发明名称
一种提高单壁碳纳米管在水溶液中分散性的方法

摘要
本发明属于材料化学领域，具体涉及一种提高单壁碳纳米管在水溶液中分散性的方法，具体步骤如下：将单壁碳纳米管纯化样品分散于乙醇的水溶液中，超声分散，让样品均匀悬浮于溶液中；采用液氮作为冷却介质，将所得的溶液快速冷却，持续供给冷却介质保证样品的冷却温度达到-50℃至-190℃；常温常压下，将所得的固体样品放置于高速冷却旋转的封闭装置，转速为22500转/分钟，时间为1分钟，上述粉碎过程重复1～7次；对所得的样品进行过滤、干燥，最后得到水溶性较好的单壁碳纳米管水溶液。本发明在常温常压下采用物理方法，处理过程对单壁碳纳米管的结构未发生破坏，采用乙醇，原料简单易得，对环境无污染；且工艺简单，易于处理，适于商业化生产。
1. 一种提高单壁碳纳米管在水溶液中分散性的方法，其特征在于具体步骤如下：
 (1) 将单壁碳纳米管溶解于乙醇的水溶液中，超声分散，让碳纳米管均匀悬浮在溶液中；
 (2) 采用液氮作为冷却介质，将步骤 (1) 所得的溶液冷却，持续供给冷却介质保证碳纳米管的冷却温度达到 -50℃ 至 -190℃；
 (3) 常温常压下，将步骤 (2) 所得的固态产物放置于高速刀片旋转的封闭装置，进行粉碎处理，控制转速为 22500 转 / 分钟，时间为 1 分钟，粉碎过程重复 1-7 次；
 (4) 对步骤 (3) 所得的产物进行过滤、干燥，得到水溶性较好的单壁碳纳米管水溶液。
2. 根据权利要求 1 所述的提高单壁碳纳米管在水溶液中分散性的方法，其特征在于步骤 (1) 中所述超声分散时间为 10-30 分钟。
一种提高单壁碳纳米管在水溶液中分散性的方法

技术领域
[0001] 本发明属材料化学领域，具体涉及一种提高单壁碳纳米管在水溶液中分散性的方法。

背景技术
[0002] 近年来，随着单壁碳纳米管（SWCNT）制备技术的不断发展，单壁碳纳米管大批量、规模化生产已经成为可能，单壁碳纳米管产量的不断增加，生产成本的不断下降，为其大规模应用提供了可能。目前制约单壁碳纳米管器件及单壁碳纳米管复合材料应用的障碍是其分散性与基体材料相容性的问题。单壁碳纳米管表面缺陷少、缺乏活性基团，在各种溶剂中溶解度低。单壁碳纳米管之间由于存在较强的范德华力加之单壁碳纳米管巨大的比表面积和很高的长径比，易于团聚或缠绕，严重影响单壁碳纳米管的应用。

[0003] 如何通过表面处理实现碳纳米管的高分散并改善其与其它功能和结构材料的相容性，成为推进碳纳米管实用化的关键课题。目前提高单壁碳纳米管在溶液中分散性主要通过以下两种方法：表面官能团的修饰改性和表面活性剂的添加。碳纳米管的共价化学改性发明是从氧化剂对碳纳米管的化学切割开始的。虽然碳纳米管的共价化学改性在碳纳米管分散及表面改性方面取得了很大的进展，但这类功能化方法是直接与 SWCNT 的石墨晶格结构作用，以破坏 SWCNT 功能化位点的 sp² 结构为代价，对 SWCNT 的电子特性造成一定程度的破坏，对于 SWCNT 的应用非常不利。而非共价功能化的专利不会对 SWCNT 的结构造成破坏，而可以得到结构保持完好的功能性碳纳米管，利用表面活性剂（SAA）超声分散是目前采用较多的非共价键功能化的方法。Jimenez L. L. 等分别用两种阴离子表面活性剂（十二烷基硫酸钠（SDS）和十二烷基苯磺酸钠（SDBS））溶液经 HNO₃/H₂SO₄ 纯化后的多壁碳纳米管。通过显微镜观察，包含 1% 质量分数的碳纳米管 SDS 溶液大量团聚，而 0.1% 质量分数碳纳米管的 SDS 溶液，几乎没有团聚现象。碳纳米管在 SDBS 中的分散现象与在 SDS 中相类似。采用表面活性剂改性方法，虽然不会破坏碳管的结构，可是由于其表面附着表面活性剂，存在引入新物质的问题，对 SWCNT 后期应用会产生诸多不利的影响。因此，克服以上两种常规方法的缺点，提出一种新的提高单壁碳纳米管在水溶液中分散性的方法十分必要。

发明内容
[0004] 本发明目的在于针对目前提高单壁碳纳米管在水溶液中分散性技术中的不足，提出一种简单易行的提高单壁碳纳米管在水溶液中分散性的方法。
[0005] 本发明的内容是一种提高单壁碳纳米管在水溶液中分散性的方法，具体步骤如下：
[0006] (1) 将单壁碳纳米管溶解于乙醇的水溶液中，超声分散 10~30 分钟，让碳纳米管均匀悬浮在溶液中；
[0007] (2) 采用液氮作为冷却介质，将步骤 (1) 所得的溶液冷却，持续供给冷却介质保证
碳纳米管的冷却温度达到 -50℃ 至 -190℃；

