woO 2009/015671 A1 |00 0 OO O O A0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 February 2009 (05.02.2009)

(10) International Publication Number

WO 2009/015671 Al

(51) International Patent Classification:
GOG6F 21/00 (2006.01)

(21) International Application Number:
PCT/EP2007/006766

(22) International Filing Date: 31 July 2007 (31.07.2007)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): SONY
CORPORATION [JP/AJP]; 1-7-1 Konan, Minato-ku,
Tokyo 108-0075 (JP).

(72) Inventor; and

(75) Inventor/Applicant (for US only): HOHL, Fritz
[DE/DE]; Stuttgart Technology Center, Sony Deutschland
GmbH, Hedelfinger Strasse 61, 70327 Stuttgart (DE).

(74) Agent: KORBER, Martin; Mitscherlich & Partner, Son-
nenstrasse 33, 80331 Miinchen (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: AUTOMATICALLY PROTECTING COMPUTER SYSTEMS FROM ATTACKS THAT EXPLOIT SECURITY VUL-

NERABILITIES

A9
Vuinerabilfes
~{ ui neE)aBl I%\/ /{g

A2
J

o calls
| ~—— contains

v inSETtS

Decider

\

Secure
History

%

(57) Abstract: The present invention relates to the field of computer system security. The present invention especially relates to
methods and computer programs for automatically protecting a computer system from attacks that exploit security vulnerabilities.
A first method for automatically protecting a computer system from attacks that exploit security vulnerabilities comprises the steps
of detecting requests for the execution of code portions, determining vulnerabilities of a code portion for which an execution request
is detected, evaluating whether or not the execution of the code portion shall be prevented in case that at least one vulnerability
concerning the code portion is determined and preventing the execution of the code portion if determined to do so in the evaluation
step. A second method for automatically protecting a computer system from attacks that exploit security vulnerabilities, comprises
the steps of detecting code portions which are currently executed, determining vulnerabilities of a code portion which is currently
executed, evaluating whether or not the execution of the code portion shall be aborted in case that at least one vulnerability concerning
the code portion is determined and aborting the execution of the code portion if determined to do so in the evaluation step.

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

1

Automatically protecting computer systems from attacks that exploit security

vulnerabilities
Field of the invention

The present invention relates to the field of computer system security. The present
invention especially relates to methods and computer programs for automatically

protecting a computer system from attacks that exploit security vulnerabilities.
Description of the related prior art

A plurality of system, techniques and services are known which help to improve

computer system security.

Vulnerability databases, for example, are (mainly public) databases that contain
published vulnerability descriptions. These descriptions typically contain attributes
like a discovery date, a name, a textual description, a list of affected code modules
including their version numbers and required platforms (i.e. Operating Systems and/or
hardware requirements), and some creditability evidence, e.g. the name of the
discoverer. Examples are the services provided by Symantec (see
http://securityresponse.symantec.com), the Open Source Vulnerability Database (see
http://www.osvdb.org/), or by automatically archiving mailing lists like BugTraq (see
http://www.securityfocus.com/archive/1) or Full Disclosure (see

http://archives.neohapsis.com/archives/fulldisclosure/2006-01/).

Some operating systems provide a service for automatic download and installation of
updates (including security fixes). This mechanism requires security fixes to be
available and relates only to updates of the Operating System but not to general

applications.

The Open Vulnerability and Assessment Language, or OVAL, is a standard for
expressing how to check for the presence of vulnerabilities and configuration issues on
computer systems, and how to report on the presence and absence of such issues.

OVAL does not protect computer systems; instead it provides data formats on the basis

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

2

of which a mechanism that can state whether a computer system contains a certain

vulnerability or not can work.

Virus scanners examine files by referring to a dictionary of known viruses patterns that
the authors of the virus scanner have identified. Virus scanners detect only viruses and
malware. Viruses and malware however form only one part of possible attacks. For

example, an attacker that uses a specially designed URL in order to exploit some cross

scripting attacks, will never be detected by a virus scanner.

Summary of the invention

The object of the present invention is to further enhance computer security. To achieve
this object, the present invention provides a first method for automatically protecting a
computer system from attacks that exploit security vulnerabilities, comprising the steps
of detecting requests for the execution of code portions, determining vulnerabilities of
a code portion for which an execution request is detected, evaluating whether or not
the execution of the code portion shall be prevented in case that at least one
vulnerability concerning the code portion is determined and preventing the execution
of the code portion if determined to do so in the evaluation step. To achieve the object,
the present invention provides a second method for automatically protecting a
computer system from attacks that exploit security vulnerabilities, comprising the steps
of detecting code portions which are currently executed, determining vulnerabilities of
a code portion which is currently executed, evaluating whether or not the execution of
the code portion shall be aborted in case that at least one vulnerability concerning the
code portion is determined and aborting the execution of the code portion if

determined to do so in the evaluation step.

Thus, the present invention protects computer systems from attacks that exploit
security vulnerabilities of code portions. By preventing or aborting the execution of a
code portion, this is achieved without requiring fixes to the vulnerabilities, so that
protection is achieved instantly a vulnerability is determined. Any method to
automatically determine a vulnerability of a code portion may be employed. Starting a
program and calling an external procedure are situations that can be detected and

augmented with a prevention mechanism without the need to recompile or change the

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

structure of existing applications. Thus the present invention can be employed with
existing applications. In a simple implementation of the present invention, the
evaluation step may be implemented trivially, so as to always abort or prevent the
execution of the code portion, when a vulnerability of the code portion is detected. The
computer system is not restricted to be a computer system of any kind. The computer
system may, for example, be a personal computer providing a processor, input and

output means, permanent and volatile storage means and networking capabilities.

