PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/13419

18 March 1999 (18.03.99)

(21) International Application Number: PCT/US98/18767

(22) International Filing Date: 9 September 1998 (09.09.98)

(30) Priority Data:

08/926,149 Us

9 September 1997 (09.09.97)

(71) Applicant: MATRIXONE, INC. [US/US]; Two Executive
Drive, Chelmsford, MA 01824 (US).

(72) Inventor: TEWKSBARY, David, E.,; 52 Campbello Street,
Hudson, NH 03051 (US).

(74) Agent: TOSTI, Robert, J.; Testa, Hurwitz & Thibeault, LLP,
High Street Tower, 125 High Street, Boston, MA 02110
(US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(57) Abstract

(54) Title: METHOD AND SYSTEM FOR MANAGING INFORMATION USING A RELATIONAL DATABASE

A method and system for managing information by storing object data in a relational database. The method includes the steps of
storing a separate data table in a relational database for each of a plurality of data types; associating a unique object identifier (OID) to
an object; and defining the object using a plurality of data items. Each of the plurality of data items is one of the plurality of data types.
After the object has been assigned an OID, the OID is associated with each of the plurality of data items defining the object. Each of the
plurality of data items and the associated OID are stored in respective ones of the data tables according to data type.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
C™M
CN
Cu
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
Us
Uz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/13419 PCT/US98/18767

METHOD AND SYSTEM FOR MANAGING INFORMATION USING A RELATIONAL
DATABASE

Field of the Invention

The invention relates generally to a method and system for information management and more

specifically to a method and system for storing object data in a relational database.

Backeround of the Invention

Known systems for managing information include object databases and relational databases.
Object databases store information as objects. An object includes a set of related data elements and a set of
routines (termed “methods”) for operating on the data elements. For example, an object named “tire” may
include data elements such as radius, width and tread. The object named “tire” may also include a method
such as a program that calculates the weight of the tire based on information known about the tire (i.e.
radius, width, material). Object databases also allow for objects to “inherit” attributes from other objects.
For example, if a user wanted to create objects named “bias tire” and “radial tire,” the user could create
these objects by having them inherit the attributes of the existing object “tire” and then provide additional
attributes which make the objects distinct. Inheritance allows a user to create an object that has the
qualities of another existing object without having to redefine all of the characteristics of the existing
object.

In a relational database, data items are organized according to relations. A relational database
stores the data items in tables. The rows of each table represent records or collections of information
regarding a particular item and the columns represent fields or attributes of the records. Relationships
among the data items stored in the different tables are built by including corresponding fields in more than
one table. For example, a data item of a record in one table may be linked to a data item of a record in
another table by including an identical field in both data tables and having the information stored in the
corresponding field be the same for both records. For example, a relational database for storing tire
information may contain a separate table for storing the values of each of the tire characteristics (i.e.
separate tables for radius, width, tread, etc.) and pointers defining the relationships between the tables.
Relational databases are more well known and accepted in commercial database environments than are
object databases.

‘What is desired then is a system which manages information by storing object data in a relational

database. The present invention permits such functionality.

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-2

Summary of the Invention

The invention relates to a method for managing information by storing object data in a relational
database. The method includes the steps of storing a separate data table in a relational database for each of
a plurality of data types; associating a unique object identifier (OID) to an object; and defining the object
using a plurality of data items. Each of the plurality of data items is one of the plurality of data types.
After the object has been assigned an OID, the OID is associated with each of the plurality of data items
defining the object. Each of the plurality of data items and the associated OID are stored in respective ones
of the data tables according to data type. In one embodiment, the method includes the steps of storing a
method for acting upon the data items in a data table and associating the method with the object. In
another embodiment, the method includes the step of creating an additional object by type inheriting the
attributes of the existing object type and defining additional attributes for the new object.

The invention also relates to an apparatus for managing information by storing object data in a
relational database. The apparatus includes a first memory which stores an object and a unique object
identifier (OID) which is associated with the object and a second memory which stores a separate data table
in a relational database for each of a plurality of data types. The object is defined by a plurality of data
items. Each of the plurality of data items is associated with a respective one of the plurality of data types.

Each of the plurality of data items is stored in a respective one of the plurality of data tables in association

with the OID.

Brief Description of the Drawings

This invention is pointed out with particularity in the appended claims. The above and further
advantages of this invention may be better understood by referring to the following description taken in
conjunction with the accompanying drawings, in which:

FIG. 1 is a schematic diagram of a computer network system of the type used to practice the
nvention;

FIG. 2 is a simplified functional block diagram of file servers and workstations on the network
system of FIG. 1;

FIGS. 3A and 3B are a block diagram of an embodiment of the data structures of the
administrative vault of the present invention;

FIG. 4 is a block diagram of an embodiment of the data structures of the user vault of the present
nvention;

FIG. 5 1s a block diagram of an embodiment of the inheritance of a data structure as practiced with

the present invention; and

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-3 -
FIG. 6 is a block diagram of an embodiment of the relationship data structure of the present

invention.

Like reference characters in the respective drawn figures indicate corresponding parts.

Detailed Description of the Invention

Referring to FIG. 1, a distributed computer system 10 with which the present invention may function
includes one or more workstations 12, 14 and file servers 16, 18 connected by a network 20. An
information and document management system according to the invention operates in the environment of
the distributed computer system 10. The information and document management system provides a place
to store information, ways to move information to and from that place, means for graphically visualizing
the information, and control over who may access, use, and modify particular information at a given time.

In general, the file servers 16, 18 provide shared access to data to the workstations 12, 14.

Users 22, 24 interface with the workstations 12, 14, and the workstations 12, 14 request and receive data
from the file servers 16, 18 which have one or more storage devices (not shown) such as hard disks or tape
drives. The workstations 12, 14 and file servers 16, 18 can be computers running any operating system
supported by the architecture of the distributed system 10.

Referring to FIG. 2, each file server 16, 18 typically includes an internal bus 26 electrically
connecting and allowing communication between a central processor 28, a main memory 30, an
mput/output controller 32, and a fixed disk 34. In addition to the components of a file server, each
workstation typically includes a mouse 36, a keyboard 38. and a display monitor 40 which allow a user to
interface with the workstation (i.e., enter information into and receive information from the workstation).
In the disclosed embodiment, these components of the workstations and servers operate cooperatively
(under the direction of one or more computer programs executed thereby) to store, access, and process data
and perform all functions described herein.