【0008】（3）常温常压下，将步骤（2）所得的固态产物放置于高速刀片旋转的封闭装置，进行粉碎处理，控制转速为 22500-50000 转 / 分钟，时间为 1-5 分钟，粉碎过程重复 1-7 次；

【0009】（4）对步骤（3）所得的产物进行过滤、干燥，得到水溶性较好的单壁碳纳米管水溶液。

【0010】本发明中，步骤（1）中所述超声分散时间一般为 10-30 分钟。

【0011】本发明的优点在于：

【0012】（1）本发明在常温常压下采用物理方法，在不改变单壁碳纳米管结构和表面状态的前提下，实现单壁碳纳米管在任何表面官能团修饰和表面活性剂改性处理下分散性的提高。目前对于单壁碳纳米管提高其分散性方法主要有两种途径：表面官能团修饰改性和表面活性剂改性对于单壁碳纳米管的应用都存在一些缺陷：单壁碳纳米管的表面修饰不可避免的会改变单壁碳纳米管的电学性能和机械性能；表面活性剂的改性虽然不存在上述问题，但是在提高单壁碳纳米管分散性的同时，再次引进了杂质，存在二次去除的问题。本方法成功地解决了目前单壁碳纳米管在水溶液中分散性提高中所存在的问题，采用简单的低温冷冻的方法成功的获得水溶性良好的单壁碳纳米管溶液。

【0013】（2）本发明实施过程中仅采用常规化学试剂乙酸，原料简单易得，成本低廉，对环境无污染，适于商业化生产。

【0014】（3）本发明实施过程工艺简单、易于处理，处理过程对单壁碳纳米管的结构未发生破坏，产率高、设备简单，可以连续化操作，适于水溶性单壁碳纳米管的低成规模连续生产。

具体实施方式

【0015】下面的实施例是对本发明的进一步说明，而不是限制本发明的范围。

【0016】实施例 1

【0017】将单壁碳纳米管纯化样品溶解于乙醇溶液中，超声分散 10min，尽可能的让样品均匀悬浮在溶液中。采用液氮作为冷却介质，进行快速冷却，持续供给冷却介质保证样品的冷却温度为 -190℃。常温常压下将固态样品放置于高速刀片旋转的封闭装置，转速为 22500 转 / 分钟，进行高速粉碎，时间为 1min，上述过程重复 5 次。最后对样品进行过滤、干燥，最后得到水溶性较好的单壁碳纳米管样品。粒度分析仪测试结果显示单壁碳纳米管在溶液中分散的颗粒度由处理前的 45.7 μm 减小到 11.3 μm。

【0018】实施例 2

【0019】将单壁碳纳米管纯化样品溶解于乙醇的水溶液中，超声分散 10min，尽可能的让样品均匀悬浮在溶液中。采用液氮作为冷却介质，进行快速冷却，持续供给冷却介质保证样品的冷却温度为 -190℃。常温常压下将固态样品放置于高速刀片旋转的封闭装置，转速为 22500 转 / 分钟，进行高速粉碎，时间为 1min，上述过程重复 5 次。最后对样品进行过滤、干燥，最后得到水溶性较好的单壁碳纳米管样品。粒度分析仪测试结果显示单壁碳纳米管在溶液中分散的颗粒度由处理前的 45.7 μm 减小到 166.9nm。

【0020】实施例 3

【0021】将单壁碳纳米管纯化样品溶解于乙醇的水溶液中，超声分散 20min，尽可能的让样品均匀悬浮在溶液中。采用液氮作为冷却介质，进行快速冷却，持续供给冷却介质保证样
品的冷却温度为 -190℃。常温常压下将固态样品放置于高速刀片旋转的封闭装置，转速为22500 转/分钟，进行高速粉碎，时间为 1min，上述过程重复 7 次。最后对样品进行过滤，干燥，最后得到水溶性较好的单壁碳纳米管样品。粒度分析仪测试结果显示单壁碳纳米管在溶液中分散的颗粒度由处理前的 45.7 μm 减小到 159.3nm。

【0022】实施例 4

【0023】将单壁碳纳米管纯化样品溶解于乙酸的水溶液中，超声分散 30min，尽可能的让样品均匀悬浮在溶液中。采用液氮作为冷却介质，进行快速冷却，持续供给冷却介质保证样品的冷却温度为 -100℃。常温常压下将固态样品放置于高速刀片旋转的封闭装置，转速为 22500 转/分钟，进行高速粉碎，时间为 1min，上述过程重复 5 次。最后对样品进行过滤，干燥，最后得到水溶性较好的单壁碳纳米管样品。粒度分析仪测试结果显示单壁碳纳米管在溶液中分散的颗粒度由处理前的 45.7 μm 减小到 15.46 μm。

【0024】实施例 5

【0025】将单壁碳纳米管纯化样品溶解于乙酸的水溶液中，超声分散 10min，尽可能的让样品均匀悬浮在溶液中。采用液氮作为冷却介质，进行快速冷却，持续供给冷却介质保证样品的冷却温度为 -50℃。常温常压下将固态样品放置于高速刀片旋转的封闭装置，转速为 22500 转/分钟，进行高速粉碎，时间为 1min，上述过程重复 5 次。最后对样品进行过滤，干燥，最后得到水溶性较好的单壁碳纳米管样品。粒度分析仪测试结果显示单壁碳纳米管在溶液中分散的颗粒度由处理前的 45.7 μm 减小到 17.05 μm。