Advantageously, in case of the first method, said code portion is a procedure external
to a requesting code module issuing said request for execution, said method, in case
that the execution of said code portion is prevented, further comprising the step of
executing in place of said prevented code portion a shortcut procedure which ensures

that said requesting code module can continue.
Advantageously, said vulnerabilities are known vulnerabilities.

Advantageously, for each code portion there is an associated code portion identifier,
and the step of determining vulnerabilities of a code portion is based on a step of
querying a database which holds associations of vulnerabilities with code portion
identifiers, whereby a vulnerability is determined to be a vulnerability of the code
portion when the database holds an association of the vulnerability with the code

portion identifier of the code portion.

Advantageously, the method comprises a secure history determination step providing a
secure history determination result indicating whether or not a parameter set used to
call the code portion was used before the publication of the oldest vulnerability of the
code portion wherein the step of evaluation is based on the secure history
determination result. Alternatively, one or more parameter test procedures are defined,
whereby each parameter test procedure of the one or more parameter test procedures is
specific to a different one of said vulnerabilities and provides a result value when
executed which indicates if a parameter set used to call the code portion exploits this
vulnerability or not and whereby the step of evaluation is based on one or more of said
result values of the one or more parameter test procedures. In this case, the method

advantageously further comprises a secure history determination step providing a

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

4

secure history determination result indicating whether or not a parameter set used to
call the code portion was used before the publication of a first vulnerability of the code

portion whereby the step of evaluation is based on the secure history determination

result.

Advantageously, said first vulnerability is the oldest vulnerability of the code portion

without a parameter test procedure.

Advantageously, the method further comprises a step of storing, whenever a code
portion is executed, an identifier of the executed code portion together with a
parameter set used to call the executed code portion and a time stamp, whereby the
parameter set is stored based on a secure hash in case the parameter set is determined

to require too large an amount of storage capacity.

Advantageously, the method further comprises the steps of determining which fixes
need to be applied in order to allow for a secure execution of a code portion of which
the execution is prevented or aborted and telling a user said fixes and/or applying said

fixes.

Advantageously, the method further comprises the steps of determining what other
code portion might be used instead of the one of which the execution was prevented or

aborted and telling a user said other code portion.

The present invention can likewise be seen in a computer software product adapted to
perform the steps of the first or the second method. The computer program product
provides a protection system. The protection system typically will use the hard- and
software infrastructure of the computer system it protects and the hard- and software
infrastructure to which the computer system is connected. Thereby use is made of the
storage, processing and communication facilities of the computer system. The
protection system may also employ hardware specifically provided for facilitating the

protection system.

Brief description of the drawings

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

5

The present invention is explained with reference to drawings of which

Fig. 1 shows a block diagram of various functional components of an preferred
embodiment of the present invention along with components of the computer
system which is to be protected,

Fig. 2 shows a schematic view of a code module 10 and

Fig. 3 shows a flow diagram of program logic executed by a decider component of the

present invention.
Description of the preferred embodiments

The preferred embodiment of the present invention detects vulnerabilities of a code
portion based on published or pre-existing information about vulnerabilities
concerning a code portion or code portions affected by a vulnerability. A vulnerability
is a security problem of a part of a single code module. As soon as a vulnerability is
published by a defender or has been detected by an attacker, an “exploit” can be
created. An exploit is code of any kind that employs a vulnerability in order to attack a
computer system. After an exploit has been created, it can be used to attack a system
until the vulnerability is removed by applying a fix (or patch) on that system. Exploits
that exist before the corresponding fix is published are called “zero-day exploits”.
Zero-day exploits can be further categorized into “fast exploits” meaning that the
corresponding vulnerability is already published but not the fix (in the meaning of “the
time difference between vulnerability publication and exploit creation is 0 days™) and

into “secret exploits” meaning that the vulnerability is not even published yet.

The embodiment provides a system for reducing the number of false positives
(assumed attacks which are not attacks), thereby reducing the number of wrongfully
prevented operations and, thus, providing a larger user comfort. In the embodiment,
code portions for which vulnerabilities are found, are aborted or prevented from
execution only when a special condition is not met. This condition is based on the
thesis that such program starts or external procedure executions are not malicious that
took place before the publication date of the corresponding vulnerability. This thesis is
true in the case of fast exploits, but not in the case of secret exploits, therefore the

embodiment cannot prevent the latter. To implement this, the parameter sets that are

