normal
state, a primitive is invoked in accordance with the entries in the assigned state/event
table. The state machine engine 448 uses the atomic function library 446 to perform
the atomic functions represented by the invoked primitive.

The state machine engine 448 will drive through any necessary internal states,
automatically generating appropriate blocking states, until the channel once again
reaches a normal state. At that time, processing by the state machine engine 448 is
complete until the occurrence of another valid event.

Each channel is initially assigned one of the customer-defined protocols or one
of the preprogrammed protocols. This is accomplished by the transmission of an API
message from the Application Layer 5 to the Call Management Layer 4, which in tumn

issues an appropriate message to Layer 3 which may also be configured in accordance

WO 97/20439 : PCT/US96/18959

10

15

20

25

30

13

with the API of the present invention. The assigned state/event table pointer and
assigned primitive table pointer point to the protocol which was last assigned. Thus, a
customer may assign a desired one of the available protocols by simply specifying the
appropriate pointers in each data block. In this fashion, the present invention
advantageously permits the customer to assign, on a channel-by-channel basis, a
desired protocol from among multiple protocols resident within a single switch.

Alternatively, or if the customer elects not to assign protocols to some or all of
the channels, default values are preferably provided so that each channel always has a
valid protocol (e.g., one of the resident protocols 442a-442c) assigned to it.

The active state/event table and active primitive table pointers, which are
provided to the state machine engine 448, point to the protocol which is currently
controlling the channel.

The protocol assigned to a particular channel is not necessarily permanent‘and
may be dynamically changed in real time in response to the occurrence of a specified
event, as described in detail in connection with Figure 7. Further, because the atomic
functions provided by the library 446 represent elementary functions, customers or
users are advantageously able to implement desired changes in protocols without
substantial, or possibly any, changes to the underlying code. In addition, the
environment support utilities are provided to simplify protocol development for the
customer or user. The utilities provide ready-to-use resource management functions
(e.g., timers) which greatly simplify the state machine logic required to implement
desired protocols. Different utilities are preferably provided for each software layer
since the resources required by each layer may be different.

In accordance with the present invention, call processing control
communications between the Application Layer 5, typically residing on external host
130, and the other layers of switch 102 illustrated in Figure 2, is conducted though the
transfer of generic messages of the universal API of the present invention.

Specifically, in the preferred embodiment of the universal API of the present
invention, a single message type, referred to as the PPL Event Request message, is
used to transfer all call control processing commands and data from the host

application (Layer 5) to the telecommunications switch (all other software layers).

WO 97/20439 PCT/US96/18959

10

15

20

25

30

14

Likewise, a single message, referred to as the PPL Event Indication message, is used
to transfer all call control processing status and data from the telecommunications
switch to the host applications. These generic API messages have optional fields and
are the only messages necessary to maintain call processing regardless of the
application requirements, network signalling protocol requirements, or features
presently existing or to be added to the telecommunications switch. The programmable
switch of the present invention enables a user to define and assign a desired
applications program interface protocol, either "standard" or custom in nature, for
performing various switching functions to accommodate any of the above
requirements.

Referring to Figure 5, a PPL Event Request message is sent from the host to
the switch to initiate a host event on a PPL component with optional ICB data. The
PPL Event Request message is the only call control processing message passed from
the host to the switch and, in the preferred embodiment, having the format of message
500 illustrated in Figure 5. The PPL Event Request message comprises a number of
fields and subfields, each of which is described below.

PPL Event Request message includes a frame byte 502 having a constant value
identifying it as the first byte of a frame.

Message length field 504 contains the length of the particular PPL Event
Request message. This is necessary due to the ability of the generic API messages of
the present invention to include optional fields, changing the length of the message.
Typically the length field value does not include the frame byte 502.

A message type field 506 contains a constant value identifying the particular
message as a PPL Event Request message. The message type field is constant for all
PPL Event Request messages.

Sequence number field 508 is a specific numeric identifier assigned to each PPL
Event Request message that is generated by the host application. This value is used to
distinguish between different PPL Event Request messages transmitted from the host to
the switch. For example, when the host acknowledges the receipt of a PPL Event

Request message, it includes the sequence number in its acknowledgement to identify

WO 97/20439 PCT/US96/18959

10

15

20

25

30

15

which of the PPL Event Request messages is associated with the status information
contained within the acknowledgement.

As noted, every PPL component state machine in a switch is assigned a unique
reference number. PPL component ID 510 is a one word field that identifies which
PPL component implemented in the switch is referenced by a particular PPL Event
Request message 500.

There may be multiple instantiations of a PPL component state machine in a
switch at any given time. For example, in the preferred embodiment there is an El
PPL component state machine assigned to each channel. Thus, in the illustrative
embodiment wherein a single E1 card supports 256 channels, there may be as many as
256 instantiations of the E1 PPL component state machine, each associated with a
distinct channel. In order to selectively provide access to every instantiation of a PPL
component, the universal API of the present invention provides the ability to perform
multiple levels of addressing. Thus, once the PPL component has been identified in
the PPL component ID field 510, an address element field 514 is provided to identify
which instantiation(s) of that PPL component state machine is(are) being referenced.
As shown in Figure S, the PPL Event Request message provides the ability to include
any number of address element fields 514, and thus may simultaneously communicate
with multiple instantiations of a single PPL component state machine. The total
number of address element fields 514 included in a PPL Event Request message is
provided in address element count field 512.

To accommodate the additional levels of addressing noted above, address
element field 514 contains a number of subfields for further identifying which state
machine instantiation is to receive the PPL Event Request message. Specifically, an
address element type field 516 is provided to reference the hierarchial components of
the switch that may contain or be associated with the desired state machine
instantiation. In the above example of an E1 PPL state machine instantiation, the
address element type field 516 indicates which span and channel the state machine
instantiation is associated with. An address information subfield 520 provides specific
addresses for each of the hierarchial components indicated in the address element type

field 516.

WO 97/20439 PCT/US96/18959

10

15

25

30

16

Since the addressing information contained in field 520 varies in accordance
with the type of device addressed, the length of the AE field 514 may vary and thus is
provided in length subfield 518. It is considered to be apparent to one skilled in the
relevant art to use other addressing schemes appropriate for a particular PPL
component state machine and switch architecture. It should also be noted that, in the
above example, a single state machine instantiation exists for each channel since the
PPL component state machine is assigned to each channel individually. However, it is
considered to be apparent to one skilled in the relevant art that a particular state
machine may be configured to manage any number of channels.

The multiple levels of addressing provide the universal API PPL Event Request
message with a flexible addressing scheme. This enables a host application. using a
single PPL Event Request message, to address a range of state machine instantiations
having a common PPL component ID to generate a particular event at all addressed
state machines.

Each PPL event has a unique ID relative to each PPL component. The PPL
event ID field 522 provides the switch with a user-defined PPL event ID that the
switch recognizes as being associated with the particular request. The recipient PPL
component maps the unique PPL event ID to a PPL event that is unique to that PPL
component.

Each PPL Event Request message may also contain one or more data fields in
the form of information control blocks (ICB)s. ICBs are defined for each PPL
component based upon the software layer and the communications protocol supported
by that PPL component. Thus, any signalling information may be passed between the
host and switch using the generic, programmable messages of the present invention.

Also referring to Figure 5, a PPL Event Indication message is sent from the
switch to the host by a PPL component to report an event at the ports to the host with
optional ICB data. The PPL Event Indication message is the only call control
processing message passed from the switch to the host and in the preferred
embodiment, has the same format as the PPL Event Request message illustrated in

Figure S. Except as noted below, the fields of the PPL Event Indication message are

WO 97/20439 ' PCT/US96/18959

10

15

20

25

30

17

identical to and perform the same functions as, the analogous fields of the PPL Event
Request messége discussed above.

As noted above, there may be multiple instantiations of a PPL component state
machine. For the PPL Event Indication message, the address element field(s) indicate
which instantiation of a particular state machine is actually invoking the atomic
function that generates the PPL event indication message.

In the PPL Event Indication message, the PPL event ID field 522 is a specific
value representing the occurrence of a specific event in the switch that results in the
PPL Event Indication message being sent from the PPL component state machine. As
noted, this is managed with an atomic function that is programmed to send the
particular PPL Event Indication message in response to the occurrence of a particular
event, the PPL Event ID included in the message being programmed by the user.

It is considered to be obvious to one skilled in the relevant art to configure all
transfers of information in the switch using the universal API of the present invention,
including all layer-to-layer communications. For example, the exemplary
communications described in the above-incorporated U.S. Patent No. 5,426,694 may
be replaced with the universal API messages of the present invention.

The PPL components can be layer specific, function specific, interface specific,
protocol specific, or channel specific. This enables a host Layer 5 telecommunications
application to be as interactive as desired or necessary, accessing each layer of the
switch and managing each PPL component regardless of where the component is
located. An application can therefore use the universal API interface to manage any
PPL component. This provides a consistent and predictable means for managing every
PPL component in the switch, regardless of what level of processing is being
performed, ranging from, for example, a very detailed signalling analysis, to network
signalling, to high-level call routing, to call management connection functions.

In the preferred embodiment of the present invention, the manner in which the
data is identified and passed to the host includes the implementation of one or more
atomic functions configured to store and retrieve data of a certain type to specific
memory locations in conjunction with one or more atomic functions that generate a

generic PPL Event Indication providing the host with all previously stored data.

WO 97/20439 PCT/US96/18959

10

15

20

25

30

18

However, as one skilled in the art would find apparent, there are numerous ways in
which atomic functions may be configured to pass data in the PPL Event Indication
message. For example, a separate atomic function may' be implemented to transfer
specific types of data in a PPL event indication message.

The short-hand notation for depicting the PPL Event Request and the PPL
Event Indication messages is shown in on the bottom of Figure §.

Referring to Figure 6, the telecommunications switch responds to the PPL
Event Request with a PPL Event Request Response message having the format of
message 600. Similarly, the host applications responds to the PPL Event Indication
message with a PPL Event Indication Acknowledge message, also having the format
illustrated in Figure 6. Generic acknowledgement message 600 includes a frame byte
602, length byte 604, message type 606, and sequence number 608, all of which
perform the same function as the corresponding fields in the PPL Event Request
message 500. In addition, a status field 610 provides the recipient with message-
specific status information. The short-hand notation for depicting the PPL Event
Request Acknowledge and the PPL Event Indication Acknowledge messages is shown
in Figure 6.

Referring to Figures 7A-8G, two examples of the utilization of the universal
API of the present invention to perform interactive voice processing functions are
provided below. The first example illustrates a universal API for managing host-to-
switch communications when the telecommunications switch is controlled by a highly
interactive host application Layer 5 to perform interactive voice announcements. The
second example illustrates a universal API for managing host-to-switch
communications when the host application Layer 5 has limited interaction with the
telecommunications switch to perform the same function. These examples illustrate the
ability of the universal API to accommodate various applications requirements.

In the following Figures, a state is depicted as a circle, an atomic function is
depicted as a rectangular box, and an event is represented by a word abbreviation
located along a path leading out of a state. Information shown in parentheses in an

atomic function represents arguments or data that are associated with that function.

WO 97/20439 PCT/US96/18959

10

15

20

25

30

19

Reference numbers are provided below in parentheses when necessary to avoid
confusion with other numeric descriptors.

Figures 7A-7B illustrate an example of an application of the present invention
in Call Processing Layer 4 with a high level of interaction required by the host
application layer 5. In this example, the present invention is used to implement a
protocol for providing host application decisionmaking throughout the performance of
an interactive voice response to an incoming call.

The protocol begins with the associated channel (channel 1) in normal state
NSO, which is the IDLE state 702. Upon the occurrence of the event of layer 3
transmitting to layer 4 a setup message ((50)L4PPLevl3 SETUP_INDICATION)), the
atomic function af35 is performed. As noted in its descriptor, the Layer 4 PPL event
(L4PPLev) is received from network signalling protocol layer 3 (L3), reporting that it
has detected an incoming call (SETUP_INDICATION). The number 50 in the
parenthetical preceding the message descriptor is the PPL event ID assigned to that
event by the Layer 4 PPL. Thus, when Layer 4 is notified of an incoming call,
represented by a PPL event ID of 50, the PPL component state machine in Figure 7A
leaves idle state 702 and performs atomic function af35 (704).

