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VISIBLE SURFACE DETERMINATION SYSTEM & METHODOLOGY IN
COMPUTER GRAPHICS USING INTERVAL ANALYSIS

This is a regular application filed under 35 U.S.C.
§1ll(a) claiming priority under 35 U.S.C. §119(e) (1), of
provisional application Serial No. 60/426,763, having a filing

date of November 15, 2002.

TECENICAL, FIELD
The present invention generally relates to computer
imaging or graphics, more particularly, to the field of
photorealistic image synthesis wutilizing interval-based
techniques for integrating digital scene information in
furtherance of constructing and/or reconstfucting an image of
the digital scene, and/or the construction‘of aﬂ imagé based

solely on mathematical‘fofmulae.

BACKGROUND OF THE INVENTION
Photorealism for éémpﬁter;géﬁéfated scenes, that is to
say, the productioh’of a éompﬁter—génerated scene tﬁat is
indistinguishable‘from a phofograph‘of‘the actﬁél sbene, as
for instance, the elimination of aliasing, feméins the “holy
grail” for computer graphic artisans. So much so that Jim
Blinn has proclaimed: “"Nobody will ever solve the antialiasiﬁg

problem,” emphasis original, Jim Blinn, Jim Blinn’s Cornerxr

Notation, Notation, Notation, 2003, p. 166. In furtherance of

a general appreciation and understanding the single most
important obstacle to photorealism, i.e., the antialiasing

problem, an overview of heretofore known image synthesizing
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processing, beginning with the notion of rendering, must be
had.

Rendering is the process of reconstructing a three-
dimensional visual scene as a two-dimensional digital image,
with the fundamental components thereof being geometry and
color. A camera that takes a photograph is one example of how
a two-dimensional image of the natural three-dimensional world
can be rendered. The well-known grid technique for drawing
real world images is another example of how to translate real
world images into two-dimensional drawings. A stick is used as
the reference point for the artist's viewing position, and the
artist looks through a rectangular grid of twine into a scene

1

behind the grid. The papér fhe artist dfawé onlislalsd di%ided
into rectangular cells. The artiétvcaréfully‘eobies only what
is seen in a given cell in 4the‘ grid of twine onto the
corresponding cell on the paper.

The process of rendering a digital scene inside é
computer is very similar. Where the artiét cieateé a péper
drawing, the computer creates a'digital image. The artist's
paper is divided into rectangdlar cellé, and a digital image
is divided into small fectangles called pixels. Unlike the
rectangular cells on.the artist's paper, a pixel may only be
shaded with a single éolor.‘A typical éomputer generated image
used by the modern motion picture indﬁstry is formed of a

" rectangular array of pixels 1,920 wide and 1,080 high. Because

each pixel can only be shaded a single coloxr, the realism of

a digital image is completely determined by the total number
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of pixels in the image and by how accurately the computer
computes the color of each pixel.

To determine the color of a pixel, a computer must “look”
through the rectangular area of the pixel, much like the
artist looks through a rectangular cell in the grid of twine.
While the artist looks through the grid into the natural
world, the computer has access to a digital scene stored in
memory. The computer must determine which parts of the digital
scene, if any, are present in the rectangular area of a pixel.
As in the natural world, objects in the foreground of the
digital scene occlude objects in the background. All non-
occluded parts of the digital scene that are present in the
rectangular area of a pixel belong to the visible solution set
of the pixel. The method of finding the visible solution set
of a pixel 1is called visible surface determination; voﬁce
visible surface determination is complete, the visible
solution set can be integrated to yield a single‘color value
that the pixel may be assigned.

Many modern rendering péogréms sample the.rectangular
area (i.e., two dimensional boundary) of a pixel with points.
This method, known as point sampiing, is used to combute an
approximate visible solution set for a pixel. A point-sample
is a ray that starts at the viewing position and shoots
through a location within the pixel into the séene. The color
of each point sample is coﬁputed by intersecting objects in
the scene with the ray, and determining the color of the
object at the point of intersection. If several points of

intersection exist between the ray and the objects of, or in
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the scene, the visible intersection point is the intersection
closest to the origin of the ray. The final color of the pixel
is then determined by filtering a neighborhood of point
samples.

A wide variety of point-sampling techniques are known and
are pervasive in modern computer graphics. A broad class of
algorithms, collectively called global illumination, simulates
the path of all light in a scene arriving at a pixel via the
visible points of intersection. For example, additional rays
can be shot from each visible point of intersection into the
scene, this type of global illumination algorithm is often
called ray tracing (i.e., an image éynthesizing technique
using geometrical optics And tays to evaluate recuisiVe
shading and visibility). The intersection points of these
additional rays are integrated into a single color value,
which is then assigned to the visible point sample. Another
class of algorithms that compute the color of a sample without
the use of additional rays is called local illumination.
Popular examples of local illumination are simpie'ray—casting
algorithms, scan-line algorithms, and the ubiduitous z-buffer
algorithm. It is commén to find local illumination algorithms
implemented in hardware because the results require less
computational effort. Lbcal iliumination,'howéver, typically
does not provide the level of quality and realism found in the
global illumination algorithms.

RenderMan® is the name of a software program created and
owned by Pixar that allows computers to render pseudo life-

like digital images. RenderMan, a point-sampling global

-4



WO 2004/046881 PCT/US2003/036836

illumination rendering system and subject of U.S. Pat. No.
5,239,624, is the only software package to ever receive an
Oscar® award from the Academy of Motion Picture Arts and
Sciences. RenderMan clearly represents the current state of
the art in pseudo-realistic point sampling software. On the
other end of the spectrum, game consoles such as Sony
PlayStation® or Microsoft X-Box® clearly do not exhibit the
quality of realism found in RenderMan, but these hardware-
based local illumination gaming appliances have a tremendous
advantage over RenderMan in terms speed. The realistic frames
of animation produced by RenderMaﬁ take houré,'even days, to
compute, whereas the arcade-style graphics of gaming
appliances are rendered at a rate of severall frémes ?er
second.

