

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2019/022943 A1

(43) International Publication Date
31 January 2019 (31.01.2019)

(10) International Publication Number

WO 2019/022943 A1

(51) International Patent Classification:
C23C 16/44 (2006.01) C23C 16/52 (2006.01)
C23C 16/02 (2006.01) G02B 5/30 (2006.01)

(71) Applicants: MOXTEK, INC. [US/US]; 452 West 1260 North, Orem, Utah 84057 (US). BRIGHAM YOUNG UNIVERSITY [US/US]; Technology Transfer Office, 3760 HBLL, Provo, Utah 84602 (US).

(21) International Application Number:
PCT/US2018/041117

(72) Inventors: DIWAN, Anubhav; 90 West 800 North, Provo, Utah 84601 (US). LINFORD, Matt; 845 East 1080 North, Orem, Utah 84097 (US).

(22) International Filing Date:
06 July 2018 (06.07.2018)

(74) Agent: HOBSON, Garron M.; Thorpe North & Western, LLP, 8180 S. 700 E., Suite 350, Sandy, Utah 84070 (US).

(25) Filing Language: English

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

(26) Publication Language: English

(30) Priority Data:
62/537,270 26 July 2017 (26.07.2017) US
62/537,291 26 July 2017 (26.07.2017) US
16/028,039 05 July 2018 (05.07.2018) US

(54) Title: METHODS OF APPLYING SILANE COATINGS

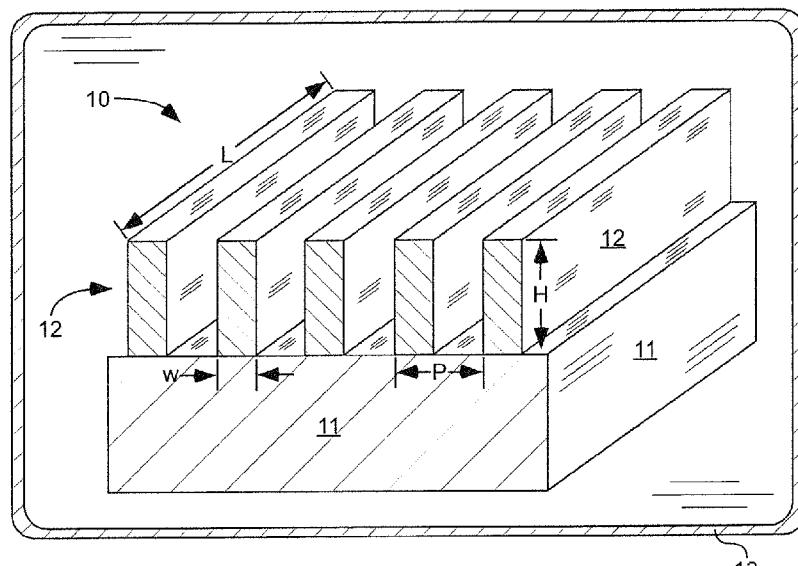


Fig. 1

(57) **Abstract:** A method of vapor depositing a silane chemical onto a wire grid polarizer (10, 20, 30) can include introducing a silane chemical and water into a chamber (13) where the wire grid polarizer is located. The silane chemical and the water can be in a gaseous phase in the chamber. The silane chemical and the water can be maintained simultaneously in the gaseous phase in the chamber for a period of time. The silane chemical and the water can react to form a $(R^1)_2Si(OH)_2$ molecule, where each R^1 is independently any chemical element or group. A silane coating (34) can be formed on the wire grid polarizer from a chemical reaction of the $(R^1)_2Si(OH)_2$ molecule with the wire grid polarizer and with other $(R^1)_2Si(OH)_2$ molecules. The silane coating can be relatively thick and multi-layer. A thicker or multi-layer silane coating can have improved high temperature resistance relative to a thinner or mono-layer silane coating.

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to the identity of the inventor (Rule 4.17(i))*
- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*

Published:

- *with international search report (Art. 21(3))*

Methods of Applying Silane Coatings

FIELD OF THE INVENTION

The present application is related generally to silane chemistry used as a
5 protective surface layer on a wire grid polarizer.

BACKGROUND

Some devices (e.g. wire grid polarizers) have small, delicate features
which can include nm-sized dimensions. Such delicate features can be damaged
10 by tensile forces in water or other liquid on the device. These delicate features
may need protection from such tensile forces.

Although many protective chemistries and methods of application have
been developed, they can have disadvantages. One disadvantage of some of
these protective chemistries is insufficient durability, particularly high-
15 temperature durability. A disadvantage of some methods of applying these
protective chemistries (e.g. immersion deposition) is dissolution of an outer
material of the device while applying the protective chemistry. Other
disadvantages of such methods can include non-uniform protective chemistry
thickness, waste disposal, health hazards, rinsing residue, and damage to
20 manufacturing equipment.

SUMMARY

It has been recognized that it would be advantageous to provide
protective chemistry that can protect devices from corrosion or other damage
25 from liquids, particularly with protective chemistry that has high-temperature
durability. It has also been recognized that it would be advantageous to provide
methods of application of protective chemistry that avoid dissolving the device
during application, that provide a more uniform protective chemistry thickness,
that minimize waste disposal problems and health hazards, that avoid leaving
30 rinsing residue, and that avoid or minimize damage to manufacturing
equipment. The present invention is directed to various embodiments of a
method of depositing a silane chemical that satisfy these needs. Each
embodiment may satisfy one, some, or all of these needs.

The method can comprise vapor depositing a silane chemical onto a wire grid polarizer by placing the wire grid polarizer into a chamber and introducing a silane chemical and water into the chamber, the silane chemical and the water being in a gaseous phase in the chamber.

5 In one embodiment, the method can further comprise (a) maintaining the silane chemical and the water simultaneously in the gaseous phase in the chamber, (b) reacting the silane chemical and the water in the chamber to form $(R^1)_2Si(OH)_2$ molecules, $R^1Si(OH)_3$ molecules, or both, where each R^1 is independently any chemical element or group, and (c) forming a silane coating 10 on the device from a chemical reaction of the $(R^1)_2Si(OH)_2$ molecules, $R^1Si(OH)_3$ molecules, or both, with the device and with other $(R^1)_2Si(OH)_2$ molecules, $R^1Si(OH)_3$ molecules, or both.