Atomic function af35 (704) operates to notify the host application (Layer 5) of
the event, assigning to the event a PPL event ID of 1. The host application interprets
this PPL event ID (the number 1) as a notification of an incoming call. Referring to
Figure 7C, atomic function 35 (704) generates a PPL Event Indication message 701 to
notify the host of the incoming call. This PPL Event Indication message has the

following format:
PPL Event Ind (L4PPL, chl, 1)

wherein the PPL component ID indicates the Layer 4 PPL component (L4PPL), the
instantiation of the Layer 4 PPL component state machine addressed by this message is
the instantiation associated with channel 1 (chl), and the PPL event ID (1) indicates
that an incoming message has been received while the PPL component state machine

has been in the idle state NSO.

WO 97/20439 PCT/US96/18959

10

15

20

25

30

20

As shown, the arguments associated with atomic function af35 (704) specify a
Layer 4 PPL event ID. Note that more generally, atomic function af35 is a PPL Send
Event Indication message atomic function, used whenever a PPL Event Indication
message is to be sent to the host Layer 5, each message having arguments for
indicating the unique PPL event ID associated with the occurrence of a different event.
The host responds with a PPL Event Indication Acknowledge message 703 having the

general format:
PPL Event Ind Ack (sequence #, status)

wherein the sequence number is the sequence number provided in the PPL Event
Indication message 701, and the status indicates the status of the associated PPL event
indication message. For purposes of this and the following examples, the PPL Event
Indication Acknowledge messages all indicate that the immediately previous PPL Event
Indication message was successfully received.

After the telecommunications switch provides the host with notification of an
incoming call utilizing the PPL Event Indication message of the present invention, the
Layer 4 PPL component state machine enters normal state NS1, which is a WAIT state
706, during which the Layer 4 PPL component waits for the host application to
respond to the notification. The host sends a Layer 5 PPL Event Request message 705
(see Figure 7C) with an event ID of 1, indicating that it is requesting that the switch

proceed with the call received on channel 1. Message 705 has the following format:
PPL Event Req (LAPPL, chl, 1)

indicating that the switch is to respond to the incoming call received on channel 1. A
PPL Event Request message having a PPL Event ID of 1 is interpreted by the Layer 4
PPL component state machine as an event. As illustrated in Figure 7A, the receipt of
this PPL Event Request message is assigned by the Layer 4 PPL component state
machine a Layer 4 unique PPL event ID of 501, indicating that a Layer 5 PPL Event
Request (with a PPL Event ID of 1) has occurred.

WO 97/20439 PCT/US96/18959

10

15

20

25

30

21

In response to PPL event 501, the Layer 4 PPL component state machine
performs 5 atomic functions: atomic function af60 (708), atomic function af62 (710),
atomic function af140 (712), atomic function af212 (714) and atomic function af50
(716). Atomic function af60 is an atomic function that generates a generic PPL Event
Request Acknowledge message in accordance with the present invention. This atomic
function af60 may be used whenever a PPL component of the switch is to acknowledge
the receipt of a PPL Event Request message. The argument number 16 represents an
acknowledgement status that the PPL Event Request message was successfully
received. This atomic function af60 (708) generates the PPL Event Request
Acknowledge message 707, having the same general format as the PPL Event
Indication Acknowledge message described above. The PPL Event Request
Acknowledge message 707 indicates that the above incoming message has been
successfully received.

Atomic functions af62 (710) and atomic function af140 (712), serve,
respectively, to send a connect message (to answer the call) to Layer 3 and to send a
message to allocate a DSP resource for interactive digit string collection. Atomic
function af212 (714) plays an opening announcement to the caller. As shown, there
are two arguments to af212: an announcement ID and an announcement control option.

af212 (714) was selected to play an opening announcement. Atomic function af50
(716) is performed to set a timer to wait for a selected period of time for receipt of
incoming digits, entered in response to the announcement played by atomic function
af212 (714). As shown, the first argument indicates that the multi-purpose timer to be
used for performing this function is timerl. The second argument indicates the
number of 1000 ms units the timer is to count. Here, the second argument is 10,
indicating that timerl will count for 10 seconds. Thus, atomic function af50 (716)
enables timer] to expire in 10 seconds, during which time the Layer 4 PPL component
enters normal state S2, which is WAIT state 718, wherein the PPL state machine waits
for a digit to be detected on channel 1.

If the next PPL event is the expiration of timerl ((191) PPLevTIMERI1)
indicating that no digits were received with the 10 second period, atomic function af35

(720) is performed to inform the host that no digits were received. The receipt of a

WO 97/20439 - PCT/US96/18959

10

15

20

25

30

22

PPLevTIMERI message is assigned a PPL event ID of 191 by Layer 4 PPL
component. As noted, atomic function 35 generates the PPL Event Indication message
of the present invention. Here, however, a PPL Event ID of 4 is included in the PPL
Event Indication message, indicating that there has been a failure to detect digits on the

selected channel. The format of this PPL Event Indication message is, therefore:
PPL Event Ind (I4PPL, chl, 4)

indicating that no digits have been detected on the channel associated with the channel
1 instantiation of the Layer 4 PPL component while the Layer 4 PPL component was
in the wait state 718.

Since the interface diagram of Figure 7C illustrates the universal API protocol
associated with the successful receipt of digits and subsequent processing of the call
announcement, this message is not illustrated in Figure 7C. Processing then continues
with a series of atomic functions not shown where, under host application control
through the implementation of the universal API of the present invention, the
telecommunications switch performs various functions in response to the failure to
detect digits on channel 1.

If the next event to occur while the Layer 4 PPL component state machine is in
wait state 718 is the receipt of a message indicating that digits have been detected on
channel 1, ((66)L4PPLevDSP_RESULT_DIGITS), atomic function af47 (722) is
performed. The receipt of this message is assigned a unique_PPL_ Event ID of 66.
Thus, when Layer 4 is notified that digits have been received, the Layer 4 PPL
component state machine leaves wait state S2 (718) and performs atomic function af47
(722). Atomic function af47 disables the PPL multipurpose timer (timerl) selected by
atomic function af50 (716), as indicated in the argument to the atomic function.
Atomic function af53 (724) stores the received digits in a selected general purpose
register. Here, af53 (724) stores the received digit in general purpose register 1.

In accordance with the present invention, atomic function af36 (726) is an
atomic function configured to send a PPL Event Indication message with the contents

of a selected general purpose register (argument 2), with a PPL event ID (argument 1).

WO 97/20439 PCT/US96/18959

10

15

20

25

30

23

Here, atomic function af36 (726) sends the contents of the general purpose register 1
to the Layer 5 host application as a PPL Event Indication message 709 having an Event

ID of 2. PPL Event Indication message 709 has the format
PPL Event Ind (L4PPL, chl, 2, digit)

wherein L4PPL is the PPL component ID, chl is the address element, 2 is the PPL
event ID, and "digit" is the received digit. This PPL Event Indication message
exemplifies the capability of the universal API of the present invention to transfer data
as well as commands utilizing a single generic PPL Event Indication message format.
The host responds with a PPL Event Indication Acknowledgement message 711,
indicating that the PPL Event Indication message 709 was successfully received.
Atomic function af147 (728) is then performed to cancel digit reception by
disconnecting the DTMF receiver from channel 1. _

The Layer 4 PPL component state machine then enters state S4 which is a
WAIT state 730, wherein the Layer 4 PPL component state machine will wait
indefinitely for the host application Layer 5 to direct the Layer 4 PPL component state
machine how to respond to the digit that was received. As shown in Figure 7B, in the
exemplary embodiment, the host application may send the Layer 4 PPL component any
one of 3 different responses, having PPL Event ID 504, 505, and 506.

If a PPL Event Request message 713 having a PPL event ID of 4 is received by
the Layer 4 PPL component state machine, ((504)PPLevL5_EVENT_REQ_4) the
Layer 4 PPL component state machine assigns a Layer 4 unique PPL event ID 504 to
it, indicating that Layer 5 provided a PPL Event Request message having a PPL event
ID of 4. PPL Event Request message 711 directs the Layer 4 PPL component state
machine to play a specific outgoing announcement. The format of PPL Event Request

message 713 is:

PPL Event Req (L4APPL, chl , 4)

WO 97/20439 PCT/US96/18959

10

15

25

30

24

wherein the PPL component ID indicates that the message is directed towards the
Layer 4 PPL component (L4APPL), the address element indicates that channel 1 is the
channel by which the communication is occurring (chl), and the PPL event ID (4)
indicates that a specific additional outgoing announcement is to be played on the
identified channel.

In response to PPL event 504, Layer 4 performs 4 atomic functions: atomic
function af60 (732), atomic function af140 (734), atomic function af212 (736) and
atomic function af50 (738). Atomic function af60 (732) is an atomic function that
generates a generic PPL Event Request Acknowledge message in accordance with the
present invention. As noted, atomic function af60 is used whenever a PPL component

is to acknowledge the receipt of a PPL Event Request message. The argument
number 16 represents an acknowledgement status that the PPL Event Request message
was successfully received. This atomic function generates the PPL Event Request
Acknowledge message 764, having the general format described above.

Atomic function af140 (734) serves to allocate a DSP resource for interactive
digit string collection to channel 1. Atomic function af212 (736) plays an additional
outgoing announcement on channel 1. An announcement ID of 3 is indicated by the
first argument;‘no options were selected according to the second argument. Atomic
function af50 (738) is performed to set timerl to wait for a 10 seconds for receipt of
incoming digits. The PPL component enters state S5 (740) to wait for the incoming
digit for the selected period of time.

The performance of atomic function af212 (736) results in the playing of an
announcement to the caller. As shown, there are two arguments to af212: the
announcement ID and‘announcement control options. Atomic function af212 (736)
was selected to play an outgoing announcement.

Atomic function af50 (738) is performed to set a timer to wait for a selected
period of time for receipt of incoming digits, entered in response to the announcement
played by atomic function af212 (736). In accordance with the arguments, atomic
function af212 (736) sets timerl to expire in 10 seconds. During this period, the Layer
4 PPL component state machine enters state S5, which is a WAIT state 740 wherein

the state machine waits for digits to be received.

WO 97/20439 - PCT/US96/18959

10

15

20

25

30

25

In this exemplary embodiment, the host may have alternatively responded with
either a PPL Event Request having a PPL event ID of 5 or 6 indicating to the Layer 4
PPL Component to perform other functions not shown. In both cases, the PPL
component state machine performs atomic function af60 (731,733, respectively),
indicating that the respective PPL Event Request message was successfully received.

If the next event is the expiration of timer1((191) PPLevTIMER1), the protocol
again performs an atomic function af35. Atomic function af35 (742) is performed to
inform the host that no digits were received within the allotted time. As noted, atomic
functions af35 are configured to generate a PPL Event Indication message in
accordance with the present invention. Here, a PPL Event ID of 4 is included in the
PPL Event Indication message by atomic function af35 (742), indicating that there has
been a failure to detect digits on the selected channel. The format of this PPL Event

Indication message is:

PPL Event Ind (LAPPL, chl, 4)

indicating that for the channel 1 instantiation of the Layer 4 PPL Component, no digits
were detected within the allotted time. Since the interface diagram of Figure 7C
illustrates the API protocol associated with the successful processing of the call
announcement sequence, this message is not illustrated in that Figure.

If the next PPL event is the expiration of timerl ((191) PPLevTIMERI)
indicating that no digits were received within the 10 second period, atomic function
af35 (742) is performed to inform the host that no digits were received by generating
the PPL Event Indication message of the present invention with a PPL Event ID of 4,

the format of which is:

PPL Event Ind (L4APPL, chl, 4)

For reasons given above, this is not shown in Figure 7C. Processing then continues
with a series of atomic functions not shown where, under host ampliation control

through the implementation of the universal API of the present invention, the

WO 97/20439 PCT/US96/18959

10

15

20

25

30

26

telecommunications switch performs various functions in response to the failure to
detect digits on channel 1.

If the next event to occur while the Layer 4 PPL component state machine is in
wait for digit state 740, is the receipt of a message indicating that digits have been
detected on channel 1, ((66)LAPPLevDSP_RESULT_DIGITS), atomic functions af47
(744), af53 (746) and af36(748) are performed to disable the PPL multipurpose timer
(timerl) previously selected, storing the received digits in a selected general purpose
register, and sending a PPL Event Indication Message 717, respectively.