This disparity or tradeoff between speed and realism is
typical of the current state of computer graphics. The nature
of this disparity is due to the point-sampling techniques uéed
in modern rendering implementations. Because each pixel can
only be assigned by a single color, tHe:“realiém” of é aigital
image is completely determined by the total number of pixels,
and by how accurately a computer chooses the color of each
pixel. With a point-sampling algorithm, the most common method
of increasing the accuracy of thé computation is to increaée
the number of point samples. RenderMan and ray tracing
programs, for example, use lots of point samples for each
pixel, and so the image appears more realistic. Hardware

implementations like X-Box, on the other hand, often use only
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a single point sample per pixel in order to be able to render
the images more quickly.

Although point sampling is used almost exclusively to
render digital images, a fundamental problem of point sampling
theory 1is the problem of aliasing, caused by wusing an
inadequate number of point samples (i.e., an undersampled
signal) to reconstruct the image. When a signal is
undersampled, high-frequency components of the original signal
can appear as lower frequency components in the sampled
version. These high frequencies assume the alias (i.e., false
identity) of the low frequencies, because after sampling these
different phenomena cannot be distinguished, with visual
artifacts not specified‘ in the scene appearing in the
reconstruction of the image. Such artifacts appear when the
rendering method does not compute an accurate approximation to
the visible solution set of a pixel.

Aliasing 1is commonly categorized as “spatial” or
“temporal.” Common spatial alias artifacgs includekjagged
lines/chunky edges (i.e., “jaggies,”), or'missing‘objects. In
spatial aliasing the artifacts are borne of the uniform nature
of the pixel grid, and are independent of resolution. A “use
more pixels” strategy is not curative: no méttér héw clésély
the point samples are packed, they will, in the case of
jaggies, only make them smaller, and in the case of‘missing
objects, they will always/inevitably miss a small object or a
large object far enough away. Temporal aliasing is typically
manifest as jerky motion (e.g., “motion blur,” namely, the

blurry path left on a time-averaged image by a fast moving
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object: things happen too fast for accurate recordation), or
as a popping (i.e., blinking) object: as a very small object
moves across the screen, it will infrequently be hit by a
point sample, only appearing in the synthesized image when
hit. The essential aliasing problem is the representation of
continuous phenomena with discrete samples (i.e., point
sampling, for example, ray tracing).

Despite the fact that rigorous mathematical models for
the cause of aliasing in point-sampling algorithms have been
well established and understood for years, local and global
illumination algorithms based on point sampling continue to
suffer from visual artifacts due to the aliasing problem. A
tremendous amount of prior art in the field ‘of computer
graphics deals explicitly with the problém of aliasiﬁg.

Increasing the nﬁmbei of point samples to improve reéiiém
and avoid aliasing is not a viable solution because it simply
causes the aliasing to occur at higher frequencies in the
image. In fact, the current literature available oﬁ computer
graphics seems to indicate that point sampling techniques have
reached their practical limits in terms of spéed and realism.
Increasingly elaborafe énd sophisticated probabilistic and
statistical point sampling techniques are beinglinveétigated
to gain marginal improvements in the realism of global
illumination. Advances in point-sampling hardware aré being
used to improve the speed of local illumination techniques;
but even with unlimited hardware speed, the best that can be
hoped for is that hardware systems will some day be able fo

generate images of the same quélity as existing global

.
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illumination algorithms which still suffer from aliasing
problems caused by point sampling. While tremendous advances
have been made in the realism and speed by which two-
dimensional images of digital scenes are rendered, there is a
continuing need to further improve the speed and realism of
rendering of digital image reconstruction in furtherance of

photorealistic image synthesis.

SUMMARY OF THE INVENTION

The present invention provides a system and attendant
methodology for digital image reconstruction using interval
analysis. This image recdnsfruction system, rather than
refining the work of others, abandons that work. That is to
say, heretofore known point sampling techniques and point
arithmetic are discarded in lieu of the subject approach to
reconstructing two-dimensional digital images of a three
dimensional representation of a visual scene or an actual,
tangible three dimensional object. Integral to the subject
invention is the use of an area analysis framework instead of
conventional point sampling to compute accurately and
deterministically, the visible solution set of a pixel énd to
integrate its color.

Preferred embodiménts of the subjecf in&enfion, more
particularly the system, provide several advantages over
conventional rendering techniques. Most modern ray tracing
algorithms only support geometric primitives of a low degree
such as planes, triangles, spheres, and quadrics because the

methods commonly wused to find the visible ©point of
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intersection between a point-sampling ray and the primitive
are numerically wunstable for higher degree functions.
Moreover, because it has been heretofore impossible to compute
in an accurate and deterministic manner the visible solution
set of a pixel using traditional point-sampling techniques,
undesirable aliasing must appear on reconstructed images using
conventional point-sampling. Prior strategy has been the
reduction of aliasing, not the elimination of aliasing.

In the context of the subject invention, the visible
solution set of a pixel 1is determined through interval
analysis, since traditional point-based numerical analysis
cannot “solve” such éomputational probleﬁs to a degree of
imperceptible aliasing. Unlike pdint sampliﬂg techniques,
interval analysis guarantees acéuracy to a user—speéified
level of detail when cémpufing the color of a pixel. In fact,
it is possible to eliminate aliasing to the extent of hardware
precision or to any user—definéd precision above that
threshold. Taken together, these benefits facilitate a new
framework of scalable rendering, where speed and realism are
no longer competing forces in the rendering process, and users
can easily adjust the parameters of the rendering algorithm to
define a ratio of speéd and realism tﬁat suits their specific
needs.

Given the above advantages, preferred embodiments of thé
system may be used with any general form of projection. For
example, by representing RGB (red-blue-green) coloration as
three intervals rather than three points, a process for

automatic adaptive resolution is possible, i.e., the dimension
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of a more and more refined rendering interval can be compared
to the fidelity of the rendering machine to adaptively stop
rendering smaller intervals once an optimum presentation has
been obtained. The system is a massively parallel and scalable
rendering engine, and therefore useful for distributing across
servers in a network grid to optimally create more realistic
images from a scene database, or for implementing in a
graphics accelerator for improved performance. Moreover, still
images or video images may be more efficiently broadcast to
remote clients as the interval analysis methods operate
directly on the mathematical functions that describe a scene
as opposed to a piecewise geometric or tesselated model of the
scene, thus providing efficient data compaction for
transmission over limited bandwidth connections.