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

6

used for program start und procedure execution are recorded and the special condition
checks whether after the corresponding publication date one of the recorded parameter
sets is used for a program start or procedure execution. In this case, the special
condition is met, and the corresponding action is allowed. In all other cases, the special
condition is not met. However, the special condition can only be applied for
vulnerabilities where the parameter set used for an attack is different from the one used
for benign usages (non-usual-usage type vulnerabilities). For all other vulnerabilities
(normal-usage type vulnerabilities), the special condition shall therefore never be met.
The vulnerabilities are therefore categorized into two groups: Non-usual-usage type
vulnerabilities and normal-usage type vulnerabilities. Non-usual-usage type
vulnerabilities require non-usual parameters in order to be exploited. This type forms
the bigger part of vulnerabilities because usual-type vulnerabilities are normally found
already in the test phase at the manufacturer or very early during usage in the field.
This means that, normally, parameters of non-attack usages do not lead to the
exploitation of a vulnerability. Therefore, firstly, the statement of parameters in order
to exploit a vulnerability can take place only after the publication date of the
vulnerability. Secondly, statements of parameters before this publication date do not
lead to the exploitation of the vulnerability. Normal-usage type vulnerabilities form the
smaller group of vulnerabilities that do not require unusual parameters in order to be
exploited. For example, there are severe vulnerabilities that prevent the evaluation of
passwords for privileged accounts. However, using the wrong password for an account
is a normal use of a login system. Therefore, it is not possible to distinguish “secure”
from “insecure” data and code modules for which such vulnerabilities exist must not

be executed unless a corresponding fix is applied.

Fig. 1 shows a block diagram of various functional components of the protection
system of the preferred embodiment of the present invention along with components of
the computer system which is to be protected from attacks exploiting known security

vulnerabilities and the interrelation of the components.

The protection system involves three groups of components. The first group consists of
the code modules (CM) 10-1, 10-2, 10-3, 10-4, 10-5 installed on the computer system
which is under the control of an operating system (OS). The code module do have a

“uses” relationship among themselves. For example, code module 10-1 uses code

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

7

modules 10-2 and 10-3 and code module 10-2 uses code module 10-3. The second
group consists of a plurality of hooks 12-1, 12-2, some of which may be part of the

OS. The hooks which are part of the OS are called by the OS in case of certain
corresponding operations by the OS. Normally, an OS provides a hook 12-1 for
starting a program (i.e. executing a code module 10). An additional hook 12-2, termed
library procedure start hook 12-2, is called in case a code module 10 seeks to execute a
procedure of another code module 10. A hook corresponding to this operation, is
normally not provided by an OS. The hooks 12 then call a decider 14 which provides a
decision either to allow or deny to continue executing their corresponding functionality
(e.g. starting a program, executing a library procedure). The decider 14 consults a
vulnerability calculator 16 in order to obtain parameter test procedures and an oldest
publication date (OPD) of the vulnerabilities involved in the corresponding OS
operation. The vulnerabilities calculator 16 in turn consults a vulnerabilities database
18 in order to determine the parameter test procedures and the OPD. The
vulnerabilities database 18 is maintained by a vulnerabilities database manager 19. The
decider 14 also consults a secure history component 16 in order to obtain a relevant
date (RD) of the corresponding OS operation. Additionally, for every allowed
operation, the hooks 12 or the decider 14 report corresponding data to the secure
history component 20. The decider 14 communicates with the user via a user messages
component 22 in case it rejects an operation. A loader 24 determines (e.g. reads) the
“uses” relation of code modules 10 and inserts calls 26-1, 26-2, 26-3, 26-4, 26-5 to the
library procedure start hook 12-2 into the code modules 10 in location just before code
sections where these code modules 10 call procedures of other code modules 10. The
loader 24, the decider 14, the secure history 20, the vulnerability calculator 16,
vulnerabilities database 18, the vulnerability database manager 19 and the user
messages 22 form the third group of components. In the preferred embodiment, the
code modules 10, decider 14, the hooks 12, the (dynamic) loader 24, the vulnerability
calculator 16 and the database manager 19 and the secure history component 20 are
executed locally, that is, are executed on the same computer system using resources of
the same CPU. However, at least some of the components can be executed non-locally,

for example, within the same security domain as the protected computer system.

In the following these components will be explained in more detail.

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

8

Fig. 2 shows a schematic view of a code module 10. The code modules 10 are
components that are handled by the OS and that are distinct and identifiable portions of
executable code. Some code modules (e.g. module 10-1) can be started by the OS by
calling something like a “main” or “start” procedure which is part of the code module
10. These code modules 10 are termed “programs”. Just before starting the program,
the OS program start hook is activated (called) by the OS. Other code modules (e.g.
module 10-3) provide procedures (functions) used by other code modules 10 and are

termed “libraries”. A code module (e.g. module 10-2) may be both a program and a

library.

Every code module 10 has an identifier (ID) including a version number and comprises
one or more exported procedures. For each of the exported procedures, the procedure
name can be identified. Often code modules contain a list of used external procedures,
that is, procedures that are called by the exported procedures and that exist in other
code modules 10. Therefore, the used external procedures are identified by the code
module IDs the used procedures are contained in and the procedure names of these
procedures. There is a n:m relation between the exported procedures and the used
external procedures which is not easy to determine. This means that, in case the
relation can not be determined, it is only known which code module 10 uses which
external procedure, but that it is not known which procedure of the code module 10
uses which external procedure. The latter information however is desirable because in
some constellations it leads to less information processing required to be performed by
the present invention. This case however is not treated in the following as the required
modification and adaption are apparent to the skilled person. The list of used external
procedures establishes the “uses” relation between a first code module 10 and the other

code modules 10 whose procedures are used by the first code module 10.