In another embodiment, the method can further comprise forming a silane coating with multiple layers on the device, with silane in each layer chemically 15 bonding to silane in an adjacent layer, from a chemical reaction of the $(R^1)_2Si(OH)_2$ molecules, $R^1Si(OH)_3$ molecules, or both, with the device and with other $(R^1)_2Si(OH)_2$ molecules, $R^1Si(OH)_3$ molecules, or both.

BRIEF DESCRIPTION OF THE DRAWINGS (drawings might not be drawn to scale)

20 FIG. 1 is a schematic, cross-sectional side-view of a chamber 13 with a device 10 therein, which chamber 13 can be used for vapor deposition of a silane chemical onto the device 10, in accordance with an embodiment of the present invention.

25 FIG. 2 is a schematic, cross-sectional side-view of a coated device 20 comprising a device 10 with a silane coating 24, in accordance with an embodiment of the present invention.

30 FIG. 3 is a schematic, cross-sectional side-view of a coated device 30 comprising a device 10 with a conformal coating of silicon dioxide 34 and a silane coating 24 on the device 10, in accordance with an embodiment of the present invention.

DEFINITIONS

As used herein, "alkyl" refers to branched, unbranched, cyclic, saturated, unsaturated, substituted, unsubstituted, and heteroalkyl hydrocarbon groups. As used herein, "substituted alkyl" refers to an alkyl substituted with one or more substituent groups, and the term "heteroalkyl" refers to an alkyl in which at least 5 one carbon atom is replaced with a heteroatom. The alkyl can be relatively small to facilitate vapor deposition, such as for example with \leq 2 carbon atoms, \leq 3 carbon atoms, \leq 5 carbon atoms, or \leq 10 carbon atoms.

As used herein, "aryl" refers to a group containing a single aromatic ring or multiple aromatic rings that are fused together or linked (such that the 10 different aromatic rings are bound to a common group). The term "substituted aryl" refers to an aryl group comprising one or more substituent groups. The term "heteroaryl" refers to an aryl group in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the term "aryl" includes unsubstituted aryl, substituted aryl, and heteroaryl.

15 As used herein, the term "conformal coating" means a thin film which conforms to the contours of feature topology.

As used herein, the term "nm" means nanometer(s).

As used herein, the term "Pa" means pascal, the SI unit of pressure.

As used herein, the phrase "X includes a bond to the device" and other 20 similar phrases mean a direct bond between the chemical and the device 10 or a bond to intermediate chemical(s) or layer(s) (e.g. layer of silicon dioxide 34) which is/are bonded to the device 10. Such additional layer(s) can be other conformal-coating(s).

25 DETAILED DESCRIPTION

A method of vapor depositing a silane chemical onto a device 10 can comprise some or all of the following steps, which can be performed in the following order or other order if so specified. Some of the steps can be performed simultaneously unless explicitly noted otherwise in the claims. There 30 may be additional steps not described below. These additional steps may be before, between, or after those described. The method can comprise (1) placing the device 10 into a chamber 13; (2) applying a conformal coating of silicon dioxide 34 on the device 10; (3) introducing a silane chemical and water into the

chamber 13; (4) reacting the silane chemical and the water in the chamber 13 to form $R^1Si(OH)_3$ molecules, $(R^1)_2Si(OH)_2$ molecules, or both; (5) forming a silane coating 24 on the device 10 from a chemical reaction of the $R^1Si(OH)_3$ / $(R^1)_2Si(OH)_2$ molecules with the device 10 and with other $R^1Si(OH)_3$ / $(R^1)_2Si(OH)_2$ molecules, to create a coated device 20 or 30; and (6) introducing $R_2Si(CH_3)_3$ into the chamber 13. See FIGs. 1-3.

The order of steps 1 & 2 can be reversed if the conformal coating of silicon dioxide 34 is applied in a different tool than the chamber 13.

Regarding step 2, examples of thicknesses T_{34} of the conformal coating of silicon dioxide 34 include ≥ 0.5 nm or ≥ 5 nm; and ≤ 15 nm, ≤ 30 nm, ≤ 45 nm, or ≤ 60 nm. This conformal coating of silicon dioxide 34 can aid the adhesion of the silane coating 24 described below.

Regarding step 3, the silane chemical and/or water can be introduced as gases, or can be introduced as liquids that phase change to gases in the chamber. Examples of the silane chemical include $(R^1)_2Si(R^2)_2$, $R^1Si(R^2)_3$, and $Si(R^2)_4$ molecules. Each R^1 can be any chemical element or group, such as for example a hydrophobic group, and is further described below. Each R^2 can independently be a reactive group such as for example -Cl, -OR³, -OCOR³, -N(R³)₂, or -OH. Each R^3 can independently be -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, any other alkyl group, an aryl group, or combinations thereof.

The reactive groups R^2 can react with water, thus forming $(R^1)_2Si(OH)_2$, $R^1Si(OH)_3$, and $Si(OH)_4$ molecules respectively. The $(R^1)_2Si(OH)_2$, $R^1Si(OH)_3$, and $Si(OH)_4$ molecules can be formed in the gaseous phase.

In one embodiment, the silane chemical can be introduced first, before introduction of the water, and retained as a gas in the chamber 13 for a period of time, such as for example ≥ 5 minutes, ≥ 15 minutes, ≥ 25 minutes and ≤ 35 minutes, ≤ 60 minutes, or ≤ 120 minutes. Examples of pressure of the chamber 13 while retaining the silane chemical in the chamber 13 include ≥ 1 Pa, ≥ 5 Pa, ≥ 10 Pa, ≥ 50 Pa, or ≥ 100 Pa and ≤ 500 Pa, ≤ 1000 Pa, ≤ 5000 Pa, or $\leq 10,000$ Pa. Subsequently, the water can be introduced into the chamber and retained for a period of time, such as for example ≥ 5 minutes, ≥ 25 minutes, ≥ 50 minutes, or ≥ 75 minutes and ≤ 100 minutes, ≤ 150 minutes, or ≤ 200 minutes. Examples of pressure of the chamber 13 while retaining the water in

the chamber 13 include ≥ 100 Pa, ≥ 500 Pa, or ≥ 1000 Pa and ≤ 5000 Pa, $\leq 10,000$ Pa, or $\leq 50,000$ Pa. Use of a low pressure can allow the silane chemical and the water to be in the gaseous phase at a lower temperature.