With preferred embbdiments of the system, an’entire scene
can be loaded on each computer‘éonnected to an output device
and synchronously display an image either by sequeﬁtially
displaying data from each computer, displaying aisjoint pieces
from each computer, or a combination of both. The syétem cén
casually seek edges of objects or transitional areas, i.e.,
areas with increésed le%els of infofmation to concentrate the
rendering effort. Convergence to the proper visible solutidn
set of a pixel is a determiﬁistic operation which exhibits
quadratic convergence. This is in contrast to point-sampling
methods which are probabilistic and exhibit logarithmic
convergence.

As suggested, interval analysis methods are used to

compute tight bounds on digital scene information across one
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or more functions or dimensions. For example, the digital
scene information will typically contain dimensions of space,
time, color, and opacity. In addition, other dimensions, such
as temperature, mass or acceleration may also exist. According
to one aspect of the present invention, interval consistency
methods are used to compute tight bounds on the visible
solution set of a pixel for each dimension that is specified,
and according to further aspect of the present invention,
interval consistency methods are used to compute tight bounds
on the visible solution set of a hemisphere subtending a
surface element in the digital scene.'Integrating the visible
solution set over the hemisphere for each dimension that is
specified yields a solutionlto the irradiance function, which
can be used to compute global illumination effects, such as
soft shadows and blurry reflections.

Additional items, advantages and features of the various
aspects of the present 1nventlon w1ll become apparent from the
description of its preferred embodiments, which description

should be taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of the well—known grld
technique by which an artist makes a perspective draw1ng of a
scene;

FIG. 2 1is a schematic diagram of the operation of
computer graphic process using an existing point-sampling
process;

FIG. 3 is a block diagram of a typical computer graphic
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process of rendering a digital image;

FIG. 4 —represents a variety of spatial notions
fundamental to image synthesis;

FIG. 5 is a representation of hemispherical coordinates,
integral to global illumination assessment;

FIGS. 6(a)-6(f) are pictorial representations of the
results of using the point-sampling approach of FIG. 3;

FIGS. 7(a)-(c) illustrate filtering techniques for point
sampling methods;

FIGS. 8(a)-8(f) are pictorial representations of the
results of using a modified stochastic point-sampling method
in the process of FIG. 3; |

FIG. 9 is a depiction showing the tradeoff between speed
of rendering and realism of an image;

FIG. 10 is a schematic representation of the
photorealistic image synthesis‘ method of ‘the subject
invention;

FIG. 11 is a reprééentation as FIG. 10, wherein an
exemplary system, and corresponding display are shown;

FIG. 12 is a static unified model language representation
of the content of FIG. 10;

FIG. 13 is a temporal wunified model language
representation of the solvers of FIG. 12;

FIGS. 14-18 are schematic depiction of the work flow of
the solvers of FIG. 13, namely, SCREEN, PIXEL, COVERAGE, DEPTH, and
IMPORTANCE ;

FIGS. 19(a)-19(f) are pictorial representations of the

operétion of an interval set technique for rendering in
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accordance with the present invention; and,
FIG. 20 is a depiction of importance filtering in the

context of the importance function of FIG. 18.

DETATLED DESCRIPTION OF THE INVENTION

The present invention abandons existing point sampling
techniques, and instead provides a system and attendant
methodology for reconstructing two-dimensional digital images
of a three dimensional digital representation of a visual
scene, a process referred to as rendering, so as to
photorealistically synthesize images. In furtherance of
detailed invention development, a rendering framework is
preliminarily outlined.

FIG. 1 shows a classic example of how a renaissance
artist uses the well-known grid technique to translate real
world images into two-dimensional drawings. An artist 20 uses
a stick 22 as the reference point for the artist's viewing
position. The artist 20 looks through the cells 24 created by
a rectangular grid of twine 26 into a scene 28 behind the
grid. A drawing paper 30 on which the artist 20 will render a
two-dimensional representation of the scene 28 is divided into
the same number of rectangular cells 32 as there are cells 24.
The artist carefully copies only what is seen in a given cell
24 in the grid of twine 26 onto the corresponding cell 32 on
the paper 30.

This grid technique is the real world analogy to the
computer graphic process that forms the basis of modern day

digital graphics. FIG. 2 shows the overall process of how a
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computer graphics system 40 turns a three dimensional digital
representation of a scene 42 into multiple two-dimensional
digital images 44. Just as the artist uses the cells 24 and 32
to divide the representation of an entire scene into several
smaller and more manageable components, the digital graphics
system 40 divides an image 44 to be displayed into thousands
of pixels 50 in order to digitally display two-dimensional
representations of three dimensional scenes. A typical
computer generated image used by the modern motion picture
industry, for example, is formed of a rectangular array of
pixels 1,920 wide and 1,080 high. In a conventional digitai
animation process, for example, a ﬁodeler 41 defines geometric
models 43 for each of a series of objects in a scene. A
graphic artist 45 adds liéht, color and texture features 46 to
geometric models of each object and an animator 47 then
defines a set of motions and dynamics 48 defining how the
objects will interact with each other and with light éources
in the scene. All of this information is then collected and
related in the scene database 42. A render farm 49 compriséd
of multiple servers then utilizes the scene database to
perform the calculations necessary to color in each of the
pixels 50 in each frame 44 that are sequenced together to
create the illusion of motion and action of the scene. Unlike
the rectangular cells 32 on the artist's paper 30, a pixel 50
may only be assigned a single color.