The information and document management system according to the invention operates in a
homogeneous and/or heterogeneous environment of workstations and file servers connected by a network.
In general, any combination of workstations and file servers can be mixed on the network, and although the
system with which the present invention may function is described as a distributed system, the invention
may also function with a stand alone computer system having data storage capabilities.

The information and document management system according to the invention mainly executes on the
workstations; the file servers perform relatively little processing. In the operation of the disclosed
information and document management system, the workstations (the "clients") perform most of the

processing such as the interfacing (e.g., menu handling, graphical presentation) and database manipulation.

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-4 -
while the file servers (the "servers") store the database information (e.g., meta-data, files) and provide
"pages" of the information when requested to do so by the workstations.

The information and document management system according to the invention operates under the
assumption that users have "private" space in which they run their applications and store their files. This
private space usually is in a user's workstation. It further assumes that users share information (files and
the information about them) in "shared" space. Almost all system processes run on the workstations, and
the servers provide access to the meta-data, files, and other application-dependent services.

The architecture shown in FIGS. 1 and 2 results in an information and document management system
which is relatively insensitive to the number of users on the system. That is, performance of the
information and document management system generally does not suffer due to the number of workstations.
Performance is primarily a function of the complexity of queries or requests made by the workstations
and/or the size of the files or data pages moved by the file servers in response to the queries or requests.

In one embodiment, the information and document management system according to the invention is
implemented by one or more computer programs which execute on the workstations and servers described
herein. The management system can be implemented in a variety of other ways including with the use of
specially-designed electronic hardware.

The information and document management system has a distributed architecture which allows it to
be used by individual work groups as well as entire business organizations. The management system is
based on a relational database structure. With the management system, information can be widely
distributed on the various processors (e.g., workstations and file servers) on the network. Individual
databases can be anywhere on the network to suit system management and performance requirements. The
workstations and file servers typically maintain exclusive control of files and applications resident therein
and thereon, unless files are given over to the management system for management. In general, interactive
processes (e.g., menu handling, graphics) of the management system and database manipulation processes
of the management system run on each participating workstation while the file servers provide data storage.
The management system can coexist and work with applications that operate in the environment of the
distributed system 10.

The management system employs a graphical user interface for ease of defining and navigating
through a database. A mouse 36 (FIG. 1) is the primary means for a user to interact or interface with the
management system. Use of dialogs and keyboard entries are minimized by techniques such as providing
on-screen lists of selectable options to users, allowing users to set preferences, and remembering input
values from session to session. The management system's graphical interface can include a primary list of
menu options with pull-down menus and input dialogs, and a toolbar can provide frequently-used functions

as buttons with icons. Users can define their own toolbars to suit their particular activities.

10

15

20

25

30

WO 99/13419 ' PCT/US98/18767

-5-

The management system allows construction and exploration of the database via graphical "browser"
screen displays that present database objects (defined below) and relationships in a variety of formats. The
primary browser screen shows objects (e.g., that have been discovered by initiating a Find operation) in a
uniform grid arrangement. Each object is represented by an icon and an object type name, and is labeled
with a unique object instance name and a revision identifier. The database also can be explored by
selecting an object and thus requesting and receiving in graphical format the objects related to it. In
addition to representing objects by icons, the graphical browser screens also can display objects in
"thumbnail sketch" form in which a small, raster image of the object is presented.

The management system can be modified or customized by a user to address a variety of business and
professional needs. For example, a user can define business or information "objects" as well as "policies"
that govern access to and modification of the objects. The management system also provides full control
over revisions of objects. It also can provide control over versions of objects.

An object is an element of information, such as a document, which can include, for example, a report,
a manual, a schematic, a drawing, or a chart. In the management system, an object is uniquely identified
by its type, name, revision, and version identifiers. The object typically contains sub-documents such as
pages of text, tables of parts, lists of raw materials required to make the parts, and/or references to a final
product which is made by assembling the parts. The sub-documents are computer files generated by one or
more application programs.

In one embodiment, the management system can manage objects containing information and files
related to and created by computer-aided design (CAD) application programs. Such information and files
can define various mechanical components and assemblies in drawing and/or part-list format. The
management system can manage objects containing information and files created by one or more
application programs such as CAD programs, word processing programs, spreadsheet programs, database
programs, and generally any other kind of application program which creates computer files.

The information management system of the present invention requires two types of administration. A
first type is for managing the objects stored in the relational database of the information management
system. This first type is called "business administration." A second type is for managing the computer
systems themselves (i.e., the workstations and servers). This second type is called "system administration."
The management system is flexible, it allows users to define objects such that they correspond to the
particular business of those users. The administration functions of the management system provide users
with a graphical means to create the objects and organization elements that model their particular business.
Users do not need any knowledge of computer programming languages to utilize the administration
functions provided by the management system. The management system provides a graphical interface

which makes administrative functions easy and simple to perform. However, there are some elements of

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-6 -
the system that do require programming and system knowledge to set up and modify. These include the
tasks of setting up the computers and software, and they must be performed by people with knowledge of
computer languages and/or computer science.

Business administration involves defining objects, the policies that govern the behavior of the objects,
and the relationships that link the objects together. Business administration is designed to be performed by
people (called "business administrators") with an understanding of their business and the practices the users
will wish to follow. Business administrators need not have programming or computer science skills.

Business administrators create the object types, the associated policies, and the relationships that
together constitute the model of how the users' business operates. With the information management
system, the data or information model used in a business is completely modifiable by the business
administrator. The management system provides some primitive types of objects from which any number
of object types can be defined by the business administrator in the organization's own terms. For each
object type, policies are defined in which the behavior of the object is specified. These policies include
access rules, states, and approval requirements. Relationships define the different ways objects can be
connected. The combination of objects, their associated policies, and permitted relationships is in effect the
customer's data and process model for the items under control. To ease start-up, the management system
offers optional "profession templates" which provide models of typical objects, policies, and relationships
for various types of business activity. These templates can be loaded in a customer's system and can either
be used as-is or modified to meet the customer's needs.

The business administrator also is responsible for creating and managing the model of the
customer's organization. People, the groups to which they belong, and the roles they play are defined. The
people also are issued the appropriate type of access license to the various objects in the management
system. Thus, the business administrator can create and define objects and the rules that control them.