Step 4 can also include maintaining the silane chemical and the water

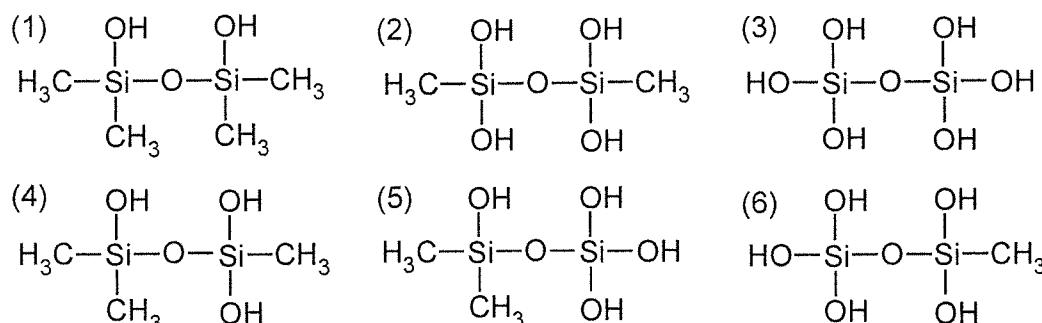
5 simultaneously in the gaseous phase in the chamber for a period of time. A longer period of time can result in improved coverage of the silane coating 24 on the device 10 and/or a thicker silane coating 24 that includes multiple layers. For example, this time can be ≥ 5 minutes, ≥ 25 minutes, ≥ 50 minutes, or ≥ 75 minutes and ≤ 100 minutes, ≤ 150 minutes, or ≤ 200 minutes. This period of
10 time is one factor in controlling coverage and thickness T_{24} of the silane coating 24 on the device 10.

Step 5, can include forming a silane coating 24 on the device 10 with multiple layers. Silane in the $(R^1)_2Si(OH)_2$, $R^1Si(OH)_3$, and $Si(OH)_4$ molecules can bond to the device 10 and with other $(R^1)_2Si(OH)_2$, $R^1Si(OH)_3$, and $Si(OH)_4$ molecules, thus cross-linking and forming multiple layers. The bond between
15 layers of silane can be a Si-O-Si bond. Step 5 can occur simultaneously with step 3, step 4, or both.

Step 6 can be useful for formation of an inert silane coating 24, by using $R_2Si(CH_3)_3$ to replace -OH, at the end of a silane polymer chain, with CH_3 .

20 An amount of water gas in the chamber, during one or more of steps 3-6, can be important for optimal deposition of the silane coating 24. For example, water gas density in the chamber can be ≥ 0.01 g/m³, ≥ 0.1 g/m³, ≥ 0.3 g/m³, or ≥ 1 g/m³; and ≤ 5 g/m³, ≤ 10 g/m³, ≤ 30 g/m³, or ≤ 100 g/m³.

The silane coating 24 with multiple-layers can be the result of including


25 $(R^1)_2Si(R_2)_2$ molecules, $R^1Si(R_2)_3$ molecules, $Si(R_2)_4$ molecules, or combinations thereof, in the silane chemical (R_2 is defined above). Thus, each R^2 can be a reactive group that will react with the water to form $(R^1)_2Si(OH)_2$ molecules, $R^1Si(OH)_3$ molecules, $Si(OH)_4$, or combinations thereof. Each of the -OH functional groups attached to Si can react with the device 10 or the growing
30 silane coating 24, resulting in a multi-layer coating.

The above method can also include controlling an amount of the water in the chamber 13 to achieve a desired thickness T_{24} of the silane coating 24. An increased amount of water gas in the chamber 13, increased silane chemical

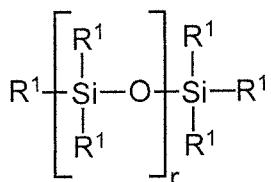
time in the chamber 13, increased water time in the chamber 13, or combinations thereof, can result in a thicker silane coating 24.

In the above method, the silane chemical can include one or more of: $(CH_3)_2Si(R^2)_2$ molecules, $(CH_3)Si(R^2)_3$ molecules, and $Si(R^2)_4$ molecules, where

5 each R^2 can independently be a reactive group as described above. Such molecules can react with water to form $(CH_3)_2Si(OH)_2$ molecules, $(CH_3)Si(OH)_3$ molecules, and $Si(OH)_4$ molecules respectively, which can react together to form one or more of chemical formulas (1) – (6):

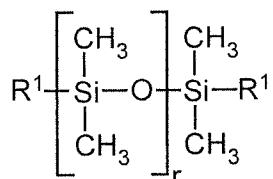
10 These reactions can occur in the gaseous phase. Use of these molecules in the silane chemical can result in a durable, high-temperature resistant silane coating 24. Use of $(CH_3)Si(R^2)_3$ and/or $Si(R^2)_4$ molecules can allow formation of a silane coating 24 with multiple layers.

15 Advantages of vapor deposition include improved control of the thickness T_{24} of the silane coating 24, reduced process-waste disposal problems, reduced wasted silane chemical, reduced health hazards, reduced or no undesirable residue from rinsing, and use of with standard semiconductor processing equipment.