With reference to FIG. 3, like the artist via the viewing
position 60, the system 40 of FIG. 2 simulates the procesé of

looking through a rectangular array of pixels into the scene
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from the artists viewpoint. Current methodology uses a ray 62
that starts at the viewing position 60 and shoots through a
location within pixel 50. The intersection of the ray with the
pixel is called a point sample. The color of each point sample
of pixel 50 is computed by intersecting this ray 62 with
objects 64 in the scene. If several points of intersection
exist between a ray 62 and objects in the scene, the visible
intersection point 66 is the intersection closest to the
origin of the viewing position 60 of the ray 62. The color
computed at the visible point of intersection 66 is assigned
to the point sample. If a ray does not hit anylobjects in the
scene, the point sample is simply aésignéd a default
"background" color. The final color of the pixel is then
determined by filtering a neighborhood of poinf samples.
Prior to any further development or discussion of
traditional point-sampling methods,  some fundamental
understanding of a scene object, more particulérly, its
quality or character, will facilitate an appréciation of the
problem at hand. The curves and/or surfaces that are used in
computer graphics are all derived from various types of
mathematical equations. Plug values in the variables of the
equations, and they identify which points are on the object,
and all the rest are not. For the most part, primitives, that
is to say simple solid shapes, have é position énd'orientétion
initially set within the primitives local coordinate system
(i.e., model space), as appreciated by reference to FIG. 4
wherein there is depicted the primary notions of space, i.e.,

model space 66, world space 68 and camera space 70. In some
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modeling systems, an initial untransformed primitive is
presented having unit dimensions, and is most conveniently
positioned and aligned in its own local coordinate/model
system. For example, a primitive sphere would have a radius of
one with its center at the origin of its local/model
coordinate system; the modeler would then specify a new center
and radius to create the desired specific instance of a sphere
in the world coordinate system (i.e., space) or the scene
(i.e., camera space).

As to the surfaces of scene objects, there are three
types of equations which provide the basis for computer
graphics geometric primitives: explicit, implicit, and
parametric. An explicit équation is one that’evaluates oﬁe
coordinate of the position of the object from the values of
the other coordinates (e.g., z = 2x 4-‘y is the ekplicit
equation for a plane). Characteristic of the explicit equation
is that it only has one result value for each set of input
coordinates.

An implicit equation is one in which certain values of
input coordinates satisfy an equation: surface (x, yr z) = 0.
Points that satisfy the equation are “on” the primitive, while
others that do not are “not on” the primitive. The points
that are generated by complex implicit equations are not
always connected, they can be isolated points or small
isolated regions that satisfy the equation.

A parametric surface is a surface generated by a system
of equations with two or more variables: p = surface(u, v).

For example, a sphere may be generated by the following
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parametric equations:

X = cos(0)cos ()
Y = sin(0)cos (o)
Z = sin (o)

For the most part, the value of a parametric system is
believed to be two-fold. First, because parametric equations
can be evaluated directly, any point on the “object” may be
computed by plugging in values for the parameters. It is easy
to generate a few points that are on the surface and then, as
heretofore done, approximate the rest of the surface by linear
approximation or some other iterative process. (i.e.,
tesselation). Second, because the system effectively converts
a two-dimensional pair of parametric coordinates into three-
dimensions, the surface has a natural two-dimensional
coordinate system, thereby making it easy to map other two-
dimensional data onto the surface, the moét obvious exaﬁple
being texture maps.

Returning again now to the notion of ray tracing, in
traditional point-sampling methods, a ray 1s defined
parametrically as:

r(t)= at + b,
wherein a and b are vectors and t is scalar, r(t) thereby
being a vector. Points on the ray are defined for t = [0, +
©], where b is the origin of the ray and a is its direction.
In the general case, surfaces in the scene are represented as
the zero set of a vector-valued implicit function:
G(x)= 0
Determining the visible point of intersection between the ray

and the implicit function reduces to finding the smallest
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positive root of the univariate equation:
G(r(t))= 0

The roots of this equation can be computed algebraically for
linear, quadratic and cubic functions, and this is the reason
for the ubiquitous use of planes, triangles, spheres and
quadrics as the geometric primitives of choice in modern ray
tracing algorithms. Numerical analysis, including bisection
methods or Newton's method, must be used to find the roots of
functions of higher degree. Such methods are numerically
unstable for functions of high degree, and there are no point
analysis methods that can guarantee a solution by finding all
the roots, or even the proper roots, of such functions. This
is why most modern ray tracing algorithms only support
geometric primitives of low degree and more complex objects
are tesselated into simpler geometric primitives.

In photorealistic rendering, it is desirable to work with
functions defined over a hemisphere 72 centered around an
oriented surface point 74 (FIG. 5). A hemisphere consists of
all directions in which a viewer can look when positioned at
the oriented surface point: a viewer can look from the horizon
all the way up to the zenith, and all around in 1800. The
parameterization of a hemisphere is therefore a two-
dimensional space, in which each point on the hemisphere
defines a direction. |

Spherical coordinates are a useful way of parameterizing
the hemisphere 72. In the spherical coordinate system, each
direction is characterized by two angles ¢ and 6. The first

angle, ¢, represents the azimuth, and is measured with regard
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to an arbitrary axis located in the tangent plane at x; the
second angle, 6, gives the elevation, measured from the normal
vector N, at surface point x. A direction © can be expressed
as the pair (¢, 0). The values of the angles ¢ and 6 belong
to the intervals ¢ = [0, 2n], and 0 = [0, m/2]. At this
juncture, directions or points on the hemisphere have been
defined. Should it be desirable to specify every three-
dimensional point in space (i.e., not only points on the
surface of the hemisphere), a distance r along the direction
® is added. Any three-dimensional point is then defined by
three coordinates (¢, 6, r).

The most commonly used unit when modeling the physics of
light is radiance (L), which is defined as the radiant flux
per unit solid angle per unit projected area. Flux measures
the rate of flow through a surface. In the particular case of
computer graphics, radiance measures the amount of
electromagnetic energy passing through a region on the surface
of a sphere and arriving at a point in space located at the
center of the sphere. The region on the surface of the sphere
is called the solid angle.

From a point-sampling perspective, calculating radiance
is exactly equivalent to computing the entire set of visible
intersection poihts for all rays originating at the origin of
the sphere and passing through the solid angle. Since there
are an infinite number of rays that subtend any given solid
angle, it is clearly impossible to compute an exact value of
radiance by using traditional point-sampling techniques, as it

would require an infinite amount of samples. Instead,
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practical algorithms use only a finite number ofvsamples to
compute a discreet approximation, and this provides an
opportunity for aliasing in a synthesized or reconstructed
image. It is precisely the fact that point-sampling algorithms
do not compute an infinite amount of samples that is the cause
of aliasing in modern computer graphics.