FIGS. 3A, 3B and 4 show one embodiment of a relational database structure for storing object
data in accordance with the present invention. The relational database structure includes an administrative
vault 50 and one or more user vaults 52. As used herein, a “vault” is defined as a set of related data tables.
‘While only one user vault 52 is shown, a system according to the invention typically includes a plurality of
user vaults 52. In general, the administrative vault 50 is used to define the different types of objects and
the user vaults 52 contain instances of actual objects. Thus the administrative vault 50 is used, for
example, to define the object “tire” and the user vault would contain the actual data for various specific
tires.

In brief, the administrative vault 50 allows the structure of the relational database (i.¢., the various

pieces of information to be contained therein and the relationships among these pieces of information) to be

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-7-
defined. This module allows objects to be created and their inter-relationships to be defined. The actual
instances of the objects in the database are not, in general, of importance to the administrative vault 50.

The administrative vault 50 is created by a business administrator and contains the definitions of
the types of objects which may be created and stored in the relational database. The administrative vault
50 may not be modified by actual users. The user vaults 52 are also created by the business administrator
and may be accessed and modified by actual users of the system. The business administrator may create a
separate user vault 52 for each physical location in which the system is used. For example, if a business
has several offices, a user vault 52 may be created for each office. The business administrator alternatively
may also create a separate user vault 52 for each project to be stored in the relational database.

In the tables illustrated in the administrative vault 50, the definition of the data that is stored in an
entry is indicated in the left side of each entry and example of what the data may be is indicated in brackets
in the right side of each entry.

The administrative vault contains a master Object Identifier (mxOID) table 54, a plurality of data
type tables (generally 55), and a plurality of tables which interrelate the data type tables (generally 57).
Each object created by the business administrator is assigned a unique object identifier (OID) which is
stored in the mxOID table 54 of the administrative vault 50. The mxOID table 54 includes an OID field 56
and a Data Type field 58. Each of the OIDs of the objects created by the business administrator are stored
in the OID field 56 of the mxOID table 54. Each OID will only have one entry in the mxOID table 54.
For example, the entry OID1 59 will only appear once in the mxOID table 54. The Data Type field 58
indicates what kind of data type the object is. The different tvpes of data which may be stored in the
administrative vault 50 include Attribute Types, Business Types, Policy Types, State Types, Relationship
Types, and Method Types. Other object types may be defined. The administrative vault 50 contains a
separate table for each data type which may appear in the mxOID table 54. For example, in one
embodiment, the administrative vault contains an Attribute Type table 60, a Business Type table 62, a
Policy Type table 64, and a State Type table 66. Other object tables corresponding to other object types
may also be defined. Each of these data type tables will be described in detail below. The OIDs stored in
the mxOID table 54 are used to refer objects in the mxOID table 54 to the data type tables 60, 62, 64, and
66 which are used to define the objects. While the references between the tables are indicated with arrows
in the figures, the arrows do not indicate real pointers and are only used for illustration purposes.

The Attribute Type table 60 provides a definition for each of the attribute type objects listed in the
mxOID table 54. As used herein, an “attribute” is a characteristic or quality which a business object
(defined below) may have. The Attribute Type table 60 contains a Name field 67, an OID field 68 which
contains the OID of the attribute type object from the mxOID table 54 and an attribute definition field 70.
Each of the names stored in the Name field 67 is unique. The OID field 68 is used to link the mxOID table

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-8-

54 to the Attribute Type table 60. For example, OID1 59 is listed as an attribute type object in the mxOID
table 54. OID1 59 also appears in the OID field 68 of the Attribute Type table 60 along with a definition
72 of the attribute type. The attribute type may be defined as an integer, a real number, a Boolean, a
string, or a date and time. Other attributes are contemplated. In another embodiment, the Attribute Type
table 60 also includes a field for a default value of the attribute. Other fields are also contemplated.

The Business Type table 62 provides a definition for each of the business type objects listed in the
mxOID table 56. A business type object defines something that the user’s business is involved with. For
example, a business type object could be a “tire” if the business were involved with selling tires. Such a
business type object is just generally a name of the object of interest and contains no information about a
real object. For example, the object “tire” does not contain any information about tires. The Business
Type table 62 includes a Name field 73, an OID field 74 which contains one of the OIDs from the mxOID
table 54 and a definition field 76. Each of the names stored in the Name field 73 is unique. The OID field
74 is used to link the meID table 54 to the Business Type table 62. The definition field holds the
definition of the object. Each of the OIDs from the mxOID table 54 identified as a business type data type
in the Data Type field 58 appear only once in the Business Type table 62.

An attribute type object describes a characteristic of a business type object. For example,
characteristics of a tire include the radius of the tire, the width of the tire, and whether the tire has tread.
These characteristics are implemented in the administrative vault 50 by associating the business type object
“tire” with attribute type objects “radius,” “width,” and “tread.”

Business types may have associated attribute types, policy types, and method types. The Business
Type table 62 is linked to the Attribute Type table 60 through a Derived Information Table 78. The
Derived Information Table 78 includes a Business Type OID field 80 for storing the OIDs of the business
types listed in the OID field 74 of the Business Type table 62, a definition field 82 which lists the definition
of the attribute being associated with the business type object, and an Attribute Type OID field 84 for
storing the OID of the attribute type being associated with the business type object. For example, OID2
86, the OID for the object “tire”, appears once in the OID field 74 of the Business Type table 62 but
several times in the Business Type OID field 80 of the Derived Information Table 78. A separate entry is
present in the Business Type OID field 80 of the Derived Information Table 70 for each attribute the
business type object includes. For example, in Derived Information Table 78, OID2 86 appears three times,
once for each attribute object (radius, OID1; width, OID3; and tread, OID2000) which the business type
object needs for its description.

In one embodiment, the administrative vault 50 also contains an mxVault table (not shown). The
mxVault table has a structure similar to the structure of the Attribute Type table 60 and the Business Type
table 62. The mxVault table stores the OIDs of each user vault 52. One purpose of the mxVault table is to

10

15

20

25

30

WO 99/13419 ' PCT/US98/18767

-0.
allow users to access objects stored in any of the user vaults and to create relationships between business
objects located in different user vaults.

As described above, policies govern access and modification of the business type objects. Policies
may include access rules, states, and approval requirements. The Policy Type table 64 provides a definition
of each of the policy types listed in the mxOID table 54. The Policy Type table 64 works in conjunction
with the State Type table 66 to impose state transitioning requirements on business type objects. In one
embodiment, all business type objects reference policy type objects. The Policy Type table 64 includes a
Name field 87, an OID field 88 which contains one of the OIDs from the mxOID table 54, and a policy
definition field 90. The Policy Type table 90 is linked to the Business Type table 62 and the State Type
table 66 through a Policy Information table 92. The Policy Information table 92 includes a Policy Type
OID field 94 for storing the OIDs of the policy type objects, a Data Type field 96 which defines the data
type table being linked to (i.e. the Business Type table 62 or the State Type table 66), and a Data Type
OID field 98 which stores the OID of the related data type object being associated with the policy type
object. For example, the first row 100 of the Policy Information table 92 relates the policy type object
identified by OID60 to the business type object identified by OID?2.