20 In the above method, it can be difficult to control the amount of silane introduced into the chamber 13. One way to improve control of the amount of silane is to first dissolve the silane chemical in an organic solvent, then introduce the silane chemical dissolved in the organic solvent into the chamber 13. Alternatively or in addition, water can be dissolved in a separate container of 25 organic solvent, then the water dissolved in the organic solvent can be introduced into the chamber. An organic solvent can be used that will not react with the device 12, such as for example toluene, chloroform, ethanol, and cyclohexanone.

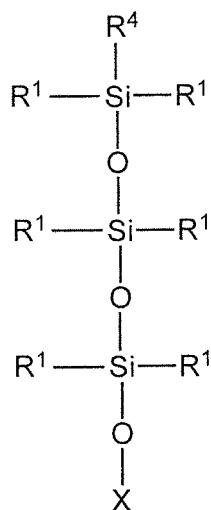
Following are examples of coated devices 20 or 30, which can be manufactured from the above methods. The device 10 can be an inlet liner for gas chromatography comprising a tube. The silane coating 24 can coat an internal surface of the tube, forming an inlet liner with a protective coating. The 5 inert silane coatings 24 described herein can be particularly beneficial for use with such inlet liners.

The device 10 can include nanometer-sized features 12 on a substrate 11. Such device 10 can be a wire grid polarizer and the nm-sized features 12 can be an array of wires, with nanometer-sized width w, height H, and pitch P. The 10 silane coating 24 can coat a surface of the nm-sized features 12 and the substrate 11 as a conformal coating. Use of a conformal coating can allow the silane coating 24 to protect the device 10 with minimal adverse effect on performance of the device 10. The chemistry of the silane coating 24 described herein is particularly useful for the unique needs of a wire grid polarizer, 15 including high-temperature durability, hydrophobicity, and minimal adverse effect on wire grid polarizer performance.


As shown in FIG. 3, the coated device 30 can further comprise a conformal coating of silicon dioxide 34, with a thickness T_{34} as described above, between the nm-sized features 12 and the silane coating 24.

20 The silane coating 24 can include:

where r can indicate a length of the polymer, such as for example >5, >10, >100, or >500. R¹ can be any chemical element or group, such as for example a hydrophobic group or a hydrophilic group. R¹ can comprise a carbon chain, which 25 can include a perfluorinated group, such as for example $CF_3(CF_2)_n(CH_2)_m$, where n and m are integers within the boundaries of: $4 \leq n \leq 10$ and $2 \leq m \leq 5$. Other examples of the hydrophobic group are described in USA Patent Publication Number US 2016/0291226, which is incorporated herein by reference.


If the silane chemical includes $(CH_3)_2Si(R^2)_2$ molecules (R^2 defined above), the resulting silane coating 24 can be the following polymer, which can be resistant to high temperature:

5 Integer r can have various values, such as for example > 5, >10, >100, or >1000. Each R^1 can independently be any chemical element or group. R^1 can be $-CH_3$, instead of more reactive chemistry, thus providing an inert, protective coating.

Including $R^1Si(R^2)_3$ molecules and/or $Si(R^2)_4$ molecules (R^2 defined above) 10 can facilitate formation of multiple layers in the silane coating 24. Silane in each layer can chemically bond to silane in an adjacent layer. Thicker or multi-layer silane coating 24 can have improved high temperature resistance relative to a thinner or mono-layer silane coating.

The silane coating 24 with multiple layers can include at least three layers, 15 with silane in each layer chemically bonded to silane in an adjacent layer. For example, the silane coating can include:

where each R^4 can include any chemical element or group, such as for example a hydrophobic group as described herein or a hydrophilic group, and X can include

a bond to the device 10. Each R¹ can independently be $-\text{OSi}(\text{CH}_3)_3$, R² as defined above, or any other chemical element or group.

It can be important for the silane coating 24 with multiple layers to have sufficient minimum thicknesses T_L for protection of the device 10. For example,

5 testing has shown substantially increased high-temperature durability with increased thicknesses T₂₄ of the silane coating 24. Examples of minimum thicknesses T_L of the silane coating 24 with multiple layers include ≥ 0.7 nm, ≥ 1 nm, ≥ 2 nm, ≥ 2.5 nm, ≥ 2.7 nm, ≥ 2.9 nm, and ≥ 4 nm.

The silane coating 24 can degrade performance of some devices 10, such 10 as for example wire grid polarizers. Thus, it can be important to avoid a thickness T₂₄ of the silane coating 24 beyond what is necessary for protection of the device 10. For example, the silane coating 24 with multiple layers can have a maximum thickness T_H of ≤ 6 nm, ≤ 8 nm, ≤ 10 nm, ≤ 12 nm, ≤ 15 nm, ≤ 20 nm, ≤ 30 nm, or ≤ 50 nm.

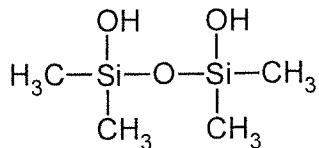
15 It can be important to minimize variation between the minimum thickness T_L and the maximum thickness T_H of the silane coating 24 to provide protection to the device 10 with minimal degradation of performance. For example, a maximum thickness T_H of the silane coating divided by a minimum thickness T_L of the silane coating 24 can be ≤ 2 , ≤ 3 , ≤ 5 , ≤ 10 , or ≤ 20 .

20 The silane coating 24 described herein can be vapor deposited as described above in the method of vapor depositing a silane chemical. Vapor deposition, instead of immersion deposition, of the silane coating 24 can result in reduced variation between the minimum thickness T_L and the maximum thickness T_H. Vapor-deposition can also be preferred over immersion because of 25 reduced process-waste disposal problems, reduced health hazards, reduced or no undesirable residue from rinsing, and vapor-deposition can be done with standard semiconductor processing equipment.

30 Use of vapor deposition can avoid dissolution of soluble materials of the device while applying the protective chemistry. In contrast, immersion in a liquid, such as water, can increase the chance of dissolution of such soluble materials. For further description of this benefit of vapor deposition, see USA Patent Publication Number US 2016/ 0291227, which is incorporated herein by reference.