Returning back again to the notion of point-sampling, and
with reference now to FIGS. 6(a)-(f), FIG. 6(a) represents a
single pixel containing four scene objects, with FIGS. 6 (b)-
(f) generally showing a point-sampling algorithm at work in
furtherance of assigning the pixel a single color. As should
be readily apparent, and generally intuitive, the color of the
pixel might be some kind of amalgamation (i.e;, integrated
value) of the colors of the scene objecté. In FIG. 6(b), only
a single point sample is used, and it does not intersect with
any of the objects in the scene; so the value of the pixel is
assigned the default background color. In FIG. 6(c), four
point samples are used, but only one object in the scene is
intersected; so the value of the pixel is assigned a color
that is 75% background color and 25% the color of the
intersected scene object. In FIGS. 6(d), 6(e) and 6(f),
additional ©point samples are wused to compute better
approximations (i.e., more accurate representations) for the
color of the pixel. Even with the increased number of point
samples in FIG. 6(e), two of the scene objects are not
intersected (i.e., spatial aliasing: missing objects), and
only in FIG. 6(f) does a computed color value of the pixel

actually contain color contributions from all four scene
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objects. In general, point sampling, cannot guarantee that all
scene objects contained within a pixel will be intersected,
regardless of how many samples are used.

For example, in a “super sample” operation (i.e., when
using lots of rays to compute the color of a pixel), each
pixel is point sampled on a regular grid or matrix grid (e.qg.
nxm) . The scene is then rendered nxm times, each time with a
different subpixel offset. After each subpixel rendering is
completed, it is summed and divided by the sum nxm. The
subject approach need not be confined to regular nxm regular
grids. A relaxation technique can be used to automatically
generate irregular super-sampling patterns for any sample
count. Ultimately, the aforementioﬁed'sampling process will
create partial antialiased images that are “box filtered”
(FIG. 7(a)), however, there is not reasbh to limit éampleslto
the area of a single pixel. By distributing point samples in
the regions surrounding each pixel center,‘ impro&ed
antialiasing, but nonetheless deficient and thereby
unacceptable, results may be obtained. | Geometry can be
sampled using a gaussian, or other sample function,‘ih several
distinct and known ways, for insténce ‘to weight the
distribution of point samples, say the nxm.bdx filtered sampié
of FIG. 7(a), using a gaussian distribution, and thereby
acheive a weighted filtering of the nxm matrix as shown in FIG
7(b) . As illustrated in FIG. 7(c), when the uniform nxm
matrix is abandoned in favor of a gaussian spatial
distribution, and there is a homogeneity of weight with regard

to the sample points, a so called importance filtering is

-21-



WO 2004/046881 PCT/US2003/036836

achieved.

Improved image synthesis has been obtained in the context
of supersampling by concentrating the rays where they will do
the most good (e.g., to start by using five rays per pixel,
namely, one each at the pixels corners, and one through the
center). However, even with such adaptive supersampling,
aliasing problems nonetheless arise due to the use of regular
grids (i.e., subdivisions), even though the grid is somewhat
more finely, preferentially subdivided in some places. It has
been found that by introducing randomness into the point-
sampling process (i.e., getting rid of the grid), aliasing
artifacts in a reconstructed image are disguised as “noise”
which the human visual‘system is much less apt fo perceive as
objectionable (i.e., a better or improved perceptual color of
the pixel is obtained with this approach, however, it’s most
often not any more mathematically dorrect).' Two common
algorithms that use a randomness approach are the so-called
“"Monte Carlo” and “stochastic point sampling” techniques.
Pixar's RenderMan, rfor exampie, ﬁsés stéchastic point
sampling, which perturbs the position of samples within a
pixel by small amounts of random displacement. Such approach
is illustrated in FIGS. 8(a)-(f), wherein FIG. 8(a) represents
the single pixel of FIG. 6(a), FIG. 9 depicting the trade-off
between the speed of conventional local illumination (i.e.,
“fast,” e.g. FIG. 6(b) or 8(b)) and the realism of global
illumination (i.e., “realistic,” that is to say, less “fast,”
e.g., FIG. 6(f) or B(f)).

Because aliasing is impossible to completely eliminate
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from a point-sampled image, an area analysis framework is
instead used to more accurately represent or define the
problem. The mathematics involved in a global illumination
model have been summarized in a high level continuous equation
known as the rendering equation (i.e., a formal statement of
light balancing in an environment), with most image synthesis
algorithms being viewed as solutions to an equation written as
an approximation of the rendering equation (i.e., a numerical
method solution approach). That is to say, a solution to the
rendering equation in the case of light falling on an image
plane, is a solution of the global iilumination problem.
Consistent with the model, the color of a pigel is determinéd
by actually integrating the visible solution set over the area
of an oriented surface parameterized, such as a pixel or
hemisphere as previously discussed.

Historically, several attempts have been made to find
exact solutions to this equation. For example, the initial
ambition of Turner Whitted, who invented ray tracing in 1980,
was to analytically compute an exact visible solution sét
between the solid angle of a cone through a pixel and the
objects in the scene. He ultimately abandoned this approach
due to the complexity of the intersection calculations, and
this is how he instead arrived at the idea of using point
sampling with rays as an approximation. In 1984, John
Amanatides tried the same method. He successfully created an
algorithm that approximated the visible solution set between
the solid angle of a cone and simple algebraic scene objects,

such as planes and spheres. Like Whitted, however, Amanatides
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could not solve the problem for arbitrarily complex objects or
scenes. Even to this day, traditional point-based numerical
analysis cannot solve, in general, such surface intersections.
Instead, point sampling has become firmly entrenched as the
preferred and de facto method of approximating the visible
solution set. The problem formulation, and work to date, in
this area, is presented by Sung, Pearce & Wang, Spatial-

Temporal Antialiasing, 2002, incorporated herein by reference.