The State Type table 66 provides a definition of the different states that may be associated with a
business object. State types are used to define the status of an object within its life-cycle. Examples of
state types include planned, working, reviewed, released and obsolete. The State Type table 66 includes a
Name field 101, an OID field 102 which contains one of the OIDs form the mxOID table 54, a Policy OID
field 104 which refers to the Policy Type table 64, and a descriptor field 106 which provides a definition of
the state, i.e. planned, working, reviewed, released or obsolete. The descriptor field may also contain a
field for the date and time the state is scheduled to be entered and a field for the date and time the state is
actually entered. Business objects move from one state to the next when the conditions for state transition
defined in the policy and state type are met. Thus in the present example, the “tires policy” OID60 is
related to the business type object “tire” OID2 and has the state types “proposed tire” OID3000 and
“released tire” OID3001. Such a “tire policy” would be used, for example, to change a specified tire from
a proposed design to a released design for manufacture.

The conditions for state transition include the completion of electronic approvals, the presence of
files, the presence of related business objects, and other controls. The conditions are associated with the
state types through a State Requirement table 108 and a Signature Requirement table 110. The State
Requirement table includes a State Type OID field 112 which stores the OID of the State Type being
associated with the state requirement, and a state requirement definition field 114 which stores the
definition of the state requirement. Each state type may reference to several state requirements in the State

Requirement table 108. The Signature Requirement table 110 includes a State Type OID field 116 which

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-10 -

stores the OID of the state type being associated with the signature requirement, and a User field 118 which
defines what kind of user may provide the signature to fulfill the signature requirement. In one
embodiment, the User field 118 contains an OID which links the Signature Requirement table 118 to a User
Type table (not shown). The user type is another data type which may be stored in the administrative vault
50. Thus in the present example a “tire” object may transition from a “proposed tire” to a “released tire”
upon the completing of a “testing” state requirement 110 and the completion of the signatures requirement
by the engineering manager.

As described above, business types may have associated methods. Methods are computer
programs which may be associated with a bﬁsiness type object. An example of a method is a program
which displays a picture of a business object on the user’s computer screen. Continuing the tire example
from above, this program would display a picture of a selected tire instance (i.e. XYZI tire) on the user’s
screen.

In one embodiment, the administrative vault 50 stores methods as a data type and includes a
separate Method Type table. The Method Type table has a structure similar to the Attribute Type table 60
and the Business Type table 62 described above. Two types of methods that may be associated with a
business type object are internal and external. An internal method is a computer program that is stored in
the relational database system. An external method is a computer program that is external to the relational
database system, but may be executed by the user’s computer. Examples of external methods include
Microsoft Word and Word Perfect. For example, if the business object is a document, the user may invoke
Microsoft Word to edit the document. The Method Type table stores a reference to the external method.

In one embodiment, to invoke a method, the user instructs the system to run a specific method
against a specific business object. In another embodiment, the user is accessing a business object and then
specifies a method to be run against the business object. In one such embodiment, the user specifies the
name of the method to be executed. The system searches the Method Type table in the administrative vault
50 for the OID associated with the method name and then executes the method. For example, if the user is
accessing the business object “XYZ1 tire”, the user may execute a method named “circumference” to
calculate the circumference of the XYZ1 tire. The system searches the Method Type table for the OID
associated with the method “circumference” to locate the program and obtains the data needed for the
circumference calculation from the data stored in the user vault 52 for the “XYZ1 tire”. The user does not
need to specify the value for the radius of the “XYZ1 tire” for the circumference calculation because this
value is already stored in the Attribute Instance table 146 for the “XYZ1 tire”.

Thus, to further illustrate the relationships between the tables in the administrative vault 50, using
the example of a business type object “tire” created by the business administrator is now described. The

tire company may want to create a database of different tires. To do this, the business administrator

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-11 -
creates a business type object named “Tire.” Generally, the business administrator decides what qualities
of the tires the database will contain; defines the policies which govern the tires; and defines the different
states of development a tire may go through. After the business object is created, a database including
particular types of tires may be built using the requirements for a tire defined by the business administrator.

In more detail and referring to the administrative vault 50, a business type object “Tire” is stored in
the tables of the administrative vault 50. The business type object “Tire” is assigned a business type OID
(OID2 86) in the mxOID table 54. This OID is also entered in the Business Type table 62. The mxOID
table 54 also contains the OIDs of several attribute data types which are associated with the business type
OID (OID2) to define the characteristics that tires have. For example, a tire may be defined by its radius,
width, and whether or not it has a tread. These attributes are each assigned an OID in the mxOID table 54
and an entry is formed the Attribute Type table 60. For example, the attribute “radius” is assigned OID 1,
the attribute “width” is assigned OID3 and the attribute “tread” 1s assigned OID2000. The definition field
70 of the Attribute Type table 60 provides a definition of each of the attribute objects. For example, the
attribute “radius” is defined as an integer, the attribute “width” 1s defined as a real number, and the
attribute “tread” is defined as a Boolean value, that is the tire either has tread or does not have tread. The
attributes are associated with the business type object “Tire” through the Derived Information Table 78.
For example OID2 assigned to the business object type “Tire” appears in the Business Type OID field 80
and OID1 assigned to the attribute type “radius” appears in the Attribute Type OID field 84, thereby
associating the attribute “radius” with the business object “Tire.” The Derived Information Table 78 also
includes entries linking OID2 to the OIDs of the width and tread attributes (OID3 and OID2000
respectively.)

The business type object “Tire” is also associated with a policy and states which define the life
cycle of such a tire. In the Policy Type table 90, OID 60 refers to the policy associated with the tire. The
tire policy is linked to the business object type “Tire” through the Policy Information table 92. For
example, the first row of the Policy Information table 92 contains the policy OID (OID 60) in the Policy
Type OID field 94 and the OID of the business object type “Tire” (OID2) in the Data Type OID field 98,
thereby associating the tire policy with the business object type “Tire”. The different states the tire may
transition through are defined by the State Type table 66. The Policy Information table 92 also links the
OIDs of the state types (i.e. OID3000 assigned to the state “proposed” and OID3001 assigned to the state
“released”) to the tire policy (OID 60). Once all the object definitions have been created in the
administrative vault, a user vault 52 is then defined to create a database of specific tires based upon these
definitions.