Examples of vapor-deposition methods include chemical vapor-deposition (CVD), low-pressure CVD (LPCVD), plasma-enhanced CVD, physical vapor-deposition (PVD), atomic layer deposition (ALD), thermoreactive diffusion, electron-beam deposition, sputtering, and thermal evaporation.

5 Many of the silane coatings 24 described herein can be resistant to high temperature. Such high temperature resistance can be beneficial in many applications, such as for example a wire grid polarizer in a small, high light intensity computer projector or an inlet liner for gas chromatography. Such high temperature resistance can be quantified as follows for a hydrophobic silane coating 24: A water contact angle, of a water drop on a surface of the silane coating 24 can be greater than 120° after heating the coated device 20 or 30 at 10 350° for ≥ 80 hours, ≥ 120 hours, ≥ 500 hours, ≥ 1000 hours, or ≥ 1500 hours.

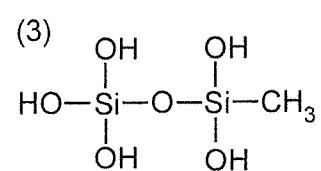
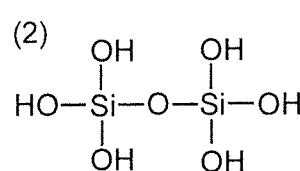
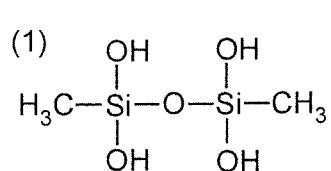

15 In the above methods and coated devices 20 and 30, covalent bonds can be formed between the silane coating 24 and the device 10 and/or conformal coating of silicon dioxide 34. In the silane coating 24 with multiple layers, covalent bonds can be formed between silane in each layer and silane in the adjacent layer.

CLAIMS

What is claimed is:

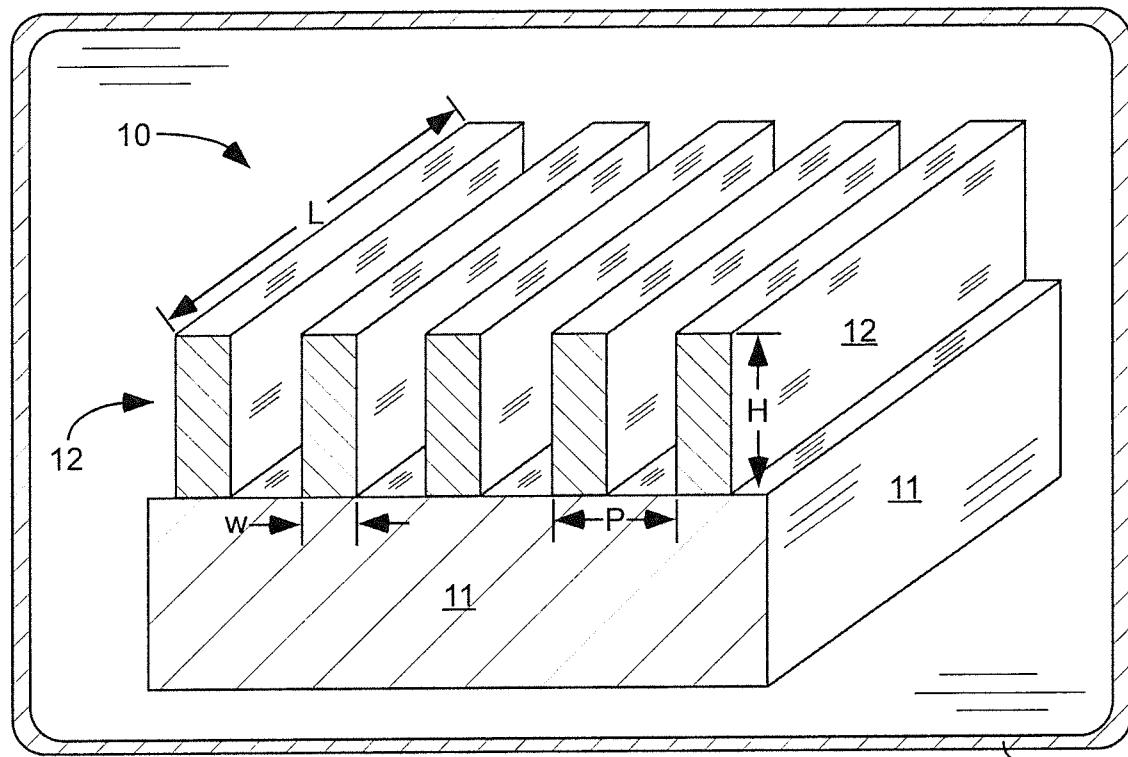
- 5 1. A method of vapor depositing a silane chemical onto a wire grid polarizer, the method comprising:
 - 1 placing the wire grid polarizer into a chamber;
 - 2 introducing a silane chemical and water into the chamber, the silane chemical and the water being in a gaseous phase in the chamber;
 - 10 maintaining the silane chemical and the water simultaneously in the gaseous phase in the chamber and reacting the silane chemical and the water in the chamber to form $(R^1)_2Si(OH)_2$ molecules, where each R^1 is independently any chemical element or group; and
 - 15 forming a silane coating on the wire grid polarizer from a chemical reaction of the $(R^1)_2Si(OH)_2$ molecules with the wire grid polarizer and with other $(R^1)_2Si(OH)_2$ molecules.
2. The method of claim 1, wherein:
 - 20 the $(R^1)_2Si(OH)_2$ molecules include $R^1Si(OH)_3$, the $R^1Si(OH)_3$ being a gaseous molecule; and
 - 25 R^1 in $R^1Si(OH)_3$ is $CF_3(CF_2)_n(CH_2)_m$ with n and m being integers within the boundaries of $4 \leq n \leq 10$ and $2 \leq m \leq 5$.
3. The method of claim 1, wherein:
 - 30 the silane chemical includes $R^1Si(R^2)_3$ molecules;
 - each R^2 is independently -Cl, -OR³, -OCOR³, or -N(R³)₂;
 - each R^3 is independently -CH₃, -CH₂CH₃, or -CH₂CH₂CH₃; and
 - the $(R^1)_2Si(OH)_2$ molecules include $R^1Si(OH)_3$ molecules, the $R^1Si(OH)_3$ molecules being a gaseous molecule.