The present invention, in all its embodiments, abandons
point arithmetic and point-sampling techniques altogether, and
instead turns to an interval analysis approach. First invented
and published in 1966 by Ramon Moore, interval arithmetic is
a generalization of the familiar point arithmetic. After a
brief period of enthusiastic response from the technical
community, interval arithmetic énd interval analysis (i.e.,
the application of interval arithmetic to problem domains)
soon lost its status as a popular computing paradigm because
of 1its tendency to produce pessimistic results. Modern
advances in interval computing have resolved many of these
problems, and interval researchers are continuing to make
advancements, see for example William Walster, Global
Optimization (publ. pending); .Iu Jaulin et al., Applied
Interval Analysis; and, Miguel Sainz, Modal Infervals.

In one embodiment of the subject invention, the
electronic computing device consists of one or more processing
units connected by a common bus, a network or both. Each
processing unit has access to local memory on the bus. The

framebuffer, which receives information from the processing
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units, applies the digital image, on a separate bus, to a
standard video output or, by a virtual memory apparatus, to a
digital storage peripheral such as a disk or tape unit.
Examples of suitable electronic computing devices include, but
are not limited to, a general purpose desktop computer with
one or more processors on the bus; a network of such general
purpose computers; a large supercomputer or grid computing
system with multiple processing units and busses; a consumer
game console apparatus; an embedded circuit board with one or
more processing units on one or more busses; or a silicon
microchip that contains one or more sub-processing units.

The framebuffer is a logical mapping into a rectangular
array of pixels which represent the visible solution set of
the digital scene. Each pixel in the image will typically
consist of red, green, blue, coverage and depth components,
but additional components such as geometric gradient, a unigque
geometric primitive identifier, or parametric coordinates, may
also be stored at each pixel. The image stored in the
framebuffer is a digital representation of a single frame of
film or video.

As previously discussed, the digital representation of a
visual scene in memory is comprised of geometric primitives;
geometric primitives reside in the local memory of the
processing units. If there is more than one bus in the system,
the geometric primitives may be distributed evenly across all
banks of local memory.

Each geometric primitive is represented in memory as a

system of three linear or nonlinear equations that map an n-
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dimensional parameter domain to the x, y and z domain of the
digital image; alternatively, a geometric primitive may be
represented implicitly by a zero-set function of the x, y and

z domain of the digital image. John Snyder’s book,_ Generative

Modeling for Computer Graphics and CAD; Symbolic Shape Design

Using Interval Analysis, describes a compact, general-purpose

method for representing geometric primitives of both kinds in
the memory of a computer. Such a method is compatible with the
requirements of the present invention, and it is also the
preferred method.

Because the nature of such a general-purpose method of
representing geometric primitives in memory haé S0 ‘many
possible encodings, only a single representation will be used
for the sake of clarity and simplicity in the remainder of
this description. The example to be used is a system of
nonlinear equations that map a 3-dimensional parameter domain,
specified by the parametric variables t, u, and v, to the X,
Yy and z domain of the digital image. The resulting manifold is

a parametric surface of the form

X (t, u, v) = x
Y (¢, u, v) =y
Zz (t, u, v) = z,

wherein said system of equations are interval functions. To
compute pixels in the framebuffer, an interval consistency
method is performed on X, Y, and Z over interval values of x,

Y, 2, t, u and v that represent the entire domain of each
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variable. For example, the interval doméin of X, y and z will
typically be the Width, height, and depth, respectively, of
the image in pixels, and the interval domain of t, u, and v
will depend on the parameterization of the geometric
primitive.

Referring now to FIGS. 10-~12, the subject photorealistic
image synthesis process is generally shown, with particular
emphasis and general specification of the methodology of the
subject interval consistency approach, in furtherance of
photorealistic image synthesis processing, outlined in FIG.
12, which utilizes Unified Modeling Language (uml). As shown,
central to the process are a plurality of interval consistency
solvers. Operatively and essentially linked to the interval
consistency solvers a system input, exemplified in FIG. 10 by
a series of generic parametric equations, each function having
two or more variables, for example the arguments t, u, and v
as shown, and as representatively illustrated in FIG. 11,
wherein the “system” is a sphere, the x-y-z functions being
parameterized in t, u, v. It is to be understood that the
system need not be limited to parametric expressions, which
have the greatest utility and are most
challenging/problematic, other geometric primitives, or
alternate system expressions are similarly contemplated and
amenable to the subject methodology and process as is to be
gleaned from the discussion to this point. For example, the
system can similarly render strictly mathematical formulae
selectively input by a wuser, such as those describing

polygons, and bezier surfaces, the later being the singular

-27-~



WO 2004/046881 PCT/US2003/036836

focus of RenderMan.

As shown, the interval consistency solvers are further
reliant upon user-defined shading routines as are well known
to those of skill in the art (FIGS. 10-11). The dependency is
mutual, the interval consistency solvers exporting information
for use or work by the shader, a valuation or assessment by
the user-defined shading routines returned (i.e., imported) to
the interval consistency solvers for consideration and/or
management in the framework of the process.

An output of the interval consistency solvers is
indicated as pixel data (i.e., the task of the interval
consistencyrsolvers is to quantitatively assign a quality or
character to a pixel). The pixel data output is ultimately
used 1in image synthesis or reconstruction, vis-a-vis
forwarding the quantitatively assigned pixel gquality or
character the to a display in furtherance of defining (i.e.,
forming) a 2-D array of pixels. For the ?arameterized system
input of FIG. 11, a 2-D array of pixels, associated with a
defined set of intervals, is illustrated.

With particular reference now to FIG. 12, the
relationship and interrelationships between the SOLVER, INPUT,
CALLBACKS, and ouTpUT is defined, and will be generally 6utlined,
and further, the relationship between and among the several
solvers, e.g., SCREEN, PIXEL, COVERAGE, DEPTH and IMPORTANCE, are
defined in the figures subordinate thereto, namely FIGS. 13-
18, and will be subsequently outlined.