The services an OS provides are based on the service of a number of basic procedures.
These basic procedures are termed “hooks” and can be used to add a protection system
like the one described in this invention to the OS by inserting a conditional statement
in these procedures. This statement first queries the decider 14. The output of the
decider 14 is either a positive (Fig. 3, S114) or a negative (Fig. 3, S116) decision.
Upon a positive decision, the conditional statement is left and the OS code continues to

execute as it would do without the statement. Upon a negative decision, the basic OS

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

9

procedure is not executed but is aborted with an appropriate error message. In the
embodiment, there is assumed to be an OS hook 12-1 for the "start program"”
operation. An additional hook termed “library procedure start hook “12-2 is provided
that is normally not offered by an OS. The “library procedure start hook” 12-2 shall be
called before a code module (e.g. module 10-1) calls a procedure in an other code
module (e.g. module 10-2). If this hook is not automatically called in an OS, the loader
component 24 inserts a call (e.g. call 26-2) to it. This technique of "overlaying"
existing basic OS procedures with code of another system is well known and is used in
allowed applications such as virus scanners and in malicious "applications" such as
root kits. Apart from adding such code to an OS afterwards, it can of course also be

integrated into a normal version of the OS.

The normal loader 24 in an OS is the component that runs mainly when a program is
started. The loader 24 loads and examines the code module (e.g. module 10-1)
corresponding to the program and states the list of code modules (in this example
modules 10-2, 10-3) the first code module 10-1 “uses”. This “uses” relation is a list of
procedures of other code modules 10-2, 10-3 the first code module 10-1 calls. The
loader 24 loads the “used” code modules 10-2, 10-3 and changes the first code 10-1
module in a way that it can call the corresponding procedures directly. The loader 24
then examines the “used” code modules 10-2, 10-3 for a list of code modules 10-3 they
“use” and continues as before until the transitive closure (in this example the modules
10-2, 10-3) of “used” code modules is loaded and all procedures can be called directly.

This mechanism is called dynamically linking.

The embodiment extends this normal loader 24 by the ability to add a call 26 to the
library procedure start hook 12-2 every time a procedure call to another code module
10 is found and processed. One way to use this ability is to indeed add this call 26 to
every procedure call. However, this results in a large runtime overhead caused by the
protection mechanism, as all library procedure calls cause a decider query. The
overhead can be diminished by omitting the insertion of calls 26 to the library
procedure start hook 12-2 for modules/procedures for which no vulnerability exists. In
case the calls 26 are omitted as described and a new vulnerability of a code module 10

or of one of its external procedures that is potentially accessed by a currently executing

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

10

program is input into/by the protection system, the program has to be stopped and re-

loaded with the corresponding call(s) 26 inserted.

Apart from being used when a program is started, the loader 24 can also be called
directly by a code module 10 in order to establish load another code module 10
explicitly. Finally, the loader 24 can act also after compiling the program in order to
“statically link” a code module (e.g. module 10-1) with the transitive set of its “used”
code modules (in this example modules 10-2, 10-3) in order to generate a new code
module that already contains the “used” code modules (in this example modules 10-1,
10-2, 10-3) without the need for dynamically loading them. For “statically linking”,

the same mechanisms are applied as for dynamically linking.

The decider 14 is called by the different hooks 12 in order to decide whether the
corresponding operation shall be executed or not from a security point of view. In
order to allow the decider 14 to make this decision, the hooks 12 deliver the code
module identifier, the called procedure name (in case of a program start, this the
“main” or “start” procedure, omission of the procedure name might be defined to
indicate this procedure) and the parameters involved in the operation, for example, the
parameters used in calling a program or external procedure (i.e. the input parameters of
a program or of an external procedure) to the decider 14. The decider 14 then first
queries the vulnerability calculator 16 for vulnerabilities and other data by feeding the
code module identifier and, if available, the called procedure name to the vulnerability

calculator 16.

The vulnerability calculator 16 answers with one of two possible results:
a) There is no (unfixed) vulnerability.
b) There is at least one (unfixed) vulnerability. In this case, the vulnerability
calculator 14 returns a time-ordered list of publication dates for the

vulnerabilities and, if available, one parameter test procedure per vulnerability.

Fig. 4 shows a flow diagram of program logic executed by the decider 14 upon

reception of the query result from the vulnerabilities calculator 16.

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

11

In step S100 the decider 14 determines whether or not there is at least one vulnerability
according to the result from the vulnerability calculator. In case of result a), the decider

14 proceeds to step S114. In case of result b), the decider 14 proceeds to step S104.

In step S102 the decider 14 sets the oldest vulnerability with a parameter test
procedure as the currently tested vulnerability and proceeds to step S104. For
vulnerabilities of the normal usage type a parameter test procedure that always yields
true (meaning that the parameters indeed exploit the vulnerability) is always defined.
Therefore, the decision of step S112 (see below) will never be taken for a normal

usage type vulnerability and the “special condition” is never met.

In step S104, the parameter test procedure of the currently tested vulnerability is
executed on the parameters. In case that the parameter test procedure finds that the
parameters do exploit the currently tested vulnerability, the decider 14 proceeds to step

S116, otherwise the decider 14 proceeds to step S106.

In step S106, in case that there are more vulnerabilities with a parameter test
procedure, the decider 14 proceeds to step S108, otherwise the decider 14 proceeds to

step S109.

In step S108, the decider 14 sets the next youngest vulnerability with a parameter test

procedure as the currently tested vulnerability (e.g., in case that the oldest vulnerability
with a parameter test procedure is currently set as the currently tested vulnerability, the
second oldest vulnerability with a parameter test procedure is set as the currently tested

vulnerability) and proceeds to step S104.