In accordance with the present invention atomic function af36 (748) is an
atomic function configured to send a PPL Event Indication message with the contents
of general purpose register 1 with a PPL event ID of 3. Here, atomic function af36
(748) sends the contents of the general purpose register 1 to the Layer 5 host
application as a PPL Event Indication message 717 having an Event ID of 3. PPL

Event Indication message 717 has the format:
PPL Event Ind (L4PPL, chl, 3, digit)

wherein L4PPL is the PPL component ID, chl is the address element, 3 is the PPL
event ID, and "digit" is the received digit. This event ID indicates that the returned
digit is in response to an af212 atomic function playing an outgoing announcement
having at announcement ID of 3. The host responds with a PPL Event Indication
Acknowledgement message 719, indicating that the PPL Event Indication message 711
was successfully received.

Referring now to Figure 7D, it may be seen that the each sequence of atomic
functions shown in Figures 7A-7B has been defined as a primitive. In effect, each
primitive provides a shorthand way to identify a desired sequence of atomic functions
to invoke. The table of Figure 7D lists in tabular format the sequence of atomic
functions for each primitive.

Figure 7E is a state/event table that defines the relationships between the states,
events and primitives of Figure 7D. In accordance with a preferred embodiment of the

present invention, a customer wishing to create the protocol depicted in Figures 7A-

10

15

20

25

30

WO 97/20439 PCT/US96/18959

27

7B, would need only define the tables shown in Figure 76D and 7E. Those tables
would then be downloaded to the switch 102 (Figure 1) through a series of messages
from the host device.

Referring to Figures 8 A-8G, a second example of the universal API of the
present invention configured to manage host-to-switch communications is illustrated.
IN this example, the host application Layer 5 has limited interaction with the -
telecommunications switch while performing these functions. Specifically, the
telecommunications switch is configured to automatically respond to the digits that are
entered. In contrast to the previous example, the Layer 4 PPL state machine includes
internal states responsive to prompts internally generated during digit collection.

These aspects of the switch replace the atomic functions generating PPL Event
Indication messages to the host providing the received digit, and the subsequent wait
states wherein the switch waits for the host to supply it with'a PL Event Request
message.

Figures 8A-8B illustrate an example of an application of the present invention
in Call Processing Layer 4 with a limited level of interaction required by the host
application Layer 5 to implement a protocol for providing limited host application
decisionmaking in the performance of an interactive voice response to an incoming
call.

The protocol begins with the associated channel (channel 1) in normal state SO,
which is the IDLE state 702. Upon the occurrence of the event of layer 3 transmitting
to layer 4 a setup message ((SO)L4PPLevL3_SETUP_INDICATION)), the PPL
component state machine in Figure 8A leaves idle state 802 and performs atomic
function af35 (804).

Atomic function af35 (804) operates to notify the host application (Layer 5) of
the event, assigning to the event a PPL event ID of 1. The host épplication interprets
this PPL event ID value of 1 as a notification of an incoming call. Referring to Figure
8C, atomic function 35 (804) generates a PPL Event Indication message 801 to notify
the host of the incoming call. This PPL Event Indication message has the same format
as PPL Event Indication message 701, and indicates that the channel 1 instantiation of

the Laver 4 PPL component state machine addressed by this message received an

10

15

20

25

30

WO 97/20439 PCT/US96/18959

28

incoming message while the Layer 4 PPL component state machine was in the idle
state.

The host responds with a PPL Event Indication Acknowledge message 702
having the general format described above, indicating that the previous PL Event
Indication message was successfully received.

After the telecommunications switch provides the host with notification of an
incoming call utilizing the PPL Event Indication message of the present invention, the
Layer 4 PPL component state machine enters normal state S1, which is the WAIT state
706, during which the Layer 4 PPL component waits for the host application to
respond to the notification. The host sends a Layer 5 PPL Event Request message 705
with an event ID of 1, indicating that it is requesting that the switch proceed with the
call received on channel 1. This message has the format described above, indicating
that an incoming message has been received on channel 1 for that instantiation of the
Layer 4 PPL component while the Layer 4 PPL component state machine has been in
the idle state.

The receipt of this PPL Event Request message is identified by the Layer 4 PPL
component state machine as a PPL event and is assigned a Layer 4 unique PPL event
ID of 501, indicating that a Layer 5 PPL Event Request (1) has occurred.

In response to PPL event 501, the Layer 4 PPL component state machine
performs 5 atomic functions: atomic function af60 (808), atomic function af62 (810),
atomic function af140 (812), atomic function af212 (814) and atomic function af50
(816). As noted, atomic function af60 is used whenever a PPL component is to
acknowledge the receipt of a PPL Event Request message. The argument number 16
represents an acknowledgement status that the PPL Event Request message was
successfully received. This atomic function af60 (808) generates the PPL Event
Request Acknowledge message 807, having the same general format as the PPL Event
Indication Acknowledge message described above. The PPL Event Request
Acknowledge message 807 indicates that the above incoming message has been
successfully received.

Atomic functions af62 (810), af140 (812), af212 (814) and af50 (816) perform

the same function as the analogous atomic functions described above with reference to

10

15

20

25

30

WO 97/20439 PCT/US96/18959

29

Figure 7A. Atomic function af50 (816) enables timerl to expire during which time the
Layer 4 PPL component enters normal state S2, which is WAIT state 818, wherein the
PPL state machine waits for a digit to be detected on channel 1.

As in the above example, if the next PPL event is the expiration of timerl
((191) PPLevTIMERY1) indicating that no digits were received within the selected
waiting period, atomic function af35 (820) is performed.

If the next event to occur while the Layer 4 PPL component state machine is in
wait state 818 is the receipt of a message indicating that digits have been detected on
channel 1, ((66)L4PPLevDSP_RESULT DIGITS), atomic functions af47 (822), afS3
(824), and af47 (828) are performed. These atomic functions performs similar
functions to the analogous atomic functions described above with reference to Figures
7A and 7B. Note that an atomic function analogous to af36 (726) is nor invoked.
Thus, the received digit is not provided to the host application.

Atomic function af28 (829) is performed to test the value of the digit stored in
the general purpose register used in atomic function af63 (824) to store the received
digit. The Layer 4 PPL component state machine enters internal state 1S3 which is a
TEST state 830, wherein the Layer 4 PPL component state machine tests the value of
the digit that was received and stored in general purpose register 1. As shown in
Figure 7B, in the exemplary embodiment, the tested digit may have any one of 3
different values, each generating an internal event having PPL Event ID 200, 201, and
202.

If a PPL Internal Event message having a PPL event ID of 0
((200)PPLevINT_EVENT _0) is provided to the Layer 4 PPL component state
machine, the Layer 4 PPL component state machine assigns a Layer 4 unique PPL
event ID 200 to it to indicate that the internal event having a PPL event ID of 0 was
received.

In response to PPL event 200, the Layer 4 PPL component state machine
performs 3 atomic functions af140 (834), af212 (836) and atomic function af50 (838),
each of which perform functions similar to the analogous atomic functions described
above with reference to Figures 7A and 7B. Note that an atomic function analogous to

af60 (732) is not performed since the switch tests the incoming digit itself, and does

10

15

20

25

30

WO 97/20439 PCT/US96/18959

30

not wait for a host generated PPL Event Request message. Therefore, no
acknowledgement is required to be generated.

The Layer 4 PPL component state machine then enters normal state NS4, which
is a WAIT state 840 wherein the state machine again waits for digits to be received.

If no digits are received, the next event is the expiration of timer1((191)
PPLevTIMER1), the protocol performs an atomic function af35 (842) to inform the
host that no digits were received within the allotted time. Processing then continues
with a series of atomic functions not shown where, under host ampliation control
through the implementation of the universal API of the present invention, the
telecommunications switch performs various functions in response to the failure to
detect digits on channel 1.

If the next event to occur while the Layer 4 PPL component state machine is in
wait for digit state 840, is the receipt of a message indicating that digits have been
detected on channel 1, ((66)L4PPLevDSP_RESULT_DIGITS), atomic functions af147
(844), af53 (846) are performed. These atomic functions perform similar functions to
the analogous atomic functions described above with reference to Figures 7A and 7B.
Further, atomic function af28 (847) is performed to test the value of the now second
received digit stored in general purpose register 1. A function analogous to atomic
function af36 (748) is not performed, thereby not providing the host with a PPL Event
Indication message.

Referring now to Figure 8D-8E, it may be seen that the each sequence of
atomic functions shown in Figures 8 A-8B has been defined as a primitive. In effect,
each primitive provides a shorthand way to identify a desired sequence of atomic
functions to invoke. The table of Figure 8F lists in tabular format the sequence of
atomic functions for each primitive.

Figure 8F is a state/event table that defines the relationships between the states,
events and primitives of Figure 8D. In accordance with a preferred embodiment of the
present invention, a customer wishing to create the protocol depicted in Figures 8A-
8B, would need only define the tables shown in Figure 8D and 8E. Those tables
would then be downloaded to the switch 102 (Figure 1) through a series of messages

from the host device.

10

15

20

25

30

WO 97/20439 PCT/US96/18959

31

Referring to Figures 9-11, a Layer 4 PPL component 901 is executed as part of
a Layer 4 PPL processor 902. Aslnoted above, there may be multiple instantiations of
a PPL component operating simultaneously, each of which has an associated state
machine and tables. All instantiations of a the Layer 4 PPL component 901 are
executed on a PPL state machine engine 1104. Layer 4 PPL processor 902 also
includes a Layer 4 PPL message processor 1102 for receiving and processing internal
PPL Event Request messages 1106. Each PPL processor such as Layer 4 PPL
processor 902 may contain any number of PPL components. In the exemplary
embodiment shown in Figures 9 and 11, the Layer 4 PPL processor 902 contains a
single Layer 4 PPL component 901.

Figure 9 illustrates the process flow related to the invocation and execution of
an atomic function to create a PPL Event Indication message. For exemplary
purposes, Figure 9 illustrates the functions preformed in relation to the processing of
atomic function af35 (704) of primitive #1 (750) to create PPL Event Indication
message 701. Atomic function af35 (704) is part of the Layer 4 PPL component 901.

Layer 4 PPL processor 902 resides on CPU/matrix card 112 in the illustrative
embodiment discussed above, and invokes atomic functions in accordance with the
state/event and primitive tables to perform various functions, including the functions
discussed above with reference to the Call Management Layer 4 in Figure 2. As
noted, Call Management Layer 4 is responsible for performing centralized call
processing functions and providing a common interface to Application Layer 5.

In the preferred embodiment of the present invention, the functions performed
by the Layer 4 PPL processor 902 are implemented in a publicly available, proprietary
operating system referred to as PSOS, available from Integrated Systems, Inc., Santa
Clara, California, USA. However, as will become apparent to one skilled in the
relevant art, the present invention may be implemented in any commonly kﬁown
software program and in any software language now or later developed.

Generally, the Layer 4 PPL processor 902 invokes atomic functions that
generate internal representations of the PPL Event Indication message. The internal

message is passed to a communications processor 906, also residing on the CPU/matrix

10

15

20

25

30

WO 97/20439 PCT/US96/18959

32

card 112, for trahslaﬁon into a PPL Event Indication message of the universal API of
the present invention. |

When Layer 4 PPL processor 902 executes a primitive of a PPL component
state machine, it invokes each of the atomic functions associated with that primitive, as
indicated by the primitive table 780 discussed above. In the example discussed above
with reference to Figures 7A and 7B, atomic function af35 (704) is the only atomic
function included in primitive #1 (750). As noted, atomic function 35 is a PPL Send
Event Indication atomic function used whenever a PPL Event Indication is to be sent to
the host, each occurrence of the atomic function having a different PPL event ID to
indicate the occurrence of a different event.

A number of functions, each of which is described below, are performed by the
Layer 4 PPL atomic function af35 (704) to create the PPL Event Indication message
701 for transmission to a Layer 5 host application. Referring to Figure 10, layer 4
PPL processor 902 allocates a message buffer 1050 to "attach" to the internal
repfesentation of the PPL Event Indication message 904 generated by the atomic
function af35 (704). The message buffer is used by the PSOS operating system to
store the necessary information for creation of the PPL Event Indication message 701.

A pointer to that message buffer is obtained through the PSOS operating system when
the buffer is allocated.