The solver, more particularly the most preferred

components thereof, namely SCREEN, PIXEL, COVERAGE, DEPTH, and
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IMPORTANCE, are shown in relation to the input (i.e., dim and
system), callbacks (i.e., shader), and output (i.e., pixel
data and display). The interrelationships between the
individual most preferred elements of constituents of the
solver, and the generél temporal hierarchy between and among
each, as well as their relationships between the callbacks
(i.e., the shader) and the output (i.e., the display) are
schematically shown in FIG. 12. As will be subsequently
discussed in the flow schematics for each of the solvers, and
as 1s appreciated by a reference to the subject figure,
hierarchical, iterative sieving progresses, in nested fashion,
from the screen solver to the importance solver, with each
solver exporting a constraint for which the subsequent solver
is to act in consideration thereof. Values from successively
embedded solvers are returned as shown, the pixel solver
ultimately bundling qualities or character of color, opacity,
depth, and coverage, for instance, aﬁd “issues” such bundled
information package (i.e., a pixel reflecting that scene
object subtending same) to the display as shown in furtherance
of synthesizing the 2-D array corresponding to the image
plane.

The screen solver effectively conducts an analysis of the
screen (e.g., FIG. 3) or “image plane” of the camera space of
FIG. 4, essentially performing a set inversion in x, y. The
objective or job of the screen solver is a preliminary one,
namely, to chop the x-y screen into x-y subunits, effectively
“stopping” upon achieving (i.e., identifying) a unit (i.e.,

area) commensurate or corresponding to a pixel (see e.g.,
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FIGS. 19(b)-19(f) wherein the chopping is illustrated here of
a pixel, not the image plane as is a preliminary step or
prerequisite to chopping the pixel area). Most preferably,
screen is a point from which parallel processing is pursued,
further desirable for such purposes is pixel, as will become
readily apparent as the discussion progresses.

Chopping of the x-y image plane begins with an initial
step analogous to that illustrated in FIG. 19(b). The idea is
to parse the x-y image plane to dimensional equate to a pixel.
As shown, in the event that initial chopping yields a sub
divided x-y area more extensive than a pixel, more chopping is
conducted, namely a preferential chopping. Moreyparticularlyy
the nature of the x-y image plane subunit (i.é., a rectangle)
is assessed and characterized as being either “landscape” or
“portrait”. In the event the subunit is landscape, the x
dimension is further split: in the event that the subunit is
portrait, then the y dimension is then split. For each
iterative step in x or y (see FIGS. 19(b) et seq., the
arguments t, u, and v, are contracted éo as to eliminate
values thereof outside the specific or “workin§” X-y interval
(i.e., with each iteration in x and y, it is advantageous to
eliminate the t, u, and v values that are ﬁot contributing,
and thereby potentially contribute to aliasing).

The pixel solver, depicted in FIG. 15, is essentially a
liaison between screen and the other solvers, acting as a
synchronization point and performing a housekeeping function.
Preliminarily, PIXEL seeks an answer to the question, is the

nature of the x-y interval corresponding to a pixel area, and

-30-



WO 2004/046881 PCT/US2003/036836

thereby the t, u, v solutions associated therewith, such that
the shader has been invoked (i.e., color and opacity, for
example, has been assigned or designated). If the shader has
been invoked, by calling upon the coverage solver, no further
parsing of the x-y space (e.g., FIGS. 19(b)-19(f)) is
required, and the x-y pixel data is sent to the display.

The coverage solver, as detailed in FIG. 16, essentially
replicates the iterations of screeN, based upon a user defined
limit epsilon (eps). COVERAGE, as the name suggests, seeks to
delimit, via the retention of contributing t, u, v aspects
based upon the user specified chop area “eps,” those portions
(i.e., areas) of the object surface within the pixel subunit
(again, see FIGS. 19(b)-19(f). Upon ascertaining the values
associated with the x-y space or area, they are added or
compiled to prdvide or define the total coverage of the object
surface (i.e., a mapping of the entire x-y space). At this
point, analysis, more particularly processing, in x-y space is
complete. The next procedural task is a consideration of depth
(i.e., assessment of 7 (t, u; v) of the parametric system with
a fixed or set x and vy).

The depth solver, as detailed in FIG. 17, is esséntially
doing the job of FIG. 17 (a). More particularly, DEleinifially
ascertains where in the z dimension, ultimately from the image
plane (see FIG. 4 camera space), does the object surface,
heretofore defined in x, y, t, u, v aspects, first appear or
reside (i.e., in which depth cell), and thereafter step into

space, via iterative cells, until the x, y, t, u, v object
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surface is no longer present in a cell (i.e., cell X of FIG.
17(a)). In furtherance thereof, the depth variable, more
accurately, depth function, is initialized for all depth
space, namely set to the infinite interval (z depth).
Thereafter, t, u, v, contraction begins in the depth field
(z0) . Subsequently, there is a trivial accept/reject query as
to whether there is in fact a depth component of the x-y
parameterization, with searching commencing thereafter (z
search) . For each depth cell, the importance solver (i.e., the
t, u, v, chopper wherein a set inversion is executed in t, u,
vV so as to contract same) is called upon, and it is necessary
to next assess if the shader was invoked. If the shader is
invoked (i.e., a first visible root is identified), the output
of the shader are accumulated into the importance sums and the
depth parsing continues in furtherance of accounting for all
z components of the x-y object surface, if not, steps, on a
cell by cell basis are “walked off.” Although the parsing or
chopping of z space has been described as a serial or loop
type progression, its 1s certainly amenable to recursive
splitting, as the case of the x-y space.

The importance solver, as detailed in FIG. 18, when
called, essentially completes a set inversion in t, u, v, that
is to say, for the smallest x, y, z (i.e., each specific z
cell for, or in, which an object surface element x-y resides),
t, u, v are to be narrowed as much or as finely as possible.
The function of the importance solver is to fit or optimally
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match the t, u, v with the x, y, 2z, in a way that is
overreaching, not underreaching. In furtherance thereof,
importance filtering is conducted, the notion previously
discussed with respect to the filtering of FIGS. 7(a)-(c),
and in the present setting, illustrated in FIG. 20.

As should be readily appreciated, the same methodology
may be used in a shading routine to integrate radiance over
the solid angle of a hemisphere. The only change needed to

accomplish this is to define a function:

¢ (t, u, v)
e (t, u, v)
e (t, u, v)

where ¢, 6, and p represent the parametric domain of the
hemisphere as previously outlined, for integration, the t, u,
and v representing geometric primitives in the digital scene.
If the shading routine performs this procedure recursively,
very accurate bounds on the radiance function for a pixel can
be computed.