In step S109, the decider 14 determines if untested vulnerabilities (i.e. vulnerabilities
without a parameter test procedure) remain. If no (i.e. in case that for all vulnerabilities
a parameter test procedure is defined), the decider proceeds to step S114. If yes, the

decider proceeds to step S110.

In step S110, the decider 14 determines the oldest publication date (OPD), which is the
publication date of the oldest vulnerability without a parameter test procedure. The

decider 14 further determines the relevant date (RD). The RD is retrieved from the

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

12

secure history component 20 as an answer to a corresponding request comprising the
code module identifier, the called procedure name (eventually the “main procedure”)

and the parameters involved in the operation.

In step S112, the decider 14 determines whether the operation was executed before the
publication of the oldest vulnerability without a parameter test procedure, that is, the
decider 14 determines if the RD is older than the OPD. If yes, the decider 14 proceeds
to step S114. If no, that is, in case the RD is younger or equally old as the OPD, the
decider 14 proceeds to step S116. This steps corresponds to the evaluation of the

“special condition”.

In step S114 the decider 14 allows the operation and lets it henceforth continue
normally. After this happened, the data the hook 12 delivered to the decider 14 is
transferred to the secure history component 20. Alternatively, the hook 12 delivers the

data to the secure history component 20.

In step S116 the decider 14 rejects the operation and informs the user via the user
messages component 22 about the rejection and about the vulnerability that caused the
rejection. To provide a higher user comfort, the decider 14 may add information about
which patches/fixes can be applied to fix the vulnerability and have the functionality
back, where to get the patches/fixes and/or which program can be used instead. For
even more comfort, the decider 14 may offer to install the corresponding patches/fixes
or even cause the automatic installation of the patches/fixes without questioning the

USEr.

When rejecting the execution of an operation there are two possibilities for what
happens to the further execution of the program during which the operation occurred.
In the first case, the decider 14 does not know how to ensure that the program can be
continued and has to stop the program. A problem with this case is that the operation
returns without being executed, so that side effects might not happen or return values
might not be produced that are needed for continuing the program. As a result, the
program might fail later on unexpectedly. Therefore, corresponding to the second case,

the corresponding vulnerability entry in the vulnerability database 18 advantageously

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

13

provides a “shortcut” procedure that is executed instead of the original operation and

that ensures that the program can continue.

It is to be noted that, as a consequence, a program can run for a longer period of time
and suddenly be stopped during a functionality this program was able to do before.
This might happen e.g. when a new vulnerability concerning this program was found

and the program hit an operation which the decider 14 rejects due to that vulnerability.

The described program is effected also in the case where a program is already running
and the protection system becomes aware of one or more new vulnerabilities
concerning the running program. In this case, the control logic starting in step S100 is
executed operating on the one or more new (previously untested) vulnerabilities. In
this case, the decider 14 is called when the protection system becomes aware (typically
after an update of the vulnerabilities database 18) of the one or more new
vulnerabilities relative to the running application. To this end, the running applications
must be known. The determination of the running applications may be based on a
service for listing running applications, which is normally provided by the OS. If not

provided by the OS, the protection system may provide the service.

It can be seen from Fig. 4 that, in case there is a parameter test procedure for each
vulnerability in the list provided by the vulnerability calculator 16 and all parameter
test procedures do not find vulnerability exploiting parameters, the decider 14 allows

the operation and the program continues.

Cleary, the program logic of Fig. 4 can be modified in many ways still providing the
same result on the same input. For example, the timely order of the “RD younger than
OPD?” test block (centered on step S112) and the “parameter test procedures” test
block (centered on step S104) may be reversed or the “RD younger than OPD” test
block may be executed when the first vulnerability without a parameter test procedure
is encountered in the time-ordered (youngest first) sequence. Such modification may
be advantageous in terms of time/processing power required to obtain the decider’s
result. In many cases, a modification which is fast when the branch (step S114)

allowing the operation is taken is advantageous.

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

14

The user messages component 22 allows the decider 14 to communicate with the user
in case it rejects the execution of an operation. The user messages component makes

use of the input and output devices of the computer system.

The vulnerability calculator 16, given the ID of a code module and, if available, a
procedure name, calculates whether there are vulnerabilities concerning this code
module or code module/procedure name combination. If there are such vulnerabilities,
the vulnerability calculator 16 returns a time-ordered list of the publication dates of
these vulnerabilities together with their optional parameter test procedures. To that
end, the vulnerability calculator 16 queries a vulnerabilities database 18. Due to
performance reasons (a live query for every query by the decider 14 would require too
much time and generate too much network load), the vulnerabilities database 18 is
locally replicated restricted to those entries of one or more remote/primary databases
that are pertinent given the computer system’s OS and hardware, the installed code
modules and the installed fixes. It is likely that, at least partly, existing vulnerability
databases can be used as prime/remote databases. A replicated entry is not limited to
mean an exact copy of the entry, rather the relevant information of the prime entry or a
plurality of prime entries is extracted and stored in a form suitable for further
processing. To keep the local entries up to date, the remote/primary vulnerability
databases are queried periodically. The maintenance of the vulnerability database 18,
including, notably, the selection or determination of pertinent vulnerability entries to
be replicated, is controlled and/or effected by the vulnerability database manager 19.
To this end, the vulnerability database manager 19 acquires and collects information
identifying the code modules 10, fixes, OS, and hardware of the protected computer
system. The operation of the vulnerability database manager 19 may partly be based on
the techniques, services and programs the OVAL framework provides. Vulnerability
database entries are not considered to be constant. Instead, updated entries in the
remote/primary databases are also updated in the replicated copy. Finally, fixing
vulnerabilities can change the vulnerabilities database 18 as entries are removed that
are not relevant to the computer system. The vulnerability database 18 contains a list of
all published vulnerabilities (i.e. "published vulnerability” relates directly to the
accessibility in this database). The embodiment uses the following fields in a

vulnerability entry in the vulnerability database 18:

10

15

20

25

30

WO 2009/015671 PCT/EP2007/006766
15

o D of vulnerability (this might be a Common Vulnerabilities and Exposures
(CVE) reference)
e publication date of vulnerability
e code module(s) concerned by vulnerability, including per code module:

o an identifier (ID) of the code module (including its version number)

o the concerned Operating System (including the OS version number)

o IDs (names) of affected exported procedures inside the code module (if
applicable)

o atrust factor (between 0 and 1.0) denoting the trust of the vulnerability
database whether this entry refers really to a vulnerability or is just a
fake entry (optional)

o ashortcut procedure (if applicable)

o a parameter test procedure (if applicable)

o hardware requirements (if applicable)

Alternatively, the vulnerability database 18 can be remote (i.e. accessed over a

network) and may be centralized or distributed.

In order to be able to provide the RD, the secure history component 20 stores all
parameters of operations together with an operation identifier (operation ID), the
concerned code module ID and, if applicable, the concerned procedure ID that have
been allowed by the decider 14 in a database. The source of these parameters might be
either the decider 14 or the corresponding hooks 12. The parameters can be stored in
one of several ways. These ways include:

e All data is stored completely together with a time stamp. This possibility
consumes the most amount of memory.

e All data is stored “completely” together with a time stamp, but for every
parameter that is larger than the memory needed for a secure hash value that is
sufficiently secure, this secure hash value of the parameter is stored. In this
case, the secure hash value of the parameters are compared and not the
parameters themselves.

The amount of storage required and the protection system overhead (time/processing
power) caused by storing the data can be diminished by not always storing parameters,

but, for example, just in every nth time interval. This reduces the number of parameter

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

16

sets recorded, which might lead to more false rejects by the decider 14 and, thus,

reduced user comfort.

If queried by the decider 14, the secure history component 20 calculates the RD out of
the parameters of an operation. To that end, it regards the parameters as a set of
parameters. If this set of parameters is found in the database as having already
occurred for the given operation, code module and, if applicable, procedure, the
returned RD is the date when this parameter set was stored initially. If this parameter
set is not found as being stored for the given operation, code module and, if applicable,
procedure, today’s date is returned as the RD. Dates are ‘day exact’ in the
embodiment. More or less fine grained dates are possible however. In order to reduce
the memory needed, the secure history component 20 can differentiate parameter sets
that are used once and such that are used more often. Parameter sets that are used once
can be removed from the secure history after some time without a loss of comfort for

the user.

In case a parameter is an address or a link of any kind referring to further data, which
the code module or procedure uses to obtain said data, a security threat might arise
from the parameter itself and from the data to which it refers. In this case, both threats
must be considered independently and it is beneficial to think of the parameter as
comprising itself and the data to which it refers. However, this approach increases the
complexity of the system and requires knowledge of the module’s or procedure’s

operation.
In the following, two examples of the embodiment’s operation will be given.

In the first example, an exploit is recognized correctly. In the example, an attacker
seeks to exploit a vulnerability in a GIF viewer that is ihtegrated in a web browser that
allows specially coded GIF pictures to let the viewer execute code contained in the
picture. To that end, the attacker places a corresponding GIF picture on a web page.
The vulnerability was published on 1 January 2005. Upon starting the web browser
(e.g. corresponding to code module 10-1) on 1 February 2006, the loader 24 adds calls
26-1, 26-2 to the library procedure start hooks 12-2 to all external procedure calls.

Then, the decider 14 queries the vulnerability calculator 16 for potential vulnerabilities

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

17

of the browser 10-1. The vulnerability calculator 16 states a number of code modules
10-2, 10-3 the browser uses. Among these modules 10-2, 10-3 is the GIF library 10-3
that contains the published vulnerability. The decider 14 is updated with this
information. As there are no other vulnerabilities, the OPD for the vulnerabilities of the
web browser 10-1 is 1 January 2005. The web browser 10-1 is started without
parameters, as it was started many times even before 1 January 2005. Therefore, the
decider 14 allows to start the web browser. Upon googling for a certain term, the user
finds the attacker’s web page and the browser aims to display the GIF picture by
calling the corresponding procedure in the GIF library 10-3. The code hits the inserted
call 26-1 to the library procedure start hook 12-2 and the decider 14 compares the
parameters of the procedure call to the previously stored parameters using the secure
history 20. As the picture data, which is one of the parameters, was never displayed
before, the secure history 20 returns today’s date as the RD. The decider 14 compares
this date to the OPD for this call, states that it can contain an exploit and, thus, rejects
the procedure call. The decider 14 executes the “failure case” code (including the
shortcut procedure) for this call, and informs the user about the denial together with

some hint which fix to apply using the user messages component 22.