Once the message buffer is allocated, destination and source ID fields 1052,
1054 are loaded. The contents of these two fields is determined by the relative
location of the transmitting and receiving elements. In addition to enabling a PPL
component to communicate with Layer 5 applications residing on the host, the
universal API of the present invention may be imblemented to manage communications
between any two instantiations of any PPL components residing in the same or
different PPL processors.

When the universal API is utilized to achieve communications between PPL
components that are located in, or "owned", by the same PPL processor, then the
source and destination ID fields are loaded with the PPL component ID. Otherwise,
the source and destination ID fields are loaded with the processor virtual ID, and the

message type field 1058 is used by the destination PPL component or application to

10

15

20

25

30

WO 97/20439 PCT/US96/18959

33

direct the message to the appropriate instantiation of the desired PPL component
residing in the destination PPL processor. The message type field 1058 contains a
unique message type identifier that is associated with a specific PPL component.

The Layer 4 PPL processor 902 also loads a PPL event ID into the associated
field 1056 of the message buffer, the event ID identified in the PPL primitive table 780
provided to atomic function af35 (704). In the example illustrated in Figure 7,
atomic function af35 (704) indicates the detection of an incoming call during idle state
S0, and is assigned a PPL event ID of 1.

An ICB count field 1062 is loaded with the number of trailing ICB data fields
1064, if any.

The Layer 4 PPL processor 902 transfers the data buffer 1050 to the PPL Event
Indication meSsage 904. This is accomplished by invoking a function that attaches the
allocated buffer 1050 to the PPL Event Indication message 904 by providing the
communications processor 906 with a pointer to the data buffer 1050. The
communications processor 906 reformats the API messages of the present invention
from the internal representation usable by thevPPL processor 902 to the format shown
in Figure 5 for transmission to the host application. Communications processor 906
performs well known translating operations typical of message handling
communications processors, and is considered to be well known in the art.
Communications processor 906 then transmits the PPL Event Indication message 701
to an applications program located in host computer 130 via the API interface 908.

The scheme discussed above with respect to the Layer 4 PPL processor 902 is
shown below by the following pseudo-code. It is envisioned that this pseudo-code can
be used to generate source code for the present invention in any suitable language, such
as C, C++ or PASCAL:
allocate psos msg data buffer (ppl_data_buff);
psos_msg.ppl_component=14PPL;
psos_msg.event_id=event_id;
psos_msg.destination = HOST;
psos_msg.source = LAPPL;
psos_msg.timeslot_addr = CHANNEL 1;

N e

WO 97/20439 PCT/US96/18959

10

15

20

25

30

34

7. l4ppl_send_msg (psos_msg, comm queue),

Figure 11 illustrates the process flow related to the receipt and processing of a
PPL Event Request message. For exemplary purposes, Figure 11 illustrates the
functions related to the processing of PPL Event Request message 705 received at wait
state S1 (706), invoking primitive 2 atomic functions as shown in primitive table 780.

The communications processor 1006 performs the inverse operation of that
performed above with respect to the PPL Event Indication message. That is, the
communications processor 1006 receives the API version of the PPL Event Request
message 705 over API 1008 and translates it into an internal PSOS PPL Event Request
message 1106. Communications processor 1006 transmits the PPL Event Request
message 1106 to the Layer 4 PPL processor 1002. A Layer 4 PPL message processor
1102 receives and processes the internal PPL Event Request message 1106 and
generates a distinct Layer 4 PPL event for the Layer 4 PPL state machine engine 1104.

The Layer 4 PPL message processor 1102 converts the PPL event ID 522 of
message 705 into a Layer 4 unique PPL event ID for the Layer 4 PPL state machine
1104 by adding a layer 5 event request base value of 500 to the PPL event ID. Thus,
in the exemplary embodiment, the Layer 4 PPL message processor 1102 adds a base
value of 500 to the PPL Event Request message PPL event ID of 1 to result in a Layer
4 unique PPL event ID of 501.

Once the PPL Event Request message is mapped to a Layer 4 unique PPL event
ID, a pointer is derived to the selected channel's PPL data based upon the address
element value in the message that contained a logical span and channel ID. In other
words, the Layer 4 PPL message processor 1102 converts the logical address into a
physical address, i.e.., a physical time slot in switch 102. Then the PPL state machine
engine is invoked, typically as a function call, with the channel pointer for the PPL
component instantiation data block and a pointer to the data block associated with the
PPL Event Request message 1106 that was received from the communications
processor 1006.

The Layer 4 PPL component state machine engine 1104 processes the Layer 4
unique PPL event ID, searching the state/event table 790 for that PPL Event ID for the

present state. If a matching event is found, the state machine engine 1104 invokes the

10

15

20

25

30

WO 97/20439 PCT/US96/18959

35

identified primitive in the state/event table, retrieving from primitive table 780 the
atomic functions associated with the primitive ID.
~ Thus, in the illustrative embodiment, the Layer 4 PPL component state machine

engine 1104 processes PPL event 501, locating the PPL Event ID of 501 for the
present state S1 (706) in the state/event table 790 and invoking the atomic functions
associated with primitive #2. The PPL state machine engine 1104 enters the state
indicated in the Layer 4 PPL state/event table 790 after processing all the atomic
functions associated with primitive 2.

Pseudo-code for Layer 4 PPL message processor 1102 as contemplated by

embodiments of the present invention is disclosed below:

L. ppl_event=psos_msg.ppl_data_buff®ppl_event + ppl_LS_event_req_base
2. ppl_chan_ptr = ppl_data [psos_msg.hdr.timeslot_addr]
3. ppl_stmch(ppl_chan_ptr, ppl_event, psos.msg)

It should be understood that embodiments of the present invention can be
implemented in hardware, software or a combination thereof. In such embodiments,
the various components and steps would be implemented in hardware and/or software
to perform the functions of the present invention. Any presently available or future
developed computer software language and/or hardware components can be employed
in such embodiments of the present invention. In particular, the pseudo-code discussed
above can be especially useful for creating the software embodiments.

While the invention has been particularly shown and described with reference to
preferred embodiments thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein without departing from the
spirit and scope of the invention. Furthermore, the terms and expressions which have
been employed are used as terms of description and not of limitation, and there is no
intention, in the use of such terms and expressions, of excluding any equivalents of the
features shown and described or portions thereof, but it is recognized that various

modifications are possible within the scope of the invention claimed.

00 J O W A W N

O 00 N O v & W N — N 0y A LN

—
o

36

CLAIMS

1. A telecommmications system, including:

a host device;

a programmable telecommunication switch, connected in communicating
relationship with and responsive to said host device, for performing call processing
functons related to communication paths established between various ones of a
plurality of channels; and

a universal applications program interface (API) having standardized messages

for communication between said telecommunications switch and said host device.

2. The system of claim 1, wherein said universal API comprises:

a single message type, referred to as a programmable protocol language (PPL)
event request message, for transferring all call control processing commands and data
from said host device to said telecommunications switch; and

a single message type, referred to as the PPL event indication message, for
transferring all call control processing status and data from said telecommunications

switch to said host device.

3. The system as in claim 2, wherein said telecommunications switch further
comprises one or more instantiations of one or more finite state machines, each of said
one or more finite state machines representing one of said one or more protocols and
comprising,
one or more libraries each containing one or more predetermined functions;
one or more predetermined logical states;

‘at least one predetermined event associated with each said one or more
predetermined logical states, each said at least one predetermined event uniquely
identified relative to each said one or more PPL component state machines; and

-wherein upon an occurrence of one of said one or more predetermined events, a

predetermined primitive associated with the occurring event is invoked, said

12
13

HOWOND =

— 00 9 ON W &~ W N

N O AW N

wn A W BN -

WO 97/20439 : PCT/US96/18959

37

predetermined primitive comprising a predetermined series of one or more said

predetermined functions.

4. The system as in claim 3, wherein
said switch further comprises one or more state machine engines,
wherein each of said one or more state machines is configured to be interpreted

by one or more state machine engines.

5. The system of claim 3, wherein said PPL event request message comprises:

a PPL component ID for identifying which of said one or more state machines
is referenced by a particular PPL event request message;

one or more address elements, each identifying one of said one or more
instantiations of said state machine identified in said PPL component ID field; and

a user-defined PPL event ID representing an associated one of said at least one
predetermined events associated with the particular state machine identified in said PPL

component ID field.

6. The system of claim 5, wherein said PPL event request message further
comprises:;

an address element type associated with said address element, for referencing
components of said telecommunications switch associated with said state machine
instantiation identified by said associated address element; and

a component address of each of said telecommunications switch components

identified by said address element type.

7. The system of claim 5, wherein said PPL event request message further
comprises:

one or more data fields associated with each of said one or more state
machines, for transferring call control processing information from said host device to

said telecommunications switch.

O 00 3 O L & W N —

O 00 9 O L & W N -

wm A W N -

HOW N -

38

8. The system of claim 3, wherein said PPL e. ent indication message comprises:

a PPL component ID for identifying which of said one or more state machines
is referenced by a particular PPL event indication message;

one or more address elements, each identifying one of said one or more
instantiations of said state machine has invoked the function that generates said PPL
event indication message; and

a user-defined PPL event ID representing an occurrence of a specific one of
said at least one event in said telecommunications switch that results in a particular

PPL event indication message being generated by said state machine.

0. The system of claim 8, wherein each said PPL event indication message is
generated by one of said one or more functions configured to send a PPL event
indication message in response to the occurrence of a particular event, and wherein
each said one or more address element fields comprises:

an address element type referencing PPL components of said
telecommunications switch associated with said state machine instantiation identified by
said one or more address elements; and

a PPL component address of each of said PPL components identified by said

address element type.

10. The system of claim 8, wherein said PPL event indication message further
comprises:

one or more data fields associated with each of said one or more state
machines, for q'ansfcm'ng call control processing information from said host device to

said telecommunications switch.

11. A telecommunications system, including:

a host device;
a programmable telecommunication switch, connected in communicating

relationship with and responsive to said host device, for performing call processing

WO 97/20439 PCT/US96/18959

O 00 3 O W

N L A W DD - N O v AW

A W AW N e

39

functions related to communication paths established between various ones of a
plurality of channels; and

means for effecting communications between said switch and said host using a
programmable universal applications prograin interface (API) including standardized

messages for transmitting information between said host and said switch.

12. The system of claim 11, wherein said API is configured to be customized to

meet telecommunications application and network signaling protocol requirements.

13. The system of claim 11, wherein said API comprises:
a first predetermined message format for all messages transferring call control

processing information from said host device to said telecommunications switch; and

a second predetermined message format for all messages transferring call
control processing information from said telecommunications switch to said host

device.

14. The system as in claim 13, wherein said telecommunications switch further
comprises:

one or more programmable protocol language (PPL) component state machines,
each of which represents one of said one or more protocols for performing said call
processing functions, said one or more state machines responsive to one or more

predetermined events associated with said state machine.

15. The system as in claim 14, wherein
said switch further comprises one or more state machine engines, and wherein
each said one or more finite state machines comprises one or more libraries of
predetermined functions,
wherein each of said one or more finite state machines is configured to be

interpreted by one of said one or more state machine engines.

Pk
— AW - S~ LN O O 00 N O W A W N —

N N AW

WO 97/20439 PCT/US96/18959

40

16. The system as in claim 15, wherein each of said one or more state machines is
defined by a functional combination of a state/event table and a primitive table,
wherein

said state/event table defines one or more predetermined logical states and at
least one of said one or more predetermined events associated with each said one or
more predetermined logical states, and wherein

said primitive table defines one or more primitives each of which comprises a
predetermined series of one or more said predetermined functions, whereby upon an
occurrence of one of said one or more predetermined events, a predetermined primitive

associated with the occurring event is invoked.

17. The system of claim 14, wherein said first predetermined message format is a
variable length PPL event request message comprising:
a PPL component ID for identifying which of said one or more PPL component

state machines is referenced by a particular PPL event request message.

18. The system of claim 14, wherein said telecommunications switch further
comprises:
one or more instantiations of each of said one or more PPL component state

machines.

19. The system of claim 18, wherein said first message format is a variable length
PPL event request message comprises:

a PPL component ID identifying which of said one or more PPL component
state machines is referenced by a particular PPL event request message; and

one or more address elements, each identifying one of said one or more
instantiations of said PPL component state machine identified by said PPL component

ID.