4. The method of claim 1, wherein R¹ is -CH₃ and a pair of the (CH₃)₂Si(OH)₂ molecules react to form in the gaseous phase:

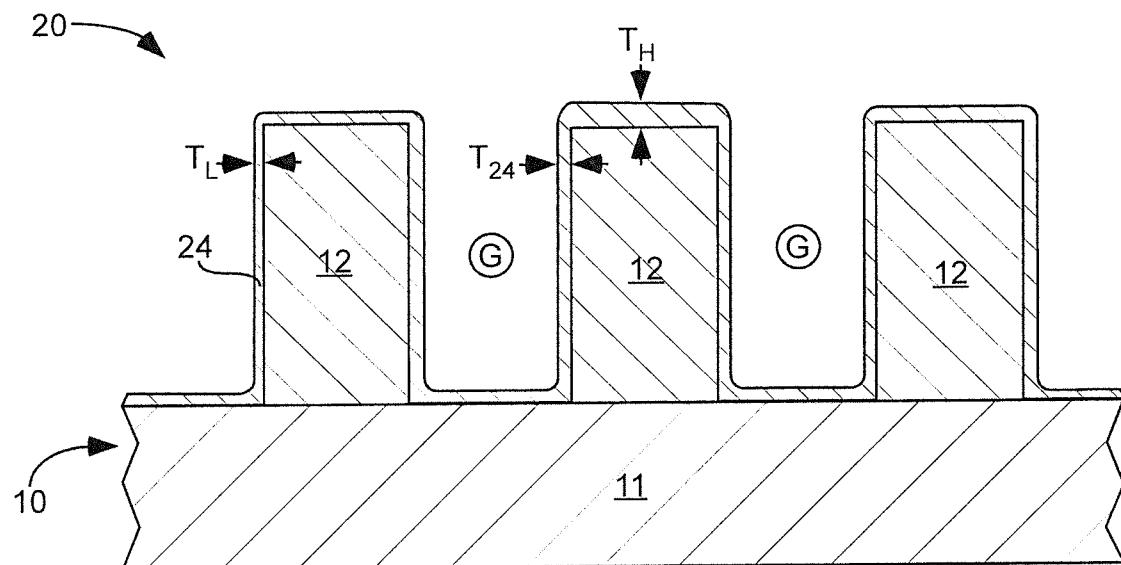



5 5. The method of 1, further comprising controlling an amount of the water in the chamber to achieve a thickness of the silane coating of between ≥ 2 nm and ≤ 20 nm.

10 6. The method of 1, further comprising applying a conformal coating of silicon dioxide on the wire grid polarizer, before introducing the silane chemical and the water into the chamber, the conformal coating of silicon dioxide having a thickness of ≥ 0.5 nm and ≤ 30 nm.

15 7. The method of claim 1, wherein forming the silane coating includes forming covalent bonds between silane and the wire grid polarizer and forming covalent bonds between silane in each layer and silane in the adjacent layer.


20 8. The method of claim 1, further comprising maintaining the silane chemical and the water simultaneously in the gaseous phase in the chamber for at least 5 minutes.

25 9. The method of claim 1, wherein a pair of the (R¹)₂Si(OH)₂ molecules react to form chemical formula (1), chemical formula (2), chemical formula (3), or combinations thereof:



10. The method of claim 1, wherein a density of the water in the gaseous phase in the chamber is between 0.3 g/m³ and 30 g/m³.

1/2

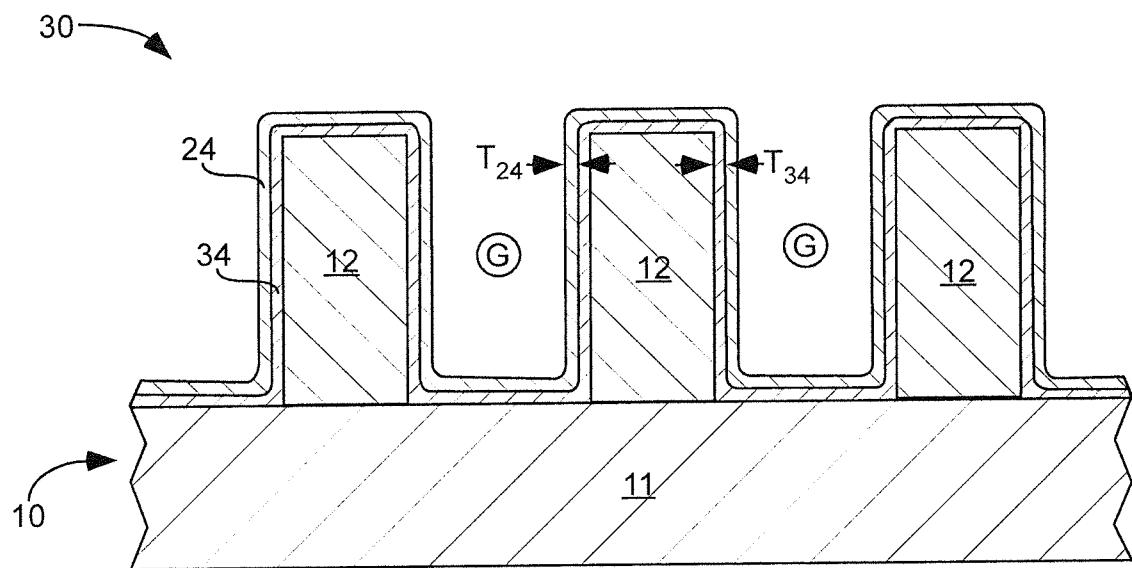


Fig. 1

Fig. 2

2/2

Fig. 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2018/041117

A. CLASSIFICATION OF SUBJECT MATTER

C23C 16/44(2006.01)i, C23C 16/02(2006.01)i, C23C 16/52(2006.01)i, G02B 5/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C23C 16/44; B05D 3/00; B32B 7/02; C23C 16/00; C23C 16/04; C23C 16/40; G02B 1/11; G02B 1/14; G02B 5/30; H01L 21/02; C23C 16/02; C23C 16/52