FIG. 4 is a diagram illustrating the tables located in the user vault 52. As described above, the

user vault 52 contains actual instances of object types defined in the administrative vault 50. Continuing

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-12-
the tire database example above, the user vault 52 contains instances of particular tires. The user vault 52
includes an 1xOID table 130, data type tables and instance tables. The 1xOID table 130 contains the OIDs
of every object stored in the user vault 52. Each object created by a user is assigned a unique object
identifier (OID). The IxOID table 130 includes an OID field 132 for storing the OIDs of the objects and a
data type field 134 which defines what type of object the OID refers to. The data types stored in the user
vault 52 include business types and relationship types. The user vault 52 contains a separate table for each
data type which may appear in the IxOID table 130. For example, the user vault 52 contains a Business
Object table 136 for the business object data type.

Continuing the example from above, the IxOID table 130 contains OIDs assigned to instances of
tires. For example, OID6 is assigned to the XYZ1 brand tire. The Business Object table 136 includes
references to other tables which are used to instantiate the instances of the business objects. The Business
Object table 136 includes an OID field 138 which stores the OIDs of each business type object listed in the
1xOID table 130, an OID Type field 140, a Policy type field 142 and other administrative ficlds 144.
Administrative fields are used to control which users have access to different business objects and to store
information regarding the history of the business object. The stored information may include information
regarding the creation date of the business object, the user which created the business object, the dates the
object was modified. The administrative fields 144 also contain a Name field which stores the name of the
business objects, 1.e. “XYZ1 tire”. The OID Type field 140 links the Business Object table 136 to the
Business Type table 62 located in the administrative vault 50. In the example shown, the business object
“XYZ1 tire” identified by OID6 is linked to the business type identified by OID2 which provides the
definition of a tire and is linked to the attributes a tire has (i.e. radius (OID1), width (OID3), and tread
(OID2000)). Each business object has a unique name and a unique OID associated with the business
object. The Policy type field 142 links the Business Object table 136 to the Policy Type table 64 located in
the administrative vault 50. In the example shown, OID6 assigned to the business object “XYZ1 tire” is
linked to the policy identified by OID60 which provides the policy for tires.

A series of “instance” tables are created in the user vault 52 using the references to the
administrative vault 50. For example, an Attribute Instance table 146 is generated using the link from the
Business Object table 136 in the user vault 52 to the Business Type table 62 in the administrative vault 50.
The Attribute Instance table 146 includes a Business Object OID field 148 which stores the OID of the
mstance of the business object, an Attribute OID field 150 which stores an OID of the attribute in the
administrative vault 50 which is included in the Business Type definition of the business object, and a value
field 152 which contains the actual parameter value for the specific tire. For example, the first row of the
Attribute Instance table 152 contains the OID of the business object “XYZ1 tire” (OID6), the OID of the
attribute “radius” (OID1), and a value for the radius (32 inches). The Attribute Instance table 146

10

15

20

30

WO 99/13419 PCT/US98/18767

-13 -
contains an entry to store a value corresponding to each of the attributes defined for the object in the
administrative vault. For example, the tire attributes also include the width and tread attribute types of the
Attribute Type table 60.

In one embodiment, the user vault 52 contains a separate Attribute Instance table 146 for each
attribute type. For example, in one such embodiment, the user vault 52 contains a separate Attribute
Instance table for attributes which are integers, real numbers, strings, Boolean values, and date and time
values. In another embodiment, the user vault 52 only contains an Attribute Instance table 146 for each
attribute type which exists in the Attribute Type table 60 in the administrative vault 50. For example, if
the Attribute Type table 60 only contains integer and real number type attributes, the user vault 52 will
contain two Attribute Instance tables 146, one table for the integers and one table for the real numbers.

A State Instance table 154 is generated using the link from the Business Object table 136 in the
user vault 52 to the Policy Type table 66 in the administrative vault 50. The State Instance table 154
includes a Business Object OID field 156 which stores the OID of the business object to which the policy
refers, a State Type OID field 158 which stores an OID of a state in the administrative vault 50 which is
included in the Policy Type definition, and an information field 160. F or example, the first row of the State
Instance table 154 contains the OID of the business object “XYZ1 tire” (OID6), the OID of the state
“proposed” (OID3000), and information regarding whether the “XYZ1” tire has satisfied all of the
requirements for the “proposed” state. The State Instance table 154 contains similar entries to store
information for the “released” state.

Referring to FIG. 5, in one embodiment, the business administrator can derive attributes for a new
type object from the attributes of an existing type object. In another embodiment, the business
admunistrator can derive methods for a new type object from the methods associated with an existing type
object. Deriving a new type object from an existing type object requires all the attributes associated with
the existing type object to be nherited by the new type object. It is possible to add other attributes to the
"Inherited Attributes". In this embodiment, the Business Type table 62’ located in the administrative vault
50 includes an additional Parent field 162. The Parent field 162 stores the OID of the business type object
from which the attributes are to be inherited. As described above, the Derived Information Table 78’

references the Business Type table 62’ to the Attribute Type table 60’

For example, the Business Type table 62’ may include a business type object named “round
object” (identified by OID5000) which includes the attribute “radius” (identified by OID1) in its definition.
The business administrator may wish to create two types of round object which include all of the attributes
of the business type object “round object” (OID5000). For example, the business administrator may wish
to create a business type object named “tire” (OID5001) and a business type object named “gear” (OID
5002) which include all of the attributes, in this case “radius”, of “round object” (OID5000). The

10

15

20

25

30

WO 99/13419 PCT/US98/18767

-14 -
inheritance is accomplished by storing the OID of the “round object” (OID5000) in the Parent field 162 of
the “tire” entry (OID5001) and “gear” entry (OID5002) in the Business Type table 62’. Thus both objects
“tire” and “gear” now have the attribute “radius” inherited from the parent “round object”. If a new
attribute is later associated with the “parent” object, all of the objects which inherit from the parent object
will automatically inherit the additional attribute.