20. The system of claim 19, wherein each said one or more address elements

comprises:

a1

an address element type for referencing components of said telecommunications
switch associated with said state machine instantiation identified by said one or more
address elements; and

PPL component address information providing specific addresses for each of

said PPL components identified by said one or more address elements.

N O e W

I 21, The System as in claim 18, wherein said PPL event request message comprises a
2 programmable variable addressing scheme to address a desired one or more of said at

3 least one'instantia;ion of each of said plurality of PPL component state machines.

1 22. The system of claim 19, wherein,

each said one or more events is uniquely identified relative to each said one or
more PPL component state machines, and further wherein,

said PPL event request message further comprises a PPL event ID field
containing a user-defined event ID representing an associated event unique to a

particular PPL component state machine identified in said PPL component ID field.

A W A W N

1 23. The system of.claim 22, wherein said PPL event request message further

eeel 2 comprises: '
,,:,5" 3 one or more data fields associated with each of said one or more PPL

. :: ::: 4 component state machines, for transferring call control processing information from

5 said host to said switch. ‘

1 24, The system of claim 14, wherein said second predetermined message format is

:::" 2 avarable length PPL event indication message comprises:

"::'; 3 a PPL component ID for identifying which of said one or more PPL component
f":: 4 state machines is referenced by a particular PPL event indication message.

1 25. The system as in claim 18, wherein said PPL event indication message

2 comprises a programmable variable addressing scheme to address a desired one or

b— O 00 J O W & W N — DS I N ¥ TR “SRE 'S B NS S

N o AW

WO 97/20439 PCT/US96/18959

42

more of said at least one instantiation of each of said plurality of PPL component state

machines.

26. The system of claim 18, wherein said first message format is a variable length
PPL event indication message comprises:

a PPL component ID identifying which of said one or more PPL component
state machines is referenced by a particular PPL event indication message; and

one or more address elements, each identifying one of said one or more
instantiations of said PPL component state machine has invoking the function that

generates said PPL event indication message.

27. The system of claim 26, wherein said PPL event indication message is
generated by one of said one or more functions configured to send the particular PPL
event indication message in response to the occurrence of a particular event, and
wherein each said one or more address element fields comprises:

an address element type subfield for referencing components of said switch
associated with said state machine instantiation identified in said one or more address
element fields; and

an address information subfield provides specific addresses for each of the

hierarchical components indicated in said address element type field.

28. The system of claim 26, wherein,

each said one or more events is uniquely identified relative to each said one or
more PPL component state machines, and further wherein,

said PPL event indication message further comprises a PPL event ID field
containing a user-defined event ID representing the occurrence of a specific event in
said switch that results in a particular PPL event indication message being generated by

said PPL component state machine.

29. The system of claim 23, wherein said PPL event indication message further

comprises:

O 00 3 O v b W N -

b e et e e
S LW NV — O

(U T O S I S

—

43

one or more data fields associated with each of said one or more PPL
component state machines, for transferring call control processing information from

said host to said switch.

30. The system of claim 11, wherein said call processing functions include

dynamically connecting or disconnecting communication paths between various ones of

a plurality of channels.

31. A functionally-layered programmble telecommmication switch including:

controllable-switching means for dynamically connecting or disconnecting
communication paths between various ones of a plurality of channels in response to
messages generated by a telecommunications services application;

one or more instantiations of a plurality of programmable protocol language
(PPL) component state machines, each of which is associated with a PPL component
of said telecommunications switch and each of which represents one of a plurality of
protocols configured to perform call processing functions with respect said plurality of
channels, wherein said plurality of PPL component state machines are functionally
associated with the functional layers of the telecommunications switch including said
PPL components;' and

a programmable universal applications program interface (API) for transferring
standardized messages between said functional layers and between said functional

layers and said telecommunications services application.

32. The telecommunications switch of claim 31, wherein said functional layers of
said telecommunication switch comprise:

an application layer comprising said telecommunications service applications
configured to operate in conjunction with one or more of said functional layers to

perform telecommunications service functions.

33. The telecommunications switch of claim 32, wherein said application layer

resides in said telecommunications switch and further wherein said universal API

W S W N -

(38

WO 97/20439 PCT/US96/18959

44

defines communications that occur over a bus internal to said telecommunications

switch.

34. The telecommunications switch of claim 32, wherein said functional layers
further include an application layer residing in a host computer system coupled to said
telecommunications switch, and wherein said API defines communications that occur
over a communication channel coupling said telecommunications switch and said host

device.

35. The telecommunications switch of claim 32, wherein said telecommunications
services provided by said telecommunication service application includes toll-free

service functions.

36. The telecommunications switch of claim 32, wherein said telecommunications
service provided by said telecommunication service application includes voice mail

service functions.

37. The telecommunications switch of claim 32, wherein said telecommunications
service provided by said telecommunication service application includes automatic call

distribution service functions.

38. The telecommunications switch of claim 32, wherein said call processing
function performed by said telecommunication service application includes interactive

voice-response functions.

39. The telecommunications switch of claim 32, wherein said call processing
function performed by said telecommunication service application includes personal

communications services functions.

WO 97/20439 PCT/US96/18959

45

40. The telecommunications switch of claim 32, wherein said call processing
function perfbrmed by said telecommunication service application includes tone

generation functions.

41. The telecommunications switch of claim 32, wherein said call processing
function performed by said telecommunication service application includes call

conferencing functions.

42. The telecommunications switch of claim 32, wherein said call processing
function performed by said telecommunication service application includes call

management functions.

43. The telecommunications switch of claim 32, wherein said call processing
function performed by said telecommunication service application includes call

progress tone control functions.

44. The telecommunications switch of claim 32, wherein said call processing
function performed by said telecommunication service application includes inbound

call routing and queuing functions.

45. The telecommunications switch of claim 31, wherein said functional layers
comprise:

a call management layer for performing centralized call processing functions.

46. The telecommunications switch of claim 45, wherein said centralized call
processing functions performed by said call management layer includes recorded

announcement control functions for interactive voice response application support.

47. The telecommunications switch of claim 45, wherein said centralized call
processing functions performed by said call management layer includes reconnection

and transfer functions.

HOWND -

WO 97/20439 PCT/US96/18959

46

48. The telecommunications switch of claim 45, wherein said centralized call
processing functions performed by said call management layer includes the provision

of multiple call management features.

49. The telecommunications switch of claim 45, wherein said centralized call
processing functions performed by said call management layer includes conferencing

connection management functions.

50. The telecommunications switch of claim 31, wherein said functional layers
comprise:

a network signaling protocol layer for performing network signaling functions.

51. The telecommunications switch of claim 50, wherein said network signally
functions performed by said network signalling protocol layer includes in- and out-of-

band network signalling supervision.

52. The telecommunications switch of claim 50, wherein said network signalling
functions performed by said network signalling protocol layer includes network

protocol level control of incoming and outgoing calls.

53. The telecommunications switch of claim 31, wherein said functional layers
comprise:
a link layer for detecting and transferring network signaling information across

a network or line interface.

54. The telecommunications switch of claim 53, wherein said link layer runs on a

CPU/matrix card.

55. The telecommunications switch of claim 53, wherein said link layer runs on

line cards.

N O v AW

WO 97/20439 PCT/US96/18959

47

56. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include T1 robbed bit signal scanning.

57. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include E1 channel associated signaling scanning.

58. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include T1/El line interface frame alarm control.

59. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include DSP tone generation control.

60. The telecommunications switch of claim 53, wherein said functions performed

by said link layer include DSP recorded voice announcement control.

61. The telecommunications switch of claim 31, said functional layers comprise:
a physical layer implemented in line cards providing physical and electrical

network and line interfaces to the switch.

62. The system of claim 31, wherein said API compn'seS:
predetermined message formats for all messages transferring call control

processing commands, status and data between said functional layers.

63. The switch as in claim 31, wherein each said one or more PPL component state
machines comprises,

one or more libraries each containing one or more predetermined functions;

one or more predetermined logical states;

at least one predetermined event associated with each said one or more
predetermined logical states, each said at least one predetermined event uniquely

identified relative to each said one or more PPL component state machines; and

10

N W A W -

—

—
o

00 3 O WU A W N

O 00 9 O W & W N

WO 97/20439 PCT/US96/18959

48

wherein upon an occurrence of one of said one or more predetermined events, a
predetermined primitive associated with the occurring event is invoked, said primitive

comprising a predetermined series of one or more said predetermined functions.

64. The switch as in claim 63, wherein
said switch further comprises one or more state machine engines, and wherein
each said one or more component state machines comprises one or more
libraries of predetermined functions,
wherein said each said one or more component state machines is configured to

be interpreted by one or more state machine engines.

65. The switch as in claim 63, each said one or more finite state machines
comprising,

one or more libraries each containing one or more predetermined functions;

one or more predetermined logical states;

at least one predetermined event associated with each said one or more
predetermined logical states, each said at least one predetermined event uniquely
identified relative to each said one or more PPL component state machines; and

a predetermined series of one or more said predetermined functions,

wherein upon an occurrence of one of said one or more predetermined events, a

predetermined primitive associated with the occurring event is invoked.

66. The switch as in claim 65, wherein each of said one or more state machines is
defined by a functional combination of a state/event table and a primitive table,
wherein

said state/event table defines one or more predetermined logical states and at
least one of said one or more predetermined events associated with each said one or
more predetermined logical states, and wherein

said primitive table defines one or more primitives each of which comprises a

predetermined series of one or more said predetermined functions.

— O 00 4 O W & W DD - s W N -

N O v A WwN

—

(V. P R S S

49

67. The switch as in claim 65, wherein
said switch further comprises one or more state machine engines, and wherein

wherein said each said one or more finite state machines is configured to be

interpreted by one or more state machine engines.

68. The switch of claim 65, wherein said PPL event request message comprises:
a PPL component ID for identifying which of said one or more PPL component

state machines is referenced by a particular PPL event request message;

one or more address element fields, each identifying one of said one or more
instantiations of said PPL component state machine identified in said PPL component
ID field; and

a PPL event ID field containing a user-defined event ID representing an
associated event unic'lue to a particular PPL component state machine identified in said

PPL component ID field.

69. The switch of claim 68, wherein each said one or more address element fields

‘comprises:

an address element type subfield for referencing components of said switch
associated with said state machine instantiation identified in said one or more address
element fields; and

an address information subfield provides specific addresses for each of the

hierarchical components indicated in said address element type field.

70. The switch of claim 68, wherein said PPL event request message further
comprises:

one or more data fields associated with each of said one or more PPL

component state machines, for transferring call control processing information from

said host to said switch.

71. The switch of claim 65, wherein said PPL event indication message camprises:

50

a PPL component ID for identifying which of said one or more PPL component
state machines is referenced by a particular PPL event indication message;

a PPL component ID field for identifying which of said one or more PPL
component state machines is referenced by a particular PPL event indication message;

one or more address element fields, each identifying one of said one or more
instantiations of said PPL component state machine has invoking the function that
generates said PPL event indication message; and

a PPL event ID field containing a user-defined event ID representing the

O 00 9 O W\ A W N

occurrence of a specific event in said switch that results in a particular PPL event

—
o

indication message being generated by said PPL component state machine.

—
—

72. The switchof claim 71, wherein said PPL event indication message is
generated by one of said one or more functions configured to send the particular PPL
event indication message in response to the occurrence of a particular event, and
wherein each said one or more address element fields comprises:

an address element type subfield for referencing components of said switch
associated with said state machine instantiation identified in said one or more address
element fields; and

an address information subfield provides specific addresses for each of the

O 00 3 O N & W N —

hierarchical components indicated in said address element type field.

73. The switch of claim 71, wherein said PPL event indication message further
comprises:

one or more data fields associated with each of said plurality PPL component
state machines, for transferring call control processing information between said
functional layers, said data blocks defined for each said plurality of PPL components
based upon which of said functional layers said PPL component state machine is
associated with and the communications protocol supported by that PPL component

.
00 N O UL A W N -

state machine.

51

74. A universal applications program interface (API) for standardized interactive
call processing communications between functional Jayers of a telecommunications
system including a telecommunications switch and a host device coupled to the switch,
including:

a first programmable message for transferring all call control processing
commands and data from said host to said functional layers of said telecommunications
switch; and

a second programmable message for transferring all call control processing

O 00 N O v A W N »-

status and data from said functional layers of said telecommunications switch to said

—
(@]

host.