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & keywords: wire grid polarizer, silane coating, vapor deposition, silane, water, silanediol, hydrophobic film

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2016-0291209 A1 (BRIGHAM YOUNG UNIVERSITY et al.) 06 October 2016 See claims 7, 11, 13, 17, 18; and paragraph [0088].	1-10
A	US 8765221 B2 (MIYOSHI, HIDENORI et al.) 01 July 2014 See claims 1-3, 5, 7-9; column 6, line 61-column 7, line 13; column 9, lines 26-45; column 11, lines 31-55; and figures 1, 3, 4.	1-10
A	JP 2004-138762 A (DAINIPPON PRINTING CO., LTD.) 13 May 2004 See claims 1-12; paragraphs [0001], [0023], [0036]-[0039]; and figure 1.	1-10
A	US 2014-0209562 A1 (NOVELLUS SYSTEMS, INC.) 31 July 2014 See claims 1-6, 11-13.	1-10
A	US 2007-0020392 A1 (KOBRIN, BORIS et al.) 25 January 2007 See claims 56-70; and paragraphs [0099]-[0103].	1-10

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 31 October 2018 (31.10.2018)	Date of mailing of the international search report 31 October 2018 (31.10.2018)
Name and mailing address of the ISA/KR International Application Division Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea Facsimile No. +82-42-481-8578	Authorized officer KIM, Jin Ho Telephone No. +82-42-481-8699

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2018/041117

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2016-0291209 A1	06/10/2016	CN 107429086 A CN 107533172 A EP 3237208 A1 EP 3237943 A1 JP 2018-511816 A JP 2018-512604 A KR 10-2017-0134320 A KR 10-2017-0134422 A US 10054717 B2 US 2016-0289458 A1 US 2016-0291208 A1 US 2016-0291226 A1 US 2016-0291227 A1 US 2017-0269276 A1 US 9703028 B2 US 9995864 B2 WO 2016-160766 A1 WO 2016-160784 A1 WO 2016-160786 A1 WO 2016-160795 A1 WO 2016-160803 A1	01/12/2017 02/01/2018 01/11/2017 01/11/2017 26/04/2018 17/05/2018 06/12/2017 06/12/2017 21/08/2018 06/10/2016 06/10/2016 06/10/2016 06/10/2016 21/09/2017 11/07/2017 12/06/2018 06/10/2016 06/10/2016 06/10/2016 06/10/2016 06/10/2016
US 8765221 B2	01/07/2014	CN 102686773 A JP 2011-216862 A KR 10-1422982 B1 KR 10-2012-0132553 A US 2013-0017328 A1 WO 2011-114960 A1 WO 2011-114960 A9	19/09/2012 27/10/2011 23/07/2014 05/12/2012 17/01/2013 22/09/2011 29/12/2011
JP 2004-138762 A	13/05/2004	None	
US 2014-0209562 A1	31/07/2014	CN 102906305 A CN 102906305 B CN 103890910 A CN 103890910 B CN 103975419 A CN 103975419 B CN 104081505 A CN 104517892 A CN 104517892 B CN 104752199 A CN 104882381 A CN 107342216 A CN 107665811 A JP 2014-112668 A JP 2014-143416 A JP 2014-146786 A JP 2014-532304 A	30/01/2013 13/01/2016 25/06/2014 17/05/2017 06/08/2014 12/04/2017 01/10/2014 15/04/2015 20/10/2017 01/07/2015 02/09/2015 10/11/2017 06/02/2018 19/06/2014 07/08/2014 14/08/2014 04/12/2014

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2018/041117

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		JP 2015-111668 A	18/06/2015
		JP 2015-144268 A	06/08/2015
		JP 2015-510263 A	02/04/2015
		JP 2018-011067 A	18/01/2018
		JP 6199292 B2	20/09/2017
		JP 6370046 B2	08/08/2018
		KR 10-1762978 B1	28/07/2017
		KR 10-1826490 B1	22/03/2018
		KR 10-2013-0062256 A	12/06/2013
		KR 10-2017-0089040 A	02/08/2017
		SG 10201408801 A	30/07/2015
		SG 10201501155 A	29/09/2015
		SG 10201502936 A	29/06/2015
		SG 10201607194 A	28/10/2016
		SG 11201400633 A	28/08/2014
		SG 11201404315 A	28/08/2014
		SG 184566 A1	29/11/2012
		SG 184567 A1	29/11/2012
		SG 195501 A1	30/12/2013
		SG 2013083241 A	27/06/2014
		SG 2013083654 A	27/06/2014
		SG 2014002299 A	28/08/2014
		TW 201144475 A	16/12/2011
		TW 201144967 A	16/12/2011
		TW 201207148 A	16/02/2012
		TW 201327679 A	01/07/2013
		TW 201330096 A	16/07/2013
		TW 201349346 A	01/12/2013
		TW 201411845 A	16/03/2014
		TW 201430951 A	01/08/2014
		TW 201437414 A	01/10/2014
		TW 201443271 A	16/11/2014
		TW 201526104 A	01/07/2015
		TW 201531587 A	16/08/2015
		TW 201534556 A	16/09/2015
		TW 201546312 A	16/12/2015
		TW 201603120 A	16/01/2016
		TW 201616576 A	01/05/2016
		TW 201735162 A	01/10/2017
		TW I506391 B	01/11/2015
		TW I531001 B	21/04/2016
		TW I567225 B	21/01/2017
		TW I587391 B	11/06/2017
		TW I589722 B	01/07/2017
		TW I602245 B	11/10/2017
		TW I612173 B	21/01/2018
		TW I612581 B	21/01/2018
		US 2011-0256724 A1	20/10/2011
		US 2011-0256726 A1	20/10/2011
		US 2011-0256734 A1	20/10/2011