The business administrator may also add attributes specific to the new business type objects “tire”
(OID5001) and “gear” (OID5002). For example, the business administrator may want to add the attribute
“tread” to the tire business type object (OID5001) and the attribute “number of teeth” to the gear business
type object (OID5002). These additional attributes are added in the same manner that an attribute is
associated with a business type object in the first instance, an entry in the Derived Information table 78’ is
made which links the business type object to the additional attribute. For example, in the second row of the
Derived Information table 78’, the business object type “tire” (OID5001) is associated with the attribute
type “tread” (OID2000).

In one embodiment, the business administrator may alter the objects stored in the administrative
vault 50. For example, the business administrator may add an attribute type object named “price” to the
Attribute Type table 60 and associate this attribute with the business type “Tire” (OID2) in the Business
Type table 62. Once this association is made, all business objects in the Business Object table 136 in the
user vault 52 which are defined by the business object type “Tire” will have the additional attribute “price”.
For example, the business object “XYZ1 tire” (OID6) would have the additional attribute “price”. In one
embodiment, the default value for the attribute “price” would be associated with the business object
“XYZ1 tire”. In another embodiment, the business object “XYZ1 tire” would have a blank entry for the
attribute “price” which later may be provided by the user.

In one embodiment, the changes to objects in the administrative vault 50 may be made dynamically
without interfering with users that may be accessing the system. The changes are made to the objects such
that the next time the user invokes the object, the change will be present. This is possible because the
system is interpretive and the characteristics of an object are established each time the object is accessed.

In one embodiment, the business administrator can create relationships between different objects.
In this embodiment, the administrative vault 50 includes a Relationship Type table (not shown). The
Relationship Type table has a structure similar to the Attribute Type table 60 and the Business Type
table 62. The Relationship Type table defines the relationships between different object types. FIG. 6
shows an instance of a Relationship in the user vault 52. The Relationship Object table 164 includes an
OID field 166 which contains one of the OIDs from the 1xOID table 130, a definition field 168 which
defines the type of relationship, a From OID field 170 and a To OID field 172. The OID field 166 is used
to correspond the IxOID table 130 to the Relationship Object table 164. The From OID field 170 contains

10

I

20

25

30

WO 99/13419 PCT/US98/18767

-15-
the OID of one of the two business objects being related and the To OID field 72 contains the OID of the
second of the two business objects being related. For example, the user may desire to create a relationship
between a business object named “XYZ1 Tire” (OID6) and a business object named “XYZ2 tire”
(OID100) to define the relationship that both of these tires can be used on the same types of cars. A
relationship object could also be used to create a relationship between a business object named “XYZ1”
tire and a business object named “ABC1 car” to define the relationship that the XYZ]1 tire is a component
of the ABC1 car. A single business object may be related to more than one business object by creating
several relationship objects which include that business object in the From OID field 170 or the To OID
field 72. In another embodiment, relationship objects are used to create a hierarchy of objects.

In one embodiment, a relationship object may relate a business object in a first user vault 52 with a
business object in a second user vault 52. In this embodiment, the From OID field 170 is comprised of two
fields, a field for the OID of the business object being related and a field for the OID of the vault in which
the business object is located. Similarly, the To OID field 172 is comprised of two fields, a field for the
OID of the business object being related and a field for the OID of the vault in which the business object is
located. For example, if the business object “XYZ1 tire” is located in a different vault than the business
type object “XYZ2 tire,” the From OID field 170 would contain a field for the OID of the vault of the
business object “XYZ1 tire” and a field for the OID of the business object “XYZ1 tire”, i.e. OID6.
Similarly, the To OID field 172 would contain a field for the OID of the vault of the business object
“XYZ2 tire” and a field for the OID of the business object “XYZ2 tire,” i.e. OID100.

In one embodiment, to create a new business object, the user specifies the name of the business
object type that the user wishes to create and the name of the policy that will govern the business object.
For example, to create a new business object for the “XYZ2” brand tire, the user enters the business object
type name “Tire” and the policy type name “Tire Policy.” The system searches the Business Type table 62
in the administrative vault 50 for the OID associated with the business object type “Tire” (OID2). Once
the system has located the OID for the business object type “Tire”, the system uses the OID to determine
which attributes from the Attribute Type table 60 the new business object “XYZ2 tire” will have. The
process for determining which attributes are associated with a business object type was described above in
the discussion of FIGS. 3A and 3B. Similarly, the system searches the Policy Type table 64 in the
administrative vault 50 for the OID associated with the policy type name “Tire Policy” and uses this OID
to determine the policy and state requirements for the new business object “XYZ2 tire.”

The system assigns a unique OID to the new business object “XYZ2 tire” and creates a new entry
in the 1xOID table 130 and the Business Object table 136 for this OID. The system also creates entries in
the Attribute Instance table 146 and the State Instance table 154 for the new business object “XYZ2 tire”

using the information retrieved from the tables in the administrative vault 50. In one embodiment, the user

10

15

WO 99/13419 PCT/US98/18767

-16 -

is prompted to enter values for the different attributes associated with the business object. For example, in
creating the business object “XYZ2 tire” the user is prompted to enter values for radius, width and tread,
as these are the attributes associated with the business object type “Tire” (OID2). In another embodiment,
if the user does not enter a value for an attribute, a default value is entered by the system.

In another embodiment, to retrieve information regarding a specific business object, i.e., “XYZ1
tire”, the user enters the name of the business object. As described above, each business object has a
unique name. The system searches the Business Object table 136 in the user vault 52 for the OID
associated with the business object. For example, the system would search the Business Object table 136
in the user vault 52 for the OID associated with the business object name “XYZ1 tire” and find OID6.
Once the system has found the OID associated with the business object, the system may retrieve all the
information regarding the business object that is stored in the database (i.e., the radius, width and tread of
the XYZ1 tire).

Having described preferred embodiments of the invention, it will now become apparent to one of
skill in the art that other embodiments incorporating the concepts may be used. It is felt, therefore, that
these embodiments should not be limited to disclosed embodiments but rather should be limited only by the

spirit and scope of the following claims.

WO 99/13419 PCT/US98/18767

-17 -
CLAIMS

What is claimed is:

L. A method for managing data, comprising the steps of:

storing a separate data table in a relational database for each of a plurality of data types;

associating a first unique object identifier to a first object;

defining the first object using a plurality of data items, each of the plurality of data items being one

of the plurality of data types;
associating the first unique object identifier with each of the plurality of data items; and

storing each of the plurality of data items and the associated object identifier in respective ones of

the data tables according to data type.

2. The method of claim 1, further comprising the steps of:

defining the first object using an additional data item, the additional data item being one of the

plurality of data types;
associating the first unique object identifier with the additional data item; and

storing the additional data item and the associated object identifier in one of the data tables

according to data type.