In the second example, a false alarm is raised. In this example, as in the first example,
the user starts the browser 10-1 successfully. Upon googling for a certain term, the
user finds a web page containing a GIF that does not contain an exploit. Again, the
browser aims to display the GIF picture by calling the corresponding procedure in the
GIF library 10-3. The code hits the inserted call 26-1 to the library procedure start
hook 12-2 and the decider 14 compares the parameters of the procedure call to the
previously stored parameters using the secure history 20. As the picture data, which is
one of the parameters, was never displayed before, the secure history returns today’s
date as the RD. The decider 14 compares this date to the OPD for this call, states that it
can contain an exploit and, thus, denies the procedure call. The decider 14 executes the
“failure case” code (including the shortcut procedure) for this call, and informs the
user about the denial together with some hint which fix to apply using the user
messages component 22. As a consequence, the user cannot watch the GIF picture

although the GIF picture did not contain an exploit.

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

18

The embodiment supports rough vulnerability entries in vulnerability databases as well
as detailed ones and can cope with the evolution of the first into the latter. Rough
vulnerability entries can be created fast. Only the ID, date, and the overall code module
(using the main procedure in doubt) are enough to protect the computer system from
being attacked by this vulnerability until the corresponding fix is written and applied.
As a consequence, rough vulnerability entries more often lead to the rejection or
interruption of a program start (and therefore a low level of user comfort). After a
rough vulnerability entry was written, more time can be invested to examine the nature
of the vulnerability. Afterwards, the entry can for example be refined for the
procedures that are used, and parameter test and shortcut procedures can be written. As
soon as such an entry is updated, the invention can react on it, thus resulting in a

higher level of user comfort.

Depending on the policy of a consulted vulnerability database, it can be possible for an
attacker to add fake vulnerability entries. When the fake entries are delivered to the
vulnerability calculator 16 they could prevent the usage of programs or subsystems and
make the computer system practically unusable so the user might be tempted to switch
off the protection system. Therefore it is important to use only such databases that
verify every vulnerability entry.

The level of comfort for the user differs with the question whether vulnerabilities can
be associated with the usage of external procedures and their parameters. This typically
is not the case for vulnerabilities that are caused by network communication as there is
no need for crossing an external interface, where the network communication acts
occur as parameters (network communication functionality is typically provided with
some internal procedures whose structure is hard to discover from the outside). By
adapting such programs in a way that exactly this (processing network communication
acts as parameters of a external interface) happens, the protection the invention offers

can also be provided to these programs with a higher level of comfort for the user.

Apart from vulnerabilities that use parameters in order to attack a system, there are
other vulnerabilities that are based on external input to the code module. For these
other vulnerabilities it is not enough to just record all such input and time-stamp it in

order to have a set of “secure” input. Instead, also the state of the code module and the

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

19

communication history needs to be taken into account. This can take place analogous
to F. Hohl, K. Rothermel, A Protocol Preventing Blackbox Tests of Mobile Agents,
Tagungsband der ITG/VDE Fachtagung Kommunikation in Verteilten Systemen
(KiVS'99), Springer-Verlag, 1999.

The protection system of the embodiment
e automatically protects computer systems from attacks by exploiting published
vulnerabilities, thus e.g. preventing
o buffer overflow attacks,
o corrupt media files attacks,
o ordinary users becoming administrator users in multi-user systems,
e prevents services that have not been fixed from being attacked,
e prevents attacks by fast exploits,
e reacts timely given the timely access to a vulnerability database,
e motivates users to apply fixes,
e can tell users which fixes to apply in order to be able to use a service,
¢ needed infrastructure mainly already exists,
e considers more than just viruses, malware, or the OS,
e requires no admin knowledge,
e requires only fixes of which the vulnerabilities really occur and

e does not require applications to be recompiled.

It is very important to not reject operations that are needed for fixing patches on the
computer system because then execution restrictions caused by the invention can never
be removed. These operations obviously include “applying patches” operations, but
also every operation that is needed before, for example the “login as super user”

operation.

While the present invention has been explained with reference to specific
embodiments, this is by way of illustration only and it will be readily apparent to those
skilled in the art that various modifications may be made therein without departing

from the scope of the following claims.

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

20

Claims

1. A method for automatically protecting a computer system from attacks that
exploit security vulnerabilities, comprising thg steps of

detecting requests for the execution of ‘code portions,

determining vulnerabilities of a code portion for which an execution request is
detected,

evaluating whether or not the execution of the code portion shall be prevented
in case that at least one vulnerability concerning the code portion is determined and

preventing the execution of the code portion if determined to do so in the

evaluation step.

2. A method according to claim 1 wherein

said code portion is a procedure external to a requesting code module issuing
said request for execution, said method, in case that the execution of said code portion
is prevented, further comprising the step of

executing in place of said prevented code portion a shortcut procedure which

ensures that said requesting code module can continue.

3. A method for automatically protecting a computer system from attacks that
exploit security vulnerabilities, comprising the steps of
detecting code portions which are currently executed,
determining vulnerabilities of a code portion which is currently executed,
evaluating whether or not the execution of the code portion shall be aborted in
case that at least one vulnerability concerning the code portion is determined and
aborting the execution of the code portion if determined to do so in the

evaluation step.

4. A method according to any one of the above claims wherein

said vulnerabilities are known vulnerabilities.

5. A method according to any one of the above claims wherein

for each code portion there is an associated code portion identifier, and

WO 2009/015671 PCT/EP2007/006766

10

15

20

25

30

21

the step of determining vulnerabilities of a code portion is based on a step of
querying a database (18) which holds associations of vulnerabilities with code portion
identifiers,

wherein a vulnerability is determined to be a vulnerability of the code portion
when the database (18) holds an association of the vulnerability with the code portion

identifier of the code portion.