75. The API of claim 74, wherein the telecommunications switch comprises:

b

one or more instantiations of one or more PPL component state machines each
of which represents a call processing protoéol, each said one or more finite state
machines comprising,
one or more libraries each containing one or more predetermined functions;
one or more predetermined logical states;
at least one predetermined event associated with each said one or more

predetermined logical states, each said at least one predetermined event uniquely

O 00 N O v & WL N

identified relative to each said one or more PPL component state machines; and

wherein upon an occurrence of one of said one or more predetermined events, a

.
.
.

o

predetermined primitive associated with the occurring event is invoked, said primitive

L]
°
L d
L)

LA X] (X}
—
—

—
N

comprising a predetermined series of one or more said predetermined functions,

wherein said one or more predetermined events includes receipt of said first

—
w

programmable message and wherein at least one of said one or more predetermined

.
.
L]
L]
L]

LX)

— e

wm

functions generates said second programmable message.

1 76. The API as in claim 75, wherein
2 said telecommunications switch further comprises one or more state machine

3 engines, and wherein

N O o oA

O 00 2 O Wi & W N — 00 N O W A LN

P e T e
A W A W N — O

52

each said one or more PPL component state machines comprises one or more
libraries of said one or more predetermined functions, and wherein
each said one or more PPL component state machines is configured to be

interpreted by said one or more state machine engines.

77. The switch as in claim 75, wherein said API further comprises:

an acknowledge message including a status field providing the recipient with
message-specific status information,

wherein said host device transmits said acknowledge message to said
telecommunications switch upon receipt of said first programmable messagé and
wherein at one of said one or more predetermined functions is configured to transmit
said acknowledge message to said host device upon receipt of said second

programmable message.

78. A method for developing call-associated protocols for performing call
‘processing functions related to communication paths established between various ones
of a plurality of channels in a programmable telecommunications switch, said call
processing function associated with the functions performed by a particular functional
layer of said switch, the method including the steps of:

(a) creating one or more state/event tables each of which defines,

a plurality of predetermined logical states,

one or more predetermined events associated with each of said plurality of

. predetermined logical states, said one or more predetermined events including receipt

of one or more application program interface (API) messages generated at the same or
different functional layer as said created call-associated protocol, and

a primitive associated with each said one or more predetermined events,
wherein said primitive is invoked upon an occurrence of said one or more associated
events; ,

(b) creating one or more primitive tables each of which defines a

bredctcrmined series of predetermined layer-dependent functions for each said

17
18
19
20
21

s N - wm A W N -

O 00 J O W1 A W N —

S
w N - O

53

primitive, one or more of said predetermined functions generating an API message to
said functional layer; and

©) creating one or more protocols each of which is represented by a
predetermined association of one or more of said state/event tables and one or more of

said one or more primitive tables.

79. The method of claim 78, further comprising the steps of:
(d) storing said one or more call-associated protocols stored within said
programmable telecommunications switch; and

(e) executing said one or more call-associated protocols within said

telecommunications switch.

80. The method as in claim 78, wherein each of said one or more protocols is
represented by a finite state machine having access to a comprising a library containing
definitions of said predetermined functions, and configured to be interpreted by a state

machine engine, said state machine engine operating in respdnse to said pointers.

81. - A functionally-layered programmable telecommunication switch including:

a layer-specific processor having a state machine engine configured to execute
an instantiation of a PPL component state machine representing a call processing
protocol associated with a communications channel in the switch, said state machine
invoking one or more predetermined functions in accordance with a current state and
the occurrence of a predetermined event,

wherein said one or more predetermined functions includes generating a first
application program interface (API) message having a first predetermined message
format for all messages transferring call control processing information from said state
machine; and

wherein said pre;ietcmﬁned event is one of a plurality of events including the
receipt of a second API message having a second predetermined message format for all

messages transferring call control processing to said state machine.

N O v AW

N O B AW

WO 97/20439 PCT/US96/18959

54

82. The switch of claim 81, wherein said layer-specific processor is configured to
process said first and second API messages in an internally-represented form, and
wherein said switch further comprises:

a communications processor, coupled to said layer-specific processor,
configured to convert between internally-represented API message form and said
universal standardized API message form, and further configured to transmit said first

universal API message.

83. The switch of claim 82, wherein said system includes a host configured to
support applications residing in an application layer and further wherein said API

messages are transmitted from the switch to the host and vice versa.

84. The switch of claim 81, wherein said processor comprises:

an atomic function message buffer including a destination identification field
and a source identification field containing respective addresses of a source and
receiving PPL component instantiation residing in the same or different PPL
processors; and

means for attaching said message buffer to said internal representation of said

PPL event indication message generated by said atomic function.

85. The switch of claim 84, wherein said message buffer further comprises:
a PPL event identification field identifying the event that generated said atomic

function.

86. The switch of claim 84, wherein said message buffer further comprises:
one or more data fields containing information associated with said event and

said atomic function for a receiving instantiation.

87. The switch of claim 83, wherein said plurality of PPL component state

machines are layer specific.

O 00 N O W & W N —

=
S WD - O

55

88. The switch of claim 83, wherein said plurality of PPL component state

machines are function specific.

89. The switch of claim 83, wherein said plurality of PPL component state

machines are interface specific.

90. The switch of claim 83, wherein said plurality of PPL component state

machines are protocol specific.

9

91. The switch of claim 83, wherein said plurality of PPL component state

machines are protocol specific.

92. A method for communicating between two layers of a functionally-layered

programméble telecommunication switch system utilizing a standardized universal
application program interface (API), the method including the steps of :

(1) invoking one or more instantiations of a layer-specific program protocol
language (PPL) component state machine at a layer-specific PPL processor having a
state machine engine, each of said one or more instantiations representing a call
processing protoéol; :

(2) invoking atomic functions in accordance with state/event and primitive
tables defining said state machine and stored in the processor to perform various
functions, said atomic functions generating internal representations of a API event
indication message; and

(3) transferring said internally-represented PPL event indication message to
a communicaﬁons processor coupled to said processor for translation into a universal

standardized PPL event indication message.

93. The method of claim 92, further comprising the step of:
“) transmitting said universal APl message to another PPL component state

machine instantiation residing in the same or different PPL processor.

wn s W N

A W A WD -

—t

O 00 3 O U & W N —

WO 97/20439 PCT/US96/18959

56

94. The method of claim 92, wherein said system includes a host supporting
applications residing in an application layer and wherein the method further comprises
the step of:

(4) transmitting said universal API message to an application located on the

host.

95. The method of claim 93, further comprising the steps of:

(5) creating an atomic function message buffer, by said processor, including
a destination identification field and a source identification field containing respective
addresses of said source and receiving PPL component instantiation; and

(6) attaching said message buffer to said internal representation of said PPL

event indication message generated by said atomic function.

96. The method of claim 95, wherein said message buffer further comprises:
a PPL event identification field identifying the event that generated said atomic

function.

97. The method of claim 95, wherein said message buffer further comprises:

one or more data fields containing information associated with said event and

said atomic function for a receiving instantiation.

98. The method of claim 92, further comprising the steps of:

(4) receiving at said communications processor, a universal API PPL event
request message;

(5) translating at said communications processor, said universal API PPL
event request message into an internally-represented PPL event request message;

(6) transmitting said internally-represented PPL event request message to
said layer-specific PPL processor;

(7). receiving and processing, at said layer-specific PPL processor, said

internally-represented PPL event request message; and

10
11
12
13
14

O 0 9 O L & W O =

57

| (8) converting a PPL event ID value included in said internally-represented
PPL event request message into a layer-specific unique PPL event identification value

for said layer-specific state machine; and
(9) processing the layer-unique PPL event identification value by said layer-

specific PPL component state machine engine.

99. The method of claim 98, wherein said step (9) comprises the steps of:
@) swchixig said state/event table for that PPL event identification value

for the present state of said state machine;

(b) when a matching event is found, invoking the identified primitive in the
state/event table, retrieving from primitive table the atomic functions associated with
the primitive ID;

(¢) invoking an identified primitive in the state/event table; and

(d) retrieving from primitive table the atomic functions associated with the

primitive ID.

10

15

58
100. A telecommunications system substantially as herein described with

reference to the accompanying drawings.

101. A functionally-layered programmable telecommunications switch

substantially as herein described with reference to the accompanying drawings.

102. An API for standardized interactive call processing communications
between functional layers of a telecommunication system substantially as

herein described with reference to the accompanying drawings.

103. A method for developing call-associated protocols substantially as herein

described with reference to the accompanying drawings.

104. A method for communicating between two layers of a functional-layered
programmable telecommunication switch system substantially as herein

described with reference to the accompanying drawings.

DATED: 21 February 2000
PHILLIPS ORMONDE & FITZPATRICK

Attorneys for:
EXCEL SWITCHING CORPORATION

W:\marie\GABNODEL\10844c¢.doc

FIG. 1
--- 2 13 T TeoeRuL
- : { BATTERY/RING |
106 | | VOLTAGE !
- 1 osueRLy
TR
e
o N PC 1/0 BUS - s
I =L PC POWER BUS] -

I | '_”"}—1 """"""""" 1—"_;;4_"—"1_"”"15 """ N
Y - DIGITAL P~ Nl '
1 H T i 2] [e oo TERTTOR | |
CPU i -t [INE CARD : i
___________ 1 * ‘ |
132'\«7.‘ 10 - ’ ’ HOLC BUS ‘) |
remmemmesess | |12 ”] I $ — |
| EXTERVAL | | 1 TOM BUS o :
LIST ~t4 c starus/controL aus | |} R
30 | l —126 1 TIMING/CONTROL BUS _ g !
i' § d !
| llHﬂll 6Hl o
: | L)I\”)E\gogﬂ{ : (UhfIh{lAELROS%ﬁL) 118 Eﬁgfﬁg DI(GEII)AL : } £ !
|, TAUNKS | =s—et LINE CARD |— | CARD | LINE CARD L._? SPANS f

f 12 |
- 110 BATTERY/RING VOLT ;
102w!-L__ﬂIJ_CH___> ______________ TING__LfG_EBUS_ ________ l_’:-_]

6£P0T/L6 OM

e/t

65681/96SN/1LDd

WO 97/20439 PCT/US96/18959

2/24

FIG. 2

APPLICATION LAYER 5

LAYER 5 CALL PROCESSING

APPLICATION " FUNCTIONS USED TO IMPLEMENT
ENHANCED SERVICE APPLICATIONS

le.g. 800 SERVICE, VOICE MAIL, ACD)

| PRESENTATION

CALL MANAGEMENT LAYER 4

SESSION CENTRALIZED CALL PROCESSING
' FUNCTIONS USED TO MANAGE 1-WAY,
2-WAY, BROADCAST AND CONFERENCING
TRANSPORT CONNECTIONS. PRESENTS A COMMON
LAYER 3 INDEPENDENT INTERFACE T0
THE APPLICATION LAYER.

NETHORK SIGNALLING PROTOCOL LAYER 3

NETHORK PROVIDES IN/OUT-OF-BAND NETWORK
SIGNALLING ANALYSIS/CONTROL FOR INCOMING
AND OUTGOING CALLS (ie. PRI Q.931, SS7
ISUP, COMPELLED R2, Ti ROBBED BIT)

LINK LAYER 2

RESPONSIBLE FOR THE PHYSICAL TRANSFER

DATA LINK OF NETWORK SIGNALLING INFORMATION ACROSS

A NETWORK OR LINE INTERFACE. (ie. PRI @.921

LAPD, CHANNEL ASSOCIATED SIGNALLING (CAS),
T1 ROBBED BIT, SS7 MTP2, SS7 MTP3)

PHYSICAL LAYER 1

PROVIDES E4, T1 AND ANALOG
ELECTRICAL INTERFACES

PHYSICAL

WO 97/20439 PCT/US96/18959

3/24

FIG. 3A

APPLICATION LAYER (LAYER 5)
e MATRIX/LINE CARD MANAGEMENT
DOWNLOAD CONTROL
ALARM PROCESSING
REDUNDANT MATRIX CONTROL

o CONFIGURATION MANAGEMENT

MATRIX CONFIGURATION
LINE CARD CONFIGURATION

o HIGH LEVEL (LAYER 5) CALL PROCESSING

INTERACTIVE DIGIT COLLECTION

RECORDED ANNOUNCEMENT CONTROL FOR INTERACTIVE VOICE
RESPONSE APPLICATION SUPPORT

BROADCASTING/CONFERENCING CONTROL

INBOUND CALL ROUTING/QUEUEING

OUTBOUND CALL INITIATION WITH DIGIT OUTPULSING

ADDRESS DIGIT ROUTING TO CHANNELS/CHANNEL GROUPS

CALL HUNTING FOR QUTBOUND CHANNEL SELECTION

CALL PROGRESS TONE CONTROL FOR INBOUND/
OUTBOUND CALLS

MULITPLE CALL MGMT FEATURES (TRANSFER, HOLD, CON-
FERENCING, CALLBACK, FORWARDING, ETC.)