3. The method of claim 1, further comprising the step of:

generating, subsequent to the storing of the plurality of data items, a representation of the first

object by collecting each data item having the first unique object identifier.

4. The method of claim 1, further comprising the steps of:
associating a second unique object identifier to a second object;

defining the second object using a plurality of data items, each of the plurality of data items being
one of the plurality of data types;

associating the second unique object identifier with each of the plurality of data items; and

storing each of the plurality of data items and the associated object identifier in respective ones of

the data tables according to data type.

S. A method for managing data, comprising the steps of:

10
11

WO 99/13419 PCT/US98/18767

-18 -

storing a separate data table in a relational database for each of a plurality of data types;

associating a unique object identifier to each of a plurality of objects;

defining each of the plurality of objects using a plurality of data items, each of the plurality of data
items being one of the plurality of data types;

for each of the plurality of objects, associating the unique object identifier associated with the

object with each of the plurality of data items defining the object; and
storing each of the plurality of data items and associated unique object identifiers in respective ones

of the data tables according to data type.

6. A method of building a hierarchy of objects in a relational database, comprising the steps of:
storing a separate data table in a relational database for each of a plurality of data types;
associating a unique object identifier to each of a plurality of objects;

defining each of the plurality of objects using a plurality of data items, each of the plurality of data

items being one of the plurality of data types;

for each of the plurality of objects, associating the unique object identifier associated with the

object with each of the plurality of data items defining the object;

storing each of the plurality of data items and associated unique object identifiers in respective ones

of the data tables according to data type; and

defining a relationship between selected ones of the plurality of objects to create a hierarchy of

objects.
7. An apparatus for managing data, comprising:
a first memory storing a first object and an associated object identifier; and

a second memory storing a separate data table in a relational database for each of a plurality of

data types;

wherein the first object is defined by a plurality of data items, each of the plurality of data items

being associated with a respective one of the plurality of data types; and

wherein each of the plurality of data items is stored in a respective one of the plurality of data

tables in association with the object identifier.

8. The apparatus of claim 7, further comprising:

N

WO 99/13419 PCT/US98/18767

-19 -
a processor in electrical communication with the first memory and the second memory, the

processor generating a representation of the first object by accessing each data item associated with the

object identifier.

9. The apparatus of claim 7 wherein the first memory further stores a second object and an indicia of

relationship with the first object.

WO

1

99/13419

PCT/US98/18767
1/6
1
Va 6 18
10
SERVER SERVER)
20
C ¢
d Ve
12 14
1
36
O= O
FIG. 1
MOUSE —
38 28
’ INPUT/
KEYBOARD | CENTRAL MAIN
: OUTPUT
e CONTROLLER PROCESSOR MEMORY
34
/
FIXED DISK |
40
S A
. DISPLAY | 26
. MONITOR ! .
FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US98/18767

2/6

WO 99/13419

(ge 'id) s319avL)
SLNIWZHINOTH OL Ve DOl

[a3.L37dWOD LONI HOLdIgos3al [09 aio 1 alo Aorod| [tooe atol diof [3dIL a3svITIH] JWVN L gioxw
[3.139dWOD] HOL1dig0s3d| [o9 alo] dio Aood| [oooe aiol alo|[3HiL a3S0dodd] InyNf— WOH

- N s\

901 bOL 201 101
7 @m (379v1l 3dAL JLVISl v AdAL vivd
(g€ oI aIoXw
J19v.L NOILYIWHOANI I
ADI10d WOHH [3dAL ADITOd] NOLLINIZ3A {[09 aio]l aio|[ADIN10Od S3HIL] NN [«— WOHd
06 88 8 (ge ‘OI4)
v9 [3719V.L 3dAL ADIT0Od] € 3dAL vivd J1g9vL
NOILYWHO4NI
a3anig3a oL
[3dAL SSaNisngl NOILINIA3a [98 —[z a0l alo] [3Yil] IWYN————~
(ge ‘oId) /0 9L 124 €L
J1gvl 29 [37gVv1 3dAL SS3INISNG] ¢ dAL Vivd
NOILYIWHOSNI
aanigaa wod4 [INvatooal NOLLINIZ3a 31ngidiLy | 0002 aiol alo | [av3ayll 3nvN
N [Mv3y] NOLLINIAZA 31LNgIH 1LY (e aiolalo| [HLaIM] GWVN«
2/ 93931NIT NOILINIZ3a 31ngidiLy [es—It aiol alo |lsniavyl ANVNe—| |)
0/ 89 /9
om\ [(3719V1 3dAL ILNgI”LLY] | 3dAL vivd
\ IdAL Vivd [uaiol alo
0S (31Ngidllv] 3dAL vivd [aiol alof
[ssaNisngl 3dAl vival98—[z aiol alo

[31ngiy11vi 3dAL vivales—[1 aiol aio

N\ _J

b 85 g9gvi aloxw 99

SUBSTITUTE SHEET (RULE 26)

PCT/US98/18767

WO 99/13419

3/6

ag ‘old

801

\ LS 4

dio

NOILINI43a
[ooo€ @10l

LN3WIHINO3Y
31V1S

3dAl 31VIS

pLL 2ll
37avl
INIWIHINDIY 3LVLS

oLl

alo
[oo0€ IOl
JdAl 3LVIS

all
(ve '9Id)
379v1 AdAL

dio
3dAl H3ISN

gl1

A «

31v1S NOHA

31avi
INIWIHINOIY FJHNLYNDIS

~

(ve 'OI4)

(NOILINI43Q 31V1S 40 alo) . dio

[LooE aI0] alO IdAL Vivad [31v1S] 3dAL vivalloo aiol 3dAL ADITOd

(NOILINI43Q 31V1S 40 QI0) alo

[000€ a10] QIO 3dAL Vival [31visl3dAL vivad(lo9 aiO] AdAL ADINOd

(123rgo a3Lv13d 40 dio) aio
[z 410l Q10 3dAL vivallss3anisngl 3dAL vivallos aiol 3dAL AOI10d 00}

i .