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2018/041117

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		US 2012-0009802 A1	12/01/2012
		US 2012-0028454 A1	02/02/2012
		US 2013-0040447 A1	14/02/2013
		US 2013-0196516 A1	01/08/2013
		US 2014-0106574 A1	17/04/2014
		US 2014-0113457 A1	24/04/2014
		US 2014-0134827 A1	15/05/2014
		US 2014-0141542 A1	22/05/2014
		US 2014-0193983 A1	10/07/2014
		US 2014-0216337 A1	07/08/2014
		US 2015-0126042 A1	07/05/2015
		US 2015-0170900 A1	18/06/2015
		US 2015-0206719 A1	23/07/2015
		US 2015-0243883 A1	27/08/2015
		US 2015-0249013 A1	03/09/2015
		US 2016-0118246 A1	28/04/2016
		US 2016-0155676 A1	02/06/2016
		US 2016-0163972 A1	09/06/2016
		US 2016-0233081 A1	11/08/2016
		US 2016-0293418 A1	06/10/2016
		US 2016-0293838 A1	06/10/2016
		US 2016-0336178 A1	17/11/2016
		US 2017-0148628 A1	25/05/2017
		US 2017-0263450 A1	14/09/2017
		US 2017-0316988 A1	02/11/2017
		US 2017-0323786 A1	09/11/2017
		US 8637411 B2	28/01/2014
		US 8647993 B2	11/02/2014
		US 8728956 B2	20/05/2014
		US 8956983 B2	17/02/2015
		US 8993460 B2	31/03/2015
		US 8999859 B2	07/04/2015
		US 9076646 B2	07/07/2015
		US 9230800 B2	05/01/2016
		US 9257274 B2	09/02/2016
		US 9287113 B2	15/03/2016
		US 9343296 B2	17/05/2016
		US 9355886 B2	31/05/2016
		US 9373500 B2	21/06/2016
		US 9390909 B2	12/07/2016
		US 9552982 B2	24/01/2017
		US 9570274 B2	14/02/2017
		US 9570290 B2	14/02/2017
		US 9611544 B2	04/04/2017
		US 9673041 B2	06/06/2017
		US 9786570 B2	10/10/2017
		US 9793110 B2	17/10/2017
		US 9892917 B2	13/02/2018
		US 9905423 B2	27/02/2018
		US 9997357 B2	12/06/2018

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2018/041117

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2007-0020392 A1	25/01/2007	WO 2011-130174 A1 WO 2011-130326 A2 WO 2011-130326 A3 WO 2011-130397 A2 WO 2011-130397 A3 WO 2013-032786 A2 WO 2013-032786 A3 WO 2013-043330 A1 WO 2013-112727 A1 CN 102443784 A CN 1735708 A CN 1735708 C CN 1878888 A CN 1878888 B CN 1878888 C EP 1639150 A2 EP 1751325 A2 JP 2006-515038 A JP 2007-505220 A JP 2010-065320 A JP 2014-196568 A JP 4422684 B2 JP 4928940 B2 JP 6254485 B2 KR 10-0697505 B1 KR 10-0762573 B1 KR 10-2006-0073926 A TW 200500487 A TW 200540293 A TW 200604368 A TW 200726856 A TW 200915428 A TW 201506200 A TW I251622 B TW I293339 B TW I366607 B TW I422702 B TW I471937 B TW I588294 B US 2004-0261703 A1 US 2005-0082954 A1 US 2005-0109277 A1 US 2005-0271809 A1 US 2005-0271810 A1 US 2005-0271893 A1 US 2005-0271900 A1 US 2006-0088666 A1 US 2006-0213441 A1 US 2006-0251795 A1	20/10/2011 20/10/2011 15/12/2011 20/10/2011 19/04/2012 07/03/2013 10/05/2013 28/03/2013 01/08/2013 09/05/2012 15/02/2006 15/02/2006 13/12/2006 27/10/2010 13/12/2006 29/03/2006 14/02/2007 18/05/2006 08/03/2007 25/03/2010 16/10/2014 24/02/2010 09/05/2012 27/12/2017 20/03/2007 01/10/2007 29/06/2006 01/01/2005 16/12/2005 01/02/2006 16/07/2007 01/04/2009 16/02/2015 21/03/2006 11/02/2008 21/06/2012 11/01/2014 01/02/2015 21/06/2017 30/12/2004 21/04/2005 26/05/2005 08/12/2005 08/12/2005 08/12/2005 08/12/2005 27/04/2006 28/09/2006 09/11/2006

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2018/041117

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		US 2008-0026146 A1	31/01/2008
		US 2008-0081151 A1	03/04/2008
		US 2008-0299288 A1	04/12/2008
		US 2010-0075034 A1	25/03/2010
		US 2010-0137984 A1	03/06/2010
		US 2010-0304132 A1	02/12/2010
		US 2011-0052808 A1	03/03/2011
		US 2011-0217449 A1	08/09/2011
		US 2013-0320509 A1	05/12/2013
		US 2013-0320510 A1	05/12/2013
		US 2017-0335455 A1	23/11/2017
		US 7413774 B2	19/08/2008
		US 7638167 B2	29/12/2009
		US 7695775 B2	13/04/2010
		US 7776396 B2	17/08/2010
		US 7879396 B2	01/02/2011
		US 7955704 B2	07/06/2011
		US 8178162 B2	15/05/2012
		US 8298614 B2	30/10/2012
		US 8323723 B2	04/12/2012
		US 8501277 B2	06/08/2013
		US 8545972 B2	01/10/2013
		US 9725805 B2	08/08/2017
		US 9972583 B2	15/05/2018
		WO 2005-006398 A2	20/01/2005
		WO 2005-006398 A3	01/09/2005
		WO 2005-121396 A2	22/12/2005
		WO 2005-121396 A3	16/11/2006
		WO 2005-121397 A2	22/12/2005
		WO 2005-121397 A3	04/05/2006
		WO 2006-083600 A1	10/08/2006
		WO 2006-121573 A1	16/11/2006
		WO 2008-143837 A1	27/11/2008