CALL DETAIL RECORDING

CALL MANAGEMENT LAYER (LAYER 4)

INTERACTIVE RECORDED ANNOUNCEMENT CONTROL (USER
DIGIT DRIVEN)
LAYER 4/APPLICATION LAYER (LAYER 5) INITIATED CALL PARK
1-WAY/2-WAY/CONFERENCE CONNECTION MANAGEMENT
RECONNECTION (TRANSFER) _
LAYER 4 OUTGOING QUTSEIZE INITIATION FOR 2-WAY CONNECTIONS
MULTIPLE CALL MGMT FEATURES (TRANSFER, HOLD, CONFERENCING,
CALLBACK, FORWARDING, ETC.)
CUSTOMIZATION OF INSEIZE COMPLETION REPORT SENT TO THE
APPLICATION LAYER (LAYER 5)

NETWORK PROTOCOL LAYER (LAYER 3)

o IN BAND LINE/ADDRESS SIGNALLING CONTROL
EGM INTERFACE
LOOPSTART, GROUNDSTART TRUNK INTERFACES
LOOPSTART, GROUNDSTART LINE INTERFACES
MULTI-WINK MFR1 FEATURE GROUP D
DTMF DIALED NUMBER INDENTIFICATION SERVICES (DNIS)
COMPELLED R2 FOR INTERNATIONAL Ei INTERFACES
IN BAND/EXTENDED IN BAND/MULTI-WINK COIN SIGNALLING
CUSTOM T4/E1 SERVICE CARD INTERFACES

e (UT OF BAND SIGNALLING CONTROL

ISON PRIMARY RATE LAYER 3 Q.931
SS7 ISDN USER PART (ISUP)

WO 97/20439 PCT/US96/18959

4/24

FIG. 3B

LINK LAYER (LAYER 2)

e T{ ROBBED BIT SIGNALLING SCANNING

e E{ CHANNEL ASSOCTIATED SIGNALLING SCANNING

e Ti/E1 LINE INTERFACE FRAME ALARM CONTROL

e DSP TONE RECEPTION CONTROL
IN BAND ADDRESS SIGNALLING (MFR1, MFR2, DTMF)
CALL PROGRESS ANALYSIS

e DSP TONE GENERATION CONTROL

IN BAND ADDRESS SIGNALLING (MFR1, MFR2, DTMF)
CALL PROGRESS TONE GENERATION
CUSTOM CALL PROGRESS TONE GENERATION

SS7 MTP2/MTP3

DSP RECORDED VOICE ANNOUNCEMENT CONTROL
DSP CONFERENCE GENERATION CONTROL
GENERIC DSP FUNCTION CONTROL

DSP PROCESSOR TO MFDSP MAIN PROCESSOR DSP CONTROL/
INFORMATIONAL MESSAGES

MFDSP MAIN PROCESSOR TO DSP PROCESSOR CONTROL/
INFORMATIONAL MESSAGES

MFDSP MAIN PROCESSOR DSP FUNCTION ANALYSIS/CONTROL

e |APD .92

|

WO 97/20439

448
A\

STATE MACHINE ENGINE

f 4403

5/24

FIG. 4

PCT/US96/18959

LAYER DEPENDENT

ENVIRONMENT SUPPORT

LAYER
ATOMIC FUN

DEPENDENT

CTION LIBRARY - [446

440n

‘DATA BLOCK (CHANNEL 0)
CURRENT STATE

ACTIVE STATE/EVENT TBL PTR

DATA BLOCK (CHANNEL n)
CURRENT STATE

ACTIVE STATE/EVENT TBL PTR

ACTIVE PRIMITIVE TBL PTR

ACTIVE PRIMITIVE TBL PTR

ASSIGNED STATE/EVENT TBL PTR

A

SSIGNED STATE/EVENT TBL PTR

ASSIGNED PRIMITIVE TBL PTR

ASSIGNED PHIMITIVE 8L PTR

4423 442b 442¢
) ’ g
RESIDENT RESIDENT RESIDENT
PROTOCOL n+4 PROTOCOL n+2 PROTOCOL m
PROTOCOL n+1 PROTOCOL n+2 PROTOCOL m

PRIMITIVE TBL

PRIMITIVE TBL

PRIMITIVE TBL

PROTOCOL n+1
STATE/EVENT TBL

1N

PROTOCOL n+2
STATE/EVENT TBL

PROTOCOL m
STATE/EVENT TBL

DYNAMICALLY LOADED PNPCS TABLES

4443? 4t ;1:1'4(:
CUSTOMER DEFINED CUSTOMER DEFINED CUSTOMER DEFINED
PROTOCOL 0 PROTOCOL 1 PROTOCOL n
PROTOCOL 0 PROTOCOL 1 PROTOCOL n

PRIMITIVE TBL

PRIMITIVE TBL

PRIMITIVE TBL

PROTOCOL 0

PROTOCOL 1 -
STATE/EVENT TBL

PROTOCOL n
STATE/EVENT TBL

E STATE/EVENT TBL

FIG. §

534 505 524 500 514 512 510 508 506 504 502
D S S M M M AN MR :
I8 | PRL éggﬂgﬁ? P ocoence| wss | ws
COUNT
4 5
| ADDRESSING \500
oaTA | Lensth | susTyee | Tvee CINFOR- | LENGTH | TveE
MATION
/ ‘ ’ I / ¢ (
52 530 58 5% 520 518 516

“PPL EVENT REQ (PPL COMP. ID, CHANNEL NO., EVENT ID, DATA)
PPL EVENT IND (PPL COMP. ID, CHANNEL NO., EVENT ID, DATA)

6€¥0T/L6 OM

be/9

65681/96SN/LDd

FIG. 6
612 610 608 606 604 602
/ / P 0
SEQUENCE | MSG MSG

PPL EVENT REQ ACK (SEQUENCE NO, STATUS)
PPL EVENT IND ACK (SEQUENCE NO, STATUS)

ve/L

6€Y0T/L6 OM

65681/96SN/1D0d

WO 97/20439

B/24
FIG. 7A

702

(50) L4PPLevL3
_SETUP_INDICATION

PCT/US96/18959

710
(

af62 ()

SEND L5
NOTIFICATION OF
INCOMING CALL

af35 (1)
PPL SEND LS EVENT -

INDICATION <EVENT ID>

' 704/{

S

L4PPL SEND L3 A
3.931 CONNECT

l

af140 ()
L4PPL ATTACH DTMF
DIGIT RECEIVER

714 |
S 4
' af212(1, 0)
706~ WAITEOR AT | L CONECT SNGLE
<
REQUEST ANNOUNCEMENT IggNgggmngAN
(501) L4PPLeVL5 l
EVENT_REG_{
, M| a0l 10
af60 (16) PPL_ENABLE 1000ms
ACK LS | L4PPL SEND L PPL MULTI PURPOSE TIMER
EVENT REQ | EVENT REQ <ACK> CTIMER > <VALUE>
ST |~—108
718
fee ool OfuABLE Tt | (69 LpPLevISP BESULT DIBITS /8.2
PURPOSE TIMER [~ DIGIT
<TINER £ .
' 720
1 7 me)
afg3lt)
L3PPL STORE DIGIT SEND L5 FAILURE T0 af35 (4
RECEIVED IN GEN DETECT DIGITS | _ PPL SEND LS EVENT
PURPOSE_REGISTER INDICATION <EVENT Ip>
EGISTER #> l
l , (ADDITIONAL
af36 (2. 1) |~ 126 PROCESSING)
PPL SEND L5 EVENT
SEND L5 | INDICATION HITH GEN
DIGIT |~ PURPOSE REGISTER
VALUE_ <EVENT I0>
<REGISTER #>

T

WO 97/20439

(:i:> 128

af147 |)
L4PPL CANCEL DIGIT f{
RECEPTION

(504) PPLevL5_EVENT REQ_4

9/24

PCT/US96/18959

FIG. 7B

54
WAIT FOR
L5 PPL
REQUEST

730

(506) PPLevLS_EVENT_REG_6

13 (505) PPLevLS 733
N | EVENTREQS)
2160 (16) af60 (16) af60 (16)

L4PPL SEND L5 PPL
EVENT REQG ACK <ACK>

L4PPL SEND L5 PRL
EVENT REQ ACK <ACK>

L4PPL SEND L5 PPL
EVENT REQ ACK <ACK>

STATUS> CSTATUS> (STATUS
0l L7 poormionaL (ADDITIONAL
L4PPL ATTACH DTMF PROCESSES) PROCESSES)
DIGIT RECEIVER
-
afete (3, 0 PLAY ADDITIONAL
L COMMECT SINGLE | UTGOING ANNOUNCEMENT 744
<OPTIONS /
1 | PPL n?ggéfé)MULTI
—

350 (1, 10) et PURPOSE TIMER <TIMER #>

PPL ENABLE 1000ms
MULTI PURPOSE TIMER
<TIMER #> <VALUE>

99

140 (66) L4PPLEVDSP_
RESULT DIGITS

WAIT FOR
DIGIT

191
PPLev 742
TIMER! ’

af35(4)
PPL SEND L5 EVENT
INDICATION <EVENT ID>

l

(ADDITIONAL
PROCESSES)

l

af53 (1)
L3PPL STORE DIGIT
RECEIVED IN GEN
PURPOSE REGISTER
<REGISTER #>

!

af36(3, 1)

PPL SEND L5 EVENT
INDICATION WITH GEN
PURPOSE REGISTER
VALUE <EVENT ID>
<REGISTER #>

i

(ADDITIONAL
PROCESSES)

|~ 746

748

FIG. 7C

L4 PPL

INCOMING CALL LAYER 5
/{f701 HOST 130

PPL EVENT IND (L4PPL, CH1, 1) o
703
PPL EVENT IND ACK (SEG, STATUS) /
705 PROCEED
PPL EVENT REQ (L4PPL, CH1, 1) 1/“/
107
PPL EVENT REQ ACK Z .

RECEIVED DIGIT

5/709

PPL EVENT IND (L4PPL, CH1, 2, DIGIT)

PPL EVENT IND ACK

/},711

PPL EVENT REQ (L4PPL, CH1, 4)

743 PLAY NEXT
/f/ ANNOUNCEMENT

715
PPL EVENT REQ ACK AN
| RECEIVED DIGIT
7
PPL_EVENT IND (L4PPL, CH1, 3, DIGIT) ’ N
| 719
PPL EVENT IND ACK /

ve/0F

6€Y0T/L6 OM

6S681/96S1N/LDd

WO 97/20439

11/24

FIG. 7D

(50) L4PPLevL3
_SETUP_INDICATION

PRIMITIVE 1

51
WAIT FOR
L5 PPL
REQUEST

(501) PPLeVLS
_EVENT _REQ_1

PRIMITIVE 2

(66) L4PPLevDSP_RESULT DIGITS /. 52

PCT/US96/18959

(191) PPLevTIMER1

WAIT FOR
l DIGIT

PRIMITIVE 4

PRIMITIVE 3

(ADDITIONAL
PROCESSING)

WO 97/20439 PCT/US96/18959

12/24

FIG. 7E

(504) PPLevLS_EVENT REQ_4 [7t Fon) (506) PPLEVLS EVENT_REQ_6

L5 PPL
REGUEST

(505) PPLeVLS
_EVENT_REG_S

PRIMITIVE 6 PRIMITIVE 7

|

PRIMITIVE 5

S 4
WAIT FOR
DIGIT

(56) L4PPLevDSP_RESULT_DIGITS

PRIMITIVE 8

(191) PPLevTIMER!