—

86 [/ % 6 (ye 019
26 379v.1 NOILLYWHOANI ADI10d 319v.L AdAL
ADIT70d WOYHA
(ve ©Id)
379v1 3dAlL
31NgI411V OL
(ve '©I4)
379v.L AdAL
JIV1S Ol
al0 3dAL alo
[000Z O] ILNAIHLLY | [av3dl] NOILINIZ3a |98—[2 AIO] 3dAL SSANISNE
aio 3dAlL aio
[@101 3LNAIH1ILY | [HLAIM] NOLLINIF3A (98~ [2 aI0] 3dAL SSANISNE
aio 3dAL aio
[1 gio] 3LnaigLLy | [sniavd]l NOLLINId3a 98—[2 al0] 3dAL SSANISNE v
e) 28 - 08 K
/ c8 (ve O14)
8. 319vL AdAL

3719v.L 3dAL 3LNEIHLLY Ol

319v1 NOILYINHOANI A3AIHEd

SS3ANISNg WOoY4

SUBSTITUTE SHEET (RULE 26)

PCT/US98/18767

WO 99/13419

4/6

¥ 'OId NOILYIWHOLNI aio . alo
v JONVLSNI| [t0ooe alo]l 3dAL 31viS | [9 alo] rdo SSANISNd
NOILYINHOLNI aio . aio
39NVLSNI| [ooog alol 3dAL 31vLS | [9 Al0] rd0 SSaNISNg
/091 861 9e1
719vL IONVISNI 31VL
¥G1 31gv.L 30 NI 3LV1S (Ve ‘BI1)
aio aio 1INVA
av3dl ON | [oooz aiol 31ngidliv|[9 dlo] ra0 SSANISNE .z___A_,__o<
alo aio
[s3HONI 561 3NTVA | [e alol 3LngigLly |19 @io]l rEO SSANISNE d18vi
aio aio AQI10d
[SaHONI 2€l INTVA [1 giol3LnaidLly ([9 @iol rgo SsSaNisng / ol
————>
/o esl 061 vl
oyl 319vL JONVISNI LNGIHLLY (Ve OI14)
1INVA
(3UIL 2 ZAX) |sa131d aniLvdLSININGY [[09 AIO] 3dAL ADIT0d |[2 alOl 3dAL @io (oot aiol alo \ NINaY
: ; " : 17 NI
: i — : 4 e 2
(3HIL 1L ZAX) |[SaT13d IAILVELSININGY [[09 a0l 3dAL ADIOd [[z alol 3dAL aio| [9 aioldio AdAL
. - >3 - N . % p— SS3aNisNg
44! ad! ovl gcl ol
@m_ 379vL 103rdo SS3INISNg
(3HIL 1ZAX-9 AIO) IdAL
[193rgo ssaNisngdl vival [9 aiol alo

-

(

oEl

pel

31av. aloXl 2El

(43sn) LINVA

o

SUBSTITUTE SHEET (RULE 26)

PCT/US98/18767

5/6

WO 99/13419

A

G Old [4393LNI] NOLLINIAAa | [1ooz aiol alo | [HL33L] IWVYN

h

[NvI1008] NOLLINI43a [[oooz alol aio | [av3di]l INVN
[H3ID3ILINI] NOILINI43d [t aio]l aio | [sniavyd] IWYN
om 37av.L 3dAL 3LNAIHLLY

/T

LN]
(XX)
(XX]

h

al0 3dAL aio
[1to0z @0l 3LNgIHLLY [H1331] NOILINI43A |[z005 AIO] IdAL SSANISNG

alo 3dAL alo
[oo0z @i0] 3LNgId1lY [av3ad 1] NOLLINIZ3A][100S AIO] 3dAL SSANISNG[\
alo

al0 3dAL
[1 Q0] 3LNgIHLLY [sniavyd] NOILINIZ3A |[000s dlo] 3dAL SSANISNG[T\

SUBSTITUTE SHEET (RULE 26)

mm T7av1 NOILYWHOSNI a3AIH3a
[000S a10] 410 IN3HYd | NOILINI43a |[200S Al0] i EEVERIENN
A [000S @10] Al0 1N3dvd | NOILINIZ3a |[+o0s a0l dlo [(3H1L] INVYN
qio LN3uvd | NoILINI3a [[ooos alol alo {[1o3rao annod] InvN
N —~ ; —x —— — = = -

.C9 3719v.L 3dAL SS3ANISNY

PCT/US98/18767

WO 99/13419

6/6

9 'HI4
3719v1 1L03rgao 318v.l 103rgo aioxi Wod4
LINVAXW OL gSINISNG 01 1INVAXw Ol SS3ANISNg OL /
A N N N
10 123rgo : h.w__o 103rg0 A \
aio 11nvA |le aiol ssanNisng | (3dAL dIHSNOLLY'13H
aio 1nvA | [ool aiol Ss3aNIsng NOL Y 38 0, alo1ai0
aio o1 dlo Wo4d4
2Ll) 071 891 991

91 379v1 103rdo dIHSNOILY13d

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

int ional Application No

PCT/US 98/18767

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system foliowed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X BEECH D ET AL:

COMPUTER
vol. 13,
221-230,
see page
3 - page
5

no. 1
XP000288495

X US 5 295 256 A (BAPAT SUBODH)
15 March 1994
see abstract

38; claims; fiqures 6,14-17,27

"OBJECT DATABASES AS
GENERALIZATIONS OF RELATIONAL DATABASES"
STANDARDS AND INTERFACES,

03, 1 January 1991, pages

224, left-hand column,
226, left-hand column,

see column 10, 1ine 36 - column 12, line

1-9

paragraph
paragraph

1-9

-/

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particutar relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the pubiication date of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosurs, use, exhibition or
other means

"P" document published prior to the intemational filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X" document of particular relevance; the claimed invention

cannot be considered novel or cannot be considered to
invoive an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent tamily

Date of the actual completion of the international search

14 January 1999

Date of mailing of the international search report

21/01/1999

Name and mailing addrass of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Fournier, C

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Int ional Application No

PCT/US 98/18767

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A EP 0 529 844 A (SUN MICROSYSTEMS INC)

3 March 1993

see column 2, line 45 - column 4, line 11;
figures 3-7A

A REINWALD B ET AL: "STORING AND USING
OBJECTS IN A RELATIONAL DATABASE"

IBM SYSTEMS JOURNAL,

vol. 35, no. 2, 1 March 1996, pages
172-190, XP000594128

see page 174, left-hand column, line 12 -
right-hand column, line 9

1-9

1,3-9

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent tamily members

In

ional Application No

PCT/US 98/18767

Patent document

Pubiication Patent family Publication
cited in search report date member(s) date
US 5295256 A 15-03-1994 NONE
EP 0529844 A 03-03-1993 us 5261098 A 09-11-1993
JP 6324877 A 25-11-1994

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