6. A method according to claim 4 or 5 further comprising

a secure history determination step providing a secure history determination
result indicating whether or not a parameter set used to call the code portion was used
before the publication of the oldest vulnerability of the code portion wherein

the step of evaluation is based on the secure history determination result.

7. A method according to claim 4 or 5 wherein one or more parameter test
procedures are defined, whereby

each parameter test procedure of the one or more parameter test procedures is
specific to a different one of said vulnerabilities and provides a result value when
executed which indicates if a parameter set used to call the code portion exploits this
vulnerability or not and

wherein

the step of evaluation is based on one or more of said result values of the one or

more parameter test procedures.

8. A method according to claim 7 further comprising

a secure history determination step providing a secure history determination
result indicating whether or not a parameter set used to call the code portion was used
before the publication of a first vulnerability of the code portion wherein

the step of evaluation is based on the secure history determination result.
9. A method according to claim 8 wherein
said first vulnerability is the oldest vulnerability of the code portion without a

parameter test procedure.

10. A method according to claim 6, 8 or 9 further comprising the step of,

WO 2009/015671 PCT/EP2007/006766

10

15

20

22

storing, whenever a code portion is executed, an identifier of the executed code
portion together with a parameter set used to call the executed code portion and a time
stamp, whereby the parameter set is stored based on a secure hash in case the

parameter set is determined to require too large an amount of storage capacity.

11. A method according to any one of the above claims further comprising the
steps of

determining which fixes need to be applied in order to allow for a secure
execution of a code portion of which the execution is prevented or aborted and

telling a user said fixes and/or applying said fixes.

12. A method according to any one of the above claims further comprising the
steps of

determining what other code portion might be used instead of the one of which
the execution was prevented or aborted and

telling a user said other code portion.

13. A computer software product which, when executed on a processing device, is

adapted to perform the steps of the method according to any one of the above claims.

WO 2009/015671 PCT/EP2007/006766
1/3

A2-2
library Legend
procedure —» uses
—P interacts with
-+« Jp calls
e CONtAINS
........... inserts

© Vulnerability
Calculator

Vulnerabilities

DB. A8

WO 2009/015671 PCT/EP2007/006766
2/3

code module id

code module id +
procedure name
code module id +
p name
code module id +
procedure name procedurs name
code module id +
procedure name
code module id +
procedure name
code module id +
procedure name
procedure name code module id +
procedure nams
code module id +

procedure name
/ZO procedure name moddeid~
EMMWU hame

- H____J
~
exported procedures used external
procedures

procedure name

procedure name

WO 2009/015671

3/3

S100

at least

one
vulnerability?

set oldest vuinerabliity 5102
withe e
parameter test procedure

as
curmently tested vulnerabllity

Sl04

PCT/EP2007/006766

3108\

set next youngest vulnerability
with a
parameter test procedure
as
currently tested vulnerability

\

$106

more vuinerabliities
with a pararmebter
test procedure?

vulnerabilities?

5110

determine /

OPD and RD

5112

oider than

oPO?

S114
aliow /

operation
S116 /

reject
operation

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/006766

A. CLASSIFICATION OO%UBJECT MATTER

INV.

GO6F21

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation fo the extent that such documents are included In the fields searched

Electronic data base consulted during the International search (name of dala base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSiDEF!ED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2007/094260 A1 (MURPHY ELISSA E [US] ET

AL) 26 April 2007 (2007-04-26)

paragraphs [0013], [0029], [0033]
paragraph [0080] - paragraph [0084]

US 2004/260940 A1 (BERG RYAN JAMES [US] ET
AL) 23 December 2004 (2004-12-23)
paragraph [0029]

paragraph [0148] - paragraph [0153]

US 2005/198520 Al (BARDSLEY JEFFREY S [us]
ET AL) 8 September 2005 (2005-09-08) -
paragraph [0103] - paragraph [0106]

US 2003/131152 Al (ERLINGSSON-ULFAR [usl)
10 July 2003 (2003-07-10) '
paragraphs [0010], [0027]

2

1-13

6-10

11

12

D Further documents are listed in the continuation of Box C.

B:I See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which Is not
considered to be of particular relevance

*E" earlier document but published on or afterthe international
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0O* document referring to an oral disclosure, use, exhibition or
other means : .

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the -application but
cited fo understand the principle or theory ‘underlying the
invention

"X’ document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

*Y" document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-

metz}r]ﬂs, such combination being obvious to a person skilled

in the an. .

*&" document member of the same patent family

Date of the actual completion of the international search

9 April 2008

Date of mailing of the international search report

15/04/2008

\Name and mailing address of the I1SA/ ’

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk '

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Cartrysse, Kathy

. Form PCT/ISA/210 (second sheet) (April 2005)

NTERNAHONALSEARCHREPQRT

Information on patent family members

International application No

| PCT/EP2007/006766
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2007094260 A1l 26-04~2007 NONE
US 2004260940 Al 23-12-2004 EP 1627303 A2 22-02-2006
h JP 2006523898 T 19-10-2006
Us 2007234304 Al 04-10-2007
US 2005198520 Al 08-09-2005 NONE
Us 2003131152 A1l 10-07-2003 NONE

Form PCT/ISA/210 {patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