PRIMITIVE 8

FIG.7F
780
s
PRIMITIVE ID 1ST ATOMIC ND ATOMIC 3R0 ATOMIC 4TH ATOMIC 5TH ATOMIC
FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION

PRIMITIVE #1

af035 (0x01, 0x00)

PRIMITIVE #2

af060 (0x16, 0x00)

af062 (0x00, 0x00)

af140 (0x00, 0x00)

af212 (0x01, 0x00)

af050 (0x01, 0x10)

PRIMITIVE #3

af035 (0x04, 0x00)

PRIMITIVE #4

af047 (0x01, 0x00)

af053 (0x01, 0x00)

af036 (0x02, 0x01)

af147 (0x00, 0x00) |

PRIMITIVE #5

af060 (0x16, 0x00)

af140 (0x00, 0x00)

af212 (0x03, 0x00)

af050 (0x01, 0x10)

PRIMITIVE #6

af060 (0x16, 0x00)

PRIMITIVE #7

af060 (0x16, 0x00)

PRIMITIVE #8

af035 (0x04, 0x00) |

PRIMITIVE #9

af047 (0x01, 0x00)

af053 (0x01, 0x00)

af036 (0x03, 0x0)

be/Er

6€Y0T/L6 OM

65681/96S1/L.Dd

FIG. 76 .
?0

SLSTE EVENT EVENT ID | PRIMITIVE ID | NEXT STATE | STATE TYPE
STATE 0 | L4PPLevL3_SETUP_INDICATION | ev050 | PRIMITIVE 1 | STATE 1 NORMAL
STATE 1 | L4PPLevLS_EVENT REQ_1 evo01 | PRIMITIVE 2 | STATE 2 NORMAL
STATE 2 | PPLevTIMER] evi91 | PRIMITIVE 3 | STATE ? UNKNOWN

L4PPLevDSP_RESULT_DIGITS ev066 | PRIMITIVE 4 | STATE 3 | NORMAL
STATE 3 | L4PPLevLS_EVENT_REQ_4 evd04 | PRIMITIVE 5 | STATE 4 NORMAL

L4PPLevL5_EVENT_REG_S evd0d | PRIMITIVE 6 | STATE ? UNKNOWN

L4PPLevL5_EVENT_REQG_6 evs06 | PRIMITIVE 7 | STATE ? UNKNOMN
STATE 4 | PPLevTIMERY evi81 | PRIMITIVE 8 | STATE ? UNKNOWN

L4PPLevDSP_RESULT_DIGITS ev066 | PRIMITIVE 9 | STATE ? UNKNOWN

ve/vy

6£¥0T/L6 OM

65681/96S(1/1Dd

WO 97/20439

15/24

FIG. BA

802

(50) L4PPLevL3
_SETUP_INDICATION

SEND L5
NOTIFICATION OF | ~ PPL SEND LS EVENT
INCOMING CALL | INDICATION <EVENT ID>

ot

806

af35(1)

S
WAIT FOR
L5 PPL
REQUEST

(501) PPLeVLS
_EVENT_REQ_!
af60 (16)
ACK L5 L4PPL SEND L5 PPL
EVENT REQ EVENT REQ ACK
<ACK> <STATUS> t+——808
822 ~_ af47(1)

PPL DISABLE MULTI

PCT/US96/18959

810
(

= L4PPL SEND L3 A

af62 (

(.931 CONNECT

{

afe1(2)
PPL CLEAR GEN
PURPOSE REGISTER
<REGISTER #

l

812
S

af140 ()
L4PPL ATTACH DTMF
DIGIT RECEIVER

814

!

PLAY OUT
OPENING
ANNOUNCEMENT

af212(4, 0)
L4PPL CONNECT SINGLE
ANNOUNCEMENT <RAN
10> <OPTIONS>

"

816
\"\

af50 (4, 10)
PPL ENABLE 1000ms
MULTI PURPOSE TIMER
<TIMER #> <VALUE>

(66) L4PPLevDSP_RESULT_DIGITS

818

S 2
WAIT FOR

PURPOSE TIMER

<TIMER #>
l e
af53 (1) -

L3PPL STORE DIGIT

RECEIVED IN GEN

PURPOSE REGISTER
<REGISTER #>

B

DIGIT

191
PPLev
TIMER

330
afe5 (2, 1)
PPL TEST GEN
PURPQOSE REGISTER
<REGISTER #> <VALUE>

|

(ADDITIONAL
PROCESSING)

WO 97/20439

PCT/US96/18959
16/24
(:i:) FIG. 8B
af147 () |_— 628
L4PPL CANCEL DIGIT
RECEPTION
1 829
afo8 (1 830
PPL TEST GEN PURPOSE
REGISTER FOR ANY
VALUE <REGISTER #>
(200) PPLeVINT_EVENT_0 (202) PPLeVINT_EVENT 2.
(204) PPLeVINT
_EVENT 1
af140 () |_—834 (ADDITIONAL (ADDITIONAL
L4PPL ATTACH DTMF PROCESSES) PROCESSES)
DIGIT RECEIVER
l 836
af212(3, 0) PLAY ADDITIONAL
L4PPL CONNECT SINGLE
ANGUNCEMENT <Ran 0o | OUTBOING ANNOUNCEMENT
<OPTIONS> 844
l Ve (
af50 (1, 10) af47()
PPL ENABLE 1000ms —e= | 4PPL CANCEL DIGIT
MULTI PURPOSE TIMER RECEPTION
<TIMER #> <VALUE> l
af53 (1) 846
B40 (56) L4PPLeVDSP_ L3PPL STORE DIGIT [~
54 RESULT DIGITS RECEIVED IN GEN
WAIT FOR PURPOSE REGISTER
DIGIT CREGISTER #

(194) PPLev 842
TIMER1

]

af28 (1) | 847

af35 (4)
PPL SEND L5 EVENT
INDICATION <EVENT ID>

PPL TEST GEN PURPOSE
REGISTER FOR ANY
VALUE <REGISTER #>

l

(ADDITIONAL
PROCESSES)

'

(ADDITIONAL
PROCESSES)

FIG. 8C

L4 PPL

INCOMING CALL LAYER 5
1801 HOST 130

PPL EVENT IND (L4PPL, CH, 1)
803
PPL EVENT IND ACK (SEG, STATUS) /
805 PROCEED
PPL EVENT REQ (L4PPL, CHI, 1) /
807
PPL EVENT REQ ACK AN

ve/L}

6£¥0T/L6 OM

65681/96SN/1Dd

WO 97/20439 PCT/US96/18959

18/24

FIG. 8D

‘5g' 802
(50) L4PPLevL3 ’
_SETUP_INDICATION

PRIMITIVE 1

S | B06

WAIT FOR
LS PPL
REQUEST

(504) PPLevL5
_EVENT_REG_1

PRIMITIVE 2

818

ﬁ?{
(66) LAPPLevDSP_RESULT DIGITS WAIT FOR (194) PPLBVTIMEHi_

PRIMITIVE 3

|)

PRIMITIVE 4

|

(ADDITIONAL
PROCESSING)

WO 97/20439 PCT/US96/18959

19/24

FIG. 8E

830

(200 PLeVINT_EVENT O/ I St (202) PPLeVINT_EVENT 2
DIGIT

(201) PPLevINT
_EVENT 1

(ADDITIONAL (ADDITIONAL
PROCESSING) PROCESSING)

||
PRIMITIVE 5

840

54
WAIT FOR
DIGIT

(56) L4PPLevDSP_RESULT_DIGITS
-~ PRIMITIVE 7

l

(191) PPLevTIMERY (ADDITIONAL
PROCESSING)

PRIMITIVE 6

I

(ADDITIONAL
PROCESSING)

FIG.8F

//E?O
PRIMITIVE ID 1ST ATOMIC ND ATOMIC 3AD ATOMIC 4TH ATOMIC 5TH ATOMIC
FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION

PRIMITIVE #1

af035 (0x01, 0x00)

PRIMITIVE #2

af060 (0x16, 0x00)

af062 (0x00, 0x00)

af140 (0x00, 0x00)

af212 (0x01, 0x00)

af050 (0x01, 0x10)

PRIMITIVE #3

af025 (0x02, 0x01)

PRIMITIVE #4

af047 (0x01, 0x00)

af053 (0x01, 0x00)

af147 (0x60, 0x00)

af026 (0x01, 0x00)

PRIMITIVE #3

af140 (0x00, 0x00)

af212 (0x03, 0x00)

af050 (0x01, 0x10)

PRIMITIVE #6

af035 (0x04, 0x00)

PRIMITIVE #7

af147 (0x01, 0x00)

af053 (0x01, 0x00)

af028 (0x01, 0x00)

be/02

6€V0T/L6 OM

65681/96S1/1LDd

FIG. 86

20
SLGTE EVENT EVENT ID | PRIMITIVE ID [NEXT STATE | STATE TYPE
STATE 0 | L4PPLevL3_SETUP_INDICATION [ev050 | PRIMITIVE 1 | STATE 4 NORMAL
STATE 1 | L4PPLevL5_EVENT_REQ_{ evd0i | PRIMITIVE 2 | STATE 2 NORMAL
STATE 2 | PPLevTIMER] evi9l | PRIMITIVE 3 | STATE ? | UNKNOWN
L4PPLevDSP_RESULT_DIGITS ev066 | PRIMITIVE 4 | STATE 3 INTERNAL
STATE 3 | PPLevINT_EVENT 0 ev200 | PRIMITIVES | STATE 4 NORMAL
PPLevINT_EVENT 1 ev201 | PRIMITIVE ? [STATE ? UNKNOWN
PPLevINT_EVENT 2 eve02 | PRIMITIVE ? | STATE ? UNKNOMN
STATE 4 | PPLevTIMER] evi91 | PRIMITIVE 6 | STATE ? UNKNOWN
L4PPLevDSP_RESULT_DIGITS ev06b | PRIMITIVE 7 | STATE ? UNKNOWN

be/re

6€V0T/L6 OM

65681/96SN1/1Dd

WO 97/20439. PCT/US96/18959

~—— TRANSLATE INTERNAL PSOS MSG TO
EXCEL API REPRESENTATION

L e —pram |

PPLEVENT O L4l oL 0 |
(INCOMING CALL 701) " _

22/24
FIG. 9
T MATALX CARD 12 |
T L4PPL PROCESSOR 902 1
i | T omTE TRE TR0 T 7] i
i PRIMITIVE TABLE 780 1
 rrmE D T o LPL HTOHIC FINCTION #55 (704) | |
H B b5 ESSAGE 10]
lll PRIMITIVE #1 af35 (0X01, 0X00) SED 10 TH HoST III
] ' |
| PELCOPONNTOOL I b
| PPLEVENT |
K INDICATION |
1 MESSAGE |
2 (INTERNAL) 1 !
i e
N _
! . |
| COMM PROCESSOR |
| 906 |
| |

1
HOST COMPUTER

WO 97/20439

1030

23/24

FIG. 10

DESTINATION ID

1~ 1052

SOURCE 1D

—— 1034

PPL EVENT ID

—— 1036

MESSAGE TYPE

———1038

TIMESLOT ADDRESS

—— 1060

ICB COUNT

—— 1062

ICB DATA

—— 1064

PCT/US96/18959

PPL EVENT REQ (L4PPL. CH1, 1)
(PROCESS 705}

API 908

130 —~—

HOST COMPUTER
CREATE/SEND EXCEL API PPL EVENT REQ MSG

WO 97/20439 PCT/US96/18959
24/24
FIG. 11

T wmowo 12 i
! T L4PPL PROCESSOR 02 _}!
| P I
ii i PPL COMPONENT 904 i ii
i . 1104: HE
i L4PPL MESSAGE PROCESSOR 1102 !
|] PPL STATE MACHTNE ENGINE | TNVOKE PPL STATE HCHmE b~ .!!
| |} | PROCESS PPL EVENT #501 f—t—f ENGINE |
N || DETERMINE UNIGUE PPL EVENT ID i
i] [] I
i1 | R PR EVENT | |
i L4PPL STATE/EVENT TL 790 || et | i
1| SIATE £ EVENT PRIMITIVEID MEXT STATE STATE TYPE | | (IN}§32AL)i,
.- 2 2 1 1=
[——— : I
Ve e e !
|
| COMM PROCESSOR 906 !
| TRANSLATE EXCEL 41 bse N0 b |
: INTERNAL PS0S MSG AND SEND |
| S5 T0 L4PPL PROCESSOR |
. S _J