It should be noted, and/or again emphasized, that to the
extent that the subject description has only used a 3-
dimensional parameter domain as an example, the method
described herein works for any n-dimensional parameter domain.
For example, additional parameters such as temperature, mass
or pressure can be used to specify the manifold that appears

in the x, y and z domain of the image. This allows more
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complex and accurate simulations to be represented in the
digital scene and applied to the rendered image.

There are other variations of this invention which will
become obvious to those skilled in the art. It will be
understood that this disclosure, in many respects, is only
illustrative. Although the various aspects of the present
invention have been described with respect to various
preferred embodiments thereof, it will be understood that the
invention is entitled to protection within the full scope of

the appended claims.
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What is claimed is:
1. In a photorealistic image synthesis method wherein stored
digital representations of physical three dimension object
scenes are selectively input, and one or more user~defined
shading routines are selectively called upon in the course of
assessment of the stored digital representations of physical
three dimension scenes in furtherance of the production of a
rectangular output array of pixels representing the visible
set of surfaces of each of the stored digital representations
of physical three dimension scenes, the step comprising:
a. executing an interval branch-and-bound method to
compute shading values for pixels, to a user specified
certainty, of the rectangular output array of pixels
representing the visible set of surfaces of each of the
stored digital representations of physical three
dimension scenes by successively splitting each object of
the objects of the physical three dimensional object
scenes, said each object having a surface delimited by a

geometric primitive.

2. The photorealistic image synthesis method of claim 1

wherein said geometric primitive is a parametric function.

3. The photorealistic image synthesis method of claim 2
wherein an interval analysis is performed over a parametric

domain of said each object of the objects of the physical

-35-



WO 2004/046881 PCT/US2003/036836

three dimensional object scenes.

4. The photorealistic image synthesis method of claim 3
wherein consistency is evaluated against a domain of a screen

coordinate system.

5. The photorealistic image synthesis method of claim 2
wherein unknown parametric variables in a system of nonlinear
equations describing each object of the objects of the
physical three dimensional object scenes are ascertained using

interval analysis.

6. The photorealistic image synthesis method of claim 5
wherein consistency is evaluated against a domain of a screen

coordinate system.

7. The photorealistic image synthesis method of claim 6
wherein a solution set of parametric variables is input to the

one or more user-defined shading routines.

8. The photorealistic image synthesis method of claim 7
wherein an assessment of consistency against said screen
coordinate system includes transformation of boxes
representing select areas within said local coordinate system

into said coordinate system of said screen.
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9. The photorealistic image synthesis method of claim 8
wherein splitting of said successive splitting each object of
the objects of the physical three dimensional object scenes is

first performed in x and y dimensions.

10. The photorealistic image synthesis method of claim 9
wherein said splitting is terminated upon satisfying a user-
specified dimension criteria for either said x or said y

dimension.

11. The photorealistic image synthesis method of claim 10
wherein said user-specified dimension criteria for either said

X or said y dimension is a pixel subunit.

12. The photorealistic image synthesis method of claim 10
wherein subsequent to termination of said splitting in said x
and y dimensions, further splitting is performed in a =z

dimension.

13. The photorealistic image synthesis method of claim 12
wherein, for opaque objects, said z dimension is successively
split in a direction extending outwardly from a view point so

as to find a first root.

14. The photorealistic image synthesis method of claim 13

wherein, for transparent objects, said z dimension is further
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successively split in a direction extending from a user
selected distal extremity in said z dimension inwardly toward

a view point so as to find all roots.

15. The photorealistic image synthesis method of claim 14
wherein a set inversion is performed to sharpen unknown

parametric variables.

16. The photorealistic image synthesis method of claim 15
wherein, subsequent to said sharpening of unknown parametric
variables, such box is shaded and sent to said output array of

pixels.

17. The photorealistic image synthesis method of claim 16
wherein all boxes contributing to an area of a pixel are

integrated to generate a single output result for said pixel.

18. The photorealistic image synthesis method of claim 17
wherein integration of said all boxes contributing to an area

of a pixel are importance filtered.

19. The photorealistic image synthesis method of claim 1

wherein said geometric primitive is an implicit function.

20. The photorealistic image synthesis method of claim 19

wherein an interval set inversion is performed over a domain
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of a screen coordinate system.

21. The photorealistic image synthesis method of claim 20
wherein, in furtherance of assessment of consistency against
said screen coordinate system, boxes representing areas in a
local coordinate system are transformed into said coordinate

system of the screen.

22. The photorealistic image synthesis method of claim 21
wherein splitting of said successive splitting each object of
the objects of the physical three dimensional object scenes is

first performed in x and y dimensions.

23. The photorealistic image synthesis method of claim 22
wherein said splitting is terminated upon satisfying a user-
specified dimension criteria for either said x or said vy

dimension.

24. The photorealistic image synthesis method of claim 23
wherein said user-specified dimension criteria for either said

X or said y dimension is a pixel subunit.

25. The photorealistic image synthesis method of claim 22
wherein subsequent to termination of said splitting in said x
and y dimension, further splitting is performed in a =z

dimension.
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26. The photorealistic image synthesis method of claim 25
wherein, for opaque objects, said z dimension is successively
split in a direction extending outwardly from a view point so

as to find a first root.

27. The photorealistic image synthesis method of claim 26
wherein, for transparent objects, said z dimension is further
successively split in a direction extending from a user
selected distal extremity in said z dimension inwardly toward

a view point so as to find all roots.

28. The photorealistic image synthesis method of claim 27
wherein all boxes contributing to an area of a pixel are

integrated to generate a single output result for said pixel.

29. The photorealistic image synthesis method of claim 28
wherein integration of said all boxes contributing to an area

of a pixel are importance filtered.

30. A system for visible surface determination in furtherance
of photorealistic rendering in a computer graphics
environment, said system comprising:
a. a scene database wherein visual characteristics of
objects of an image frame of a scene of said scene
database are delimited as geometric primitives; and,

b. a processor for executing an interval analysis, to a
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user degree of certainty, for accurately and
deterministically ascertaining a visible solution set of
an area not exceeding a pixel dimension for a pixel of an

array of pixels that form said image frame.
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